Merge remote-tracking branch 'remotes/rth/tags/pull-tcg-20211016' into staging
[qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
17
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27
28 #define ELF_OSABI ELFOSABI_SYSV
29
30 /* from personality.h */
31
32 /*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37 enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
49 };
50
51 /*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57 enum {
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
81 };
82
83 /*
84 * Return the base personality without flags.
85 */
86 #define personality(pers) (pers & PER_MASK)
87
88 int info_is_fdpic(struct image_info *info)
89 {
90 return info->personality == PER_LINUX_FDPIC;
91 }
92
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
97
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
102
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA ELFDATA2MSB
105 #else
106 #define ELF_DATA ELFDATA2LSB
107 #endif
108
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong target_elf_greg_t;
111 #define tswapreg(ptr) tswap64(ptr)
112 #else
113 typedef abi_ulong target_elf_greg_t;
114 #define tswapreg(ptr) tswapal(ptr)
115 #endif
116
117 #ifdef USE_UID16
118 typedef abi_ushort target_uid_t;
119 typedef abi_ushort target_gid_t;
120 #else
121 typedef abi_uint target_uid_t;
122 typedef abi_uint target_gid_t;
123 #endif
124 typedef abi_int target_pid_t;
125
126 #ifdef TARGET_I386
127
128 #define ELF_PLATFORM get_elf_platform()
129
130 static const char *get_elf_platform(void)
131 {
132 static char elf_platform[] = "i386";
133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134 if (family > 6)
135 family = 6;
136 if (family >= 3)
137 elf_platform[1] = '0' + family;
138 return elf_platform;
139 }
140
141 #define ELF_HWCAP get_elf_hwcap()
142
143 static uint32_t get_elf_hwcap(void)
144 {
145 X86CPU *cpu = X86_CPU(thread_cpu);
146
147 return cpu->env.features[FEAT_1_EDX];
148 }
149
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
152
153 #define ELF_CLASS ELFCLASS64
154 #define ELF_ARCH EM_X86_64
155
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157 {
158 regs->rax = 0;
159 regs->rsp = infop->start_stack;
160 regs->rip = infop->entry;
161 }
162
163 #define ELF_NREG 27
164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
165
166 /*
167 * Note that ELF_NREG should be 29 as there should be place for
168 * TRAPNO and ERR "registers" as well but linux doesn't dump
169 * those.
170 *
171 * See linux kernel: arch/x86/include/asm/elf.h
172 */
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
174 {
175 (*regs)[0] = env->regs[15];
176 (*regs)[1] = env->regs[14];
177 (*regs)[2] = env->regs[13];
178 (*regs)[3] = env->regs[12];
179 (*regs)[4] = env->regs[R_EBP];
180 (*regs)[5] = env->regs[R_EBX];
181 (*regs)[6] = env->regs[11];
182 (*regs)[7] = env->regs[10];
183 (*regs)[8] = env->regs[9];
184 (*regs)[9] = env->regs[8];
185 (*regs)[10] = env->regs[R_EAX];
186 (*regs)[11] = env->regs[R_ECX];
187 (*regs)[12] = env->regs[R_EDX];
188 (*regs)[13] = env->regs[R_ESI];
189 (*regs)[14] = env->regs[R_EDI];
190 (*regs)[15] = env->regs[R_EAX]; /* XXX */
191 (*regs)[16] = env->eip;
192 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193 (*regs)[18] = env->eflags;
194 (*regs)[19] = env->regs[R_ESP];
195 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 }
203
204 #else
205
206 #define ELF_START_MMAP 0x80000000
207
208 /*
209 * This is used to ensure we don't load something for the wrong architecture.
210 */
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212
213 /*
214 * These are used to set parameters in the core dumps.
215 */
216 #define ELF_CLASS ELFCLASS32
217 #define ELF_ARCH EM_386
218
219 static inline void init_thread(struct target_pt_regs *regs,
220 struct image_info *infop)
221 {
222 regs->esp = infop->start_stack;
223 regs->eip = infop->entry;
224
225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226 starts %edx contains a pointer to a function which might be
227 registered using `atexit'. This provides a mean for the
228 dynamic linker to call DT_FINI functions for shared libraries
229 that have been loaded before the code runs.
230
231 A value of 0 tells we have no such handler. */
232 regs->edx = 0;
233 }
234
235 #define ELF_NREG 17
236 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
237
238 /*
239 * Note that ELF_NREG should be 19 as there should be place for
240 * TRAPNO and ERR "registers" as well but linux doesn't dump
241 * those.
242 *
243 * See linux kernel: arch/x86/include/asm/elf.h
244 */
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
246 {
247 (*regs)[0] = env->regs[R_EBX];
248 (*regs)[1] = env->regs[R_ECX];
249 (*regs)[2] = env->regs[R_EDX];
250 (*regs)[3] = env->regs[R_ESI];
251 (*regs)[4] = env->regs[R_EDI];
252 (*regs)[5] = env->regs[R_EBP];
253 (*regs)[6] = env->regs[R_EAX];
254 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258 (*regs)[11] = env->regs[R_EAX]; /* XXX */
259 (*regs)[12] = env->eip;
260 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261 (*regs)[14] = env->eflags;
262 (*regs)[15] = env->regs[R_ESP];
263 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264 }
265 #endif
266
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE 4096
269
270 #endif
271
272 #ifdef TARGET_ARM
273
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
276
277 #define ELF_START_MMAP 0x80000000
278
279 #define ELF_ARCH EM_ARM
280 #define ELF_CLASS ELFCLASS32
281
282 static inline void init_thread(struct target_pt_regs *regs,
283 struct image_info *infop)
284 {
285 abi_long stack = infop->start_stack;
286 memset(regs, 0, sizeof(*regs));
287
288 regs->uregs[16] = ARM_CPU_MODE_USR;
289 if (infop->entry & 1) {
290 regs->uregs[16] |= CPSR_T;
291 }
292 regs->uregs[15] = infop->entry & 0xfffffffe;
293 regs->uregs[13] = infop->start_stack;
294 /* FIXME - what to for failure of get_user()? */
295 get_user_ual(regs->uregs[2], stack + 8); /* envp */
296 get_user_ual(regs->uregs[1], stack + 4); /* envp */
297 /* XXX: it seems that r0 is zeroed after ! */
298 regs->uregs[0] = 0;
299 /* For uClinux PIC binaries. */
300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301 regs->uregs[10] = infop->start_data;
302
303 /* Support ARM FDPIC. */
304 if (info_is_fdpic(infop)) {
305 /* As described in the ABI document, r7 points to the loadmap info
306 * prepared by the kernel. If an interpreter is needed, r8 points
307 * to the interpreter loadmap and r9 points to the interpreter
308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309 * r9 points to the main program PT_DYNAMIC info.
310 */
311 regs->uregs[7] = infop->loadmap_addr;
312 if (infop->interpreter_loadmap_addr) {
313 /* Executable is dynamically loaded. */
314 regs->uregs[8] = infop->interpreter_loadmap_addr;
315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316 } else {
317 regs->uregs[8] = 0;
318 regs->uregs[9] = infop->pt_dynamic_addr;
319 }
320 }
321 }
322
323 #define ELF_NREG 18
324 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
325
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
327 {
328 (*regs)[0] = tswapreg(env->regs[0]);
329 (*regs)[1] = tswapreg(env->regs[1]);
330 (*regs)[2] = tswapreg(env->regs[2]);
331 (*regs)[3] = tswapreg(env->regs[3]);
332 (*regs)[4] = tswapreg(env->regs[4]);
333 (*regs)[5] = tswapreg(env->regs[5]);
334 (*regs)[6] = tswapreg(env->regs[6]);
335 (*regs)[7] = tswapreg(env->regs[7]);
336 (*regs)[8] = tswapreg(env->regs[8]);
337 (*regs)[9] = tswapreg(env->regs[9]);
338 (*regs)[10] = tswapreg(env->regs[10]);
339 (*regs)[11] = tswapreg(env->regs[11]);
340 (*regs)[12] = tswapreg(env->regs[12]);
341 (*regs)[13] = tswapreg(env->regs[13]);
342 (*regs)[14] = tswapreg(env->regs[14]);
343 (*regs)[15] = tswapreg(env->regs[15]);
344
345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 }
348
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE 4096
351
352 enum
353 {
354 ARM_HWCAP_ARM_SWP = 1 << 0,
355 ARM_HWCAP_ARM_HALF = 1 << 1,
356 ARM_HWCAP_ARM_THUMB = 1 << 2,
357 ARM_HWCAP_ARM_26BIT = 1 << 3,
358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359 ARM_HWCAP_ARM_FPA = 1 << 5,
360 ARM_HWCAP_ARM_VFP = 1 << 6,
361 ARM_HWCAP_ARM_EDSP = 1 << 7,
362 ARM_HWCAP_ARM_JAVA = 1 << 8,
363 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
364 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
365 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
366 ARM_HWCAP_ARM_NEON = 1 << 12,
367 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
369 ARM_HWCAP_ARM_TLS = 1 << 15,
370 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
371 ARM_HWCAP_ARM_IDIVA = 1 << 17,
372 ARM_HWCAP_ARM_IDIVT = 1 << 18,
373 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
374 ARM_HWCAP_ARM_LPAE = 1 << 20,
375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
376 };
377
378 enum {
379 ARM_HWCAP2_ARM_AES = 1 << 0,
380 ARM_HWCAP2_ARM_PMULL = 1 << 1,
381 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
382 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
383 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
384 };
385
386 /* The commpage only exists for 32 bit kernels */
387
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
389
390 static bool init_guest_commpage(void)
391 {
392 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
395
396 if (addr == MAP_FAILED) {
397 perror("Allocating guest commpage");
398 exit(EXIT_FAILURE);
399 }
400 if (addr != want) {
401 return false;
402 }
403
404 /* Set kernel helper versions; rest of page is 0. */
405 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
406
407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408 perror("Protecting guest commpage");
409 exit(EXIT_FAILURE);
410 }
411 return true;
412 }
413
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
416
417 static uint32_t get_elf_hwcap(void)
418 {
419 ARMCPU *cpu = ARM_CPU(thread_cpu);
420 uint32_t hwcaps = 0;
421
422 hwcaps |= ARM_HWCAP_ARM_SWP;
423 hwcaps |= ARM_HWCAP_ARM_HALF;
424 hwcaps |= ARM_HWCAP_ARM_THUMB;
425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
426
427 /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
430
431 #define GET_FEATURE_ID(feat, hwcap) \
432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433
434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444
445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447 hwcaps |= ARM_HWCAP_ARM_VFPv3;
448 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449 hwcaps |= ARM_HWCAP_ARM_VFPD32;
450 } else {
451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452 }
453 }
454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
455
456 return hwcaps;
457 }
458
459 static uint32_t get_elf_hwcap2(void)
460 {
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
463
464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469 return hwcaps;
470 }
471
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
474
475 #define ELF_PLATFORM get_elf_platform()
476
477 static const char *get_elf_platform(void)
478 {
479 CPUARMState *env = thread_cpu->env_ptr;
480
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END "b"
483 #else
484 # define END "l"
485 #endif
486
487 if (arm_feature(env, ARM_FEATURE_V8)) {
488 return "v8" END;
489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
490 if (arm_feature(env, ARM_FEATURE_M)) {
491 return "v7m" END;
492 } else {
493 return "v7" END;
494 }
495 } else if (arm_feature(env, ARM_FEATURE_V6)) {
496 return "v6" END;
497 } else if (arm_feature(env, ARM_FEATURE_V5)) {
498 return "v5" END;
499 } else {
500 return "v4" END;
501 }
502
503 #undef END
504 }
505
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
509
510 #define ELF_ARCH EM_AARCH64
511 #define ELF_CLASS ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM "aarch64_be"
514 #else
515 # define ELF_PLATFORM "aarch64"
516 #endif
517
518 static inline void init_thread(struct target_pt_regs *regs,
519 struct image_info *infop)
520 {
521 abi_long stack = infop->start_stack;
522 memset(regs, 0, sizeof(*regs));
523
524 regs->pc = infop->entry & ~0x3ULL;
525 regs->sp = stack;
526 }
527
528 #define ELF_NREG 34
529 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
530
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532 const CPUARMState *env)
533 {
534 int i;
535
536 for (i = 0; i < 32; i++) {
537 (*regs)[i] = tswapreg(env->xregs[i]);
538 }
539 (*regs)[32] = tswapreg(env->pc);
540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 }
542
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE 4096
545
546 enum {
547 ARM_HWCAP_A64_FP = 1 << 0,
548 ARM_HWCAP_A64_ASIMD = 1 << 1,
549 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
550 ARM_HWCAP_A64_AES = 1 << 3,
551 ARM_HWCAP_A64_PMULL = 1 << 4,
552 ARM_HWCAP_A64_SHA1 = 1 << 5,
553 ARM_HWCAP_A64_SHA2 = 1 << 6,
554 ARM_HWCAP_A64_CRC32 = 1 << 7,
555 ARM_HWCAP_A64_ATOMICS = 1 << 8,
556 ARM_HWCAP_A64_FPHP = 1 << 9,
557 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
558 ARM_HWCAP_A64_CPUID = 1 << 11,
559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
560 ARM_HWCAP_A64_JSCVT = 1 << 13,
561 ARM_HWCAP_A64_FCMA = 1 << 14,
562 ARM_HWCAP_A64_LRCPC = 1 << 15,
563 ARM_HWCAP_A64_DCPOP = 1 << 16,
564 ARM_HWCAP_A64_SHA3 = 1 << 17,
565 ARM_HWCAP_A64_SM3 = 1 << 18,
566 ARM_HWCAP_A64_SM4 = 1 << 19,
567 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
568 ARM_HWCAP_A64_SHA512 = 1 << 21,
569 ARM_HWCAP_A64_SVE = 1 << 22,
570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
571 ARM_HWCAP_A64_DIT = 1 << 24,
572 ARM_HWCAP_A64_USCAT = 1 << 25,
573 ARM_HWCAP_A64_ILRCPC = 1 << 26,
574 ARM_HWCAP_A64_FLAGM = 1 << 27,
575 ARM_HWCAP_A64_SSBS = 1 << 28,
576 ARM_HWCAP_A64_SB = 1 << 29,
577 ARM_HWCAP_A64_PACA = 1 << 30,
578 ARM_HWCAP_A64_PACG = 1UL << 31,
579
580 ARM_HWCAP2_A64_DCPODP = 1 << 0,
581 ARM_HWCAP2_A64_SVE2 = 1 << 1,
582 ARM_HWCAP2_A64_SVEAES = 1 << 2,
583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
586 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
588 ARM_HWCAP2_A64_FRINT = 1 << 8,
589 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
590 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
591 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
592 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
593 ARM_HWCAP2_A64_I8MM = 1 << 13,
594 ARM_HWCAP2_A64_BF16 = 1 << 14,
595 ARM_HWCAP2_A64_DGH = 1 << 15,
596 ARM_HWCAP2_A64_RNG = 1 << 16,
597 ARM_HWCAP2_A64_BTI = 1 << 17,
598 ARM_HWCAP2_A64_MTE = 1 << 18,
599 };
600
601 #define ELF_HWCAP get_elf_hwcap()
602 #define ELF_HWCAP2 get_elf_hwcap2()
603
604 #define GET_FEATURE_ID(feat, hwcap) \
605 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
606
607 static uint32_t get_elf_hwcap(void)
608 {
609 ARMCPU *cpu = ARM_CPU(thread_cpu);
610 uint32_t hwcaps = 0;
611
612 hwcaps |= ARM_HWCAP_A64_FP;
613 hwcaps |= ARM_HWCAP_A64_ASIMD;
614 hwcaps |= ARM_HWCAP_A64_CPUID;
615
616 /* probe for the extra features */
617
618 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
619 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
620 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
621 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
622 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
623 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
624 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
625 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
626 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
627 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
628 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
629 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
630 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
631 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
632 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
633 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
634 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
635 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
636 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
637 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
638 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
639 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
640 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
641
642 return hwcaps;
643 }
644
645 static uint32_t get_elf_hwcap2(void)
646 {
647 ARMCPU *cpu = ARM_CPU(thread_cpu);
648 uint32_t hwcaps = 0;
649
650 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
651 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
652 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
653 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
654 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
655 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
656 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
657 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
658 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
659 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
660 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
661 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
662 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
663 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
664 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
665 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
666 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
667 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
668
669 return hwcaps;
670 }
671
672 #undef GET_FEATURE_ID
673
674 #endif /* not TARGET_AARCH64 */
675 #endif /* TARGET_ARM */
676
677 #ifdef TARGET_SPARC
678 #ifdef TARGET_SPARC64
679
680 #define ELF_START_MMAP 0x80000000
681 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
682 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
683 #ifndef TARGET_ABI32
684 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
685 #else
686 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
687 #endif
688
689 #define ELF_CLASS ELFCLASS64
690 #define ELF_ARCH EM_SPARCV9
691 #else
692 #define ELF_START_MMAP 0x80000000
693 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
694 | HWCAP_SPARC_MULDIV)
695 #define ELF_CLASS ELFCLASS32
696 #define ELF_ARCH EM_SPARC
697 #endif /* TARGET_SPARC64 */
698
699 static inline void init_thread(struct target_pt_regs *regs,
700 struct image_info *infop)
701 {
702 /* Note that target_cpu_copy_regs does not read psr/tstate. */
703 regs->pc = infop->entry;
704 regs->npc = regs->pc + 4;
705 regs->y = 0;
706 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
707 - TARGET_STACK_BIAS);
708 }
709 #endif /* TARGET_SPARC */
710
711 #ifdef TARGET_PPC
712
713 #define ELF_MACHINE PPC_ELF_MACHINE
714 #define ELF_START_MMAP 0x80000000
715
716 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
717
718 #define elf_check_arch(x) ( (x) == EM_PPC64 )
719
720 #define ELF_CLASS ELFCLASS64
721
722 #else
723
724 #define ELF_CLASS ELFCLASS32
725
726 #endif
727
728 #define ELF_ARCH EM_PPC
729
730 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
731 See arch/powerpc/include/asm/cputable.h. */
732 enum {
733 QEMU_PPC_FEATURE_32 = 0x80000000,
734 QEMU_PPC_FEATURE_64 = 0x40000000,
735 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
736 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
737 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
738 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
739 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
740 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
741 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
742 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
743 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
744 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
745 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
746 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
747 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
748 QEMU_PPC_FEATURE_CELL = 0x00010000,
749 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
750 QEMU_PPC_FEATURE_SMT = 0x00004000,
751 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
752 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
753 QEMU_PPC_FEATURE_PA6T = 0x00000800,
754 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
755 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
756 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
757 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
758 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
759
760 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
761 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
762
763 /* Feature definitions in AT_HWCAP2. */
764 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
765 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
766 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
767 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
768 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
769 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
770 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
771 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
772 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
773 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
774 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
775 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
776 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
777 };
778
779 #define ELF_HWCAP get_elf_hwcap()
780
781 static uint32_t get_elf_hwcap(void)
782 {
783 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
784 uint32_t features = 0;
785
786 /* We don't have to be terribly complete here; the high points are
787 Altivec/FP/SPE support. Anything else is just a bonus. */
788 #define GET_FEATURE(flag, feature) \
789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flags, feature) \
791 do { \
792 if ((cpu->env.insns_flags2 & flags) == flags) { \
793 features |= feature; \
794 } \
795 } while (0)
796 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
797 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
798 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
799 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
800 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
801 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
802 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
803 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
804 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
805 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
806 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
807 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
808 QEMU_PPC_FEATURE_ARCH_2_06);
809 #undef GET_FEATURE
810 #undef GET_FEATURE2
811
812 return features;
813 }
814
815 #define ELF_HWCAP2 get_elf_hwcap2()
816
817 static uint32_t get_elf_hwcap2(void)
818 {
819 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
820 uint32_t features = 0;
821
822 #define GET_FEATURE(flag, feature) \
823 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
824 #define GET_FEATURE2(flag, feature) \
825 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
826
827 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
828 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
829 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
830 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
831 QEMU_PPC_FEATURE2_VEC_CRYPTO);
832 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
833 QEMU_PPC_FEATURE2_DARN);
834
835 #undef GET_FEATURE
836 #undef GET_FEATURE2
837
838 return features;
839 }
840
841 /*
842 * The requirements here are:
843 * - keep the final alignment of sp (sp & 0xf)
844 * - make sure the 32-bit value at the first 16 byte aligned position of
845 * AUXV is greater than 16 for glibc compatibility.
846 * AT_IGNOREPPC is used for that.
847 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
848 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
849 */
850 #define DLINFO_ARCH_ITEMS 5
851 #define ARCH_DLINFO \
852 do { \
853 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
854 /* \
855 * Handle glibc compatibility: these magic entries must \
856 * be at the lowest addresses in the final auxv. \
857 */ \
858 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
859 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
860 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
861 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
862 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
863 } while (0)
864
865 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
866 {
867 _regs->gpr[1] = infop->start_stack;
868 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
869 if (get_ppc64_abi(infop) < 2) {
870 uint64_t val;
871 get_user_u64(val, infop->entry + 8);
872 _regs->gpr[2] = val + infop->load_bias;
873 get_user_u64(val, infop->entry);
874 infop->entry = val + infop->load_bias;
875 } else {
876 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
877 }
878 #endif
879 _regs->nip = infop->entry;
880 }
881
882 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
883 #define ELF_NREG 48
884 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
885
886 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
887 {
888 int i;
889 target_ulong ccr = 0;
890
891 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
892 (*regs)[i] = tswapreg(env->gpr[i]);
893 }
894
895 (*regs)[32] = tswapreg(env->nip);
896 (*regs)[33] = tswapreg(env->msr);
897 (*regs)[35] = tswapreg(env->ctr);
898 (*regs)[36] = tswapreg(env->lr);
899 (*regs)[37] = tswapreg(env->xer);
900
901 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
902 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
903 }
904 (*regs)[38] = tswapreg(ccr);
905 }
906
907 #define USE_ELF_CORE_DUMP
908 #define ELF_EXEC_PAGESIZE 4096
909
910 #endif
911
912 #ifdef TARGET_MIPS
913
914 #define ELF_START_MMAP 0x80000000
915
916 #ifdef TARGET_MIPS64
917 #define ELF_CLASS ELFCLASS64
918 #else
919 #define ELF_CLASS ELFCLASS32
920 #endif
921 #define ELF_ARCH EM_MIPS
922
923 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
924
925 #ifdef TARGET_ABI_MIPSN32
926 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
927 #else
928 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
929 #endif
930
931 static inline void init_thread(struct target_pt_regs *regs,
932 struct image_info *infop)
933 {
934 regs->cp0_status = 2 << CP0St_KSU;
935 regs->cp0_epc = infop->entry;
936 regs->regs[29] = infop->start_stack;
937 }
938
939 /* See linux kernel: arch/mips/include/asm/elf.h. */
940 #define ELF_NREG 45
941 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
942
943 /* See linux kernel: arch/mips/include/asm/reg.h. */
944 enum {
945 #ifdef TARGET_MIPS64
946 TARGET_EF_R0 = 0,
947 #else
948 TARGET_EF_R0 = 6,
949 #endif
950 TARGET_EF_R26 = TARGET_EF_R0 + 26,
951 TARGET_EF_R27 = TARGET_EF_R0 + 27,
952 TARGET_EF_LO = TARGET_EF_R0 + 32,
953 TARGET_EF_HI = TARGET_EF_R0 + 33,
954 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
955 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
956 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
957 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
958 };
959
960 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
961 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
962 {
963 int i;
964
965 for (i = 0; i < TARGET_EF_R0; i++) {
966 (*regs)[i] = 0;
967 }
968 (*regs)[TARGET_EF_R0] = 0;
969
970 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
971 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
972 }
973
974 (*regs)[TARGET_EF_R26] = 0;
975 (*regs)[TARGET_EF_R27] = 0;
976 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
977 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
978 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
979 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
980 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
981 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
982 }
983
984 #define USE_ELF_CORE_DUMP
985 #define ELF_EXEC_PAGESIZE 4096
986
987 /* See arch/mips/include/uapi/asm/hwcap.h. */
988 enum {
989 HWCAP_MIPS_R6 = (1 << 0),
990 HWCAP_MIPS_MSA = (1 << 1),
991 HWCAP_MIPS_CRC32 = (1 << 2),
992 HWCAP_MIPS_MIPS16 = (1 << 3),
993 HWCAP_MIPS_MDMX = (1 << 4),
994 HWCAP_MIPS_MIPS3D = (1 << 5),
995 HWCAP_MIPS_SMARTMIPS = (1 << 6),
996 HWCAP_MIPS_DSP = (1 << 7),
997 HWCAP_MIPS_DSP2 = (1 << 8),
998 HWCAP_MIPS_DSP3 = (1 << 9),
999 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1000 HWCAP_LOONGSON_MMI = (1 << 11),
1001 HWCAP_LOONGSON_EXT = (1 << 12),
1002 HWCAP_LOONGSON_EXT2 = (1 << 13),
1003 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1004 };
1005
1006 #define ELF_HWCAP get_elf_hwcap()
1007
1008 #define GET_FEATURE_INSN(_flag, _hwcap) \
1009 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1010
1011 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1012 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1013
1014 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1015 do { \
1016 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1017 hwcaps |= _hwcap; \
1018 } \
1019 } while (0)
1020
1021 static uint32_t get_elf_hwcap(void)
1022 {
1023 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1024 uint32_t hwcaps = 0;
1025
1026 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1027 2, HWCAP_MIPS_R6);
1028 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1029 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1030 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1031
1032 return hwcaps;
1033 }
1034
1035 #undef GET_FEATURE_REG_EQU
1036 #undef GET_FEATURE_REG_SET
1037 #undef GET_FEATURE_INSN
1038
1039 #endif /* TARGET_MIPS */
1040
1041 #ifdef TARGET_MICROBLAZE
1042
1043 #define ELF_START_MMAP 0x80000000
1044
1045 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1046
1047 #define ELF_CLASS ELFCLASS32
1048 #define ELF_ARCH EM_MICROBLAZE
1049
1050 static inline void init_thread(struct target_pt_regs *regs,
1051 struct image_info *infop)
1052 {
1053 regs->pc = infop->entry;
1054 regs->r1 = infop->start_stack;
1055
1056 }
1057
1058 #define ELF_EXEC_PAGESIZE 4096
1059
1060 #define USE_ELF_CORE_DUMP
1061 #define ELF_NREG 38
1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1063
1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1065 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1066 {
1067 int i, pos = 0;
1068
1069 for (i = 0; i < 32; i++) {
1070 (*regs)[pos++] = tswapreg(env->regs[i]);
1071 }
1072
1073 (*regs)[pos++] = tswapreg(env->pc);
1074 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1075 (*regs)[pos++] = 0;
1076 (*regs)[pos++] = tswapreg(env->ear);
1077 (*regs)[pos++] = 0;
1078 (*regs)[pos++] = tswapreg(env->esr);
1079 }
1080
1081 #endif /* TARGET_MICROBLAZE */
1082
1083 #ifdef TARGET_NIOS2
1084
1085 #define ELF_START_MMAP 0x80000000
1086
1087 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1088
1089 #define ELF_CLASS ELFCLASS32
1090 #define ELF_ARCH EM_ALTERA_NIOS2
1091
1092 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1093 {
1094 regs->ea = infop->entry;
1095 regs->sp = infop->start_stack;
1096 regs->estatus = 0x3;
1097 }
1098
1099 #define ELF_EXEC_PAGESIZE 4096
1100
1101 #define USE_ELF_CORE_DUMP
1102 #define ELF_NREG 49
1103 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1104
1105 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1106 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1107 const CPUNios2State *env)
1108 {
1109 int i;
1110
1111 (*regs)[0] = -1;
1112 for (i = 1; i < 8; i++) /* r0-r7 */
1113 (*regs)[i] = tswapreg(env->regs[i + 7]);
1114
1115 for (i = 8; i < 16; i++) /* r8-r15 */
1116 (*regs)[i] = tswapreg(env->regs[i - 8]);
1117
1118 for (i = 16; i < 24; i++) /* r16-r23 */
1119 (*regs)[i] = tswapreg(env->regs[i + 7]);
1120 (*regs)[24] = -1; /* R_ET */
1121 (*regs)[25] = -1; /* R_BT */
1122 (*regs)[26] = tswapreg(env->regs[R_GP]);
1123 (*regs)[27] = tswapreg(env->regs[R_SP]);
1124 (*regs)[28] = tswapreg(env->regs[R_FP]);
1125 (*regs)[29] = tswapreg(env->regs[R_EA]);
1126 (*regs)[30] = -1; /* R_SSTATUS */
1127 (*regs)[31] = tswapreg(env->regs[R_RA]);
1128
1129 (*regs)[32] = tswapreg(env->regs[R_PC]);
1130
1131 (*regs)[33] = -1; /* R_STATUS */
1132 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1133
1134 for (i = 35; i < 49; i++) /* ... */
1135 (*regs)[i] = -1;
1136 }
1137
1138 #endif /* TARGET_NIOS2 */
1139
1140 #ifdef TARGET_OPENRISC
1141
1142 #define ELF_START_MMAP 0x08000000
1143
1144 #define ELF_ARCH EM_OPENRISC
1145 #define ELF_CLASS ELFCLASS32
1146 #define ELF_DATA ELFDATA2MSB
1147
1148 static inline void init_thread(struct target_pt_regs *regs,
1149 struct image_info *infop)
1150 {
1151 regs->pc = infop->entry;
1152 regs->gpr[1] = infop->start_stack;
1153 }
1154
1155 #define USE_ELF_CORE_DUMP
1156 #define ELF_EXEC_PAGESIZE 8192
1157
1158 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1159 #define ELF_NREG 34 /* gprs and pc, sr */
1160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1161
1162 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1163 const CPUOpenRISCState *env)
1164 {
1165 int i;
1166
1167 for (i = 0; i < 32; i++) {
1168 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1169 }
1170 (*regs)[32] = tswapreg(env->pc);
1171 (*regs)[33] = tswapreg(cpu_get_sr(env));
1172 }
1173 #define ELF_HWCAP 0
1174 #define ELF_PLATFORM NULL
1175
1176 #endif /* TARGET_OPENRISC */
1177
1178 #ifdef TARGET_SH4
1179
1180 #define ELF_START_MMAP 0x80000000
1181
1182 #define ELF_CLASS ELFCLASS32
1183 #define ELF_ARCH EM_SH
1184
1185 static inline void init_thread(struct target_pt_regs *regs,
1186 struct image_info *infop)
1187 {
1188 /* Check other registers XXXXX */
1189 regs->pc = infop->entry;
1190 regs->regs[15] = infop->start_stack;
1191 }
1192
1193 /* See linux kernel: arch/sh/include/asm/elf.h. */
1194 #define ELF_NREG 23
1195 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1196
1197 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1198 enum {
1199 TARGET_REG_PC = 16,
1200 TARGET_REG_PR = 17,
1201 TARGET_REG_SR = 18,
1202 TARGET_REG_GBR = 19,
1203 TARGET_REG_MACH = 20,
1204 TARGET_REG_MACL = 21,
1205 TARGET_REG_SYSCALL = 22
1206 };
1207
1208 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1209 const CPUSH4State *env)
1210 {
1211 int i;
1212
1213 for (i = 0; i < 16; i++) {
1214 (*regs)[i] = tswapreg(env->gregs[i]);
1215 }
1216
1217 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1218 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1219 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1220 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1221 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1222 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1223 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1224 }
1225
1226 #define USE_ELF_CORE_DUMP
1227 #define ELF_EXEC_PAGESIZE 4096
1228
1229 enum {
1230 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1231 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1232 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1233 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1234 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1235 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1236 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1237 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1238 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1239 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1240 };
1241
1242 #define ELF_HWCAP get_elf_hwcap()
1243
1244 static uint32_t get_elf_hwcap(void)
1245 {
1246 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1247 uint32_t hwcap = 0;
1248
1249 hwcap |= SH_CPU_HAS_FPU;
1250
1251 if (cpu->env.features & SH_FEATURE_SH4A) {
1252 hwcap |= SH_CPU_HAS_LLSC;
1253 }
1254
1255 return hwcap;
1256 }
1257
1258 #endif
1259
1260 #ifdef TARGET_CRIS
1261
1262 #define ELF_START_MMAP 0x80000000
1263
1264 #define ELF_CLASS ELFCLASS32
1265 #define ELF_ARCH EM_CRIS
1266
1267 static inline void init_thread(struct target_pt_regs *regs,
1268 struct image_info *infop)
1269 {
1270 regs->erp = infop->entry;
1271 }
1272
1273 #define ELF_EXEC_PAGESIZE 8192
1274
1275 #endif
1276
1277 #ifdef TARGET_M68K
1278
1279 #define ELF_START_MMAP 0x80000000
1280
1281 #define ELF_CLASS ELFCLASS32
1282 #define ELF_ARCH EM_68K
1283
1284 /* ??? Does this need to do anything?
1285 #define ELF_PLAT_INIT(_r) */
1286
1287 static inline void init_thread(struct target_pt_regs *regs,
1288 struct image_info *infop)
1289 {
1290 regs->usp = infop->start_stack;
1291 regs->sr = 0;
1292 regs->pc = infop->entry;
1293 }
1294
1295 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1296 #define ELF_NREG 20
1297 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1298
1299 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1300 {
1301 (*regs)[0] = tswapreg(env->dregs[1]);
1302 (*regs)[1] = tswapreg(env->dregs[2]);
1303 (*regs)[2] = tswapreg(env->dregs[3]);
1304 (*regs)[3] = tswapreg(env->dregs[4]);
1305 (*regs)[4] = tswapreg(env->dregs[5]);
1306 (*regs)[5] = tswapreg(env->dregs[6]);
1307 (*regs)[6] = tswapreg(env->dregs[7]);
1308 (*regs)[7] = tswapreg(env->aregs[0]);
1309 (*regs)[8] = tswapreg(env->aregs[1]);
1310 (*regs)[9] = tswapreg(env->aregs[2]);
1311 (*regs)[10] = tswapreg(env->aregs[3]);
1312 (*regs)[11] = tswapreg(env->aregs[4]);
1313 (*regs)[12] = tswapreg(env->aregs[5]);
1314 (*regs)[13] = tswapreg(env->aregs[6]);
1315 (*regs)[14] = tswapreg(env->dregs[0]);
1316 (*regs)[15] = tswapreg(env->aregs[7]);
1317 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1318 (*regs)[17] = tswapreg(env->sr);
1319 (*regs)[18] = tswapreg(env->pc);
1320 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1321 }
1322
1323 #define USE_ELF_CORE_DUMP
1324 #define ELF_EXEC_PAGESIZE 8192
1325
1326 #endif
1327
1328 #ifdef TARGET_ALPHA
1329
1330 #define ELF_START_MMAP (0x30000000000ULL)
1331
1332 #define ELF_CLASS ELFCLASS64
1333 #define ELF_ARCH EM_ALPHA
1334
1335 static inline void init_thread(struct target_pt_regs *regs,
1336 struct image_info *infop)
1337 {
1338 regs->pc = infop->entry;
1339 regs->ps = 8;
1340 regs->usp = infop->start_stack;
1341 }
1342
1343 #define ELF_EXEC_PAGESIZE 8192
1344
1345 #endif /* TARGET_ALPHA */
1346
1347 #ifdef TARGET_S390X
1348
1349 #define ELF_START_MMAP (0x20000000000ULL)
1350
1351 #define ELF_CLASS ELFCLASS64
1352 #define ELF_DATA ELFDATA2MSB
1353 #define ELF_ARCH EM_S390
1354
1355 #include "elf.h"
1356
1357 #define ELF_HWCAP get_elf_hwcap()
1358
1359 #define GET_FEATURE(_feat, _hwcap) \
1360 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1361
1362 static uint32_t get_elf_hwcap(void)
1363 {
1364 /*
1365 * Let's assume we always have esan3 and zarch.
1366 * 31-bit processes can use 64-bit registers (high gprs).
1367 */
1368 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1369
1370 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1371 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1372 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1373 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1374 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1375 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1376 hwcap |= HWCAP_S390_ETF3EH;
1377 }
1378 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1379
1380 return hwcap;
1381 }
1382
1383 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1384 {
1385 regs->psw.addr = infop->entry;
1386 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1387 regs->gprs[15] = infop->start_stack;
1388 }
1389
1390 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1391 #define ELF_NREG 27
1392 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1393
1394 enum {
1395 TARGET_REG_PSWM = 0,
1396 TARGET_REG_PSWA = 1,
1397 TARGET_REG_GPRS = 2,
1398 TARGET_REG_ARS = 18,
1399 TARGET_REG_ORIG_R2 = 26,
1400 };
1401
1402 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1403 const CPUS390XState *env)
1404 {
1405 int i;
1406 uint32_t *aregs;
1407
1408 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1409 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1410 for (i = 0; i < 16; i++) {
1411 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1412 }
1413 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1414 for (i = 0; i < 16; i++) {
1415 aregs[i] = tswap32(env->aregs[i]);
1416 }
1417 (*regs)[TARGET_REG_ORIG_R2] = 0;
1418 }
1419
1420 #define USE_ELF_CORE_DUMP
1421 #define ELF_EXEC_PAGESIZE 4096
1422
1423 #endif /* TARGET_S390X */
1424
1425 #ifdef TARGET_RISCV
1426
1427 #define ELF_START_MMAP 0x80000000
1428 #define ELF_ARCH EM_RISCV
1429
1430 #ifdef TARGET_RISCV32
1431 #define ELF_CLASS ELFCLASS32
1432 #else
1433 #define ELF_CLASS ELFCLASS64
1434 #endif
1435
1436 static inline void init_thread(struct target_pt_regs *regs,
1437 struct image_info *infop)
1438 {
1439 regs->sepc = infop->entry;
1440 regs->sp = infop->start_stack;
1441 }
1442
1443 #define ELF_EXEC_PAGESIZE 4096
1444
1445 #endif /* TARGET_RISCV */
1446
1447 #ifdef TARGET_HPPA
1448
1449 #define ELF_START_MMAP 0x80000000
1450 #define ELF_CLASS ELFCLASS32
1451 #define ELF_ARCH EM_PARISC
1452 #define ELF_PLATFORM "PARISC"
1453 #define STACK_GROWS_DOWN 0
1454 #define STACK_ALIGNMENT 64
1455
1456 static inline void init_thread(struct target_pt_regs *regs,
1457 struct image_info *infop)
1458 {
1459 regs->iaoq[0] = infop->entry;
1460 regs->iaoq[1] = infop->entry + 4;
1461 regs->gr[23] = 0;
1462 regs->gr[24] = infop->arg_start;
1463 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1464 /* The top-of-stack contains a linkage buffer. */
1465 regs->gr[30] = infop->start_stack + 64;
1466 regs->gr[31] = infop->entry;
1467 }
1468
1469 #endif /* TARGET_HPPA */
1470
1471 #ifdef TARGET_XTENSA
1472
1473 #define ELF_START_MMAP 0x20000000
1474
1475 #define ELF_CLASS ELFCLASS32
1476 #define ELF_ARCH EM_XTENSA
1477
1478 static inline void init_thread(struct target_pt_regs *regs,
1479 struct image_info *infop)
1480 {
1481 regs->windowbase = 0;
1482 regs->windowstart = 1;
1483 regs->areg[1] = infop->start_stack;
1484 regs->pc = infop->entry;
1485 }
1486
1487 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1488 #define ELF_NREG 128
1489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1490
1491 enum {
1492 TARGET_REG_PC,
1493 TARGET_REG_PS,
1494 TARGET_REG_LBEG,
1495 TARGET_REG_LEND,
1496 TARGET_REG_LCOUNT,
1497 TARGET_REG_SAR,
1498 TARGET_REG_WINDOWSTART,
1499 TARGET_REG_WINDOWBASE,
1500 TARGET_REG_THREADPTR,
1501 TARGET_REG_AR0 = 64,
1502 };
1503
1504 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1505 const CPUXtensaState *env)
1506 {
1507 unsigned i;
1508
1509 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1510 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1511 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1512 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1513 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1514 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1515 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1516 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1517 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1518 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1519 for (i = 0; i < env->config->nareg; ++i) {
1520 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1521 }
1522 }
1523
1524 #define USE_ELF_CORE_DUMP
1525 #define ELF_EXEC_PAGESIZE 4096
1526
1527 #endif /* TARGET_XTENSA */
1528
1529 #ifdef TARGET_HEXAGON
1530
1531 #define ELF_START_MMAP 0x20000000
1532
1533 #define ELF_CLASS ELFCLASS32
1534 #define ELF_ARCH EM_HEXAGON
1535
1536 static inline void init_thread(struct target_pt_regs *regs,
1537 struct image_info *infop)
1538 {
1539 regs->sepc = infop->entry;
1540 regs->sp = infop->start_stack;
1541 }
1542
1543 #endif /* TARGET_HEXAGON */
1544
1545 #ifndef ELF_PLATFORM
1546 #define ELF_PLATFORM (NULL)
1547 #endif
1548
1549 #ifndef ELF_MACHINE
1550 #define ELF_MACHINE ELF_ARCH
1551 #endif
1552
1553 #ifndef elf_check_arch
1554 #define elf_check_arch(x) ((x) == ELF_ARCH)
1555 #endif
1556
1557 #ifndef elf_check_abi
1558 #define elf_check_abi(x) (1)
1559 #endif
1560
1561 #ifndef ELF_HWCAP
1562 #define ELF_HWCAP 0
1563 #endif
1564
1565 #ifndef STACK_GROWS_DOWN
1566 #define STACK_GROWS_DOWN 1
1567 #endif
1568
1569 #ifndef STACK_ALIGNMENT
1570 #define STACK_ALIGNMENT 16
1571 #endif
1572
1573 #ifdef TARGET_ABI32
1574 #undef ELF_CLASS
1575 #define ELF_CLASS ELFCLASS32
1576 #undef bswaptls
1577 #define bswaptls(ptr) bswap32s(ptr)
1578 #endif
1579
1580 #include "elf.h"
1581
1582 /* We must delay the following stanzas until after "elf.h". */
1583 #if defined(TARGET_AARCH64)
1584
1585 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1586 const uint32_t *data,
1587 struct image_info *info,
1588 Error **errp)
1589 {
1590 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1591 if (pr_datasz != sizeof(uint32_t)) {
1592 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1593 return false;
1594 }
1595 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1596 info->note_flags = *data;
1597 }
1598 return true;
1599 }
1600 #define ARCH_USE_GNU_PROPERTY 1
1601
1602 #else
1603
1604 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1605 const uint32_t *data,
1606 struct image_info *info,
1607 Error **errp)
1608 {
1609 g_assert_not_reached();
1610 }
1611 #define ARCH_USE_GNU_PROPERTY 0
1612
1613 #endif
1614
1615 struct exec
1616 {
1617 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1618 unsigned int a_text; /* length of text, in bytes */
1619 unsigned int a_data; /* length of data, in bytes */
1620 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1621 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1622 unsigned int a_entry; /* start address */
1623 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1624 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1625 };
1626
1627
1628 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1629 #define OMAGIC 0407
1630 #define NMAGIC 0410
1631 #define ZMAGIC 0413
1632 #define QMAGIC 0314
1633
1634 /* Necessary parameters */
1635 #define TARGET_ELF_EXEC_PAGESIZE \
1636 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1637 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1638 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1639 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1640 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1641 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1642
1643 #define DLINFO_ITEMS 16
1644
1645 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1646 {
1647 memcpy(to, from, n);
1648 }
1649
1650 #ifdef BSWAP_NEEDED
1651 static void bswap_ehdr(struct elfhdr *ehdr)
1652 {
1653 bswap16s(&ehdr->e_type); /* Object file type */
1654 bswap16s(&ehdr->e_machine); /* Architecture */
1655 bswap32s(&ehdr->e_version); /* Object file version */
1656 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1657 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1658 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1659 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1660 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1661 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1662 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1663 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1664 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1665 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1666 }
1667
1668 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1669 {
1670 int i;
1671 for (i = 0; i < phnum; ++i, ++phdr) {
1672 bswap32s(&phdr->p_type); /* Segment type */
1673 bswap32s(&phdr->p_flags); /* Segment flags */
1674 bswaptls(&phdr->p_offset); /* Segment file offset */
1675 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1676 bswaptls(&phdr->p_paddr); /* Segment physical address */
1677 bswaptls(&phdr->p_filesz); /* Segment size in file */
1678 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1679 bswaptls(&phdr->p_align); /* Segment alignment */
1680 }
1681 }
1682
1683 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1684 {
1685 int i;
1686 for (i = 0; i < shnum; ++i, ++shdr) {
1687 bswap32s(&shdr->sh_name);
1688 bswap32s(&shdr->sh_type);
1689 bswaptls(&shdr->sh_flags);
1690 bswaptls(&shdr->sh_addr);
1691 bswaptls(&shdr->sh_offset);
1692 bswaptls(&shdr->sh_size);
1693 bswap32s(&shdr->sh_link);
1694 bswap32s(&shdr->sh_info);
1695 bswaptls(&shdr->sh_addralign);
1696 bswaptls(&shdr->sh_entsize);
1697 }
1698 }
1699
1700 static void bswap_sym(struct elf_sym *sym)
1701 {
1702 bswap32s(&sym->st_name);
1703 bswaptls(&sym->st_value);
1704 bswaptls(&sym->st_size);
1705 bswap16s(&sym->st_shndx);
1706 }
1707
1708 #ifdef TARGET_MIPS
1709 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1710 {
1711 bswap16s(&abiflags->version);
1712 bswap32s(&abiflags->ases);
1713 bswap32s(&abiflags->isa_ext);
1714 bswap32s(&abiflags->flags1);
1715 bswap32s(&abiflags->flags2);
1716 }
1717 #endif
1718 #else
1719 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1720 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1721 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1722 static inline void bswap_sym(struct elf_sym *sym) { }
1723 #ifdef TARGET_MIPS
1724 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1725 #endif
1726 #endif
1727
1728 #ifdef USE_ELF_CORE_DUMP
1729 static int elf_core_dump(int, const CPUArchState *);
1730 #endif /* USE_ELF_CORE_DUMP */
1731 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1732
1733 /* Verify the portions of EHDR within E_IDENT for the target.
1734 This can be performed before bswapping the entire header. */
1735 static bool elf_check_ident(struct elfhdr *ehdr)
1736 {
1737 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1738 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1739 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1740 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1741 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1742 && ehdr->e_ident[EI_DATA] == ELF_DATA
1743 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1744 }
1745
1746 /* Verify the portions of EHDR outside of E_IDENT for the target.
1747 This has to wait until after bswapping the header. */
1748 static bool elf_check_ehdr(struct elfhdr *ehdr)
1749 {
1750 return (elf_check_arch(ehdr->e_machine)
1751 && elf_check_abi(ehdr->e_flags)
1752 && ehdr->e_ehsize == sizeof(struct elfhdr)
1753 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1754 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1755 }
1756
1757 /*
1758 * 'copy_elf_strings()' copies argument/envelope strings from user
1759 * memory to free pages in kernel mem. These are in a format ready
1760 * to be put directly into the top of new user memory.
1761 *
1762 */
1763 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1764 abi_ulong p, abi_ulong stack_limit)
1765 {
1766 char *tmp;
1767 int len, i;
1768 abi_ulong top = p;
1769
1770 if (!p) {
1771 return 0; /* bullet-proofing */
1772 }
1773
1774 if (STACK_GROWS_DOWN) {
1775 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1776 for (i = argc - 1; i >= 0; --i) {
1777 tmp = argv[i];
1778 if (!tmp) {
1779 fprintf(stderr, "VFS: argc is wrong");
1780 exit(-1);
1781 }
1782 len = strlen(tmp) + 1;
1783 tmp += len;
1784
1785 if (len > (p - stack_limit)) {
1786 return 0;
1787 }
1788 while (len) {
1789 int bytes_to_copy = (len > offset) ? offset : len;
1790 tmp -= bytes_to_copy;
1791 p -= bytes_to_copy;
1792 offset -= bytes_to_copy;
1793 len -= bytes_to_copy;
1794
1795 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1796
1797 if (offset == 0) {
1798 memcpy_to_target(p, scratch, top - p);
1799 top = p;
1800 offset = TARGET_PAGE_SIZE;
1801 }
1802 }
1803 }
1804 if (p != top) {
1805 memcpy_to_target(p, scratch + offset, top - p);
1806 }
1807 } else {
1808 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1809 for (i = 0; i < argc; ++i) {
1810 tmp = argv[i];
1811 if (!tmp) {
1812 fprintf(stderr, "VFS: argc is wrong");
1813 exit(-1);
1814 }
1815 len = strlen(tmp) + 1;
1816 if (len > (stack_limit - p)) {
1817 return 0;
1818 }
1819 while (len) {
1820 int bytes_to_copy = (len > remaining) ? remaining : len;
1821
1822 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1823
1824 tmp += bytes_to_copy;
1825 remaining -= bytes_to_copy;
1826 p += bytes_to_copy;
1827 len -= bytes_to_copy;
1828
1829 if (remaining == 0) {
1830 memcpy_to_target(top, scratch, p - top);
1831 top = p;
1832 remaining = TARGET_PAGE_SIZE;
1833 }
1834 }
1835 }
1836 if (p != top) {
1837 memcpy_to_target(top, scratch, p - top);
1838 }
1839 }
1840
1841 return p;
1842 }
1843
1844 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1845 * argument/environment space. Newer kernels (>2.6.33) allow more,
1846 * dependent on stack size, but guarantee at least 32 pages for
1847 * backwards compatibility.
1848 */
1849 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1850
1851 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1852 struct image_info *info)
1853 {
1854 abi_ulong size, error, guard;
1855
1856 size = guest_stack_size;
1857 if (size < STACK_LOWER_LIMIT) {
1858 size = STACK_LOWER_LIMIT;
1859 }
1860 guard = TARGET_PAGE_SIZE;
1861 if (guard < qemu_real_host_page_size) {
1862 guard = qemu_real_host_page_size;
1863 }
1864
1865 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1866 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1867 if (error == -1) {
1868 perror("mmap stack");
1869 exit(-1);
1870 }
1871
1872 /* We reserve one extra page at the top of the stack as guard. */
1873 if (STACK_GROWS_DOWN) {
1874 target_mprotect(error, guard, PROT_NONE);
1875 info->stack_limit = error + guard;
1876 return info->stack_limit + size - sizeof(void *);
1877 } else {
1878 target_mprotect(error + size, guard, PROT_NONE);
1879 info->stack_limit = error + size;
1880 return error;
1881 }
1882 }
1883
1884 /* Map and zero the bss. We need to explicitly zero any fractional pages
1885 after the data section (i.e. bss). */
1886 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1887 {
1888 uintptr_t host_start, host_map_start, host_end;
1889
1890 last_bss = TARGET_PAGE_ALIGN(last_bss);
1891
1892 /* ??? There is confusion between qemu_real_host_page_size and
1893 qemu_host_page_size here and elsewhere in target_mmap, which
1894 may lead to the end of the data section mapping from the file
1895 not being mapped. At least there was an explicit test and
1896 comment for that here, suggesting that "the file size must
1897 be known". The comment probably pre-dates the introduction
1898 of the fstat system call in target_mmap which does in fact
1899 find out the size. What isn't clear is if the workaround
1900 here is still actually needed. For now, continue with it,
1901 but merge it with the "normal" mmap that would allocate the bss. */
1902
1903 host_start = (uintptr_t) g2h_untagged(elf_bss);
1904 host_end = (uintptr_t) g2h_untagged(last_bss);
1905 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1906
1907 if (host_map_start < host_end) {
1908 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1909 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1910 if (p == MAP_FAILED) {
1911 perror("cannot mmap brk");
1912 exit(-1);
1913 }
1914 }
1915
1916 /* Ensure that the bss page(s) are valid */
1917 if ((page_get_flags(last_bss-1) & prot) != prot) {
1918 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1919 }
1920
1921 if (host_start < host_map_start) {
1922 memset((void *)host_start, 0, host_map_start - host_start);
1923 }
1924 }
1925
1926 #ifdef TARGET_ARM
1927 static int elf_is_fdpic(struct elfhdr *exec)
1928 {
1929 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1930 }
1931 #else
1932 /* Default implementation, always false. */
1933 static int elf_is_fdpic(struct elfhdr *exec)
1934 {
1935 return 0;
1936 }
1937 #endif
1938
1939 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1940 {
1941 uint16_t n;
1942 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1943
1944 /* elf32_fdpic_loadseg */
1945 n = info->nsegs;
1946 while (n--) {
1947 sp -= 12;
1948 put_user_u32(loadsegs[n].addr, sp+0);
1949 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1950 put_user_u32(loadsegs[n].p_memsz, sp+8);
1951 }
1952
1953 /* elf32_fdpic_loadmap */
1954 sp -= 4;
1955 put_user_u16(0, sp+0); /* version */
1956 put_user_u16(info->nsegs, sp+2); /* nsegs */
1957
1958 info->personality = PER_LINUX_FDPIC;
1959 info->loadmap_addr = sp;
1960
1961 return sp;
1962 }
1963
1964 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1965 struct elfhdr *exec,
1966 struct image_info *info,
1967 struct image_info *interp_info)
1968 {
1969 abi_ulong sp;
1970 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1971 int size;
1972 int i;
1973 abi_ulong u_rand_bytes;
1974 uint8_t k_rand_bytes[16];
1975 abi_ulong u_platform;
1976 const char *k_platform;
1977 const int n = sizeof(elf_addr_t);
1978
1979 sp = p;
1980
1981 /* Needs to be before we load the env/argc/... */
1982 if (elf_is_fdpic(exec)) {
1983 /* Need 4 byte alignment for these structs */
1984 sp &= ~3;
1985 sp = loader_build_fdpic_loadmap(info, sp);
1986 info->other_info = interp_info;
1987 if (interp_info) {
1988 interp_info->other_info = info;
1989 sp = loader_build_fdpic_loadmap(interp_info, sp);
1990 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1991 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1992 } else {
1993 info->interpreter_loadmap_addr = 0;
1994 info->interpreter_pt_dynamic_addr = 0;
1995 }
1996 }
1997
1998 u_platform = 0;
1999 k_platform = ELF_PLATFORM;
2000 if (k_platform) {
2001 size_t len = strlen(k_platform) + 1;
2002 if (STACK_GROWS_DOWN) {
2003 sp -= (len + n - 1) & ~(n - 1);
2004 u_platform = sp;
2005 /* FIXME - check return value of memcpy_to_target() for failure */
2006 memcpy_to_target(sp, k_platform, len);
2007 } else {
2008 memcpy_to_target(sp, k_platform, len);
2009 u_platform = sp;
2010 sp += len + 1;
2011 }
2012 }
2013
2014 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2015 * the argv and envp pointers.
2016 */
2017 if (STACK_GROWS_DOWN) {
2018 sp = QEMU_ALIGN_DOWN(sp, 16);
2019 } else {
2020 sp = QEMU_ALIGN_UP(sp, 16);
2021 }
2022
2023 /*
2024 * Generate 16 random bytes for userspace PRNG seeding.
2025 */
2026 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2027 if (STACK_GROWS_DOWN) {
2028 sp -= 16;
2029 u_rand_bytes = sp;
2030 /* FIXME - check return value of memcpy_to_target() for failure */
2031 memcpy_to_target(sp, k_rand_bytes, 16);
2032 } else {
2033 memcpy_to_target(sp, k_rand_bytes, 16);
2034 u_rand_bytes = sp;
2035 sp += 16;
2036 }
2037
2038 size = (DLINFO_ITEMS + 1) * 2;
2039 if (k_platform)
2040 size += 2;
2041 #ifdef DLINFO_ARCH_ITEMS
2042 size += DLINFO_ARCH_ITEMS * 2;
2043 #endif
2044 #ifdef ELF_HWCAP2
2045 size += 2;
2046 #endif
2047 info->auxv_len = size * n;
2048
2049 size += envc + argc + 2;
2050 size += 1; /* argc itself */
2051 size *= n;
2052
2053 /* Allocate space and finalize stack alignment for entry now. */
2054 if (STACK_GROWS_DOWN) {
2055 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2056 sp = u_argc;
2057 } else {
2058 u_argc = sp;
2059 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2060 }
2061
2062 u_argv = u_argc + n;
2063 u_envp = u_argv + (argc + 1) * n;
2064 u_auxv = u_envp + (envc + 1) * n;
2065 info->saved_auxv = u_auxv;
2066 info->arg_start = u_argv;
2067 info->arg_end = u_argv + argc * n;
2068
2069 /* This is correct because Linux defines
2070 * elf_addr_t as Elf32_Off / Elf64_Off
2071 */
2072 #define NEW_AUX_ENT(id, val) do { \
2073 put_user_ual(id, u_auxv); u_auxv += n; \
2074 put_user_ual(val, u_auxv); u_auxv += n; \
2075 } while(0)
2076
2077 #ifdef ARCH_DLINFO
2078 /*
2079 * ARCH_DLINFO must come first so platform specific code can enforce
2080 * special alignment requirements on the AUXV if necessary (eg. PPC).
2081 */
2082 ARCH_DLINFO;
2083 #endif
2084 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2085 * on info->auxv_len will trigger.
2086 */
2087 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2088 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2089 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2090 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2091 /* Target doesn't support host page size alignment */
2092 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2093 } else {
2094 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2095 qemu_host_page_size)));
2096 }
2097 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2098 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2099 NEW_AUX_ENT(AT_ENTRY, info->entry);
2100 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2101 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2102 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2103 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2104 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2105 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2106 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2107 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2108 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2109
2110 #ifdef ELF_HWCAP2
2111 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2112 #endif
2113
2114 if (u_platform) {
2115 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2116 }
2117 NEW_AUX_ENT (AT_NULL, 0);
2118 #undef NEW_AUX_ENT
2119
2120 /* Check that our initial calculation of the auxv length matches how much
2121 * we actually put into it.
2122 */
2123 assert(info->auxv_len == u_auxv - info->saved_auxv);
2124
2125 put_user_ual(argc, u_argc);
2126
2127 p = info->arg_strings;
2128 for (i = 0; i < argc; ++i) {
2129 put_user_ual(p, u_argv);
2130 u_argv += n;
2131 p += target_strlen(p) + 1;
2132 }
2133 put_user_ual(0, u_argv);
2134
2135 p = info->env_strings;
2136 for (i = 0; i < envc; ++i) {
2137 put_user_ual(p, u_envp);
2138 u_envp += n;
2139 p += target_strlen(p) + 1;
2140 }
2141 put_user_ual(0, u_envp);
2142
2143 return sp;
2144 }
2145
2146 #ifndef ARM_COMMPAGE
2147 #define ARM_COMMPAGE 0
2148 #define init_guest_commpage() true
2149 #endif
2150
2151 static void pgb_fail_in_use(const char *image_name)
2152 {
2153 error_report("%s: requires virtual address space that is in use "
2154 "(omit the -B option or choose a different value)",
2155 image_name);
2156 exit(EXIT_FAILURE);
2157 }
2158
2159 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2160 abi_ulong guest_hiaddr, long align)
2161 {
2162 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2163 void *addr, *test;
2164
2165 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2166 fprintf(stderr, "Requested guest base %p does not satisfy "
2167 "host minimum alignment (0x%lx)\n",
2168 (void *)guest_base, align);
2169 exit(EXIT_FAILURE);
2170 }
2171
2172 /* Sanity check the guest binary. */
2173 if (reserved_va) {
2174 if (guest_hiaddr > reserved_va) {
2175 error_report("%s: requires more than reserved virtual "
2176 "address space (0x%" PRIx64 " > 0x%lx)",
2177 image_name, (uint64_t)guest_hiaddr, reserved_va);
2178 exit(EXIT_FAILURE);
2179 }
2180 } else {
2181 #if HOST_LONG_BITS < TARGET_ABI_BITS
2182 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2183 error_report("%s: requires more virtual address space "
2184 "than the host can provide (0x%" PRIx64 ")",
2185 image_name, (uint64_t)guest_hiaddr - guest_base);
2186 exit(EXIT_FAILURE);
2187 }
2188 #endif
2189 }
2190
2191 /*
2192 * Expand the allocation to the entire reserved_va.
2193 * Exclude the mmap_min_addr hole.
2194 */
2195 if (reserved_va) {
2196 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2197 : mmap_min_addr - guest_base);
2198 guest_hiaddr = reserved_va;
2199 }
2200
2201 /* Reserve the address space for the binary, or reserved_va. */
2202 test = g2h_untagged(guest_loaddr);
2203 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2204 if (test != addr) {
2205 pgb_fail_in_use(image_name);
2206 }
2207 }
2208
2209 /**
2210 * pgd_find_hole_fallback: potential mmap address
2211 * @guest_size: size of available space
2212 * @brk: location of break
2213 * @align: memory alignment
2214 *
2215 * This is a fallback method for finding a hole in the host address
2216 * space if we don't have the benefit of being able to access
2217 * /proc/self/map. It can potentially take a very long time as we can
2218 * only dumbly iterate up the host address space seeing if the
2219 * allocation would work.
2220 */
2221 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2222 long align, uintptr_t offset)
2223 {
2224 uintptr_t base;
2225
2226 /* Start (aligned) at the bottom and work our way up */
2227 base = ROUND_UP(mmap_min_addr, align);
2228
2229 while (true) {
2230 uintptr_t align_start, end;
2231 align_start = ROUND_UP(base, align);
2232 end = align_start + guest_size + offset;
2233
2234 /* if brk is anywhere in the range give ourselves some room to grow. */
2235 if (align_start <= brk && brk < end) {
2236 base = brk + (16 * MiB);
2237 continue;
2238 } else if (align_start + guest_size < align_start) {
2239 /* we have run out of space */
2240 return -1;
2241 } else {
2242 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2243 MAP_FIXED_NOREPLACE;
2244 void * mmap_start = mmap((void *) align_start, guest_size,
2245 PROT_NONE, flags, -1, 0);
2246 if (mmap_start != MAP_FAILED) {
2247 munmap(mmap_start, guest_size);
2248 if (mmap_start == (void *) align_start) {
2249 return (uintptr_t) mmap_start + offset;
2250 }
2251 }
2252 base += qemu_host_page_size;
2253 }
2254 }
2255 }
2256
2257 /* Return value for guest_base, or -1 if no hole found. */
2258 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2259 long align, uintptr_t offset)
2260 {
2261 GSList *maps, *iter;
2262 uintptr_t this_start, this_end, next_start, brk;
2263 intptr_t ret = -1;
2264
2265 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2266
2267 maps = read_self_maps();
2268
2269 /* Read brk after we've read the maps, which will malloc. */
2270 brk = (uintptr_t)sbrk(0);
2271
2272 if (!maps) {
2273 ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2274 return ret == -1 ? -1 : ret - guest_loaddr;
2275 }
2276
2277 /* The first hole is before the first map entry. */
2278 this_start = mmap_min_addr;
2279
2280 for (iter = maps; iter;
2281 this_start = next_start, iter = g_slist_next(iter)) {
2282 uintptr_t align_start, hole_size;
2283
2284 this_end = ((MapInfo *)iter->data)->start;
2285 next_start = ((MapInfo *)iter->data)->end;
2286 align_start = ROUND_UP(this_start + offset, align);
2287
2288 /* Skip holes that are too small. */
2289 if (align_start >= this_end) {
2290 continue;
2291 }
2292 hole_size = this_end - align_start;
2293 if (hole_size < guest_size) {
2294 continue;
2295 }
2296
2297 /* If this hole contains brk, give ourselves some room to grow. */
2298 if (this_start <= brk && brk < this_end) {
2299 hole_size -= guest_size;
2300 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2301 align_start += 1 * GiB;
2302 } else if (hole_size >= 16 * MiB) {
2303 align_start += 16 * MiB;
2304 } else {
2305 align_start = (this_end - guest_size) & -align;
2306 if (align_start < this_start) {
2307 continue;
2308 }
2309 }
2310 }
2311
2312 /* Record the lowest successful match. */
2313 if (ret < 0) {
2314 ret = align_start - guest_loaddr;
2315 }
2316 /* If this hole contains the identity map, select it. */
2317 if (align_start <= guest_loaddr &&
2318 guest_loaddr + guest_size <= this_end) {
2319 ret = 0;
2320 }
2321 /* If this hole ends above the identity map, stop looking. */
2322 if (this_end >= guest_loaddr) {
2323 break;
2324 }
2325 }
2326 free_self_maps(maps);
2327
2328 return ret;
2329 }
2330
2331 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2332 abi_ulong orig_hiaddr, long align)
2333 {
2334 uintptr_t loaddr = orig_loaddr;
2335 uintptr_t hiaddr = orig_hiaddr;
2336 uintptr_t offset = 0;
2337 uintptr_t addr;
2338
2339 if (hiaddr != orig_hiaddr) {
2340 error_report("%s: requires virtual address space that the "
2341 "host cannot provide (0x%" PRIx64 ")",
2342 image_name, (uint64_t)orig_hiaddr);
2343 exit(EXIT_FAILURE);
2344 }
2345
2346 loaddr &= -align;
2347 if (ARM_COMMPAGE) {
2348 /*
2349 * Extend the allocation to include the commpage.
2350 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2351 * need to ensure there is space bellow the guest_base so we
2352 * can map the commpage in the place needed when the address
2353 * arithmetic wraps around.
2354 */
2355 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2356 hiaddr = (uintptr_t) 4 << 30;
2357 } else {
2358 offset = -(ARM_COMMPAGE & -align);
2359 }
2360 }
2361
2362 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2363 if (addr == -1) {
2364 /*
2365 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2366 * that can satisfy both. But as the normal arm32 link base address
2367 * is ~32k, and we extend down to include the commpage, making the
2368 * overhead only ~96k, this is unlikely.
2369 */
2370 error_report("%s: Unable to allocate %#zx bytes of "
2371 "virtual address space", image_name,
2372 (size_t)(hiaddr - loaddr));
2373 exit(EXIT_FAILURE);
2374 }
2375
2376 guest_base = addr;
2377 }
2378
2379 static void pgb_dynamic(const char *image_name, long align)
2380 {
2381 /*
2382 * The executable is dynamic and does not require a fixed address.
2383 * All we need is a commpage that satisfies align.
2384 * If we do not need a commpage, leave guest_base == 0.
2385 */
2386 if (ARM_COMMPAGE) {
2387 uintptr_t addr, commpage;
2388
2389 /* 64-bit hosts should have used reserved_va. */
2390 assert(sizeof(uintptr_t) == 4);
2391
2392 /*
2393 * By putting the commpage at the first hole, that puts guest_base
2394 * just above that, and maximises the positive guest addresses.
2395 */
2396 commpage = ARM_COMMPAGE & -align;
2397 addr = pgb_find_hole(commpage, -commpage, align, 0);
2398 assert(addr != -1);
2399 guest_base = addr;
2400 }
2401 }
2402
2403 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2404 abi_ulong guest_hiaddr, long align)
2405 {
2406 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2407 void *addr, *test;
2408
2409 if (guest_hiaddr > reserved_va) {
2410 error_report("%s: requires more than reserved virtual "
2411 "address space (0x%" PRIx64 " > 0x%lx)",
2412 image_name, (uint64_t)guest_hiaddr, reserved_va);
2413 exit(EXIT_FAILURE);
2414 }
2415
2416 /* Widen the "image" to the entire reserved address space. */
2417 pgb_static(image_name, 0, reserved_va, align);
2418
2419 /* osdep.h defines this as 0 if it's missing */
2420 flags |= MAP_FIXED_NOREPLACE;
2421
2422 /* Reserve the memory on the host. */
2423 assert(guest_base != 0);
2424 test = g2h_untagged(0);
2425 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2426 if (addr == MAP_FAILED || addr != test) {
2427 error_report("Unable to reserve 0x%lx bytes of virtual address "
2428 "space at %p (%s) for use as guest address space (check your"
2429 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2430 "using -R option)", reserved_va, test, strerror(errno));
2431 exit(EXIT_FAILURE);
2432 }
2433 }
2434
2435 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2436 abi_ulong guest_hiaddr)
2437 {
2438 /* In order to use host shmat, we must be able to honor SHMLBA. */
2439 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2440
2441 if (have_guest_base) {
2442 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2443 } else if (reserved_va) {
2444 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2445 } else if (guest_loaddr) {
2446 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2447 } else {
2448 pgb_dynamic(image_name, align);
2449 }
2450
2451 /* Reserve and initialize the commpage. */
2452 if (!init_guest_commpage()) {
2453 /*
2454 * With have_guest_base, the user has selected the address and
2455 * we are trying to work with that. Otherwise, we have selected
2456 * free space and init_guest_commpage must succeeded.
2457 */
2458 assert(have_guest_base);
2459 pgb_fail_in_use(image_name);
2460 }
2461
2462 assert(QEMU_IS_ALIGNED(guest_base, align));
2463 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2464 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2465 }
2466
2467 enum {
2468 /* The string "GNU\0" as a magic number. */
2469 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2470 NOTE_DATA_SZ = 1 * KiB,
2471 NOTE_NAME_SZ = 4,
2472 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2473 };
2474
2475 /*
2476 * Process a single gnu_property entry.
2477 * Return false for error.
2478 */
2479 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2480 struct image_info *info, bool have_prev_type,
2481 uint32_t *prev_type, Error **errp)
2482 {
2483 uint32_t pr_type, pr_datasz, step;
2484
2485 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2486 goto error_data;
2487 }
2488 datasz -= *off;
2489 data += *off / sizeof(uint32_t);
2490
2491 if (datasz < 2 * sizeof(uint32_t)) {
2492 goto error_data;
2493 }
2494 pr_type = data[0];
2495 pr_datasz = data[1];
2496 data += 2;
2497 datasz -= 2 * sizeof(uint32_t);
2498 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2499 if (step > datasz) {
2500 goto error_data;
2501 }
2502
2503 /* Properties are supposed to be unique and sorted on pr_type. */
2504 if (have_prev_type && pr_type <= *prev_type) {
2505 if (pr_type == *prev_type) {
2506 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2507 } else {
2508 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2509 }
2510 return false;
2511 }
2512 *prev_type = pr_type;
2513
2514 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2515 return false;
2516 }
2517
2518 *off += 2 * sizeof(uint32_t) + step;
2519 return true;
2520
2521 error_data:
2522 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2523 return false;
2524 }
2525
2526 /* Process NT_GNU_PROPERTY_TYPE_0. */
2527 static bool parse_elf_properties(int image_fd,
2528 struct image_info *info,
2529 const struct elf_phdr *phdr,
2530 char bprm_buf[BPRM_BUF_SIZE],
2531 Error **errp)
2532 {
2533 union {
2534 struct elf_note nhdr;
2535 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2536 } note;
2537
2538 int n, off, datasz;
2539 bool have_prev_type;
2540 uint32_t prev_type;
2541
2542 /* Unless the arch requires properties, ignore them. */
2543 if (!ARCH_USE_GNU_PROPERTY) {
2544 return true;
2545 }
2546
2547 /* If the properties are crazy large, that's too bad. */
2548 n = phdr->p_filesz;
2549 if (n > sizeof(note)) {
2550 error_setg(errp, "PT_GNU_PROPERTY too large");
2551 return false;
2552 }
2553 if (n < sizeof(note.nhdr)) {
2554 error_setg(errp, "PT_GNU_PROPERTY too small");
2555 return false;
2556 }
2557
2558 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2559 memcpy(&note, bprm_buf + phdr->p_offset, n);
2560 } else {
2561 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2562 if (len != n) {
2563 error_setg_errno(errp, errno, "Error reading file header");
2564 return false;
2565 }
2566 }
2567
2568 /*
2569 * The contents of a valid PT_GNU_PROPERTY is a sequence
2570 * of uint32_t -- swap them all now.
2571 */
2572 #ifdef BSWAP_NEEDED
2573 for (int i = 0; i < n / 4; i++) {
2574 bswap32s(note.data + i);
2575 }
2576 #endif
2577
2578 /*
2579 * Note that nhdr is 3 words, and that the "name" described by namesz
2580 * immediately follows nhdr and is thus at the 4th word. Further, all
2581 * of the inputs to the kernel's round_up are multiples of 4.
2582 */
2583 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2584 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2585 note.data[3] != GNU0_MAGIC) {
2586 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2587 return false;
2588 }
2589 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2590
2591 datasz = note.nhdr.n_descsz + off;
2592 if (datasz > n) {
2593 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2594 return false;
2595 }
2596
2597 have_prev_type = false;
2598 prev_type = 0;
2599 while (1) {
2600 if (off == datasz) {
2601 return true; /* end, exit ok */
2602 }
2603 if (!parse_elf_property(note.data, &off, datasz, info,
2604 have_prev_type, &prev_type, errp)) {
2605 return false;
2606 }
2607 have_prev_type = true;
2608 }
2609 }
2610
2611 /* Load an ELF image into the address space.
2612
2613 IMAGE_NAME is the filename of the image, to use in error messages.
2614 IMAGE_FD is the open file descriptor for the image.
2615
2616 BPRM_BUF is a copy of the beginning of the file; this of course
2617 contains the elf file header at offset 0. It is assumed that this
2618 buffer is sufficiently aligned to present no problems to the host
2619 in accessing data at aligned offsets within the buffer.
2620
2621 On return: INFO values will be filled in, as necessary or available. */
2622
2623 static void load_elf_image(const char *image_name, int image_fd,
2624 struct image_info *info, char **pinterp_name,
2625 char bprm_buf[BPRM_BUF_SIZE])
2626 {
2627 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2628 struct elf_phdr *phdr;
2629 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2630 int i, retval, prot_exec;
2631 Error *err = NULL;
2632
2633 /* First of all, some simple consistency checks */
2634 if (!elf_check_ident(ehdr)) {
2635 error_setg(&err, "Invalid ELF image for this architecture");
2636 goto exit_errmsg;
2637 }
2638 bswap_ehdr(ehdr);
2639 if (!elf_check_ehdr(ehdr)) {
2640 error_setg(&err, "Invalid ELF image for this architecture");
2641 goto exit_errmsg;
2642 }
2643
2644 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2645 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2646 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2647 } else {
2648 phdr = (struct elf_phdr *) alloca(i);
2649 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2650 if (retval != i) {
2651 goto exit_read;
2652 }
2653 }
2654 bswap_phdr(phdr, ehdr->e_phnum);
2655
2656 info->nsegs = 0;
2657 info->pt_dynamic_addr = 0;
2658
2659 mmap_lock();
2660
2661 /*
2662 * Find the maximum size of the image and allocate an appropriate
2663 * amount of memory to handle that. Locate the interpreter, if any.
2664 */
2665 loaddr = -1, hiaddr = 0;
2666 info->alignment = 0;
2667 for (i = 0; i < ehdr->e_phnum; ++i) {
2668 struct elf_phdr *eppnt = phdr + i;
2669 if (eppnt->p_type == PT_LOAD) {
2670 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2671 if (a < loaddr) {
2672 loaddr = a;
2673 }
2674 a = eppnt->p_vaddr + eppnt->p_memsz;
2675 if (a > hiaddr) {
2676 hiaddr = a;
2677 }
2678 ++info->nsegs;
2679 info->alignment |= eppnt->p_align;
2680 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2681 g_autofree char *interp_name = NULL;
2682
2683 if (*pinterp_name) {
2684 error_setg(&err, "Multiple PT_INTERP entries");
2685 goto exit_errmsg;
2686 }
2687
2688 interp_name = g_malloc(eppnt->p_filesz);
2689
2690 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2691 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2692 eppnt->p_filesz);
2693 } else {
2694 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2695 eppnt->p_offset);
2696 if (retval != eppnt->p_filesz) {
2697 goto exit_read;
2698 }
2699 }
2700 if (interp_name[eppnt->p_filesz - 1] != 0) {
2701 error_setg(&err, "Invalid PT_INTERP entry");
2702 goto exit_errmsg;
2703 }
2704 *pinterp_name = g_steal_pointer(&interp_name);
2705 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2706 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2707 goto exit_errmsg;
2708 }
2709 }
2710 }
2711
2712 if (pinterp_name != NULL) {
2713 /*
2714 * This is the main executable.
2715 *
2716 * Reserve extra space for brk.
2717 * We hold on to this space while placing the interpreter
2718 * and the stack, lest they be placed immediately after
2719 * the data segment and block allocation from the brk.
2720 *
2721 * 16MB is chosen as "large enough" without being so large
2722 * as to allow the result to not fit with a 32-bit guest on
2723 * a 32-bit host.
2724 */
2725 info->reserve_brk = 16 * MiB;
2726 hiaddr += info->reserve_brk;
2727
2728 if (ehdr->e_type == ET_EXEC) {
2729 /*
2730 * Make sure that the low address does not conflict with
2731 * MMAP_MIN_ADDR or the QEMU application itself.
2732 */
2733 probe_guest_base(image_name, loaddr, hiaddr);
2734 } else {
2735 /*
2736 * The binary is dynamic, but we still need to
2737 * select guest_base. In this case we pass a size.
2738 */
2739 probe_guest_base(image_name, 0, hiaddr - loaddr);
2740 }
2741 }
2742
2743 /*
2744 * Reserve address space for all of this.
2745 *
2746 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2747 * exactly the address range that is required.
2748 *
2749 * Otherwise this is ET_DYN, and we are searching for a location
2750 * that can hold the memory space required. If the image is
2751 * pre-linked, LOADDR will be non-zero, and the kernel should
2752 * honor that address if it happens to be free.
2753 *
2754 * In both cases, we will overwrite pages in this range with mappings
2755 * from the executable.
2756 */
2757 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2758 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2759 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2760 -1, 0);
2761 if (load_addr == -1) {
2762 goto exit_mmap;
2763 }
2764 load_bias = load_addr - loaddr;
2765
2766 if (elf_is_fdpic(ehdr)) {
2767 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2768 g_malloc(sizeof(*loadsegs) * info->nsegs);
2769
2770 for (i = 0; i < ehdr->e_phnum; ++i) {
2771 switch (phdr[i].p_type) {
2772 case PT_DYNAMIC:
2773 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2774 break;
2775 case PT_LOAD:
2776 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2777 loadsegs->p_vaddr = phdr[i].p_vaddr;
2778 loadsegs->p_memsz = phdr[i].p_memsz;
2779 ++loadsegs;
2780 break;
2781 }
2782 }
2783 }
2784
2785 info->load_bias = load_bias;
2786 info->code_offset = load_bias;
2787 info->data_offset = load_bias;
2788 info->load_addr = load_addr;
2789 info->entry = ehdr->e_entry + load_bias;
2790 info->start_code = -1;
2791 info->end_code = 0;
2792 info->start_data = -1;
2793 info->end_data = 0;
2794 info->brk = 0;
2795 info->elf_flags = ehdr->e_flags;
2796
2797 prot_exec = PROT_EXEC;
2798 #ifdef TARGET_AARCH64
2799 /*
2800 * If the BTI feature is present, this indicates that the executable
2801 * pages of the startup binary should be mapped with PROT_BTI, so that
2802 * branch targets are enforced.
2803 *
2804 * The startup binary is either the interpreter or the static executable.
2805 * The interpreter is responsible for all pages of a dynamic executable.
2806 *
2807 * Elf notes are backward compatible to older cpus.
2808 * Do not enable BTI unless it is supported.
2809 */
2810 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2811 && (pinterp_name == NULL || *pinterp_name == 0)
2812 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2813 prot_exec |= TARGET_PROT_BTI;
2814 }
2815 #endif
2816
2817 for (i = 0; i < ehdr->e_phnum; i++) {
2818 struct elf_phdr *eppnt = phdr + i;
2819 if (eppnt->p_type == PT_LOAD) {
2820 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2821 int elf_prot = 0;
2822
2823 if (eppnt->p_flags & PF_R) {
2824 elf_prot |= PROT_READ;
2825 }
2826 if (eppnt->p_flags & PF_W) {
2827 elf_prot |= PROT_WRITE;
2828 }
2829 if (eppnt->p_flags & PF_X) {
2830 elf_prot |= prot_exec;
2831 }
2832
2833 vaddr = load_bias + eppnt->p_vaddr;
2834 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2835 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2836
2837 vaddr_ef = vaddr + eppnt->p_filesz;
2838 vaddr_em = vaddr + eppnt->p_memsz;
2839
2840 /*
2841 * Some segments may be completely empty, with a non-zero p_memsz
2842 * but no backing file segment.
2843 */
2844 if (eppnt->p_filesz != 0) {
2845 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2846 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2847 MAP_PRIVATE | MAP_FIXED,
2848 image_fd, eppnt->p_offset - vaddr_po);
2849
2850 if (error == -1) {
2851 goto exit_mmap;
2852 }
2853
2854 /*
2855 * If the load segment requests extra zeros (e.g. bss), map it.
2856 */
2857 if (eppnt->p_filesz < eppnt->p_memsz) {
2858 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2859 }
2860 } else if (eppnt->p_memsz != 0) {
2861 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2862 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2863 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2864 -1, 0);
2865
2866 if (error == -1) {
2867 goto exit_mmap;
2868 }
2869 }
2870
2871 /* Find the full program boundaries. */
2872 if (elf_prot & PROT_EXEC) {
2873 if (vaddr < info->start_code) {
2874 info->start_code = vaddr;
2875 }
2876 if (vaddr_ef > info->end_code) {
2877 info->end_code = vaddr_ef;
2878 }
2879 }
2880 if (elf_prot & PROT_WRITE) {
2881 if (vaddr < info->start_data) {
2882 info->start_data = vaddr;
2883 }
2884 if (vaddr_ef > info->end_data) {
2885 info->end_data = vaddr_ef;
2886 }
2887 }
2888 if (vaddr_em > info->brk) {
2889 info->brk = vaddr_em;
2890 }
2891 #ifdef TARGET_MIPS
2892 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2893 Mips_elf_abiflags_v0 abiflags;
2894 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2895 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2896 goto exit_errmsg;
2897 }
2898 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2899 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2900 sizeof(Mips_elf_abiflags_v0));
2901 } else {
2902 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2903 eppnt->p_offset);
2904 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2905 goto exit_read;
2906 }
2907 }
2908 bswap_mips_abiflags(&abiflags);
2909 info->fp_abi = abiflags.fp_abi;
2910 #endif
2911 }
2912 }
2913
2914 if (info->end_data == 0) {
2915 info->start_data = info->end_code;
2916 info->end_data = info->end_code;
2917 }
2918
2919 if (qemu_log_enabled()) {
2920 load_symbols(ehdr, image_fd, load_bias);
2921 }
2922
2923 mmap_unlock();
2924
2925 close(image_fd);
2926 return;
2927
2928 exit_read:
2929 if (retval >= 0) {
2930 error_setg(&err, "Incomplete read of file header");
2931 } else {
2932 error_setg_errno(&err, errno, "Error reading file header");
2933 }
2934 goto exit_errmsg;
2935 exit_mmap:
2936 error_setg_errno(&err, errno, "Error mapping file");
2937 goto exit_errmsg;
2938 exit_errmsg:
2939 error_reportf_err(err, "%s: ", image_name);
2940 exit(-1);
2941 }
2942
2943 static void load_elf_interp(const char *filename, struct image_info *info,
2944 char bprm_buf[BPRM_BUF_SIZE])
2945 {
2946 int fd, retval;
2947 Error *err = NULL;
2948
2949 fd = open(path(filename), O_RDONLY);
2950 if (fd < 0) {
2951 error_setg_file_open(&err, errno, filename);
2952 error_report_err(err);
2953 exit(-1);
2954 }
2955
2956 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2957 if (retval < 0) {
2958 error_setg_errno(&err, errno, "Error reading file header");
2959 error_reportf_err(err, "%s: ", filename);
2960 exit(-1);
2961 }
2962
2963 if (retval < BPRM_BUF_SIZE) {
2964 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2965 }
2966
2967 load_elf_image(filename, fd, info, NULL, bprm_buf);
2968 }
2969
2970 static int symfind(const void *s0, const void *s1)
2971 {
2972 target_ulong addr = *(target_ulong *)s0;
2973 struct elf_sym *sym = (struct elf_sym *)s1;
2974 int result = 0;
2975 if (addr < sym->st_value) {
2976 result = -1;
2977 } else if (addr >= sym->st_value + sym->st_size) {
2978 result = 1;
2979 }
2980 return result;
2981 }
2982
2983 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2984 {
2985 #if ELF_CLASS == ELFCLASS32
2986 struct elf_sym *syms = s->disas_symtab.elf32;
2987 #else
2988 struct elf_sym *syms = s->disas_symtab.elf64;
2989 #endif
2990
2991 // binary search
2992 struct elf_sym *sym;
2993
2994 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2995 if (sym != NULL) {
2996 return s->disas_strtab + sym->st_name;
2997 }
2998
2999 return "";
3000 }
3001
3002 /* FIXME: This should use elf_ops.h */
3003 static int symcmp(const void *s0, const void *s1)
3004 {
3005 struct elf_sym *sym0 = (struct elf_sym *)s0;
3006 struct elf_sym *sym1 = (struct elf_sym *)s1;
3007 return (sym0->st_value < sym1->st_value)
3008 ? -1
3009 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3010 }
3011
3012 /* Best attempt to load symbols from this ELF object. */
3013 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3014 {
3015 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3016 uint64_t segsz;
3017 struct elf_shdr *shdr;
3018 char *strings = NULL;
3019 struct syminfo *s = NULL;
3020 struct elf_sym *new_syms, *syms = NULL;
3021
3022 shnum = hdr->e_shnum;
3023 i = shnum * sizeof(struct elf_shdr);
3024 shdr = (struct elf_shdr *)alloca(i);
3025 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3026 return;
3027 }
3028
3029 bswap_shdr(shdr, shnum);
3030 for (i = 0; i < shnum; ++i) {
3031 if (shdr[i].sh_type == SHT_SYMTAB) {
3032 sym_idx = i;
3033 str_idx = shdr[i].sh_link;
3034 goto found;
3035 }
3036 }
3037
3038 /* There will be no symbol table if the file was stripped. */
3039 return;
3040
3041 found:
3042 /* Now know where the strtab and symtab are. Snarf them. */
3043 s = g_try_new(struct syminfo, 1);
3044 if (!s) {
3045 goto give_up;
3046 }
3047
3048 segsz = shdr[str_idx].sh_size;
3049 s->disas_strtab = strings = g_try_malloc(segsz);
3050 if (!strings ||
3051 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3052 goto give_up;
3053 }
3054
3055 segsz = shdr[sym_idx].sh_size;
3056 syms = g_try_malloc(segsz);
3057 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3058 goto give_up;
3059 }
3060
3061 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3062 /* Implausibly large symbol table: give up rather than ploughing
3063 * on with the number of symbols calculation overflowing
3064 */
3065 goto give_up;
3066 }
3067 nsyms = segsz / sizeof(struct elf_sym);
3068 for (i = 0; i < nsyms; ) {
3069 bswap_sym(syms + i);
3070 /* Throw away entries which we do not need. */
3071 if (syms[i].st_shndx == SHN_UNDEF
3072 || syms[i].st_shndx >= SHN_LORESERVE
3073 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3074 if (i < --nsyms) {
3075 syms[i] = syms[nsyms];
3076 }
3077 } else {
3078 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3079 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3080 syms[i].st_value &= ~(target_ulong)1;
3081 #endif
3082 syms[i].st_value += load_bias;
3083 i++;
3084 }
3085 }
3086
3087 /* No "useful" symbol. */
3088 if (nsyms == 0) {
3089 goto give_up;
3090 }
3091
3092 /* Attempt to free the storage associated with the local symbols
3093 that we threw away. Whether or not this has any effect on the
3094 memory allocation depends on the malloc implementation and how
3095 many symbols we managed to discard. */
3096 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3097 if (new_syms == NULL) {
3098 goto give_up;
3099 }
3100 syms = new_syms;
3101
3102 qsort(syms, nsyms, sizeof(*syms), symcmp);
3103
3104 s->disas_num_syms = nsyms;
3105 #if ELF_CLASS == ELFCLASS32
3106 s->disas_symtab.elf32 = syms;
3107 #else
3108 s->disas_symtab.elf64 = syms;
3109 #endif
3110 s->lookup_symbol = lookup_symbolxx;
3111 s->next = syminfos;
3112 syminfos = s;
3113
3114 return;
3115
3116 give_up:
3117 g_free(s);
3118 g_free(strings);
3119 g_free(syms);
3120 }
3121
3122 uint32_t get_elf_eflags(int fd)
3123 {
3124 struct elfhdr ehdr;
3125 off_t offset;
3126 int ret;
3127
3128 /* Read ELF header */
3129 offset = lseek(fd, 0, SEEK_SET);
3130 if (offset == (off_t) -1) {
3131 return 0;
3132 }
3133 ret = read(fd, &ehdr, sizeof(ehdr));
3134 if (ret < sizeof(ehdr)) {
3135 return 0;
3136 }
3137 offset = lseek(fd, offset, SEEK_SET);
3138 if (offset == (off_t) -1) {
3139 return 0;
3140 }
3141
3142 /* Check ELF signature */
3143 if (!elf_check_ident(&ehdr)) {
3144 return 0;
3145 }
3146
3147 /* check header */
3148 bswap_ehdr(&ehdr);
3149 if (!elf_check_ehdr(&ehdr)) {
3150 return 0;
3151 }
3152
3153 /* return architecture id */
3154 return ehdr.e_flags;
3155 }
3156
3157 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3158 {
3159 struct image_info interp_info;
3160 struct elfhdr elf_ex;
3161 char *elf_interpreter = NULL;
3162 char *scratch;
3163
3164 memset(&interp_info, 0, sizeof(interp_info));
3165 #ifdef TARGET_MIPS
3166 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3167 #endif
3168
3169 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3170
3171 load_elf_image(bprm->filename, bprm->fd, info,
3172 &elf_interpreter, bprm->buf);
3173
3174 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3175 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3176 when we load the interpreter. */
3177 elf_ex = *(struct elfhdr *)bprm->buf;
3178
3179 /* Do this so that we can load the interpreter, if need be. We will
3180 change some of these later */
3181 bprm->p = setup_arg_pages(bprm, info);
3182
3183 scratch = g_new0(char, TARGET_PAGE_SIZE);
3184 if (STACK_GROWS_DOWN) {
3185 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3186 bprm->p, info->stack_limit);
3187 info->file_string = bprm->p;
3188 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3189 bprm->p, info->stack_limit);
3190 info->env_strings = bprm->p;
3191 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3192 bprm->p, info->stack_limit);
3193 info->arg_strings = bprm->p;
3194 } else {
3195 info->arg_strings = bprm->p;
3196 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3197 bprm->p, info->stack_limit);
3198 info->env_strings = bprm->p;
3199 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3200 bprm->p, info->stack_limit);
3201 info->file_string = bprm->p;
3202 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3203 bprm->p, info->stack_limit);
3204 }
3205
3206 g_free(scratch);
3207
3208 if (!bprm->p) {
3209 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3210 exit(-1);
3211 }
3212
3213 if (elf_interpreter) {
3214 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3215
3216 /* If the program interpreter is one of these two, then assume
3217 an iBCS2 image. Otherwise assume a native linux image. */
3218
3219 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3220 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3221 info->personality = PER_SVR4;
3222
3223 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3224 and some applications "depend" upon this behavior. Since
3225 we do not have the power to recompile these, we emulate
3226 the SVr4 behavior. Sigh. */
3227 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3228 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3229 }
3230 #ifdef TARGET_MIPS
3231 info->interp_fp_abi = interp_info.fp_abi;
3232 #endif
3233 }
3234
3235 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3236 info, (elf_interpreter ? &interp_info : NULL));
3237 info->start_stack = bprm->p;
3238
3239 /* If we have an interpreter, set that as the program's entry point.
3240 Copy the load_bias as well, to help PPC64 interpret the entry
3241 point as a function descriptor. Do this after creating elf tables
3242 so that we copy the original program entry point into the AUXV. */
3243 if (elf_interpreter) {
3244 info->load_bias = interp_info.load_bias;
3245 info->entry = interp_info.entry;
3246 g_free(elf_interpreter);
3247 }
3248
3249 #ifdef USE_ELF_CORE_DUMP
3250 bprm->core_dump = &elf_core_dump;
3251 #endif
3252
3253 /*
3254 * If we reserved extra space for brk, release it now.
3255 * The implementation of do_brk in syscalls.c expects to be able
3256 * to mmap pages in this space.
3257 */
3258 if (info->reserve_brk) {
3259 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3260 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3261 target_munmap(start_brk, end_brk - start_brk);
3262 }
3263
3264 return 0;
3265 }
3266
3267 #ifdef USE_ELF_CORE_DUMP
3268 /*
3269 * Definitions to generate Intel SVR4-like core files.
3270 * These mostly have the same names as the SVR4 types with "target_elf_"
3271 * tacked on the front to prevent clashes with linux definitions,
3272 * and the typedef forms have been avoided. This is mostly like
3273 * the SVR4 structure, but more Linuxy, with things that Linux does
3274 * not support and which gdb doesn't really use excluded.
3275 *
3276 * Fields we don't dump (their contents is zero) in linux-user qemu
3277 * are marked with XXX.
3278 *
3279 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3280 *
3281 * Porting ELF coredump for target is (quite) simple process. First you
3282 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3283 * the target resides):
3284 *
3285 * #define USE_ELF_CORE_DUMP
3286 *
3287 * Next you define type of register set used for dumping. ELF specification
3288 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3289 *
3290 * typedef <target_regtype> target_elf_greg_t;
3291 * #define ELF_NREG <number of registers>
3292 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3293 *
3294 * Last step is to implement target specific function that copies registers
3295 * from given cpu into just specified register set. Prototype is:
3296 *
3297 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3298 * const CPUArchState *env);
3299 *
3300 * Parameters:
3301 * regs - copy register values into here (allocated and zeroed by caller)
3302 * env - copy registers from here
3303 *
3304 * Example for ARM target is provided in this file.
3305 */
3306
3307 /* An ELF note in memory */
3308 struct memelfnote {
3309 const char *name;
3310 size_t namesz;
3311 size_t namesz_rounded;
3312 int type;
3313 size_t datasz;
3314 size_t datasz_rounded;
3315 void *data;
3316 size_t notesz;
3317 };
3318
3319 struct target_elf_siginfo {
3320 abi_int si_signo; /* signal number */
3321 abi_int si_code; /* extra code */
3322 abi_int si_errno; /* errno */
3323 };
3324
3325 struct target_elf_prstatus {
3326 struct target_elf_siginfo pr_info; /* Info associated with signal */
3327 abi_short pr_cursig; /* Current signal */
3328 abi_ulong pr_sigpend; /* XXX */
3329 abi_ulong pr_sighold; /* XXX */
3330 target_pid_t pr_pid;
3331 target_pid_t pr_ppid;
3332 target_pid_t pr_pgrp;
3333 target_pid_t pr_sid;
3334 struct target_timeval pr_utime; /* XXX User time */
3335 struct target_timeval pr_stime; /* XXX System time */
3336 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3337 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3338 target_elf_gregset_t pr_reg; /* GP registers */
3339 abi_int pr_fpvalid; /* XXX */
3340 };
3341
3342 #define ELF_PRARGSZ (80) /* Number of chars for args */
3343
3344 struct target_elf_prpsinfo {
3345 char pr_state; /* numeric process state */
3346 char pr_sname; /* char for pr_state */
3347 char pr_zomb; /* zombie */
3348 char pr_nice; /* nice val */
3349 abi_ulong pr_flag; /* flags */
3350 target_uid_t pr_uid;
3351 target_gid_t pr_gid;
3352 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3353 /* Lots missing */
3354 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3355 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3356 };
3357
3358 /* Here is the structure in which status of each thread is captured. */
3359 struct elf_thread_status {
3360 QTAILQ_ENTRY(elf_thread_status) ets_link;
3361 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3362 #if 0
3363 elf_fpregset_t fpu; /* NT_PRFPREG */
3364 struct task_struct *thread;
3365 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3366 #endif
3367 struct memelfnote notes[1];
3368 int num_notes;
3369 };
3370
3371 struct elf_note_info {
3372 struct memelfnote *notes;
3373 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3374 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3375
3376 QTAILQ_HEAD(, elf_thread_status) thread_list;
3377 #if 0
3378 /*
3379 * Current version of ELF coredump doesn't support
3380 * dumping fp regs etc.
3381 */
3382 elf_fpregset_t *fpu;
3383 elf_fpxregset_t *xfpu;
3384 int thread_status_size;
3385 #endif
3386 int notes_size;
3387 int numnote;
3388 };
3389
3390 struct vm_area_struct {
3391 target_ulong vma_start; /* start vaddr of memory region */
3392 target_ulong vma_end; /* end vaddr of memory region */
3393 abi_ulong vma_flags; /* protection etc. flags for the region */
3394 QTAILQ_ENTRY(vm_area_struct) vma_link;
3395 };
3396
3397 struct mm_struct {
3398 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3399 int mm_count; /* number of mappings */
3400 };
3401
3402 static struct mm_struct *vma_init(void);
3403 static void vma_delete(struct mm_struct *);
3404 static int vma_add_mapping(struct mm_struct *, target_ulong,
3405 target_ulong, abi_ulong);
3406 static int vma_get_mapping_count(const struct mm_struct *);
3407 static struct vm_area_struct *vma_first(const struct mm_struct *);
3408 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3409 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3410 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3411 unsigned long flags);
3412
3413 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3414 static void fill_note(struct memelfnote *, const char *, int,
3415 unsigned int, void *);
3416 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3417 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3418 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3419 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3420 static size_t note_size(const struct memelfnote *);
3421 static void free_note_info(struct elf_note_info *);
3422 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3423 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3424
3425 static int dump_write(int, const void *, size_t);
3426 static int write_note(struct memelfnote *, int);
3427 static int write_note_info(struct elf_note_info *, int);
3428
3429 #ifdef BSWAP_NEEDED
3430 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3431 {
3432 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3433 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3434 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3435 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3436 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3437 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3438 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3439 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3440 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3441 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3442 /* cpu times are not filled, so we skip them */
3443 /* regs should be in correct format already */
3444 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3445 }
3446
3447 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3448 {
3449 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3450 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3451 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3452 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3453 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3454 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3455 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3456 }
3457
3458 static void bswap_note(struct elf_note *en)
3459 {
3460 bswap32s(&en->n_namesz);
3461 bswap32s(&en->n_descsz);
3462 bswap32s(&en->n_type);
3463 }
3464 #else
3465 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3466 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3467 static inline void bswap_note(struct elf_note *en) { }
3468 #endif /* BSWAP_NEEDED */
3469
3470 /*
3471 * Minimal support for linux memory regions. These are needed
3472 * when we are finding out what memory exactly belongs to
3473 * emulated process. No locks needed here, as long as
3474 * thread that received the signal is stopped.
3475 */
3476
3477 static struct mm_struct *vma_init(void)
3478 {
3479 struct mm_struct *mm;
3480
3481 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3482 return (NULL);
3483
3484 mm->mm_count = 0;
3485 QTAILQ_INIT(&mm->mm_mmap);
3486
3487 return (mm);
3488 }
3489
3490 static void vma_delete(struct mm_struct *mm)
3491 {
3492 struct vm_area_struct *vma;
3493
3494 while ((vma = vma_first(mm)) != NULL) {
3495 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3496 g_free(vma);
3497 }
3498 g_free(mm);
3499 }
3500
3501 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3502 target_ulong end, abi_ulong flags)
3503 {
3504 struct vm_area_struct *vma;
3505
3506 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3507 return (-1);
3508
3509 vma->vma_start = start;
3510 vma->vma_end = end;
3511 vma->vma_flags = flags;
3512
3513 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3514 mm->mm_count++;
3515
3516 return (0);
3517 }
3518
3519 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3520 {
3521 return (QTAILQ_FIRST(&mm->mm_mmap));
3522 }
3523
3524 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3525 {
3526 return (QTAILQ_NEXT(vma, vma_link));
3527 }
3528
3529 static int vma_get_mapping_count(const struct mm_struct *mm)
3530 {
3531 return (mm->mm_count);
3532 }
3533
3534 /*
3535 * Calculate file (dump) size of given memory region.
3536 */
3537 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3538 {
3539 /* if we cannot even read the first page, skip it */
3540 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3541 return (0);
3542
3543 /*
3544 * Usually we don't dump executable pages as they contain
3545 * non-writable code that debugger can read directly from
3546 * target library etc. However, thread stacks are marked
3547 * also executable so we read in first page of given region
3548 * and check whether it contains elf header. If there is
3549 * no elf header, we dump it.
3550 */
3551 if (vma->vma_flags & PROT_EXEC) {
3552 char page[TARGET_PAGE_SIZE];
3553
3554 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3555 return 0;
3556 }
3557 if ((page[EI_MAG0] == ELFMAG0) &&
3558 (page[EI_MAG1] == ELFMAG1) &&
3559 (page[EI_MAG2] == ELFMAG2) &&
3560 (page[EI_MAG3] == ELFMAG3)) {
3561 /*
3562 * Mappings are possibly from ELF binary. Don't dump
3563 * them.
3564 */
3565 return (0);
3566 }
3567 }
3568
3569 return (vma->vma_end - vma->vma_start);
3570 }
3571
3572 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3573 unsigned long flags)
3574 {
3575 struct mm_struct *mm = (struct mm_struct *)priv;
3576
3577 vma_add_mapping(mm, start, end, flags);
3578 return (0);
3579 }
3580
3581 static void fill_note(struct memelfnote *note, const char *name, int type,
3582 unsigned int sz, void *data)
3583 {
3584 unsigned int namesz;
3585
3586 namesz = strlen(name) + 1;
3587 note->name = name;
3588 note->namesz = namesz;
3589 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3590 note->type = type;
3591 note->datasz = sz;
3592 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3593
3594 note->data = data;
3595
3596 /*
3597 * We calculate rounded up note size here as specified by
3598 * ELF document.
3599 */
3600 note->notesz = sizeof (struct elf_note) +
3601 note->namesz_rounded + note->datasz_rounded;
3602 }
3603
3604 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3605 uint32_t flags)
3606 {
3607 (void) memset(elf, 0, sizeof(*elf));
3608
3609 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3610 elf->e_ident[EI_CLASS] = ELF_CLASS;
3611 elf->e_ident[EI_DATA] = ELF_DATA;
3612 elf->e_ident[EI_VERSION] = EV_CURRENT;
3613 elf->e_ident[EI_OSABI] = ELF_OSABI;
3614
3615 elf->e_type = ET_CORE;
3616 elf->e_machine = machine;
3617 elf->e_version = EV_CURRENT;
3618 elf->e_phoff = sizeof(struct elfhdr);
3619 elf->e_flags = flags;
3620 elf->e_ehsize = sizeof(struct elfhdr);
3621 elf->e_phentsize = sizeof(struct elf_phdr);
3622 elf->e_phnum = segs;
3623
3624 bswap_ehdr(elf);
3625 }
3626
3627 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3628 {
3629 phdr->p_type = PT_NOTE;
3630 phdr->p_offset = offset;
3631 phdr->p_vaddr = 0;
3632 phdr->p_paddr = 0;
3633 phdr->p_filesz = sz;
3634 phdr->p_memsz = 0;
3635 phdr->p_flags = 0;
3636 phdr->p_align = 0;
3637
3638 bswap_phdr(phdr, 1);
3639 }
3640
3641 static size_t note_size(const struct memelfnote *note)
3642 {
3643 return (note->notesz);
3644 }
3645
3646 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3647 const TaskState *ts, int signr)
3648 {
3649 (void) memset(prstatus, 0, sizeof (*prstatus));
3650 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3651 prstatus->pr_pid = ts->ts_tid;
3652 prstatus->pr_ppid = getppid();
3653 prstatus->pr_pgrp = getpgrp();
3654 prstatus->pr_sid = getsid(0);
3655
3656 bswap_prstatus(prstatus);
3657 }
3658
3659 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3660 {
3661 char *base_filename;
3662 unsigned int i, len;
3663
3664 (void) memset(psinfo, 0, sizeof (*psinfo));
3665
3666 len = ts->info->env_strings - ts->info->arg_strings;
3667 if (len >= ELF_PRARGSZ)
3668 len = ELF_PRARGSZ - 1;
3669 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3670 return -EFAULT;
3671 }
3672 for (i = 0; i < len; i++)
3673 if (psinfo->pr_psargs[i] == 0)
3674 psinfo->pr_psargs[i] = ' ';
3675 psinfo->pr_psargs[len] = 0;
3676
3677 psinfo->pr_pid = getpid();
3678 psinfo->pr_ppid = getppid();
3679 psinfo->pr_pgrp = getpgrp();
3680 psinfo->pr_sid = getsid(0);
3681 psinfo->pr_uid = getuid();
3682 psinfo->pr_gid = getgid();
3683
3684 base_filename = g_path_get_basename(ts->bprm->filename);
3685 /*
3686 * Using strncpy here is fine: at max-length,
3687 * this field is not NUL-terminated.
3688 */
3689 (void) strncpy(psinfo->pr_fname, base_filename,
3690 sizeof(psinfo->pr_fname));
3691
3692 g_free(base_filename);
3693 bswap_psinfo(psinfo);
3694 return (0);
3695 }
3696
3697 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3698 {
3699 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3700 elf_addr_t orig_auxv = auxv;
3701 void *ptr;
3702 int len = ts->info->auxv_len;
3703
3704 /*
3705 * Auxiliary vector is stored in target process stack. It contains
3706 * {type, value} pairs that we need to dump into note. This is not
3707 * strictly necessary but we do it here for sake of completeness.
3708 */
3709
3710 /* read in whole auxv vector and copy it to memelfnote */
3711 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3712 if (ptr != NULL) {
3713 fill_note(note, "CORE", NT_AUXV, len, ptr);
3714 unlock_user(ptr, auxv, len);
3715 }
3716 }
3717
3718 /*
3719 * Constructs name of coredump file. We have following convention
3720 * for the name:
3721 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3722 *
3723 * Returns the filename
3724 */
3725 static char *core_dump_filename(const TaskState *ts)
3726 {
3727 g_autoptr(GDateTime) now = g_date_time_new_now_local();
3728 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3729 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3730
3731 return g_strdup_printf("qemu_%s_%s_%d.core",
3732 base_filename, nowstr, (int)getpid());
3733 }
3734
3735 static int dump_write(int fd, const void *ptr, size_t size)
3736 {
3737