quorum: Inline quorum_aio_cb()
[qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20
21 #define ELF_OSABI ELFOSABI_SYSV
22
23 /* from personality.h */
24
25 /*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
42 };
43
44 /*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
74 };
75
76 /*
77 * Return the base personality without flags.
78 */
79 #define personality(pers) (pers & PER_MASK)
80
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
85
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
90
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
96
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
104
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
113
114 #ifdef TARGET_I386
115
116 #define ELF_PLATFORM get_elf_platform()
117
118 static const char *get_elf_platform(void)
119 {
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127 }
128
129 #define ELF_HWCAP get_elf_hwcap()
130
131 static uint32_t get_elf_hwcap(void)
132 {
133 X86CPU *cpu = X86_CPU(thread_cpu);
134
135 return cpu->env.features[FEAT_1_EDX];
136 }
137
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
140
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
143
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145 {
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
149 }
150
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
153
154 /*
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
158 *
159 * See linux kernel: arch/x86/include/asm/elf.h
160 */
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
162 {
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190 }
191
192 #else
193
194 #define ELF_START_MMAP 0x80000000
195
196 /*
197 * This is used to ensure we don't load something for the wrong architecture.
198 */
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200
201 /*
202 * These are used to set parameters in the core dumps.
203 */
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
206
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
209 {
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
212
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
218
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
221 }
222
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
225
226 /*
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
230 *
231 * See linux kernel: arch/x86/include/asm/elf.h
232 */
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
234 {
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252 }
253 #endif
254
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
257
258 #endif
259
260 #ifdef TARGET_ARM
261
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
264
265 #define ELF_START_MMAP 0x80000000
266
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
269
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
272 {
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
275
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
279 }
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
290 }
291
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
294
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
296 {
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
313
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
316 }
317
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
320
321 enum
322 {
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
345 };
346
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
353 };
354
355 /* The commpage only exists for 32 bit kernels */
356
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
365 */
366 static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
368 {
369 unsigned long real_start, test_page_addr;
370
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
373 */
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
375
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
378 */
379 if (test_page_addr >= guest_base
380 && test_page_addr <= (guest_base + guest_size)) {
381 return -1;
382 }
383
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
393 }
394
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
399 }
400
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
403 */
404
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
412 }
413
414 return 1; /* All good */
415 }
416
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
419
420 static uint32_t get_elf_hwcap(void)
421 {
422 ARMCPU *cpu = ARM_CPU(thread_cpu);
423 uint32_t hwcaps = 0;
424
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
429
430 /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
448 */
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
451
452 return hwcaps;
453 }
454
455 static uint32_t get_elf_hwcap2(void)
456 {
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
459
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
466 }
467
468 #undef GET_FEATURE
469
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
473
474 #define ELF_ARCH EM_AARCH64
475 #define ELF_CLASS ELFCLASS64
476 #define ELF_PLATFORM "aarch64"
477
478 static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
480 {
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
483
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
486 }
487
488 #define ELF_NREG 34
489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
490
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
493 {
494 int i;
495
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
498 }
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501 }
502
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE 4096
505
506 enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515 };
516
517 #define ELF_HWCAP get_elf_hwcap()
518
519 static uint32_t get_elf_hwcap(void)
520 {
521 ARMCPU *cpu = ARM_CPU(thread_cpu);
522 uint32_t hwcaps = 0;
523
524 hwcaps |= ARM_HWCAP_A64_FP;
525 hwcaps |= ARM_HWCAP_A64_ASIMD;
526
527 /* probe for the extra features */
528 #define GET_FEATURE(feat, hwcap) \
529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
535 #undef GET_FEATURE
536
537 return hwcaps;
538 }
539
540 #endif /* not TARGET_AARCH64 */
541 #endif /* TARGET_ARM */
542
543 #ifdef TARGET_UNICORE32
544
545 #define ELF_START_MMAP 0x80000000
546
547 #define ELF_CLASS ELFCLASS32
548 #define ELF_DATA ELFDATA2LSB
549 #define ELF_ARCH EM_UNICORE32
550
551 static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
553 {
554 abi_long stack = infop->start_stack;
555 memset(regs, 0, sizeof(*regs));
556 regs->UC32_REG_asr = 0x10;
557 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558 regs->UC32_REG_sp = infop->start_stack;
559 /* FIXME - what to for failure of get_user()? */
560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562 /* XXX: it seems that r0 is zeroed after ! */
563 regs->UC32_REG_00 = 0;
564 }
565
566 #define ELF_NREG 34
567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
568
569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
570 {
571 (*regs)[0] = env->regs[0];
572 (*regs)[1] = env->regs[1];
573 (*regs)[2] = env->regs[2];
574 (*regs)[3] = env->regs[3];
575 (*regs)[4] = env->regs[4];
576 (*regs)[5] = env->regs[5];
577 (*regs)[6] = env->regs[6];
578 (*regs)[7] = env->regs[7];
579 (*regs)[8] = env->regs[8];
580 (*regs)[9] = env->regs[9];
581 (*regs)[10] = env->regs[10];
582 (*regs)[11] = env->regs[11];
583 (*regs)[12] = env->regs[12];
584 (*regs)[13] = env->regs[13];
585 (*regs)[14] = env->regs[14];
586 (*regs)[15] = env->regs[15];
587 (*regs)[16] = env->regs[16];
588 (*regs)[17] = env->regs[17];
589 (*regs)[18] = env->regs[18];
590 (*regs)[19] = env->regs[19];
591 (*regs)[20] = env->regs[20];
592 (*regs)[21] = env->regs[21];
593 (*regs)[22] = env->regs[22];
594 (*regs)[23] = env->regs[23];
595 (*regs)[24] = env->regs[24];
596 (*regs)[25] = env->regs[25];
597 (*regs)[26] = env->regs[26];
598 (*regs)[27] = env->regs[27];
599 (*regs)[28] = env->regs[28];
600 (*regs)[29] = env->regs[29];
601 (*regs)[30] = env->regs[30];
602 (*regs)[31] = env->regs[31];
603
604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
605 (*regs)[33] = env->regs[0]; /* XXX */
606 }
607
608 #define USE_ELF_CORE_DUMP
609 #define ELF_EXEC_PAGESIZE 4096
610
611 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
612
613 #endif
614
615 #ifdef TARGET_SPARC
616 #ifdef TARGET_SPARC64
617
618 #define ELF_START_MMAP 0x80000000
619 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
621 #ifndef TARGET_ABI32
622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
623 #else
624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625 #endif
626
627 #define ELF_CLASS ELFCLASS64
628 #define ELF_ARCH EM_SPARCV9
629
630 #define STACK_BIAS 2047
631
632 static inline void init_thread(struct target_pt_regs *regs,
633 struct image_info *infop)
634 {
635 #ifndef TARGET_ABI32
636 regs->tstate = 0;
637 #endif
638 regs->pc = infop->entry;
639 regs->npc = regs->pc + 4;
640 regs->y = 0;
641 #ifdef TARGET_ABI32
642 regs->u_regs[14] = infop->start_stack - 16 * 4;
643 #else
644 if (personality(infop->personality) == PER_LINUX32)
645 regs->u_regs[14] = infop->start_stack - 16 * 4;
646 else
647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
648 #endif
649 }
650
651 #else
652 #define ELF_START_MMAP 0x80000000
653 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654 | HWCAP_SPARC_MULDIV)
655
656 #define ELF_CLASS ELFCLASS32
657 #define ELF_ARCH EM_SPARC
658
659 static inline void init_thread(struct target_pt_regs *regs,
660 struct image_info *infop)
661 {
662 regs->psr = 0;
663 regs->pc = infop->entry;
664 regs->npc = regs->pc + 4;
665 regs->y = 0;
666 regs->u_regs[14] = infop->start_stack - 16 * 4;
667 }
668
669 #endif
670 #endif
671
672 #ifdef TARGET_PPC
673
674 #define ELF_MACHINE PPC_ELF_MACHINE
675 #define ELF_START_MMAP 0x80000000
676
677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
678
679 #define elf_check_arch(x) ( (x) == EM_PPC64 )
680
681 #define ELF_CLASS ELFCLASS64
682
683 #else
684
685 #define ELF_CLASS ELFCLASS32
686
687 #endif
688
689 #define ELF_ARCH EM_PPC
690
691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692 See arch/powerpc/include/asm/cputable.h. */
693 enum {
694 QEMU_PPC_FEATURE_32 = 0x80000000,
695 QEMU_PPC_FEATURE_64 = 0x40000000,
696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709 QEMU_PPC_FEATURE_CELL = 0x00010000,
710 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711 QEMU_PPC_FEATURE_SMT = 0x00004000,
712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714 QEMU_PPC_FEATURE_PA6T = 0x00000800,
715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
720
721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
723
724 /* Feature definitions in AT_HWCAP2. */
725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
731 };
732
733 #define ELF_HWCAP get_elf_hwcap()
734
735 static uint32_t get_elf_hwcap(void)
736 {
737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
738 uint32_t features = 0;
739
740 /* We don't have to be terribly complete here; the high points are
741 Altivec/FP/SPE support. Anything else is just a bonus. */
742 #define GET_FEATURE(flag, feature) \
743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
744 #define GET_FEATURE2(flags, feature) \
745 do { \
746 if ((cpu->env.insns_flags2 & flags) == flags) { \
747 features |= feature; \
748 } \
749 } while (0)
750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762 QEMU_PPC_FEATURE_ARCH_2_06);
763 #undef GET_FEATURE
764 #undef GET_FEATURE2
765
766 return features;
767 }
768
769 #define ELF_HWCAP2 get_elf_hwcap2()
770
771 static uint32_t get_elf_hwcap2(void)
772 {
773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774 uint32_t features = 0;
775
776 #define GET_FEATURE(flag, feature) \
777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778 #define GET_FEATURE2(flag, feature) \
779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
780
781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
785
786 #undef GET_FEATURE
787 #undef GET_FEATURE2
788
789 return features;
790 }
791
792 /*
793 * The requirements here are:
794 * - keep the final alignment of sp (sp & 0xf)
795 * - make sure the 32-bit value at the first 16 byte aligned position of
796 * AUXV is greater than 16 for glibc compatibility.
797 * AT_IGNOREPPC is used for that.
798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
800 */
801 #define DLINFO_ARCH_ITEMS 5
802 #define ARCH_DLINFO \
803 do { \
804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
805 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
806 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
807 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
808 /* \
809 * Now handle glibc compatibility. \
810 */ \
811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
813 } while (0)
814
815 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
816 {
817 _regs->gpr[1] = infop->start_stack;
818 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
819 if (get_ppc64_abi(infop) < 2) {
820 uint64_t val;
821 get_user_u64(val, infop->entry + 8);
822 _regs->gpr[2] = val + infop->load_bias;
823 get_user_u64(val, infop->entry);
824 infop->entry = val + infop->load_bias;
825 } else {
826 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
827 }
828 #endif
829 _regs->nip = infop->entry;
830 }
831
832 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
833 #define ELF_NREG 48
834 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
835
836 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
837 {
838 int i;
839 target_ulong ccr = 0;
840
841 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
842 (*regs)[i] = tswapreg(env->gpr[i]);
843 }
844
845 (*regs)[32] = tswapreg(env->nip);
846 (*regs)[33] = tswapreg(env->msr);
847 (*regs)[35] = tswapreg(env->ctr);
848 (*regs)[36] = tswapreg(env->lr);
849 (*regs)[37] = tswapreg(env->xer);
850
851 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
852 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
853 }
854 (*regs)[38] = tswapreg(ccr);
855 }
856
857 #define USE_ELF_CORE_DUMP
858 #define ELF_EXEC_PAGESIZE 4096
859
860 #endif
861
862 #ifdef TARGET_MIPS
863
864 #define ELF_START_MMAP 0x80000000
865
866 #ifdef TARGET_MIPS64
867 #define ELF_CLASS ELFCLASS64
868 #else
869 #define ELF_CLASS ELFCLASS32
870 #endif
871 #define ELF_ARCH EM_MIPS
872
873 static inline void init_thread(struct target_pt_regs *regs,
874 struct image_info *infop)
875 {
876 regs->cp0_status = 2 << CP0St_KSU;
877 regs->cp0_epc = infop->entry;
878 regs->regs[29] = infop->start_stack;
879 }
880
881 /* See linux kernel: arch/mips/include/asm/elf.h. */
882 #define ELF_NREG 45
883 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
884
885 /* See linux kernel: arch/mips/include/asm/reg.h. */
886 enum {
887 #ifdef TARGET_MIPS64
888 TARGET_EF_R0 = 0,
889 #else
890 TARGET_EF_R0 = 6,
891 #endif
892 TARGET_EF_R26 = TARGET_EF_R0 + 26,
893 TARGET_EF_R27 = TARGET_EF_R0 + 27,
894 TARGET_EF_LO = TARGET_EF_R0 + 32,
895 TARGET_EF_HI = TARGET_EF_R0 + 33,
896 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
897 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
898 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
899 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
900 };
901
902 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
903 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
904 {
905 int i;
906
907 for (i = 0; i < TARGET_EF_R0; i++) {
908 (*regs)[i] = 0;
909 }
910 (*regs)[TARGET_EF_R0] = 0;
911
912 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
913 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
914 }
915
916 (*regs)[TARGET_EF_R26] = 0;
917 (*regs)[TARGET_EF_R27] = 0;
918 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
919 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
920 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
921 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
922 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
923 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
924 }
925
926 #define USE_ELF_CORE_DUMP
927 #define ELF_EXEC_PAGESIZE 4096
928
929 #endif /* TARGET_MIPS */
930
931 #ifdef TARGET_MICROBLAZE
932
933 #define ELF_START_MMAP 0x80000000
934
935 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
936
937 #define ELF_CLASS ELFCLASS32
938 #define ELF_ARCH EM_MICROBLAZE
939
940 static inline void init_thread(struct target_pt_regs *regs,
941 struct image_info *infop)
942 {
943 regs->pc = infop->entry;
944 regs->r1 = infop->start_stack;
945
946 }
947
948 #define ELF_EXEC_PAGESIZE 4096
949
950 #define USE_ELF_CORE_DUMP
951 #define ELF_NREG 38
952 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
953
954 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
955 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
956 {
957 int i, pos = 0;
958
959 for (i = 0; i < 32; i++) {
960 (*regs)[pos++] = tswapreg(env->regs[i]);
961 }
962
963 for (i = 0; i < 6; i++) {
964 (*regs)[pos++] = tswapreg(env->sregs[i]);
965 }
966 }
967
968 #endif /* TARGET_MICROBLAZE */
969
970 #ifdef TARGET_OPENRISC
971
972 #define ELF_START_MMAP 0x08000000
973
974 #define ELF_ARCH EM_OPENRISC
975 #define ELF_CLASS ELFCLASS32
976 #define ELF_DATA ELFDATA2MSB
977
978 static inline void init_thread(struct target_pt_regs *regs,
979 struct image_info *infop)
980 {
981 regs->pc = infop->entry;
982 regs->gpr[1] = infop->start_stack;
983 }
984
985 #define USE_ELF_CORE_DUMP
986 #define ELF_EXEC_PAGESIZE 8192
987
988 /* See linux kernel arch/openrisc/include/asm/elf.h. */
989 #define ELF_NREG 34 /* gprs and pc, sr */
990 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
991
992 static void elf_core_copy_regs(target_elf_gregset_t *regs,
993 const CPUOpenRISCState *env)
994 {
995 int i;
996
997 for (i = 0; i < 32; i++) {
998 (*regs)[i] = tswapreg(env->gpr[i]);
999 }
1000
1001 (*regs)[32] = tswapreg(env->pc);
1002 (*regs)[33] = tswapreg(env->sr);
1003 }
1004 #define ELF_HWCAP 0
1005 #define ELF_PLATFORM NULL
1006
1007 #endif /* TARGET_OPENRISC */
1008
1009 #ifdef TARGET_SH4
1010
1011 #define ELF_START_MMAP 0x80000000
1012
1013 #define ELF_CLASS ELFCLASS32
1014 #define ELF_ARCH EM_SH
1015
1016 static inline void init_thread(struct target_pt_regs *regs,
1017 struct image_info *infop)
1018 {
1019 /* Check other registers XXXXX */
1020 regs->pc = infop->entry;
1021 regs->regs[15] = infop->start_stack;
1022 }
1023
1024 /* See linux kernel: arch/sh/include/asm/elf.h. */
1025 #define ELF_NREG 23
1026 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1027
1028 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1029 enum {
1030 TARGET_REG_PC = 16,
1031 TARGET_REG_PR = 17,
1032 TARGET_REG_SR = 18,
1033 TARGET_REG_GBR = 19,
1034 TARGET_REG_MACH = 20,
1035 TARGET_REG_MACL = 21,
1036 TARGET_REG_SYSCALL = 22
1037 };
1038
1039 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1040 const CPUSH4State *env)
1041 {
1042 int i;
1043
1044 for (i = 0; i < 16; i++) {
1045 (*regs[i]) = tswapreg(env->gregs[i]);
1046 }
1047
1048 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1049 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1050 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1051 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1052 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1053 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1054 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1055 }
1056
1057 #define USE_ELF_CORE_DUMP
1058 #define ELF_EXEC_PAGESIZE 4096
1059
1060 enum {
1061 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1062 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1063 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1064 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1065 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1066 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1067 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1068 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1069 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1070 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1071 };
1072
1073 #define ELF_HWCAP get_elf_hwcap()
1074
1075 static uint32_t get_elf_hwcap(void)
1076 {
1077 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1078 uint32_t hwcap = 0;
1079
1080 hwcap |= SH_CPU_HAS_FPU;
1081
1082 if (cpu->env.features & SH_FEATURE_SH4A) {
1083 hwcap |= SH_CPU_HAS_LLSC;
1084 }
1085
1086 return hwcap;
1087 }
1088
1089 #endif
1090
1091 #ifdef TARGET_CRIS
1092
1093 #define ELF_START_MMAP 0x80000000
1094
1095 #define ELF_CLASS ELFCLASS32
1096 #define ELF_ARCH EM_CRIS
1097
1098 static inline void init_thread(struct target_pt_regs *regs,
1099 struct image_info *infop)
1100 {
1101 regs->erp = infop->entry;
1102 }
1103
1104 #define ELF_EXEC_PAGESIZE 8192
1105
1106 #endif
1107
1108 #ifdef TARGET_M68K
1109
1110 #define ELF_START_MMAP 0x80000000
1111
1112 #define ELF_CLASS ELFCLASS32
1113 #define ELF_ARCH EM_68K
1114
1115 /* ??? Does this need to do anything?
1116 #define ELF_PLAT_INIT(_r) */
1117
1118 static inline void init_thread(struct target_pt_regs *regs,
1119 struct image_info *infop)
1120 {
1121 regs->usp = infop->start_stack;
1122 regs->sr = 0;
1123 regs->pc = infop->entry;
1124 }
1125
1126 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1127 #define ELF_NREG 20
1128 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1129
1130 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1131 {
1132 (*regs)[0] = tswapreg(env->dregs[1]);
1133 (*regs)[1] = tswapreg(env->dregs[2]);
1134 (*regs)[2] = tswapreg(env->dregs[3]);
1135 (*regs)[3] = tswapreg(env->dregs[4]);
1136 (*regs)[4] = tswapreg(env->dregs[5]);
1137 (*regs)[5] = tswapreg(env->dregs[6]);
1138 (*regs)[6] = tswapreg(env->dregs[7]);
1139 (*regs)[7] = tswapreg(env->aregs[0]);
1140 (*regs)[8] = tswapreg(env->aregs[1]);
1141 (*regs)[9] = tswapreg(env->aregs[2]);
1142 (*regs)[10] = tswapreg(env->aregs[3]);
1143 (*regs)[11] = tswapreg(env->aregs[4]);
1144 (*regs)[12] = tswapreg(env->aregs[5]);
1145 (*regs)[13] = tswapreg(env->aregs[6]);
1146 (*regs)[14] = tswapreg(env->dregs[0]);
1147 (*regs)[15] = tswapreg(env->aregs[7]);
1148 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1149 (*regs)[17] = tswapreg(env->sr);
1150 (*regs)[18] = tswapreg(env->pc);
1151 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1152 }
1153
1154 #define USE_ELF_CORE_DUMP
1155 #define ELF_EXEC_PAGESIZE 8192
1156
1157 #endif
1158
1159 #ifdef TARGET_ALPHA
1160
1161 #define ELF_START_MMAP (0x30000000000ULL)
1162
1163 #define ELF_CLASS ELFCLASS64
1164 #define ELF_ARCH EM_ALPHA
1165
1166 static inline void init_thread(struct target_pt_regs *regs,
1167 struct image_info *infop)
1168 {
1169 regs->pc = infop->entry;
1170 regs->ps = 8;
1171 regs->usp = infop->start_stack;
1172 }
1173
1174 #define ELF_EXEC_PAGESIZE 8192
1175
1176 #endif /* TARGET_ALPHA */
1177
1178 #ifdef TARGET_S390X
1179
1180 #define ELF_START_MMAP (0x20000000000ULL)
1181
1182 #define ELF_CLASS ELFCLASS64
1183 #define ELF_DATA ELFDATA2MSB
1184 #define ELF_ARCH EM_S390
1185
1186 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1187 {
1188 regs->psw.addr = infop->entry;
1189 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1190 regs->gprs[15] = infop->start_stack;
1191 }
1192
1193 #endif /* TARGET_S390X */
1194
1195 #ifdef TARGET_TILEGX
1196
1197 /* 42 bits real used address, a half for user mode */
1198 #define ELF_START_MMAP (0x00000020000000000ULL)
1199
1200 #define elf_check_arch(x) ((x) == EM_TILEGX)
1201
1202 #define ELF_CLASS ELFCLASS64
1203 #define ELF_DATA ELFDATA2LSB
1204 #define ELF_ARCH EM_TILEGX
1205
1206 static inline void init_thread(struct target_pt_regs *regs,
1207 struct image_info *infop)
1208 {
1209 regs->pc = infop->entry;
1210 regs->sp = infop->start_stack;
1211
1212 }
1213
1214 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1215
1216 #endif /* TARGET_TILEGX */
1217
1218 #ifndef ELF_PLATFORM
1219 #define ELF_PLATFORM (NULL)
1220 #endif
1221
1222 #ifndef ELF_MACHINE
1223 #define ELF_MACHINE ELF_ARCH
1224 #endif
1225
1226 #ifndef elf_check_arch
1227 #define elf_check_arch(x) ((x) == ELF_ARCH)
1228 #endif
1229
1230 #ifndef ELF_HWCAP
1231 #define ELF_HWCAP 0
1232 #endif
1233
1234 #ifdef TARGET_ABI32
1235 #undef ELF_CLASS
1236 #define ELF_CLASS ELFCLASS32
1237 #undef bswaptls
1238 #define bswaptls(ptr) bswap32s(ptr)
1239 #endif
1240
1241 #include "elf.h"
1242
1243 struct exec
1244 {
1245 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1246 unsigned int a_text; /* length of text, in bytes */
1247 unsigned int a_data; /* length of data, in bytes */
1248 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1249 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1250 unsigned int a_entry; /* start address */
1251 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1252 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1253 };
1254
1255
1256 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1257 #define OMAGIC 0407
1258 #define NMAGIC 0410
1259 #define ZMAGIC 0413
1260 #define QMAGIC 0314
1261
1262 /* Necessary parameters */
1263 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1264 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1265 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1266 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1267
1268 #define DLINFO_ITEMS 14
1269
1270 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1271 {
1272 memcpy(to, from, n);
1273 }
1274
1275 #ifdef BSWAP_NEEDED
1276 static void bswap_ehdr(struct elfhdr *ehdr)
1277 {
1278 bswap16s(&ehdr->e_type); /* Object file type */
1279 bswap16s(&ehdr->e_machine); /* Architecture */
1280 bswap32s(&ehdr->e_version); /* Object file version */
1281 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1282 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1283 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1284 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1285 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1286 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1287 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1288 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1289 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1290 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1291 }
1292
1293 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1294 {
1295 int i;
1296 for (i = 0; i < phnum; ++i, ++phdr) {
1297 bswap32s(&phdr->p_type); /* Segment type */
1298 bswap32s(&phdr->p_flags); /* Segment flags */
1299 bswaptls(&phdr->p_offset); /* Segment file offset */
1300 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1301 bswaptls(&phdr->p_paddr); /* Segment physical address */
1302 bswaptls(&phdr->p_filesz); /* Segment size in file */
1303 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1304 bswaptls(&phdr->p_align); /* Segment alignment */
1305 }
1306 }
1307
1308 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1309 {
1310 int i;
1311 for (i = 0; i < shnum; ++i, ++shdr) {
1312 bswap32s(&shdr->sh_name);
1313 bswap32s(&shdr->sh_type);
1314 bswaptls(&shdr->sh_flags);
1315 bswaptls(&shdr->sh_addr);
1316 bswaptls(&shdr->sh_offset);
1317 bswaptls(&shdr->sh_size);
1318 bswap32s(&shdr->sh_link);
1319 bswap32s(&shdr->sh_info);
1320 bswaptls(&shdr->sh_addralign);
1321 bswaptls(&shdr->sh_entsize);
1322 }
1323 }
1324
1325 static void bswap_sym(struct elf_sym *sym)
1326 {
1327 bswap32s(&sym->st_name);
1328 bswaptls(&sym->st_value);
1329 bswaptls(&sym->st_size);
1330 bswap16s(&sym->st_shndx);
1331 }
1332 #else
1333 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1334 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1335 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1336 static inline void bswap_sym(struct elf_sym *sym) { }
1337 #endif
1338
1339 #ifdef USE_ELF_CORE_DUMP
1340 static int elf_core_dump(int, const CPUArchState *);
1341 #endif /* USE_ELF_CORE_DUMP */
1342 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1343
1344 /* Verify the portions of EHDR within E_IDENT for the target.
1345 This can be performed before bswapping the entire header. */
1346 static bool elf_check_ident(struct elfhdr *ehdr)
1347 {
1348 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1349 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1350 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1351 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1352 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1353 && ehdr->e_ident[EI_DATA] == ELF_DATA
1354 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1355 }
1356
1357 /* Verify the portions of EHDR outside of E_IDENT for the target.
1358 This has to wait until after bswapping the header. */
1359 static bool elf_check_ehdr(struct elfhdr *ehdr)
1360 {
1361 return (elf_check_arch(ehdr->e_machine)
1362 && ehdr->e_ehsize == sizeof(struct elfhdr)
1363 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1364 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1365 }
1366
1367 /*
1368 * 'copy_elf_strings()' copies argument/envelope strings from user
1369 * memory to free pages in kernel mem. These are in a format ready
1370 * to be put directly into the top of new user memory.
1371 *
1372 */
1373 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1374 abi_ulong p, abi_ulong stack_limit)
1375 {
1376 char *tmp;
1377 int len, offset;
1378 abi_ulong top = p;
1379
1380 if (!p) {
1381 return 0; /* bullet-proofing */
1382 }
1383
1384 offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1385
1386 while (argc-- > 0) {
1387 tmp = argv[argc];
1388 if (!tmp) {
1389 fprintf(stderr, "VFS: argc is wrong");
1390 exit(-1);
1391 }
1392 len = strlen(tmp) + 1;
1393 tmp += len;
1394
1395 if (len > (p - stack_limit)) {
1396 return 0;
1397 }
1398 while (len) {
1399 int bytes_to_copy = (len > offset) ? offset : len;
1400 tmp -= bytes_to_copy;
1401 p -= bytes_to_copy;
1402 offset -= bytes_to_copy;
1403 len -= bytes_to_copy;
1404
1405 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1406
1407 if (offset == 0) {
1408 memcpy_to_target(p, scratch, top - p);
1409 top = p;
1410 offset = TARGET_PAGE_SIZE;
1411 }
1412 }
1413 }
1414 if (offset) {
1415 memcpy_to_target(p, scratch + offset, top - p);
1416 }
1417
1418 return p;
1419 }
1420
1421 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1422 * argument/environment space. Newer kernels (>2.6.33) allow more,
1423 * dependent on stack size, but guarantee at least 32 pages for
1424 * backwards compatibility.
1425 */
1426 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1427
1428 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1429 struct image_info *info)
1430 {
1431 abi_ulong size, error, guard;
1432
1433 size = guest_stack_size;
1434 if (size < STACK_LOWER_LIMIT) {
1435 size = STACK_LOWER_LIMIT;
1436 }
1437 guard = TARGET_PAGE_SIZE;
1438 if (guard < qemu_real_host_page_size) {
1439 guard = qemu_real_host_page_size;
1440 }
1441
1442 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1443 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1444 if (error == -1) {
1445 perror("mmap stack");
1446 exit(-1);
1447 }
1448
1449 /* We reserve one extra page at the top of the stack as guard. */
1450 target_mprotect(error, guard, PROT_NONE);
1451
1452 info->stack_limit = error + guard;
1453
1454 return info->stack_limit + size - sizeof(void *);
1455 }
1456
1457 /* Map and zero the bss. We need to explicitly zero any fractional pages
1458 after the data section (i.e. bss). */
1459 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1460 {
1461 uintptr_t host_start, host_map_start, host_end;
1462
1463 last_bss = TARGET_PAGE_ALIGN(last_bss);
1464
1465 /* ??? There is confusion between qemu_real_host_page_size and
1466 qemu_host_page_size here and elsewhere in target_mmap, which
1467 may lead to the end of the data section mapping from the file
1468 not being mapped. At least there was an explicit test and
1469 comment for that here, suggesting that "the file size must
1470 be known". The comment probably pre-dates the introduction
1471 of the fstat system call in target_mmap which does in fact
1472 find out the size. What isn't clear is if the workaround
1473 here is still actually needed. For now, continue with it,
1474 but merge it with the "normal" mmap that would allocate the bss. */
1475
1476 host_start = (uintptr_t) g2h(elf_bss);
1477 host_end = (uintptr_t) g2h(last_bss);
1478 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1479
1480 if (host_map_start < host_end) {
1481 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1482 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1483 if (p == MAP_FAILED) {
1484 perror("cannot mmap brk");
1485 exit(-1);
1486 }
1487 }
1488
1489 /* Ensure that the bss page(s) are valid */
1490 if ((page_get_flags(last_bss-1) & prot) != prot) {
1491 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1492 }
1493
1494 if (host_start < host_map_start) {
1495 memset((void *)host_start, 0, host_map_start - host_start);
1496 }
1497 }
1498
1499 #ifdef CONFIG_USE_FDPIC
1500 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1501 {
1502 uint16_t n;
1503 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1504
1505 /* elf32_fdpic_loadseg */
1506 n = info->nsegs;
1507 while (n--) {
1508 sp -= 12;
1509 put_user_u32(loadsegs[n].addr, sp+0);
1510 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1511 put_user_u32(loadsegs[n].p_memsz, sp+8);
1512 }
1513
1514 /* elf32_fdpic_loadmap */
1515 sp -= 4;
1516 put_user_u16(0, sp+0); /* version */
1517 put_user_u16(info->nsegs, sp+2); /* nsegs */
1518
1519 info->personality = PER_LINUX_FDPIC;
1520 info->loadmap_addr = sp;
1521
1522 return sp;
1523 }
1524 #endif
1525
1526 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1527 struct elfhdr *exec,
1528 struct image_info *info,
1529 struct image_info *interp_info)
1530 {
1531 abi_ulong sp;
1532 abi_ulong sp_auxv;
1533 int size;
1534 int i;
1535 abi_ulong u_rand_bytes;
1536 uint8_t k_rand_bytes[16];
1537 abi_ulong u_platform;
1538 const char *k_platform;
1539 const int n = sizeof(elf_addr_t);
1540
1541 sp = p;
1542
1543 #ifdef CONFIG_USE_FDPIC
1544 /* Needs to be before we load the env/argc/... */
1545 if (elf_is_fdpic(exec)) {
1546 /* Need 4 byte alignment for these structs */
1547 sp &= ~3;
1548 sp = loader_build_fdpic_loadmap(info, sp);
1549 info->other_info = interp_info;
1550 if (interp_info) {
1551 interp_info->other_info = info;
1552 sp = loader_build_fdpic_loadmap(interp_info, sp);
1553 }
1554 }
1555 #endif
1556
1557 u_platform = 0;
1558 k_platform = ELF_PLATFORM;
1559 if (k_platform) {
1560 size_t len = strlen(k_platform) + 1;
1561 sp -= (len + n - 1) & ~(n - 1);
1562 u_platform = sp;
1563 /* FIXME - check return value of memcpy_to_target() for failure */
1564 memcpy_to_target(sp, k_platform, len);
1565 }
1566
1567 /*
1568 * Generate 16 random bytes for userspace PRNG seeding (not
1569 * cryptically secure but it's not the aim of QEMU).
1570 */
1571 for (i = 0; i < 16; i++) {
1572 k_rand_bytes[i] = rand();
1573 }
1574 sp -= 16;
1575 u_rand_bytes = sp;
1576 /* FIXME - check return value of memcpy_to_target() for failure */
1577 memcpy_to_target(sp, k_rand_bytes, 16);
1578
1579 /*
1580 * Force 16 byte _final_ alignment here for generality.
1581 */
1582 sp = sp &~ (abi_ulong)15;
1583 size = (DLINFO_ITEMS + 1) * 2;
1584 if (k_platform)
1585 size += 2;
1586 #ifdef DLINFO_ARCH_ITEMS
1587 size += DLINFO_ARCH_ITEMS * 2;
1588 #endif
1589 #ifdef ELF_HWCAP2
1590 size += 2;
1591 #endif
1592 size += envc + argc + 2;
1593 size += 1; /* argc itself */
1594 size *= n;
1595 if (size & 15)
1596 sp -= 16 - (size & 15);
1597
1598 /* This is correct because Linux defines
1599 * elf_addr_t as Elf32_Off / Elf64_Off
1600 */
1601 #define NEW_AUX_ENT(id, val) do { \
1602 sp -= n; put_user_ual(val, sp); \
1603 sp -= n; put_user_ual(id, sp); \
1604 } while(0)
1605
1606 sp_auxv = sp;
1607 NEW_AUX_ENT (AT_NULL, 0);
1608
1609 /* There must be exactly DLINFO_ITEMS entries here. */
1610 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1611 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1612 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1613 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1614 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1615 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1616 NEW_AUX_ENT(AT_ENTRY, info->entry);
1617 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1618 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1619 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1620 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1621 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1622 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1623 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1624
1625 #ifdef ELF_HWCAP2
1626 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1627 #endif
1628
1629 if (k_platform)
1630 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1631 #ifdef ARCH_DLINFO
1632 /*
1633 * ARCH_DLINFO must come last so platform specific code can enforce
1634 * special alignment requirements on the AUXV if necessary (eg. PPC).
1635 */
1636 ARCH_DLINFO;
1637 #endif
1638 #undef NEW_AUX_ENT
1639
1640 info->saved_auxv = sp;
1641 info->auxv_len = sp_auxv - sp;
1642
1643 sp = loader_build_argptr(envc, argc, sp, p, 0);
1644 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1645 assert(sp_auxv - sp == size);
1646 return sp;
1647 }
1648
1649 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1650 /* If the guest doesn't have a validation function just agree */
1651 static int validate_guest_space(unsigned long guest_base,
1652 unsigned long guest_size)
1653 {
1654 return 1;
1655 }
1656 #endif
1657
1658 unsigned long init_guest_space(unsigned long host_start,
1659 unsigned long host_size,
1660 unsigned long guest_start,
1661 bool fixed)
1662 {
1663 unsigned long current_start, real_start;
1664 int flags;
1665
1666 assert(host_start || host_size);
1667
1668 /* If just a starting address is given, then just verify that
1669 * address. */
1670 if (host_start && !host_size) {
1671 if (validate_guest_space(host_start, host_size) == 1) {
1672 return host_start;
1673 } else {
1674 return (unsigned long)-1;
1675 }
1676 }
1677
1678 /* Setup the initial flags and start address. */
1679 current_start = host_start & qemu_host_page_mask;
1680 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1681 if (fixed) {
1682 flags |= MAP_FIXED;
1683 }
1684
1685 /* Otherwise, a non-zero size region of memory needs to be mapped
1686 * and validated. */
1687 while (1) {
1688 unsigned long real_size = host_size;
1689
1690 /* Do not use mmap_find_vma here because that is limited to the
1691 * guest address space. We are going to make the
1692 * guest address space fit whatever we're given.
1693 */
1694 real_start = (unsigned long)
1695 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1696 if (real_start == (unsigned long)-1) {
1697 return (unsigned long)-1;
1698 }
1699
1700 /* Ensure the address is properly aligned. */
1701 if (real_start & ~qemu_host_page_mask) {
1702 munmap((void *)real_start, host_size);
1703 real_size = host_size + qemu_host_page_size;
1704 real_start = (unsigned long)
1705 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1706 if (real_start == (unsigned long)-1) {
1707 return (unsigned long)-1;
1708 }
1709 real_start = HOST_PAGE_ALIGN(real_start);
1710 }
1711
1712 /* Check to see if the address is valid. */
1713 if (!host_start || real_start == current_start) {
1714 int valid = validate_guest_space(real_start - guest_start,
1715 real_size);
1716 if (valid == 1) {
1717 break;
1718 } else if (valid == -1) {
1719 return (unsigned long)-1;
1720 }
1721 /* valid == 0, so try again. */
1722 }
1723
1724 /* That address didn't work. Unmap and try a different one.
1725 * The address the host picked because is typically right at
1726 * the top of the host address space and leaves the guest with
1727 * no usable address space. Resort to a linear search. We
1728 * already compensated for mmap_min_addr, so this should not
1729 * happen often. Probably means we got unlucky and host
1730 * address space randomization put a shared library somewhere
1731 * inconvenient.
1732 */
1733 munmap((void *)real_start, host_size);
1734 current_start += qemu_host_page_size;
1735 if (host_start == current_start) {
1736 /* Theoretically possible if host doesn't have any suitably
1737 * aligned areas. Normally the first mmap will fail.
1738 */
1739 return (unsigned long)-1;
1740 }
1741 }
1742
1743 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1744
1745 return real_start;
1746 }
1747
1748 static void probe_guest_base(const char *image_name,
1749 abi_ulong loaddr, abi_ulong hiaddr)
1750 {
1751 /* Probe for a suitable guest base address, if the user has not set
1752 * it explicitly, and set guest_base appropriately.
1753 * In case of error we will print a suitable message and exit.
1754 */
1755 const char *errmsg;
1756 if (!have_guest_base && !reserved_va) {
1757 unsigned long host_start, real_start, host_size;
1758
1759 /* Round addresses to page boundaries. */
1760 loaddr &= qemu_host_page_mask;
1761 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1762
1763 if (loaddr < mmap_min_addr) {
1764 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1765 } else {
1766 host_start = loaddr;
1767 if (host_start != loaddr) {
1768 errmsg = "Address overflow loading ELF binary";
1769 goto exit_errmsg;
1770 }
1771 }
1772 host_size = hiaddr - loaddr;
1773
1774 /* Setup the initial guest memory space with ranges gleaned from
1775 * the ELF image that is being loaded.
1776 */
1777 real_start = init_guest_space(host_start, host_size, loaddr, false);
1778 if (real_start == (unsigned long)-1) {
1779 errmsg = "Unable to find space for application";
1780 goto exit_errmsg;
1781 }
1782 guest_base = real_start - loaddr;
1783
1784 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1785 TARGET_ABI_FMT_lx " to 0x%lx\n",
1786 loaddr, real_start);
1787 }
1788 return;
1789
1790 exit_errmsg:
1791 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1792 exit(-1);
1793 }
1794
1795
1796 /* Load an ELF image into the address space.
1797
1798 IMAGE_NAME is the filename of the image, to use in error messages.
1799 IMAGE_FD is the open file descriptor for the image.
1800
1801 BPRM_BUF is a copy of the beginning of the file; this of course
1802 contains the elf file header at offset 0. It is assumed that this
1803 buffer is sufficiently aligned to present no problems to the host
1804 in accessing data at aligned offsets within the buffer.
1805
1806 On return: INFO values will be filled in, as necessary or available. */
1807
1808 static void load_elf_image(const char *image_name, int image_fd,
1809 struct image_info *info, char **pinterp_name,
1810 char bprm_buf[BPRM_BUF_SIZE])
1811 {
1812 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1813 struct elf_phdr *phdr;
1814 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1815 int i, retval;
1816 const char *errmsg;
1817
1818 /* First of all, some simple consistency checks */
1819 errmsg = "Invalid ELF image for this architecture";
1820 if (!elf_check_ident(ehdr)) {
1821 goto exit_errmsg;
1822 }
1823 bswap_ehdr(ehdr);
1824 if (!elf_check_ehdr(ehdr)) {
1825 goto exit_errmsg;
1826 }
1827
1828 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1829 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1830 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1831 } else {
1832 phdr = (struct elf_phdr *) alloca(i);
1833 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1834 if (retval != i) {
1835 goto exit_read;
1836 }
1837 }
1838 bswap_phdr(phdr, ehdr->e_phnum);
1839
1840 #ifdef CONFIG_USE_FDPIC
1841 info->nsegs = 0;
1842 info->pt_dynamic_addr = 0;
1843 #endif
1844
1845 mmap_lock();
1846
1847 /* Find the maximum size of the image and allocate an appropriate
1848 amount of memory to handle that. */
1849 loaddr = -1, hiaddr = 0;
1850 for (i = 0; i < ehdr->e_phnum; ++i) {
1851 if (phdr[i].p_type == PT_LOAD) {
1852 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1853 if (a < loaddr) {
1854 loaddr = a;
1855 }
1856 a = phdr[i].p_vaddr + phdr[i].p_memsz;
1857 if (a > hiaddr) {
1858 hiaddr = a;
1859 }
1860 #ifdef CONFIG_USE_FDPIC
1861 ++info->nsegs;
1862 #endif
1863 }
1864 }
1865
1866 load_addr = loaddr;
1867 if (ehdr->e_type == ET_DYN) {
1868 /* The image indicates that it can be loaded anywhere. Find a
1869 location that can hold the memory space required. If the
1870 image is pre-linked, LOADDR will be non-zero. Since we do
1871 not supply MAP_FIXED here we'll use that address if and
1872 only if it remains available. */
1873 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1874 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1875 -1, 0);
1876 if (load_addr == -1) {
1877 goto exit_perror;
1878 }
1879 } else if (pinterp_name != NULL) {
1880 /* This is the main executable. Make sure that the low
1881 address does not conflict with MMAP_MIN_ADDR or the
1882 QEMU application itself. */
1883 probe_guest_base(image_name, loaddr, hiaddr);
1884 }
1885 load_bias = load_addr - loaddr;
1886
1887 #ifdef CONFIG_USE_FDPIC
1888 {
1889 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1890 g_malloc(sizeof(*loadsegs) * info->nsegs);
1891
1892 for (i = 0; i < ehdr->e_phnum; ++i) {
1893 switch (phdr[i].p_type) {
1894 case PT_DYNAMIC:
1895 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1896 break;
1897 case PT_LOAD:
1898 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1899 loadsegs->p_vaddr = phdr[i].p_vaddr;
1900 loadsegs->p_memsz = phdr[i].p_memsz;
1901 ++loadsegs;
1902 break;
1903 }
1904 }
1905 }
1906 #endif
1907
1908 info->load_bias = load_bias;
1909 info->load_addr = load_addr;
1910 info->entry = ehdr->e_entry + load_bias;
1911 info->start_code = -1;
1912 info->end_code = 0;
1913 info->start_data = -1;
1914 info->end_data = 0;
1915 info->brk = 0;
1916 info->elf_flags = ehdr->e_flags;
1917
1918 for (i = 0; i < ehdr->e_phnum; i++) {
1919 struct elf_phdr *eppnt = phdr + i;
1920 if (eppnt->p_type == PT_LOAD) {
1921 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1922 int elf_prot = 0;
1923
1924 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1925 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1926 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1927
1928 vaddr = load_bias + eppnt->p_vaddr;
1929 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1930 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1931
1932 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1933 elf_prot, MAP_PRIVATE | MAP_FIXED,
1934 image_fd, eppnt->p_offset - vaddr_po);
1935 if (error == -1) {
1936 goto exit_perror;
1937 }
1938
1939 vaddr_ef = vaddr + eppnt->p_filesz;
1940 vaddr_em = vaddr + eppnt->p_memsz;
1941
1942 /* If the load segment requests extra zeros (e.g. bss), map it. */
1943 if (vaddr_ef < vaddr_em) {
1944 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1945 }
1946
1947 /* Find the full program boundaries. */
1948 if (elf_prot & PROT_EXEC) {
1949 if (vaddr < info->start_code) {
1950 info->start_code = vaddr;
1951 }
1952 if (vaddr_ef > info->end_code) {
1953 info->end_code = vaddr_ef;
1954 }
1955 }
1956 if (elf_prot & PROT_WRITE) {
1957 if (vaddr < info->start_data) {
1958 info->start_data = vaddr;
1959 }
1960 if (vaddr_ef > info->end_data) {
1961 info->end_data = vaddr_ef;
1962 }
1963 if (vaddr_em > info->brk) {
1964 info->brk = vaddr_em;
1965 }
1966 }
1967 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1968 char *interp_name;
1969
1970 if (*pinterp_name) {
1971 errmsg = "Multiple PT_INTERP entries";
1972 goto exit_errmsg;
1973 }
1974 interp_name = malloc(eppnt->p_filesz);
1975 if (!interp_name) {
1976 goto exit_perror;
1977 }
1978
1979 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1980 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1981 eppnt->p_filesz);
1982 } else {
1983 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1984 eppnt->p_offset);
1985 if (retval != eppnt->p_filesz) {
1986 goto exit_perror;
1987 }
1988 }
1989 if (interp_name[eppnt->p_filesz - 1] != 0) {
1990 errmsg = "Invalid PT_INTERP entry";
1991 goto exit_errmsg;
1992 }
1993 *pinterp_name = interp_name;
1994 }
1995 }
1996
1997 if (info->end_data == 0) {
1998 info->start_data = info->end_code;
1999 info->end_data = info->end_code;
2000 info->brk = info->end_code;
2001 }
2002
2003 if (qemu_log_enabled()) {
2004 load_symbols(ehdr, image_fd, load_bias);
2005 }
2006
2007 mmap_unlock();
2008
2009 close(image_fd);
2010 return;
2011
2012 exit_read:
2013 if (retval >= 0) {
2014 errmsg = "Incomplete read of file header";
2015 goto exit_errmsg;
2016 }
2017 exit_perror:
2018 errmsg = strerror(errno);
2019 exit_errmsg:
2020 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2021 exit(-1);
2022 }
2023
2024 static void load_elf_interp(const char *filename, struct image_info *info,
2025 char bprm_buf[BPRM_BUF_SIZE])
2026 {
2027 int fd, retval;
2028
2029 fd = open(path(filename), O_RDONLY);
2030 if (fd < 0) {
2031 goto exit_perror;
2032 }
2033
2034 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2035 if (retval < 0) {
2036 goto exit_perror;
2037 }
2038 if (retval < BPRM_BUF_SIZE) {
2039 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2040 }
2041
2042 load_elf_image(filename, fd, info, NULL, bprm_buf);
2043 return;
2044
2045 exit_perror:
2046 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2047 exit(-1);
2048 }
2049
2050 static int symfind(const void *s0, const void *s1)
2051 {
2052 target_ulong addr = *(target_ulong *)s0;
2053 struct elf_sym *sym = (struct elf_sym *)s1;
2054 int result = 0;
2055 if (addr < sym->st_value) {
2056 result = -1;
2057 } else if (addr >= sym->st_value + sym->st_size) {
2058 result = 1;
2059 }
2060 return result;
2061 }
2062
2063 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2064 {
2065 #if ELF_CLASS == ELFCLASS32
2066 struct elf_sym *syms = s->disas_symtab.elf32;
2067 #else
2068 struct elf_sym *syms = s->disas_symtab.elf64;
2069 #endif
2070
2071 // binary search
2072 struct elf_sym *sym;
2073
2074 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2075 if (sym != NULL) {
2076 return s->disas_strtab + sym->st_name;
2077 }
2078
2079 return "";
2080 }
2081
2082 /* FIXME: This should use elf_ops.h */
2083 static int symcmp(const void *s0, const void *s1)
2084 {
2085 struct elf_sym *sym0 = (struct elf_sym *)s0;
2086 struct elf_sym *sym1 = (struct elf_sym *)s1;
2087 return (sym0->st_value < sym1->st_value)
2088 ? -1
2089 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2090 }
2091
2092 /* Best attempt to load symbols from this ELF object. */
2093 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2094 {
2095 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2096 struct elf_shdr *shdr;
2097 char *strings = NULL;
2098 struct syminfo *s = NULL;
2099 struct elf_sym *new_syms, *syms = NULL;
2100
2101 shnum = hdr->e_shnum;
2102 i = shnum * sizeof(struct elf_shdr);
2103 shdr = (struct elf_shdr *)alloca(i);
2104 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2105 return;
2106 }
2107
2108 bswap_shdr(shdr, shnum);
2109 for (i = 0; i < shnum; ++i) {
2110 if (shdr[i].sh_type == SHT_SYMTAB) {
2111 sym_idx = i;
2112 str_idx = shdr[i].sh_link;
2113 goto found;
2114 }
2115 }
2116
2117 /* There will be no symbol table if the file was stripped. */
2118 return;
2119
2120 found:
2121 /* Now know where the strtab and symtab are. Snarf them. */
2122 s = g_try_new(struct syminfo, 1);
2123 if (!s) {
2124 goto give_up;
2125 }
2126
2127 i = shdr[str_idx].sh_size;
2128 s->disas_strtab = strings = g_try_malloc(i);
2129 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2130 goto give_up;
2131 }
2132
2133 i = shdr[sym_idx].sh_size;
2134 syms = g_try_malloc(i);
2135 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2136 goto give_up;
2137 }
2138
2139 nsyms = i / sizeof(struct elf_sym);
2140 for (i = 0; i < nsyms; ) {
2141 bswap_sym(syms + i);
2142 /* Throw away entries which we do not need. */
2143 if (syms[i].st_shndx == SHN_UNDEF
2144 || syms[i].st_shndx >= SHN_LORESERVE
2145 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2146 if (i < --nsyms) {
2147 syms[i] = syms[nsyms];
2148 }
2149 } else {
2150 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2151 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2152 syms[i].st_value &= ~(target_ulong)1;
2153 #endif
2154 syms[i].st_value += load_bias;
2155 i++;
2156 }
2157 }
2158
2159 /* No "useful" symbol. */
2160 if (nsyms == 0) {
2161 goto give_up;
2162 }
2163
2164 /* Attempt to free the storage associated with the local symbols
2165 that we threw away. Whether or not this has any effect on the
2166 memory allocation depends on the malloc implementation and how
2167 many symbols we managed to discard. */
2168 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2169 if (new_syms == NULL) {
2170 goto give_up;
2171 }
2172 syms = new_syms;
2173
2174 qsort(syms, nsyms, sizeof(*syms), symcmp);
2175
2176 s->disas_num_syms = nsyms;
2177 #if ELF_CLASS == ELFCLASS32
2178 s->disas_symtab.elf32 = syms;
2179 #else
2180 s->disas_symtab.elf64 = syms;
2181 #endif
2182 s->lookup_symbol = lookup_symbolxx;
2183 s->next = syminfos;
2184 syminfos = s;
2185
2186 return;
2187
2188 give_up:
2189 g_free(s);
2190 g_free(strings);
2191 g_free(syms);
2192 }
2193
2194 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2195 {
2196 struct image_info interp_info;
2197 struct elfhdr elf_ex;
2198 char *elf_interpreter = NULL;
2199 char *scratch;
2200
2201 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2202
2203 load_elf_image(bprm->filename, bprm->fd, info,
2204 &elf_interpreter, bprm->buf);
2205
2206 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2207 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2208 when we load the interpreter. */
2209 elf_ex = *(struct elfhdr *)bprm->buf;
2210
2211 /* Do this so that we can load the interpreter, if need be. We will
2212 change some of these later */
2213 bprm->p = setup_arg_pages(bprm, info);
2214
2215 scratch = g_new0(char, TARGET_PAGE_SIZE);
2216 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2217 bprm->p, info->stack_limit);
2218 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2219 bprm->p, info->stack_limit);
2220 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2221 bprm->p, info->stack_limit);
2222 g_free(scratch);
2223
2224 if (!bprm->p) {
2225 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2226 exit(-1);
2227 }
2228
2229 if (elf_interpreter) {
2230 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2231
2232 /* If the program interpreter is one of these two, then assume
2233 an iBCS2 image. Otherwise assume a native linux image. */
2234
2235 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2236 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2237 info->personality = PER_SVR4;
2238
2239 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2240 and some applications "depend" upon this behavior. Since
2241 we do not have the power to recompile these, we emulate
2242 the SVr4 behavior. Sigh. */
2243 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2244 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2245 }
2246 }
2247
2248 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2249 info, (elf_interpreter ? &interp_info : NULL));
2250 info->start_stack = bprm->p;
2251
2252 /* If we have an interpreter, set that as the program's entry point.
2253 Copy the load_bias as well, to help PPC64 interpret the entry
2254 point as a function descriptor. Do this after creating elf tables
2255 so that we copy the original program entry point into the AUXV. */
2256 if (elf_interpreter) {
2257 info->load_bias = interp_info.load_bias;
2258 info->entry = interp_info.entry;
2259 free(elf_interpreter);
2260 }
2261
2262 #ifdef USE_ELF_CORE_DUMP
2263 bprm->core_dump = &elf_core_dump;
2264 #endif
2265
2266 return 0;
2267 }
2268
2269 #ifdef USE_ELF_CORE_DUMP
2270 /*
2271 * Definitions to generate Intel SVR4-like core files.
2272 * These mostly have the same names as the SVR4 types with "target_elf_"
2273 * tacked on the front to prevent clashes with linux definitions,
2274 * and the typedef forms have been avoided. This is mostly like
2275 * the SVR4 structure, but more Linuxy, with things that Linux does
2276 * not support and which gdb doesn't really use excluded.
2277 *
2278 * Fields we don't dump (their contents is zero) in linux-user qemu
2279 * are marked with XXX.
2280 *
2281 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2282 *
2283 * Porting ELF coredump for target is (quite) simple process. First you
2284 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2285 * the target resides):
2286 *
2287 * #define USE_ELF_CORE_DUMP
2288 *
2289 * Next you define type of register set used for dumping. ELF specification
2290 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2291 *
2292 * typedef <target_regtype> target_elf_greg_t;
2293 * #define ELF_NREG <number of registers>
2294 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2295 *
2296 * Last step is to implement target specific function that copies registers
2297 * from given cpu into just specified register set. Prototype is:
2298 *
2299 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2300 * const CPUArchState *env);
2301 *
2302 * Parameters:
2303 * regs - copy register values into here (allocated and zeroed by caller)
2304 * env - copy registers from here
2305 *
2306 * Example for ARM target is provided in this file.
2307 */
2308
2309 /* An ELF note in memory */
2310 struct memelfnote {
2311 const char *name;
2312 size_t namesz;
2313 size_t namesz_rounded;
2314 int type;
2315 size_t datasz;
2316 size_t datasz_rounded;
2317 void *data;
2318 size_t notesz;
2319 };
2320
2321 struct target_elf_siginfo {
2322 abi_int si_signo; /* signal number */
2323 abi_int si_code; /* extra code */
2324 abi_int si_errno; /* errno */
2325 };
2326
2327 struct target_elf_prstatus {
2328 struct target_elf_siginfo pr_info; /* Info associated with signal */
2329 abi_short pr_cursig; /* Current signal */
2330 abi_ulong pr_sigpend; /* XXX */
2331 abi_ulong pr_sighold; /* XXX */
2332 target_pid_t pr_pid;
2333 target_pid_t pr_ppid;
2334 target_pid_t pr_pgrp;
2335 target_pid_t pr_sid;
2336 struct target_timeval pr_utime; /* XXX User time */
2337 struct target_timeval pr_stime; /* XXX System time */
2338 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2339 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2340 target_elf_gregset_t pr_reg; /* GP registers */
2341 abi_int pr_fpvalid; /* XXX */
2342 };
2343
2344 #define ELF_PRARGSZ (80) /* Number of chars for args */
2345
2346 struct target_elf_prpsinfo {
2347 char pr_state; /* numeric process state */
2348 char pr_sname; /* char for pr_state */
2349 char pr_zomb; /* zombie */
2350 char pr_nice; /* nice val */
2351 abi_ulong pr_flag; /* flags */
2352 target_uid_t pr_uid;
2353 target_gid_t pr_gid;
2354 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2355 /* Lots missing */
2356 char pr_fname[16]; /* filename of executable */
2357 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2358 };
2359
2360 /* Here is the structure in which status of each thread is captured. */
2361 struct elf_thread_status {
2362 QTAILQ_ENTRY(elf_thread_status) ets_link;
2363 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2364 #if 0
2365 elf_fpregset_t fpu; /* NT_PRFPREG */
2366 struct task_struct *thread;
2367 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2368 #endif
2369 struct memelfnote notes[1];
2370 int num_notes;
2371 };
2372
2373 struct elf_note_info {
2374 struct memelfnote *notes;
2375 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2376 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2377
2378 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2379 #if 0
2380 /*
2381 * Current version of ELF coredump doesn't support
2382 * dumping fp regs etc.
2383 */
2384 elf_fpregset_t *fpu;
2385 elf_fpxregset_t *xfpu;
2386 int thread_status_size;
2387 #endif
2388 int notes_size;
2389 int numnote;
2390 };
2391
2392 struct vm_area_struct {
2393 target_ulong vma_start; /* start vaddr of memory region */
2394 target_ulong vma_end; /* end vaddr of memory region */
2395 abi_ulong vma_flags; /* protection etc. flags for the region */
2396 QTAILQ_ENTRY(vm_area_struct) vma_link;
2397 };
2398
2399 struct mm_struct {
2400 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2401 int mm_count; /* number of mappings */
2402 };
2403
2404 static struct mm_struct *vma_init(void);
2405 static void vma_delete(struct mm_struct *);
2406 static int vma_add_mapping(struct mm_struct *, target_ulong,
2407 target_ulong, abi_ulong);
2408 static int vma_get_mapping_count(const struct mm_struct *);
2409 static struct vm_area_struct *vma_first(const struct mm_struct *);
2410 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2411 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2412 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2413 unsigned long flags);
2414
2415 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2416 static void fill_note(struct memelfnote *, const char *, int,
2417 unsigned int, void *);
2418 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2419 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2420 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2421 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2422 static size_t note_size(const struct memelfnote *);
2423 static void free_note_info(struct elf_note_info *);
2424 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2425 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2426 static int core_dump_filename(const TaskState *, char *, size_t);
2427
2428 static int dump_write(int, const void *, size_t);
2429 static int write_note(struct memelfnote *, int);
2430 static int write_note_info(struct elf_note_info *, int);
2431
2432 #ifdef BSWAP_NEEDED
2433 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2434 {
2435 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2436 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2437 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2438 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2439 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2440 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2441 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2442 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2443 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2444 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2445 /* cpu times are not filled, so we skip them */
2446 /* regs should be in correct format already */
2447 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2448 }
2449
2450 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2451 {
2452 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2453 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2454 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2455 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2456 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2457 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2458 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2459 }
2460
2461 static void bswap_note(struct elf_note *en)
2462 {
2463 bswap32s(&en->n_namesz);
2464 bswap32s(&en->n_descsz);
2465 bswap32s(&en->n_type);
2466 }
2467 #else
2468 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2469 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2470 static inline void bswap_note(struct elf_note *en) { }
2471 #endif /* BSWAP_NEEDED */
2472
2473 /*
2474 * Minimal support for linux memory regions. These are needed
2475 * when we are finding out what memory exactly belongs to
2476 * emulated process. No locks needed here, as long as
2477 * thread that received the signal is stopped.
2478 */
2479
2480 static struct mm_struct *vma_init(void)
2481 {
2482 struct mm_struct *mm;
2483
2484 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2485 return (NULL);
2486
2487 mm->mm_count = 0;
2488 QTAILQ_INIT(&mm->mm_mmap);
2489
2490 return (mm);
2491 }
2492
2493 static void vma_delete(struct mm_struct *mm)
2494 {
2495 struct vm_area_struct *vma;
2496
2497 while ((vma = vma_first(mm)) != NULL) {
2498 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2499 g_free(vma);
2500 }
2501 g_free(mm);
2502 }
2503
2504 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2505 target_ulong end, abi_ulong flags)
2506 {
2507 struct vm_area_struct *vma;
2508
2509 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2510 return (-1);
2511
2512 vma->vma_start = start;
2513 vma->vma_end = end;
2514 vma->vma_flags = flags;
2515
2516 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2517 mm->mm_count++;
2518
2519 return (0);
2520 }
2521
2522 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2523 {
2524 return (QTAILQ_FIRST(&mm->mm_mmap));
2525 }
2526
2527 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2528 {
2529 return (QTAILQ_NEXT(vma, vma_link));
2530 }
2531
2532 static int vma_get_mapping_count(const struct mm_struct *mm)
2533 {
2534 return (mm->mm_count);
2535 }
2536
2537 /*
2538 * Calculate file (dump) size of given memory region.
2539 */
2540 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2541 {
2542 /* if we cannot even read the first page, skip it */
2543 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2544 return (0);
2545
2546 /*
2547 * Usually we don't dump executable pages as they contain
2548 * non-writable code that debugger can read directly from
2549 * target library etc. However, thread stacks are marked
2550 * also executable so we read in first page of given region
2551 * and check whether it contains elf header. If there is
2552 * no elf header, we dump it.
2553 */
2554 if (vma->vma_flags & PROT_EXEC) {
2555 char page[TARGET_PAGE_SIZE];
2556
2557 copy_from_user(page, vma->vma_start, sizeof (page));
2558 if ((page[EI_MAG0] == ELFMAG0) &&
2559 (page[EI_MAG1] == ELFMAG1) &&
2560 (page[EI_MAG2] == ELFMAG2) &&
2561 (page[EI_MAG3] == ELFMAG3)) {
2562 /*
2563 * Mappings are possibly from ELF binary. Don't dump
2564 * them.
2565 */
2566 return (0);
2567 }
2568 }
2569
2570 return (vma->vma_end - vma->vma_start);
2571 }
2572
2573 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2574 unsigned long flags)
2575 {
2576 struct mm_struct *mm = (struct mm_struct *)priv;
2577
2578 vma_add_mapping(mm, start, end, flags);
2579 return (0);
2580 }
2581
2582 static void fill_note(struct memelfnote *note, const char *name, int type,
2583 unsigned int sz, void *data)
2584 {
2585 unsigned int namesz;
2586
2587 namesz = strlen(name) + 1;
2588 note->name = name;
2589 note->namesz = namesz;
2590 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2591 note->type = type;
2592 note->datasz = sz;
2593 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2594
2595 note->data = data;
2596
2597 /*
2598 * We calculate rounded up note size here as specified by
2599 * ELF document.
2600 */
2601 note->notesz = sizeof (struct elf_note) +
2602 note->namesz_rounded + note->datasz_rounded;
2603 }
2604
2605 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2606 uint32_t flags)
2607 {
2608 (void) memset(elf, 0, sizeof(*elf));
2609
2610 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2611 elf->e_ident[EI_CLASS] = ELF_CLASS;
2612 elf->e_ident[EI_DATA] = ELF_DATA;
2613 elf->e_ident[EI_VERSION] = EV_CURRENT;
2614 elf->e_ident[EI_OSABI] = ELF_OSABI;
2615
2616 elf->e_type = ET_CORE;
2617 elf->e_machine = machine;
2618 elf->e_version = EV_CURRENT;
2619 elf->e_phoff = sizeof(struct elfhdr);
2620 elf->e_flags = flags;
2621 elf->e_ehsize = sizeof(struct elfhdr);
2622 elf->e_phentsize = sizeof(struct elf_phdr);
2623 elf->e_phnum = segs;
2624
2625 bswap_ehdr(elf);
2626 }
2627
2628 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2629 {
2630 phdr->p_type = PT_NOTE;
2631 phdr->p_offset = offset;
2632 phdr->p_vaddr = 0;
2633 phdr->p_paddr = 0;
2634 phdr->p_filesz = sz;
2635 phdr->p_memsz = 0;
2636 phdr->p_flags = 0;
2637 phdr->p_align = 0;
2638
2639 bswap_phdr(phdr, 1);
2640 }
2641
2642 static size_t note_size(const struct memelfnote *note)
2643 {
2644 return (note->notesz);
2645 }
2646
2647 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2648 const TaskState *ts, int signr)
2649 {
2650 (void) memset(prstatus, 0, sizeof (*prstatus));
2651 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2652 prstatus->pr_pid = ts->ts_tid;
2653 prstatus->pr_ppid = getppid();
2654 prstatus->pr_pgrp = getpgrp();
2655 prstatus->pr_sid = getsid(0);
2656
2657 bswap_prstatus(prstatus);
2658 }
2659
2660 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2661 {
2662 char *base_filename;
2663 unsigned int i, len;
2664
2665 (void) memset(psinfo, 0, sizeof (*psinfo));
2666
2667 len = ts->info->arg_end - ts->info->arg_start;
2668 if (len >= ELF_PRARGSZ)
2669 len = ELF_PRARGSZ - 1;
2670 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2671 return -EFAULT;
2672 for (i = 0; i < len; i++)
2673 if (psinfo->pr_psargs[i] == 0)
2674 psinfo->pr_psargs[i] = ' ';
2675 psinfo->pr_psargs[len] = 0;
2676
2677 psinfo->pr_pid = getpid();
2678 psinfo->pr_ppid = getppid();
2679 psinfo->pr_pgrp = getpgrp();
2680 psinfo->pr_sid = getsid(0);
2681 psinfo->pr_uid = getuid();
2682 psinfo->pr_gid = getgid();
2683
2684 base_filename = g_path_get_basename(ts->bprm->filename);
2685 /*
2686 * Using strncpy here is fine: at max-length,
2687 * this field is not NUL-terminated.
2688 */
2689 (void) strncpy(psinfo->pr_fname, base_filename,
2690 sizeof(psinfo->pr_fname));
2691
2692 g_free(base_filename);
2693 bswap_psinfo(psinfo);
2694 return (0);
2695 }
2696
2697 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2698 {
2699 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2700 elf_addr_t orig_auxv = auxv;
2701 void *ptr;
2702 int len = ts->info->auxv_len;
2703
2704 /*
2705 * Auxiliary vector is stored in target process stack. It contains
2706 * {type, value} pairs that we need to dump into note. This is not
2707 * strictly necessary but we do it here for sake of completeness.
2708 */
2709
2710 /* read in whole auxv vector and copy it to memelfnote */
2711 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2712 if (ptr != NULL) {
2713 fill_note(note, "CORE", NT_AUXV, len, ptr);
2714 unlock_user(ptr, auxv, len);
2715 }
2716 }
2717
2718 /*
2719 * Constructs name of coredump file. We have following convention
2720 * for the name:
2721 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2722 *
2723 * Returns 0 in case of success, -1 otherwise (errno is set).
2724 */
2725 static int core_dump_filename(const TaskState *ts, char *buf,
2726 size_t bufsize)
2727 {
2728 char timestamp[64];
2729 char *base_filename = NULL;
2730 struct timeval tv;
2731 struct tm tm;
2732
2733 assert(bufsize >= PATH_MAX);
2734
2735 if (gettimeofday(&tv, NULL) < 0) {
2736 (void) fprintf(stderr, "unable to get current timestamp: %s",
2737 strerror(errno));
2738 return (-1);
2739 }
2740
2741 base_filename = g_path_get_basename(ts->bprm->filename);
2742 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2743 localtime_r(&tv.tv_sec, &tm));
2744 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2745 base_filename, timestamp, (int)getpid());
2746 g_free(base_filename);
2747
2748 return (0);
2749 }
2750
2751 static int dump_write(int fd, const void *ptr, size_t size)
2752 {
2753 const char *bufp = (const char *)ptr;
2754 ssize_t bytes_written, bytes_left;
2755 struct rlimit dumpsize;
2756 off_t pos;
2757
2758 bytes_written = 0;
2759 getrlimit(RLIMIT_CORE, &dumpsize);
2760 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2761 if (errno == ESPIPE) { /* not a seekable stream */
2762 bytes_left = size;
2763 } else {
2764 return pos;
2765 }
2766 } else {
2767 if (dumpsize.rlim_cur <= pos) {
2768 return -1;
2769 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2770 bytes_left = size;
2771 } else {
2772 size_t limit_left=dumpsize.rlim_cur - pos;
2773 bytes_left = limit_left >= size ? size : limit_left ;
2774 }
2775 }
2776
2777 /*
2778 * In normal conditions, single write(2) should do but
2779 * in case of socket etc. this mechanism is more portable.
2780 */
2781 do {
2782 bytes_written = write(fd, bufp, bytes_left);
2783 if (bytes_written < 0) {
2784 if (errno == EINTR)
2785 continue;
2786 return (-1);
2787 } else if (bytes_written == 0) { /* eof */
2788 return (-1);
2789 }
2790 bufp += bytes_written;
2791 bytes_left -= bytes_written;
2792 } while (bytes_left > 0);
2793
2794 return (0);
2795 }
2796
2797 static int write_note(struct memelfnote *men, int fd)
2798 {
2799 struct elf_note en;
2800
2801 en.n_namesz = men->namesz;
2802 en.n_type = men->type;
2803 en.n_descsz = men->datasz;
2804
2805 bswap_note(&en);
2806
2807 if (dump_write(fd, &en, sizeof(en)) != 0)
2808 return (-1);
2809 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2810 return (-1);
2811 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2812 return (-1);
2813
2814 return (0);
2815 }
2816
2817 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2818 {
2819 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2820 TaskState *ts = (TaskState *)cpu->opaque;
2821 struct elf_thread_status *ets;
2822
2823 ets = g_malloc0(sizeof (*ets));
2824 ets->num_notes = 1; /* only prstatus is dumped */
2825 fill_prstatus(&ets->prstatus, ts, 0);
2826 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2827 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2828 &ets->prstatus);
2829
2830 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2831
2832 info->notes_size += note_size(&ets->notes[0]);
2833 }
2834
2835 static void init_note_info(struct elf_note_info *info)
2836 {
2837 /* Initialize the elf_note_info structure so that it is at
2838 * least safe to call free_note_info() on it. Must be
2839 * called before calling fill_note_info().
2840 */
2841 memset(info, 0, sizeof (*info));
2842 QTAILQ_INIT(&info->thread_list);
2843 }
2844
2845 static int fill_note_info(struct elf_note_info *info,
2846 long signr, const CPUArchState *env)
2847 {
2848 #define NUMNOTES 3
2849 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2850 TaskState *ts = (TaskState *)cpu->opaque;
2851 int i;
2852
2853 info->notes = g_new0(struct memelfnote, NUMNOTES);
2854 if (info->notes == NULL)
2855 return (-ENOMEM);
2856 info->prstatus = g_malloc0(sizeof (*info->prstatus));
2857 if (info->prstatus == NULL)
2858 return (-ENOMEM);
2859 info->psinfo = g_malloc0(sizeof (*info->psinfo));
2860 if (info->prstatus == NULL)
2861 return (-ENOMEM);
2862
2863 /*
2864 * First fill in status (and registers) of current thread
2865 * including process info & aux vector.
2866 */
2867 fill_prstatus(info->prstatus, ts, signr);
2868 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2869 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2870 sizeof (*info->prstatus), info->prstatus);
2871 fill_psinfo(info->psinfo, ts);
2872 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2873 sizeof (*info->psinfo), info->psinfo);
2874 fill_auxv_note(&info->notes[2], ts);
2875 info->numnote = 3;
2876
2877 info->notes_size = 0;
2878 for (i = 0; i < info->numnote; i++)
2879 info->notes_size += note_size(&info->notes[i]);
2880
2881 /* read and fill status of all threads */
2882 cpu_list_lock();
2883 CPU_FOREACH(cpu) {
2884 if (cpu == thread_cpu) {
2885 continue;
2886 }
2887 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2888 }
2889 cpu_list_unlock();
2890
2891 return (0);
2892 }
2893
2894 static void free_note_info(struct elf_note_info *info)
2895 {
2896 struct elf_thread_status *ets;
2897
2898 while (!QTAILQ_EMPTY(&info->thread_list)) {
2899 ets = QTAILQ_FIRST(&info->thread_list);
2900 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2901 g_free(ets);
2902 }
2903
2904 g_free(info->prstatus);
2905 g_free(info->psinfo);
2906 g_free(info->notes);
2907 }
2908
2909 static int write_note_info(struct elf_note_info *info, int fd)
2910 {
2911 struct elf_thread_status *ets;
2912 int i, error = 0;
2913
2914 /* write prstatus, psinfo and auxv for current thread */
2915 for (i = 0; i < info->numnote; i++)
2916 if ((error = write_note(&info->notes[i], fd)) != 0)
2917 return (error);
2918
2919 /* write prstatus for each thread */
2920 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
2921 if ((error = write_note(&ets->notes[0], fd)) != 0)
2922 return (error);
2923 }
2924
2925 return (0);
2926 }
2927
2928 /*
2929 * Write out ELF coredump.
2930 *
2931 * See documentation of ELF object file format in:
2932 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2933 *
2934 * Coredump format in linux is following:
2935 *
2936 * 0 +----------------------+ \
2937 * | ELF header | ET_CORE |
2938 * +----------------------+ |
2939 * | ELF program headers | |--- headers
2940 * | - NOTE section | |
2941 * | - PT_LOAD sections | |
2942 * +----------------------+ /
2943 * | NOTEs: |
2944 * | - NT_PRSTATUS |
2945 * | - NT_PRSINFO |
2946 * | - NT_AUXV |
2947 * +----------------------+ <-- aligned to target page
2948 * | Process memory dump |
2949 * : :
2950 * . .
2951 * : :
2952 * | |
2953 * +----------------------+
2954 *
2955 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2956 * NT_PRSINFO -> struct elf_prpsinfo
2957 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2958 *
2959 * Format follows System V format as close as possible. Current
2960 * version limitations are as follows:
2961 * - no floating point registers are dumped
2962 *
2963 * Function returns 0 in case of success, negative errno otherwise.
2964 *
2965 * TODO: make this work also during runtime: it should be
2966 * possible to force coredump from running process and then
2967 * continue processing. For example qemu could set up SIGUSR2
2968 * handler (provided that target process haven't registered
2969 * handler for that) that does the dump when signal is received.
2970 */
2971 static int elf_core_dump(int signr, const CPUArchState *env)
2972 {
2973 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2974 const TaskState *ts = (const TaskState *)cpu->opaque;
2975 struct vm_area_struct *vma = NULL;
2976 char corefile[PATH_MAX];
2977 struct elf_note_info info;
2978 struct elfhdr elf;
2979 struct elf_phdr phdr;
2980 struct rlimit dumpsize;
2981 struct mm_struct *mm = NULL;
2982 off_t offset = 0, data_offset = 0;
2983 int segs = 0;
2984 int fd = -1;
2985
2986 init_note_info(&info);
2987
2988 errno = 0;
2989 getrlimit(RLIMIT_CORE, &dumpsize);
2990 if (dumpsize.rlim_cur == 0)
2991 return 0;
2992
2993 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2994 return (-errno);
2995
2996 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2997 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2998 return (-errno);
2999
3000 /*
3001 * Walk through target process memory mappings and
3002 * set up structure containing this information. After
3003 * this point vma_xxx functions can be used.
3004 */
3005 if ((mm = vma_init()) == NULL)
3006 goto out;
3007
3008 walk_memory_regions(mm, vma_walker);
3009 segs = vma_get_mapping_count(mm);
3010
3011 /*
3012 * Construct valid coredump ELF header. We also
3013 * add one more segment for notes.
3014 */
3015 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3016 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3017 goto out;
3018
3019 /* fill in the in-memory version of notes */
3020 if (fill_note_info(&info, signr, env) < 0)
3021 goto out;
3022
3023 offset += sizeof (elf); /* elf header */
3024 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3025
3026 /* write out notes program header */
3027 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3028
3029 offset += info.notes_size;
3030 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3031 goto out;
3032
3033 /*
3034 * ELF specification wants data to start at page boundary so
3035 * we align it here.
3036 */
3037 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3038
3039 /*
3040 * Write program headers for memory regions mapped in
3041 * the target process.
3042 */
3043 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3044 (void) memset(&phdr, 0, sizeof (phdr));
3045
3046 phdr.p_type = PT_LOAD;
3047 phdr.p_offset = offset;
3048 phdr.p_vaddr = vma->vma_start;
3049 phdr.p_paddr = 0;
3050 phdr.p_filesz = vma_dump_size(vma);
3051 offset += phdr.p_filesz;
3052 phdr.p_memsz = vma->vma_end - vma->vma_start;
3053 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3054 if (vma->vma_flags & PROT_WRITE)
3055 phdr.p_flags |= PF_W;
3056 if (vma->vma_flags & PROT_EXEC)
3057 phdr.p_flags |= PF_X;
3058 phdr.p_align = ELF_EXEC_PAGESIZE;
3059
3060 bswap_phdr(&phdr, 1);
3061 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3062 goto out;
3063 }
3064 }
3065
3066 /*
3067 * Next we write notes just after program headers. No
3068 * alignment needed here.
3069 */
3070 if (write_note_info(&info, fd) < 0)
3071 goto out;
3072
3073 /* align data to page boundary */
3074 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3075 goto out;
3076
3077 /*
3078 * Finally we can dump process memory into corefile as well.
3079 */
3080 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3081 abi_ulong addr;
3082 abi_ulong end;
3083
3084 end = vma->vma_start + vma_dump_size(vma);
3085
3086 for (addr = vma->vma_start; addr < end;
3087 addr += TARGET_PAGE_SIZE) {
3088 char page[TARGET_PAGE_SIZE];
3089 int error;
3090
3091 /*
3092 * Read in page from target process memory and
3093 * write it to coredump file.
3094 */
3095 error = copy_from_user(page, addr, sizeof (page));
3096 if (error != 0) {
3097 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3098 addr);
3099 errno = -error;
3100 goto out;
3101 }
3102 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3103 goto out;
3104 }
3105 }
3106
3107 out:
3108 free_note_info(&info);
3109 if (mm != NULL)
3110 vma_delete(mm);
3111 (void) close(fd);
3112
3113 if (errno != 0)
3114 return (-errno);
3115 return (0);
3116 }
3117 #endif /* USE_ELF_CORE_DUMP */
3118
3119 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3120 {
3121 init_thread(regs, infop);
3122 }