error: Reduce unnecessary error propagation
[qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 #include "qemu/units.h"
14 #include "qemu/selfmap.h"
15
16 #ifdef _ARCH_PPC64
17 #undef ARCH_DLINFO
18 #undef ELF_PLATFORM
19 #undef ELF_HWCAP
20 #undef ELF_HWCAP2
21 #undef ELF_CLASS
22 #undef ELF_DATA
23 #undef ELF_ARCH
24 #endif
25
26 #define ELF_OSABI ELFOSABI_SYSV
27
28 /* from personality.h */
29
30 /*
31 * Flags for bug emulation.
32 *
33 * These occupy the top three bytes.
34 */
35 enum {
36 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
37 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
38 descriptors (signal handling) */
39 MMAP_PAGE_ZERO = 0x0100000,
40 ADDR_COMPAT_LAYOUT = 0x0200000,
41 READ_IMPLIES_EXEC = 0x0400000,
42 ADDR_LIMIT_32BIT = 0x0800000,
43 SHORT_INODE = 0x1000000,
44 WHOLE_SECONDS = 0x2000000,
45 STICKY_TIMEOUTS = 0x4000000,
46 ADDR_LIMIT_3GB = 0x8000000,
47 };
48
49 /*
50 * Personality types.
51 *
52 * These go in the low byte. Avoid using the top bit, it will
53 * conflict with error returns.
54 */
55 enum {
56 PER_LINUX = 0x0000,
57 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
58 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
59 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
60 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
61 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
62 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
63 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
65 PER_BSD = 0x0006,
66 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
67 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_LINUX32 = 0x0008,
69 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
70 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
71 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
72 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
73 PER_RISCOS = 0x000c,
74 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
75 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
76 PER_OSF4 = 0x000f, /* OSF/1 v4 */
77 PER_HPUX = 0x0010,
78 PER_MASK = 0x00ff,
79 };
80
81 /*
82 * Return the base personality without flags.
83 */
84 #define personality(pers) (pers & PER_MASK)
85
86 int info_is_fdpic(struct image_info *info)
87 {
88 return info->personality == PER_LINUX_FDPIC;
89 }
90
91 /* this flag is uneffective under linux too, should be deleted */
92 #ifndef MAP_DENYWRITE
93 #define MAP_DENYWRITE 0
94 #endif
95
96 /* should probably go in elf.h */
97 #ifndef ELIBBAD
98 #define ELIBBAD 80
99 #endif
100
101 #ifdef TARGET_WORDS_BIGENDIAN
102 #define ELF_DATA ELFDATA2MSB
103 #else
104 #define ELF_DATA ELFDATA2LSB
105 #endif
106
107 #ifdef TARGET_ABI_MIPSN32
108 typedef abi_ullong target_elf_greg_t;
109 #define tswapreg(ptr) tswap64(ptr)
110 #else
111 typedef abi_ulong target_elf_greg_t;
112 #define tswapreg(ptr) tswapal(ptr)
113 #endif
114
115 #ifdef USE_UID16
116 typedef abi_ushort target_uid_t;
117 typedef abi_ushort target_gid_t;
118 #else
119 typedef abi_uint target_uid_t;
120 typedef abi_uint target_gid_t;
121 #endif
122 typedef abi_int target_pid_t;
123
124 #ifdef TARGET_I386
125
126 #define ELF_PLATFORM get_elf_platform()
127
128 static const char *get_elf_platform(void)
129 {
130 static char elf_platform[] = "i386";
131 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
132 if (family > 6)
133 family = 6;
134 if (family >= 3)
135 elf_platform[1] = '0' + family;
136 return elf_platform;
137 }
138
139 #define ELF_HWCAP get_elf_hwcap()
140
141 static uint32_t get_elf_hwcap(void)
142 {
143 X86CPU *cpu = X86_CPU(thread_cpu);
144
145 return cpu->env.features[FEAT_1_EDX];
146 }
147
148 #ifdef TARGET_X86_64
149 #define ELF_START_MMAP 0x2aaaaab000ULL
150
151 #define ELF_CLASS ELFCLASS64
152 #define ELF_ARCH EM_X86_64
153
154 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
155 {
156 regs->rax = 0;
157 regs->rsp = infop->start_stack;
158 regs->rip = infop->entry;
159 }
160
161 #define ELF_NREG 27
162 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
163
164 /*
165 * Note that ELF_NREG should be 29 as there should be place for
166 * TRAPNO and ERR "registers" as well but linux doesn't dump
167 * those.
168 *
169 * See linux kernel: arch/x86/include/asm/elf.h
170 */
171 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
172 {
173 (*regs)[0] = env->regs[15];
174 (*regs)[1] = env->regs[14];
175 (*regs)[2] = env->regs[13];
176 (*regs)[3] = env->regs[12];
177 (*regs)[4] = env->regs[R_EBP];
178 (*regs)[5] = env->regs[R_EBX];
179 (*regs)[6] = env->regs[11];
180 (*regs)[7] = env->regs[10];
181 (*regs)[8] = env->regs[9];
182 (*regs)[9] = env->regs[8];
183 (*regs)[10] = env->regs[R_EAX];
184 (*regs)[11] = env->regs[R_ECX];
185 (*regs)[12] = env->regs[R_EDX];
186 (*regs)[13] = env->regs[R_ESI];
187 (*regs)[14] = env->regs[R_EDI];
188 (*regs)[15] = env->regs[R_EAX]; /* XXX */
189 (*regs)[16] = env->eip;
190 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
191 (*regs)[18] = env->eflags;
192 (*regs)[19] = env->regs[R_ESP];
193 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
194 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
195 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
196 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
197 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
198 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
199 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
200 }
201
202 #else
203
204 #define ELF_START_MMAP 0x80000000
205
206 /*
207 * This is used to ensure we don't load something for the wrong architecture.
208 */
209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
210
211 /*
212 * These are used to set parameters in the core dumps.
213 */
214 #define ELF_CLASS ELFCLASS32
215 #define ELF_ARCH EM_386
216
217 static inline void init_thread(struct target_pt_regs *regs,
218 struct image_info *infop)
219 {
220 regs->esp = infop->start_stack;
221 regs->eip = infop->entry;
222
223 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
224 starts %edx contains a pointer to a function which might be
225 registered using `atexit'. This provides a mean for the
226 dynamic linker to call DT_FINI functions for shared libraries
227 that have been loaded before the code runs.
228
229 A value of 0 tells we have no such handler. */
230 regs->edx = 0;
231 }
232
233 #define ELF_NREG 17
234 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
235
236 /*
237 * Note that ELF_NREG should be 19 as there should be place for
238 * TRAPNO and ERR "registers" as well but linux doesn't dump
239 * those.
240 *
241 * See linux kernel: arch/x86/include/asm/elf.h
242 */
243 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
244 {
245 (*regs)[0] = env->regs[R_EBX];
246 (*regs)[1] = env->regs[R_ECX];
247 (*regs)[2] = env->regs[R_EDX];
248 (*regs)[3] = env->regs[R_ESI];
249 (*regs)[4] = env->regs[R_EDI];
250 (*regs)[5] = env->regs[R_EBP];
251 (*regs)[6] = env->regs[R_EAX];
252 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
253 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
254 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
255 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
256 (*regs)[11] = env->regs[R_EAX]; /* XXX */
257 (*regs)[12] = env->eip;
258 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
259 (*regs)[14] = env->eflags;
260 (*regs)[15] = env->regs[R_ESP];
261 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
262 }
263 #endif
264
265 #define USE_ELF_CORE_DUMP
266 #define ELF_EXEC_PAGESIZE 4096
267
268 #endif
269
270 #ifdef TARGET_ARM
271
272 #ifndef TARGET_AARCH64
273 /* 32 bit ARM definitions */
274
275 #define ELF_START_MMAP 0x80000000
276
277 #define ELF_ARCH EM_ARM
278 #define ELF_CLASS ELFCLASS32
279
280 static inline void init_thread(struct target_pt_regs *regs,
281 struct image_info *infop)
282 {
283 abi_long stack = infop->start_stack;
284 memset(regs, 0, sizeof(*regs));
285
286 regs->uregs[16] = ARM_CPU_MODE_USR;
287 if (infop->entry & 1) {
288 regs->uregs[16] |= CPSR_T;
289 }
290 regs->uregs[15] = infop->entry & 0xfffffffe;
291 regs->uregs[13] = infop->start_stack;
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs->uregs[2], stack + 8); /* envp */
294 get_user_ual(regs->uregs[1], stack + 4); /* envp */
295 /* XXX: it seems that r0 is zeroed after ! */
296 regs->uregs[0] = 0;
297 /* For uClinux PIC binaries. */
298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299 regs->uregs[10] = infop->start_data;
300
301 /* Support ARM FDPIC. */
302 if (info_is_fdpic(infop)) {
303 /* As described in the ABI document, r7 points to the loadmap info
304 * prepared by the kernel. If an interpreter is needed, r8 points
305 * to the interpreter loadmap and r9 points to the interpreter
306 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
307 * r9 points to the main program PT_DYNAMIC info.
308 */
309 regs->uregs[7] = infop->loadmap_addr;
310 if (infop->interpreter_loadmap_addr) {
311 /* Executable is dynamically loaded. */
312 regs->uregs[8] = infop->interpreter_loadmap_addr;
313 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
314 } else {
315 regs->uregs[8] = 0;
316 regs->uregs[9] = infop->pt_dynamic_addr;
317 }
318 }
319 }
320
321 #define ELF_NREG 18
322 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
323
324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
325 {
326 (*regs)[0] = tswapreg(env->regs[0]);
327 (*regs)[1] = tswapreg(env->regs[1]);
328 (*regs)[2] = tswapreg(env->regs[2]);
329 (*regs)[3] = tswapreg(env->regs[3]);
330 (*regs)[4] = tswapreg(env->regs[4]);
331 (*regs)[5] = tswapreg(env->regs[5]);
332 (*regs)[6] = tswapreg(env->regs[6]);
333 (*regs)[7] = tswapreg(env->regs[7]);
334 (*regs)[8] = tswapreg(env->regs[8]);
335 (*regs)[9] = tswapreg(env->regs[9]);
336 (*regs)[10] = tswapreg(env->regs[10]);
337 (*regs)[11] = tswapreg(env->regs[11]);
338 (*regs)[12] = tswapreg(env->regs[12]);
339 (*regs)[13] = tswapreg(env->regs[13]);
340 (*regs)[14] = tswapreg(env->regs[14]);
341 (*regs)[15] = tswapreg(env->regs[15]);
342
343 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
344 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
345 }
346
347 #define USE_ELF_CORE_DUMP
348 #define ELF_EXEC_PAGESIZE 4096
349
350 enum
351 {
352 ARM_HWCAP_ARM_SWP = 1 << 0,
353 ARM_HWCAP_ARM_HALF = 1 << 1,
354 ARM_HWCAP_ARM_THUMB = 1 << 2,
355 ARM_HWCAP_ARM_26BIT = 1 << 3,
356 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
357 ARM_HWCAP_ARM_FPA = 1 << 5,
358 ARM_HWCAP_ARM_VFP = 1 << 6,
359 ARM_HWCAP_ARM_EDSP = 1 << 7,
360 ARM_HWCAP_ARM_JAVA = 1 << 8,
361 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
362 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
363 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
364 ARM_HWCAP_ARM_NEON = 1 << 12,
365 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
366 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
367 ARM_HWCAP_ARM_TLS = 1 << 15,
368 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
369 ARM_HWCAP_ARM_IDIVA = 1 << 17,
370 ARM_HWCAP_ARM_IDIVT = 1 << 18,
371 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
372 ARM_HWCAP_ARM_LPAE = 1 << 20,
373 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
374 };
375
376 enum {
377 ARM_HWCAP2_ARM_AES = 1 << 0,
378 ARM_HWCAP2_ARM_PMULL = 1 << 1,
379 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
380 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
381 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
382 };
383
384 /* The commpage only exists for 32 bit kernels */
385
386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
387
388 static bool init_guest_commpage(void)
389 {
390 void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
391 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
393
394 if (addr == MAP_FAILED) {
395 perror("Allocating guest commpage");
396 exit(EXIT_FAILURE);
397 }
398 if (addr != want) {
399 return false;
400 }
401
402 /* Set kernel helper versions; rest of page is 0. */
403 __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
404
405 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
406 perror("Protecting guest commpage");
407 exit(EXIT_FAILURE);
408 }
409 return true;
410 }
411
412 #define ELF_HWCAP get_elf_hwcap()
413 #define ELF_HWCAP2 get_elf_hwcap2()
414
415 static uint32_t get_elf_hwcap(void)
416 {
417 ARMCPU *cpu = ARM_CPU(thread_cpu);
418 uint32_t hwcaps = 0;
419
420 hwcaps |= ARM_HWCAP_ARM_SWP;
421 hwcaps |= ARM_HWCAP_ARM_HALF;
422 hwcaps |= ARM_HWCAP_ARM_THUMB;
423 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
424
425 /* probe for the extra features */
426 #define GET_FEATURE(feat, hwcap) \
427 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
428
429 #define GET_FEATURE_ID(feat, hwcap) \
430 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
431
432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
433 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
434 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
435 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
436 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
437 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
438 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
439 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
440 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
441 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
442
443 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
444 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
445 hwcaps |= ARM_HWCAP_ARM_VFPv3;
446 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
447 hwcaps |= ARM_HWCAP_ARM_VFPD32;
448 } else {
449 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
450 }
451 }
452 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
453
454 return hwcaps;
455 }
456
457 static uint32_t get_elf_hwcap2(void)
458 {
459 ARMCPU *cpu = ARM_CPU(thread_cpu);
460 uint32_t hwcaps = 0;
461
462 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
463 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
464 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
465 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
466 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
467 return hwcaps;
468 }
469
470 #undef GET_FEATURE
471 #undef GET_FEATURE_ID
472
473 #define ELF_PLATFORM get_elf_platform()
474
475 static const char *get_elf_platform(void)
476 {
477 CPUARMState *env = thread_cpu->env_ptr;
478
479 #ifdef TARGET_WORDS_BIGENDIAN
480 # define END "b"
481 #else
482 # define END "l"
483 #endif
484
485 if (arm_feature(env, ARM_FEATURE_V8)) {
486 return "v8" END;
487 } else if (arm_feature(env, ARM_FEATURE_V7)) {
488 if (arm_feature(env, ARM_FEATURE_M)) {
489 return "v7m" END;
490 } else {
491 return "v7" END;
492 }
493 } else if (arm_feature(env, ARM_FEATURE_V6)) {
494 return "v6" END;
495 } else if (arm_feature(env, ARM_FEATURE_V5)) {
496 return "v5" END;
497 } else {
498 return "v4" END;
499 }
500
501 #undef END
502 }
503
504 #else
505 /* 64 bit ARM definitions */
506 #define ELF_START_MMAP 0x80000000
507
508 #define ELF_ARCH EM_AARCH64
509 #define ELF_CLASS ELFCLASS64
510 #ifdef TARGET_WORDS_BIGENDIAN
511 # define ELF_PLATFORM "aarch64_be"
512 #else
513 # define ELF_PLATFORM "aarch64"
514 #endif
515
516 static inline void init_thread(struct target_pt_regs *regs,
517 struct image_info *infop)
518 {
519 abi_long stack = infop->start_stack;
520 memset(regs, 0, sizeof(*regs));
521
522 regs->pc = infop->entry & ~0x3ULL;
523 regs->sp = stack;
524 }
525
526 #define ELF_NREG 34
527 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
528
529 static void elf_core_copy_regs(target_elf_gregset_t *regs,
530 const CPUARMState *env)
531 {
532 int i;
533
534 for (i = 0; i < 32; i++) {
535 (*regs)[i] = tswapreg(env->xregs[i]);
536 }
537 (*regs)[32] = tswapreg(env->pc);
538 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
539 }
540
541 #define USE_ELF_CORE_DUMP
542 #define ELF_EXEC_PAGESIZE 4096
543
544 enum {
545 ARM_HWCAP_A64_FP = 1 << 0,
546 ARM_HWCAP_A64_ASIMD = 1 << 1,
547 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
548 ARM_HWCAP_A64_AES = 1 << 3,
549 ARM_HWCAP_A64_PMULL = 1 << 4,
550 ARM_HWCAP_A64_SHA1 = 1 << 5,
551 ARM_HWCAP_A64_SHA2 = 1 << 6,
552 ARM_HWCAP_A64_CRC32 = 1 << 7,
553 ARM_HWCAP_A64_ATOMICS = 1 << 8,
554 ARM_HWCAP_A64_FPHP = 1 << 9,
555 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
556 ARM_HWCAP_A64_CPUID = 1 << 11,
557 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
558 ARM_HWCAP_A64_JSCVT = 1 << 13,
559 ARM_HWCAP_A64_FCMA = 1 << 14,
560 ARM_HWCAP_A64_LRCPC = 1 << 15,
561 ARM_HWCAP_A64_DCPOP = 1 << 16,
562 ARM_HWCAP_A64_SHA3 = 1 << 17,
563 ARM_HWCAP_A64_SM3 = 1 << 18,
564 ARM_HWCAP_A64_SM4 = 1 << 19,
565 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
566 ARM_HWCAP_A64_SHA512 = 1 << 21,
567 ARM_HWCAP_A64_SVE = 1 << 22,
568 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
569 ARM_HWCAP_A64_DIT = 1 << 24,
570 ARM_HWCAP_A64_USCAT = 1 << 25,
571 ARM_HWCAP_A64_ILRCPC = 1 << 26,
572 ARM_HWCAP_A64_FLAGM = 1 << 27,
573 ARM_HWCAP_A64_SSBS = 1 << 28,
574 ARM_HWCAP_A64_SB = 1 << 29,
575 ARM_HWCAP_A64_PACA = 1 << 30,
576 ARM_HWCAP_A64_PACG = 1UL << 31,
577
578 ARM_HWCAP2_A64_DCPODP = 1 << 0,
579 ARM_HWCAP2_A64_SVE2 = 1 << 1,
580 ARM_HWCAP2_A64_SVEAES = 1 << 2,
581 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
582 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
583 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
584 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
585 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
586 ARM_HWCAP2_A64_FRINT = 1 << 8,
587 };
588
589 #define ELF_HWCAP get_elf_hwcap()
590 #define ELF_HWCAP2 get_elf_hwcap2()
591
592 #define GET_FEATURE_ID(feat, hwcap) \
593 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
594
595 static uint32_t get_elf_hwcap(void)
596 {
597 ARMCPU *cpu = ARM_CPU(thread_cpu);
598 uint32_t hwcaps = 0;
599
600 hwcaps |= ARM_HWCAP_A64_FP;
601 hwcaps |= ARM_HWCAP_A64_ASIMD;
602 hwcaps |= ARM_HWCAP_A64_CPUID;
603
604 /* probe for the extra features */
605
606 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
607 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
608 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
609 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
610 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
611 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
612 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
613 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
614 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
615 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
616 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
617 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
618 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
619 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
620 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
621 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
622 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
623 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
624 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
625 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
626 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
627 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
628 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
629
630 return hwcaps;
631 }
632
633 static uint32_t get_elf_hwcap2(void)
634 {
635 ARMCPU *cpu = ARM_CPU(thread_cpu);
636 uint32_t hwcaps = 0;
637
638 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
639 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
640 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
641
642 return hwcaps;
643 }
644
645 #undef GET_FEATURE_ID
646
647 #endif /* not TARGET_AARCH64 */
648 #endif /* TARGET_ARM */
649
650 #ifdef TARGET_SPARC
651 #ifdef TARGET_SPARC64
652
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
656 #ifndef TARGET_ABI32
657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
658 #else
659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
660 #endif
661
662 #define ELF_CLASS ELFCLASS64
663 #define ELF_ARCH EM_SPARCV9
664
665 #define STACK_BIAS 2047
666
667 static inline void init_thread(struct target_pt_regs *regs,
668 struct image_info *infop)
669 {
670 #ifndef TARGET_ABI32
671 regs->tstate = 0;
672 #endif
673 regs->pc = infop->entry;
674 regs->npc = regs->pc + 4;
675 regs->y = 0;
676 #ifdef TARGET_ABI32
677 regs->u_regs[14] = infop->start_stack - 16 * 4;
678 #else
679 if (personality(infop->personality) == PER_LINUX32)
680 regs->u_regs[14] = infop->start_stack - 16 * 4;
681 else
682 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
683 #endif
684 }
685
686 #else
687 #define ELF_START_MMAP 0x80000000
688 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
689 | HWCAP_SPARC_MULDIV)
690
691 #define ELF_CLASS ELFCLASS32
692 #define ELF_ARCH EM_SPARC
693
694 static inline void init_thread(struct target_pt_regs *regs,
695 struct image_info *infop)
696 {
697 regs->psr = 0;
698 regs->pc = infop->entry;
699 regs->npc = regs->pc + 4;
700 regs->y = 0;
701 regs->u_regs[14] = infop->start_stack - 16 * 4;
702 }
703
704 #endif
705 #endif
706
707 #ifdef TARGET_PPC
708
709 #define ELF_MACHINE PPC_ELF_MACHINE
710 #define ELF_START_MMAP 0x80000000
711
712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
713
714 #define elf_check_arch(x) ( (x) == EM_PPC64 )
715
716 #define ELF_CLASS ELFCLASS64
717
718 #else
719
720 #define ELF_CLASS ELFCLASS32
721
722 #endif
723
724 #define ELF_ARCH EM_PPC
725
726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
727 See arch/powerpc/include/asm/cputable.h. */
728 enum {
729 QEMU_PPC_FEATURE_32 = 0x80000000,
730 QEMU_PPC_FEATURE_64 = 0x40000000,
731 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
732 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
733 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
734 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
735 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
736 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
737 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
738 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
739 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
740 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
741 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
742 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
743 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
744 QEMU_PPC_FEATURE_CELL = 0x00010000,
745 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
746 QEMU_PPC_FEATURE_SMT = 0x00004000,
747 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
748 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
749 QEMU_PPC_FEATURE_PA6T = 0x00000800,
750 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
751 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
752 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
753 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
754 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
755
756 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
757 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
758
759 /* Feature definitions in AT_HWCAP2. */
760 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
761 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
762 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
763 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
764 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
765 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
766 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
767 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
768 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
769 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
770 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
771 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
772 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
773 };
774
775 #define ELF_HWCAP get_elf_hwcap()
776
777 static uint32_t get_elf_hwcap(void)
778 {
779 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
780 uint32_t features = 0;
781
782 /* We don't have to be terribly complete here; the high points are
783 Altivec/FP/SPE support. Anything else is just a bonus. */
784 #define GET_FEATURE(flag, feature) \
785 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
786 #define GET_FEATURE2(flags, feature) \
787 do { \
788 if ((cpu->env.insns_flags2 & flags) == flags) { \
789 features |= feature; \
790 } \
791 } while (0)
792 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
793 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
794 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
795 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
796 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
797 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
798 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
799 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
800 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
801 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
802 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
803 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
804 QEMU_PPC_FEATURE_ARCH_2_06);
805 #undef GET_FEATURE
806 #undef GET_FEATURE2
807
808 return features;
809 }
810
811 #define ELF_HWCAP2 get_elf_hwcap2()
812
813 static uint32_t get_elf_hwcap2(void)
814 {
815 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
816 uint32_t features = 0;
817
818 #define GET_FEATURE(flag, feature) \
819 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
820 #define GET_FEATURE2(flag, feature) \
821 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
822
823 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
824 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
825 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
826 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
827 QEMU_PPC_FEATURE2_VEC_CRYPTO);
828 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
829 QEMU_PPC_FEATURE2_DARN);
830
831 #undef GET_FEATURE
832 #undef GET_FEATURE2
833
834 return features;
835 }
836
837 /*
838 * The requirements here are:
839 * - keep the final alignment of sp (sp & 0xf)
840 * - make sure the 32-bit value at the first 16 byte aligned position of
841 * AUXV is greater than 16 for glibc compatibility.
842 * AT_IGNOREPPC is used for that.
843 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
844 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
845 */
846 #define DLINFO_ARCH_ITEMS 5
847 #define ARCH_DLINFO \
848 do { \
849 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
850 /* \
851 * Handle glibc compatibility: these magic entries must \
852 * be at the lowest addresses in the final auxv. \
853 */ \
854 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
855 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
856 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
857 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
858 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
859 } while (0)
860
861 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
862 {
863 _regs->gpr[1] = infop->start_stack;
864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
865 if (get_ppc64_abi(infop) < 2) {
866 uint64_t val;
867 get_user_u64(val, infop->entry + 8);
868 _regs->gpr[2] = val + infop->load_bias;
869 get_user_u64(val, infop->entry);
870 infop->entry = val + infop->load_bias;
871 } else {
872 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
873 }
874 #endif
875 _regs->nip = infop->entry;
876 }
877
878 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
879 #define ELF_NREG 48
880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
881
882 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
883 {
884 int i;
885 target_ulong ccr = 0;
886
887 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
888 (*regs)[i] = tswapreg(env->gpr[i]);
889 }
890
891 (*regs)[32] = tswapreg(env->nip);
892 (*regs)[33] = tswapreg(env->msr);
893 (*regs)[35] = tswapreg(env->ctr);
894 (*regs)[36] = tswapreg(env->lr);
895 (*regs)[37] = tswapreg(env->xer);
896
897 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
898 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
899 }
900 (*regs)[38] = tswapreg(ccr);
901 }
902
903 #define USE_ELF_CORE_DUMP
904 #define ELF_EXEC_PAGESIZE 4096
905
906 #endif
907
908 #ifdef TARGET_MIPS
909
910 #define ELF_START_MMAP 0x80000000
911
912 #ifdef TARGET_MIPS64
913 #define ELF_CLASS ELFCLASS64
914 #else
915 #define ELF_CLASS ELFCLASS32
916 #endif
917 #define ELF_ARCH EM_MIPS
918
919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
920
921 static inline void init_thread(struct target_pt_regs *regs,
922 struct image_info *infop)
923 {
924 regs->cp0_status = 2 << CP0St_KSU;
925 regs->cp0_epc = infop->entry;
926 regs->regs[29] = infop->start_stack;
927 }
928
929 /* See linux kernel: arch/mips/include/asm/elf.h. */
930 #define ELF_NREG 45
931 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
932
933 /* See linux kernel: arch/mips/include/asm/reg.h. */
934 enum {
935 #ifdef TARGET_MIPS64
936 TARGET_EF_R0 = 0,
937 #else
938 TARGET_EF_R0 = 6,
939 #endif
940 TARGET_EF_R26 = TARGET_EF_R0 + 26,
941 TARGET_EF_R27 = TARGET_EF_R0 + 27,
942 TARGET_EF_LO = TARGET_EF_R0 + 32,
943 TARGET_EF_HI = TARGET_EF_R0 + 33,
944 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
945 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
946 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
947 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
948 };
949
950 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
951 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
952 {
953 int i;
954
955 for (i = 0; i < TARGET_EF_R0; i++) {
956 (*regs)[i] = 0;
957 }
958 (*regs)[TARGET_EF_R0] = 0;
959
960 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
961 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
962 }
963
964 (*regs)[TARGET_EF_R26] = 0;
965 (*regs)[TARGET_EF_R27] = 0;
966 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
967 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
968 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
969 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
970 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
971 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
972 }
973
974 #define USE_ELF_CORE_DUMP
975 #define ELF_EXEC_PAGESIZE 4096
976
977 /* See arch/mips/include/uapi/asm/hwcap.h. */
978 enum {
979 HWCAP_MIPS_R6 = (1 << 0),
980 HWCAP_MIPS_MSA = (1 << 1),
981 };
982
983 #define ELF_HWCAP get_elf_hwcap()
984
985 static uint32_t get_elf_hwcap(void)
986 {
987 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
988 uint32_t hwcaps = 0;
989
990 #define GET_FEATURE(flag, hwcap) \
991 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
992
993 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
994 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
995
996 #undef GET_FEATURE
997
998 return hwcaps;
999 }
1000
1001 #endif /* TARGET_MIPS */
1002
1003 #ifdef TARGET_MICROBLAZE
1004
1005 #define ELF_START_MMAP 0x80000000
1006
1007 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1008
1009 #define ELF_CLASS ELFCLASS32
1010 #define ELF_ARCH EM_MICROBLAZE
1011
1012 static inline void init_thread(struct target_pt_regs *regs,
1013 struct image_info *infop)
1014 {
1015 regs->pc = infop->entry;
1016 regs->r1 = infop->start_stack;
1017
1018 }
1019
1020 #define ELF_EXEC_PAGESIZE 4096
1021
1022 #define USE_ELF_CORE_DUMP
1023 #define ELF_NREG 38
1024 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1025
1026 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1027 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1028 {
1029 int i, pos = 0;
1030
1031 for (i = 0; i < 32; i++) {
1032 (*regs)[pos++] = tswapreg(env->regs[i]);
1033 }
1034
1035 for (i = 0; i < 6; i++) {
1036 (*regs)[pos++] = tswapreg(env->sregs[i]);
1037 }
1038 }
1039
1040 #endif /* TARGET_MICROBLAZE */
1041
1042 #ifdef TARGET_NIOS2
1043
1044 #define ELF_START_MMAP 0x80000000
1045
1046 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1047
1048 #define ELF_CLASS ELFCLASS32
1049 #define ELF_ARCH EM_ALTERA_NIOS2
1050
1051 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1052 {
1053 regs->ea = infop->entry;
1054 regs->sp = infop->start_stack;
1055 regs->estatus = 0x3;
1056 }
1057
1058 #define ELF_EXEC_PAGESIZE 4096
1059
1060 #define USE_ELF_CORE_DUMP
1061 #define ELF_NREG 49
1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1063
1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1065 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1066 const CPUNios2State *env)
1067 {
1068 int i;
1069
1070 (*regs)[0] = -1;
1071 for (i = 1; i < 8; i++) /* r0-r7 */
1072 (*regs)[i] = tswapreg(env->regs[i + 7]);
1073
1074 for (i = 8; i < 16; i++) /* r8-r15 */
1075 (*regs)[i] = tswapreg(env->regs[i - 8]);
1076
1077 for (i = 16; i < 24; i++) /* r16-r23 */
1078 (*regs)[i] = tswapreg(env->regs[i + 7]);
1079 (*regs)[24] = -1; /* R_ET */
1080 (*regs)[25] = -1; /* R_BT */
1081 (*regs)[26] = tswapreg(env->regs[R_GP]);
1082 (*regs)[27] = tswapreg(env->regs[R_SP]);
1083 (*regs)[28] = tswapreg(env->regs[R_FP]);
1084 (*regs)[29] = tswapreg(env->regs[R_EA]);
1085 (*regs)[30] = -1; /* R_SSTATUS */
1086 (*regs)[31] = tswapreg(env->regs[R_RA]);
1087
1088 (*regs)[32] = tswapreg(env->regs[R_PC]);
1089
1090 (*regs)[33] = -1; /* R_STATUS */
1091 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1092
1093 for (i = 35; i < 49; i++) /* ... */
1094 (*regs)[i] = -1;
1095 }
1096
1097 #endif /* TARGET_NIOS2 */
1098
1099 #ifdef TARGET_OPENRISC
1100
1101 #define ELF_START_MMAP 0x08000000
1102
1103 #define ELF_ARCH EM_OPENRISC
1104 #define ELF_CLASS ELFCLASS32
1105 #define ELF_DATA ELFDATA2MSB
1106
1107 static inline void init_thread(struct target_pt_regs *regs,
1108 struct image_info *infop)
1109 {
1110 regs->pc = infop->entry;
1111 regs->gpr[1] = infop->start_stack;
1112 }
1113
1114 #define USE_ELF_CORE_DUMP
1115 #define ELF_EXEC_PAGESIZE 8192
1116
1117 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1118 #define ELF_NREG 34 /* gprs and pc, sr */
1119 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1120
1121 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1122 const CPUOpenRISCState *env)
1123 {
1124 int i;
1125
1126 for (i = 0; i < 32; i++) {
1127 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1128 }
1129 (*regs)[32] = tswapreg(env->pc);
1130 (*regs)[33] = tswapreg(cpu_get_sr(env));
1131 }
1132 #define ELF_HWCAP 0
1133 #define ELF_PLATFORM NULL
1134
1135 #endif /* TARGET_OPENRISC */
1136
1137 #ifdef TARGET_SH4
1138
1139 #define ELF_START_MMAP 0x80000000
1140
1141 #define ELF_CLASS ELFCLASS32
1142 #define ELF_ARCH EM_SH
1143
1144 static inline void init_thread(struct target_pt_regs *regs,
1145 struct image_info *infop)
1146 {
1147 /* Check other registers XXXXX */
1148 regs->pc = infop->entry;
1149 regs->regs[15] = infop->start_stack;
1150 }
1151
1152 /* See linux kernel: arch/sh/include/asm/elf.h. */
1153 #define ELF_NREG 23
1154 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1155
1156 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1157 enum {
1158 TARGET_REG_PC = 16,
1159 TARGET_REG_PR = 17,
1160 TARGET_REG_SR = 18,
1161 TARGET_REG_GBR = 19,
1162 TARGET_REG_MACH = 20,
1163 TARGET_REG_MACL = 21,
1164 TARGET_REG_SYSCALL = 22
1165 };
1166
1167 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1168 const CPUSH4State *env)
1169 {
1170 int i;
1171
1172 for (i = 0; i < 16; i++) {
1173 (*regs)[i] = tswapreg(env->gregs[i]);
1174 }
1175
1176 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1177 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1178 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1179 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1180 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1181 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1182 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1183 }
1184
1185 #define USE_ELF_CORE_DUMP
1186 #define ELF_EXEC_PAGESIZE 4096
1187
1188 enum {
1189 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1190 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1191 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1192 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1193 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1194 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1195 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1196 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1197 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1198 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1199 };
1200
1201 #define ELF_HWCAP get_elf_hwcap()
1202
1203 static uint32_t get_elf_hwcap(void)
1204 {
1205 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1206 uint32_t hwcap = 0;
1207
1208 hwcap |= SH_CPU_HAS_FPU;
1209
1210 if (cpu->env.features & SH_FEATURE_SH4A) {
1211 hwcap |= SH_CPU_HAS_LLSC;
1212 }
1213
1214 return hwcap;
1215 }
1216
1217 #endif
1218
1219 #ifdef TARGET_CRIS
1220
1221 #define ELF_START_MMAP 0x80000000
1222
1223 #define ELF_CLASS ELFCLASS32
1224 #define ELF_ARCH EM_CRIS
1225
1226 static inline void init_thread(struct target_pt_regs *regs,
1227 struct image_info *infop)
1228 {
1229 regs->erp = infop->entry;
1230 }
1231
1232 #define ELF_EXEC_PAGESIZE 8192
1233
1234 #endif
1235
1236 #ifdef TARGET_M68K
1237
1238 #define ELF_START_MMAP 0x80000000
1239
1240 #define ELF_CLASS ELFCLASS32
1241 #define ELF_ARCH EM_68K
1242
1243 /* ??? Does this need to do anything?
1244 #define ELF_PLAT_INIT(_r) */
1245
1246 static inline void init_thread(struct target_pt_regs *regs,
1247 struct image_info *infop)
1248 {
1249 regs->usp = infop->start_stack;
1250 regs->sr = 0;
1251 regs->pc = infop->entry;
1252 }
1253
1254 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1255 #define ELF_NREG 20
1256 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1257
1258 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1259 {
1260 (*regs)[0] = tswapreg(env->dregs[1]);
1261 (*regs)[1] = tswapreg(env->dregs[2]);
1262 (*regs)[2] = tswapreg(env->dregs[3]);
1263 (*regs)[3] = tswapreg(env->dregs[4]);
1264 (*regs)[4] = tswapreg(env->dregs[5]);
1265 (*regs)[5] = tswapreg(env->dregs[6]);
1266 (*regs)[6] = tswapreg(env->dregs[7]);
1267 (*regs)[7] = tswapreg(env->aregs[0]);
1268 (*regs)[8] = tswapreg(env->aregs[1]);
1269 (*regs)[9] = tswapreg(env->aregs[2]);
1270 (*regs)[10] = tswapreg(env->aregs[3]);
1271 (*regs)[11] = tswapreg(env->aregs[4]);
1272 (*regs)[12] = tswapreg(env->aregs[5]);
1273 (*regs)[13] = tswapreg(env->aregs[6]);
1274 (*regs)[14] = tswapreg(env->dregs[0]);
1275 (*regs)[15] = tswapreg(env->aregs[7]);
1276 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1277 (*regs)[17] = tswapreg(env->sr);
1278 (*regs)[18] = tswapreg(env->pc);
1279 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1280 }
1281
1282 #define USE_ELF_CORE_DUMP
1283 #define ELF_EXEC_PAGESIZE 8192
1284
1285 #endif
1286
1287 #ifdef TARGET_ALPHA
1288
1289 #define ELF_START_MMAP (0x30000000000ULL)
1290
1291 #define ELF_CLASS ELFCLASS64
1292 #define ELF_ARCH EM_ALPHA
1293
1294 static inline void init_thread(struct target_pt_regs *regs,
1295 struct image_info *infop)
1296 {
1297 regs->pc = infop->entry;
1298 regs->ps = 8;
1299 regs->usp = infop->start_stack;
1300 }
1301
1302 #define ELF_EXEC_PAGESIZE 8192
1303
1304 #endif /* TARGET_ALPHA */
1305
1306 #ifdef TARGET_S390X
1307
1308 #define ELF_START_MMAP (0x20000000000ULL)
1309
1310 #define ELF_CLASS ELFCLASS64
1311 #define ELF_DATA ELFDATA2MSB
1312 #define ELF_ARCH EM_S390
1313
1314 #include "elf.h"
1315
1316 #define ELF_HWCAP get_elf_hwcap()
1317
1318 #define GET_FEATURE(_feat, _hwcap) \
1319 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1320
1321 static uint32_t get_elf_hwcap(void)
1322 {
1323 /*
1324 * Let's assume we always have esan3 and zarch.
1325 * 31-bit processes can use 64-bit registers (high gprs).
1326 */
1327 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1328
1329 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1330 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1331 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1332 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1333 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1334 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1335 hwcap |= HWCAP_S390_ETF3EH;
1336 }
1337 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1338
1339 return hwcap;
1340 }
1341
1342 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1343 {
1344 regs->psw.addr = infop->entry;
1345 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1346 regs->gprs[15] = infop->start_stack;
1347 }
1348
1349 #endif /* TARGET_S390X */
1350
1351 #ifdef TARGET_TILEGX
1352
1353 /* 42 bits real used address, a half for user mode */
1354 #define ELF_START_MMAP (0x00000020000000000ULL)
1355
1356 #define elf_check_arch(x) ((x) == EM_TILEGX)
1357
1358 #define ELF_CLASS ELFCLASS64
1359 #define ELF_DATA ELFDATA2LSB
1360 #define ELF_ARCH EM_TILEGX
1361
1362 static inline void init_thread(struct target_pt_regs *regs,
1363 struct image_info *infop)
1364 {
1365 regs->pc = infop->entry;
1366 regs->sp = infop->start_stack;
1367
1368 }
1369
1370 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1371
1372 #endif /* TARGET_TILEGX */
1373
1374 #ifdef TARGET_RISCV
1375
1376 #define ELF_START_MMAP 0x80000000
1377 #define ELF_ARCH EM_RISCV
1378
1379 #ifdef TARGET_RISCV32
1380 #define ELF_CLASS ELFCLASS32
1381 #else
1382 #define ELF_CLASS ELFCLASS64
1383 #endif
1384
1385 static inline void init_thread(struct target_pt_regs *regs,
1386 struct image_info *infop)
1387 {
1388 regs->sepc = infop->entry;
1389 regs->sp = infop->start_stack;
1390 }
1391
1392 #define ELF_EXEC_PAGESIZE 4096
1393
1394 #endif /* TARGET_RISCV */
1395
1396 #ifdef TARGET_HPPA
1397
1398 #define ELF_START_MMAP 0x80000000
1399 #define ELF_CLASS ELFCLASS32
1400 #define ELF_ARCH EM_PARISC
1401 #define ELF_PLATFORM "PARISC"
1402 #define STACK_GROWS_DOWN 0
1403 #define STACK_ALIGNMENT 64
1404
1405 static inline void init_thread(struct target_pt_regs *regs,
1406 struct image_info *infop)
1407 {
1408 regs->iaoq[0] = infop->entry;
1409 regs->iaoq[1] = infop->entry + 4;
1410 regs->gr[23] = 0;
1411 regs->gr[24] = infop->arg_start;
1412 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1413 /* The top-of-stack contains a linkage buffer. */
1414 regs->gr[30] = infop->start_stack + 64;
1415 regs->gr[31] = infop->entry;
1416 }
1417
1418 #endif /* TARGET_HPPA */
1419
1420 #ifdef TARGET_XTENSA
1421
1422 #define ELF_START_MMAP 0x20000000
1423
1424 #define ELF_CLASS ELFCLASS32
1425 #define ELF_ARCH EM_XTENSA
1426
1427 static inline void init_thread(struct target_pt_regs *regs,
1428 struct image_info *infop)
1429 {
1430 regs->windowbase = 0;
1431 regs->windowstart = 1;
1432 regs->areg[1] = infop->start_stack;
1433 regs->pc = infop->entry;
1434 }
1435
1436 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1437 #define ELF_NREG 128
1438 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1439
1440 enum {
1441 TARGET_REG_PC,
1442 TARGET_REG_PS,
1443 TARGET_REG_LBEG,
1444 TARGET_REG_LEND,
1445 TARGET_REG_LCOUNT,
1446 TARGET_REG_SAR,
1447 TARGET_REG_WINDOWSTART,
1448 TARGET_REG_WINDOWBASE,
1449 TARGET_REG_THREADPTR,
1450 TARGET_REG_AR0 = 64,
1451 };
1452
1453 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1454 const CPUXtensaState *env)
1455 {
1456 unsigned i;
1457
1458 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1459 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1460 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1461 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1462 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1463 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1464 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1465 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1466 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1467 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1468 for (i = 0; i < env->config->nareg; ++i) {
1469 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1470 }
1471 }
1472
1473 #define USE_ELF_CORE_DUMP
1474 #define ELF_EXEC_PAGESIZE 4096
1475
1476 #endif /* TARGET_XTENSA */
1477
1478 #ifndef ELF_PLATFORM
1479 #define ELF_PLATFORM (NULL)
1480 #endif
1481
1482 #ifndef ELF_MACHINE
1483 #define ELF_MACHINE ELF_ARCH
1484 #endif
1485
1486 #ifndef elf_check_arch
1487 #define elf_check_arch(x) ((x) == ELF_ARCH)
1488 #endif
1489
1490 #ifndef ELF_HWCAP
1491 #define ELF_HWCAP 0
1492 #endif
1493
1494 #ifndef STACK_GROWS_DOWN
1495 #define STACK_GROWS_DOWN 1
1496 #endif
1497
1498 #ifndef STACK_ALIGNMENT
1499 #define STACK_ALIGNMENT 16
1500 #endif
1501
1502 #ifdef TARGET_ABI32
1503 #undef ELF_CLASS
1504 #define ELF_CLASS ELFCLASS32
1505 #undef bswaptls
1506 #define bswaptls(ptr) bswap32s(ptr)
1507 #endif
1508
1509 #include "elf.h"
1510
1511 struct exec
1512 {
1513 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1514 unsigned int a_text; /* length of text, in bytes */
1515 unsigned int a_data; /* length of data, in bytes */
1516 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1517 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1518 unsigned int a_entry; /* start address */
1519 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1520 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1521 };
1522
1523
1524 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1525 #define OMAGIC 0407
1526 #define NMAGIC 0410
1527 #define ZMAGIC 0413
1528 #define QMAGIC 0314
1529
1530 /* Necessary parameters */
1531 #define TARGET_ELF_EXEC_PAGESIZE \
1532 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1533 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1534 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1535 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1536 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1537 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1538
1539 #define DLINFO_ITEMS 16
1540
1541 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1542 {
1543 memcpy(to, from, n);
1544 }
1545
1546 #ifdef BSWAP_NEEDED
1547 static void bswap_ehdr(struct elfhdr *ehdr)
1548 {
1549 bswap16s(&ehdr->e_type); /* Object file type */
1550 bswap16s(&ehdr->e_machine); /* Architecture */
1551 bswap32s(&ehdr->e_version); /* Object file version */
1552 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1553 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1554 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1555 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1556 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1557 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1558 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1559 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1560 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1561 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1562 }
1563
1564 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1565 {
1566 int i;
1567 for (i = 0; i < phnum; ++i, ++phdr) {
1568 bswap32s(&phdr->p_type); /* Segment type */
1569 bswap32s(&phdr->p_flags); /* Segment flags */
1570 bswaptls(&phdr->p_offset); /* Segment file offset */
1571 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1572 bswaptls(&phdr->p_paddr); /* Segment physical address */
1573 bswaptls(&phdr->p_filesz); /* Segment size in file */
1574 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1575 bswaptls(&phdr->p_align); /* Segment alignment */
1576 }
1577 }
1578
1579 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1580 {
1581 int i;
1582 for (i = 0; i < shnum; ++i, ++shdr) {
1583 bswap32s(&shdr->sh_name);
1584 bswap32s(&shdr->sh_type);
1585 bswaptls(&shdr->sh_flags);
1586 bswaptls(&shdr->sh_addr);
1587 bswaptls(&shdr->sh_offset);
1588 bswaptls(&shdr->sh_size);
1589 bswap32s(&shdr->sh_link);
1590 bswap32s(&shdr->sh_info);
1591 bswaptls(&shdr->sh_addralign);
1592 bswaptls(&shdr->sh_entsize);
1593 }
1594 }
1595
1596 static void bswap_sym(struct elf_sym *sym)
1597 {
1598 bswap32s(&sym->st_name);
1599 bswaptls(&sym->st_value);
1600 bswaptls(&sym->st_size);
1601 bswap16s(&sym->st_shndx);
1602 }
1603
1604 #ifdef TARGET_MIPS
1605 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1606 {
1607 bswap16s(&abiflags->version);
1608 bswap32s(&abiflags->ases);
1609 bswap32s(&abiflags->isa_ext);
1610 bswap32s(&abiflags->flags1);
1611 bswap32s(&abiflags->flags2);
1612 }
1613 #endif
1614 #else
1615 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1616 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1617 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1618 static inline void bswap_sym(struct elf_sym *sym) { }
1619 #ifdef TARGET_MIPS
1620 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1621 #endif
1622 #endif
1623
1624 #ifdef USE_ELF_CORE_DUMP
1625 static int elf_core_dump(int, const CPUArchState *);
1626 #endif /* USE_ELF_CORE_DUMP */
1627 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1628
1629 /* Verify the portions of EHDR within E_IDENT for the target.
1630 This can be performed before bswapping the entire header. */
1631 static bool elf_check_ident(struct elfhdr *ehdr)
1632 {
1633 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1634 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1635 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1636 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1637 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1638 && ehdr->e_ident[EI_DATA] == ELF_DATA
1639 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1640 }
1641
1642 /* Verify the portions of EHDR outside of E_IDENT for the target.
1643 This has to wait until after bswapping the header. */
1644 static bool elf_check_ehdr(struct elfhdr *ehdr)
1645 {
1646 return (elf_check_arch(ehdr->e_machine)
1647 && ehdr->e_ehsize == sizeof(struct elfhdr)
1648 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1649 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1650 }
1651
1652 /*
1653 * 'copy_elf_strings()' copies argument/envelope strings from user
1654 * memory to free pages in kernel mem. These are in a format ready
1655 * to be put directly into the top of new user memory.
1656 *
1657 */
1658 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1659 abi_ulong p, abi_ulong stack_limit)
1660 {
1661 char *tmp;
1662 int len, i;
1663 abi_ulong top = p;
1664
1665 if (!p) {
1666 return 0; /* bullet-proofing */
1667 }
1668
1669 if (STACK_GROWS_DOWN) {
1670 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1671 for (i = argc - 1; i >= 0; --i) {
1672 tmp = argv[i];
1673 if (!tmp) {
1674 fprintf(stderr, "VFS: argc is wrong");
1675 exit(-1);
1676 }
1677 len = strlen(tmp) + 1;
1678 tmp += len;
1679
1680 if (len > (p - stack_limit)) {
1681 return 0;
1682 }
1683 while (len) {
1684 int bytes_to_copy = (len > offset) ? offset : len;
1685 tmp -= bytes_to_copy;
1686 p -= bytes_to_copy;
1687 offset -= bytes_to_copy;
1688 len -= bytes_to_copy;
1689
1690 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1691
1692 if (offset == 0) {
1693 memcpy_to_target(p, scratch, top - p);
1694 top = p;
1695 offset = TARGET_PAGE_SIZE;
1696 }
1697 }
1698 }
1699 if (p != top) {
1700 memcpy_to_target(p, scratch + offset, top - p);
1701 }
1702 } else {
1703 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1704 for (i = 0; i < argc; ++i) {
1705 tmp = argv[i];
1706 if (!tmp) {
1707 fprintf(stderr, "VFS: argc is wrong");
1708 exit(-1);
1709 }
1710 len = strlen(tmp) + 1;
1711 if (len > (stack_limit - p)) {
1712 return 0;
1713 }
1714 while (len) {
1715 int bytes_to_copy = (len > remaining) ? remaining : len;
1716
1717 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1718
1719 tmp += bytes_to_copy;
1720 remaining -= bytes_to_copy;
1721 p += bytes_to_copy;
1722 len -= bytes_to_copy;
1723
1724 if (remaining == 0) {
1725 memcpy_to_target(top, scratch, p - top);
1726 top = p;
1727 remaining = TARGET_PAGE_SIZE;
1728 }
1729 }
1730 }
1731 if (p != top) {
1732 memcpy_to_target(top, scratch, p - top);
1733 }
1734 }
1735
1736 return p;
1737 }
1738
1739 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1740 * argument/environment space. Newer kernels (>2.6.33) allow more,
1741 * dependent on stack size, but guarantee at least 32 pages for
1742 * backwards compatibility.
1743 */
1744 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1745
1746 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1747 struct image_info *info)
1748 {
1749 abi_ulong size, error, guard;
1750
1751 size = guest_stack_size;
1752 if (size < STACK_LOWER_LIMIT) {
1753 size = STACK_LOWER_LIMIT;
1754 }
1755 guard = TARGET_PAGE_SIZE;
1756 if (guard < qemu_real_host_page_size) {
1757 guard = qemu_real_host_page_size;
1758 }
1759
1760 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1761 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1762 if (error == -1) {
1763 perror("mmap stack");
1764 exit(-1);
1765 }
1766
1767 /* We reserve one extra page at the top of the stack as guard. */
1768 if (STACK_GROWS_DOWN) {
1769 target_mprotect(error, guard, PROT_NONE);
1770 info->stack_limit = error + guard;
1771 return info->stack_limit + size - sizeof(void *);
1772 } else {
1773 target_mprotect(error + size, guard, PROT_NONE);
1774 info->stack_limit = error + size;
1775 return error;
1776 }
1777 }
1778
1779 /* Map and zero the bss. We need to explicitly zero any fractional pages
1780 after the data section (i.e. bss). */
1781 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1782 {
1783 uintptr_t host_start, host_map_start, host_end;
1784
1785 last_bss = TARGET_PAGE_ALIGN(last_bss);
1786
1787 /* ??? There is confusion between qemu_real_host_page_size and
1788 qemu_host_page_size here and elsewhere in target_mmap, which
1789 may lead to the end of the data section mapping from the file
1790 not being mapped. At least there was an explicit test and
1791 comment for that here, suggesting that "the file size must
1792 be known". The comment probably pre-dates the introduction
1793 of the fstat system call in target_mmap which does in fact
1794 find out the size. What isn't clear is if the workaround
1795 here is still actually needed. For now, continue with it,
1796 but merge it with the "normal" mmap that would allocate the bss. */
1797
1798 host_start = (uintptr_t) g2h(elf_bss);
1799 host_end = (uintptr_t) g2h(last_bss);
1800 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1801
1802 if (host_map_start < host_end) {
1803 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1804 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1805 if (p == MAP_FAILED) {
1806 perror("cannot mmap brk");
1807 exit(-1);
1808 }
1809 }
1810
1811 /* Ensure that the bss page(s) are valid */
1812 if ((page_get_flags(last_bss-1) & prot) != prot) {
1813 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1814 }
1815
1816 if (host_start < host_map_start) {
1817 memset((void *)host_start, 0, host_map_start - host_start);
1818 }
1819 }
1820
1821 #ifdef TARGET_ARM
1822 static int elf_is_fdpic(struct elfhdr *exec)
1823 {
1824 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1825 }
1826 #else
1827 /* Default implementation, always false. */
1828 static int elf_is_fdpic(struct elfhdr *exec)
1829 {
1830 return 0;
1831 }
1832 #endif
1833
1834 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1835 {
1836 uint16_t n;
1837 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1838
1839 /* elf32_fdpic_loadseg */
1840 n = info->nsegs;
1841 while (n--) {
1842 sp -= 12;
1843 put_user_u32(loadsegs[n].addr, sp+0);
1844 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1845 put_user_u32(loadsegs[n].p_memsz, sp+8);
1846 }
1847
1848 /* elf32_fdpic_loadmap */
1849 sp -= 4;
1850 put_user_u16(0, sp+0); /* version */
1851 put_user_u16(info->nsegs, sp+2); /* nsegs */
1852
1853 info->personality = PER_LINUX_FDPIC;
1854 info->loadmap_addr = sp;
1855
1856 return sp;
1857 }
1858
1859 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1860 struct elfhdr *exec,
1861 struct image_info *info,
1862 struct image_info *interp_info)
1863 {
1864 abi_ulong sp;
1865 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1866 int size;
1867 int i;
1868 abi_ulong u_rand_bytes;
1869 uint8_t k_rand_bytes[16];
1870 abi_ulong u_platform;
1871 const char *k_platform;
1872 const int n = sizeof(elf_addr_t);
1873
1874 sp = p;
1875
1876 /* Needs to be before we load the env/argc/... */
1877 if (elf_is_fdpic(exec)) {
1878 /* Need 4 byte alignment for these structs */
1879 sp &= ~3;
1880 sp = loader_build_fdpic_loadmap(info, sp);
1881 info->other_info = interp_info;
1882 if (interp_info) {
1883 interp_info->other_info = info;
1884 sp = loader_build_fdpic_loadmap(interp_info, sp);
1885 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1886 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1887 } else {
1888 info->interpreter_loadmap_addr = 0;
1889 info->interpreter_pt_dynamic_addr = 0;
1890 }
1891 }
1892
1893 u_platform = 0;
1894 k_platform = ELF_PLATFORM;
1895 if (k_platform) {
1896 size_t len = strlen(k_platform) + 1;
1897 if (STACK_GROWS_DOWN) {
1898 sp -= (len + n - 1) & ~(n - 1);
1899 u_platform = sp;
1900 /* FIXME - check return value of memcpy_to_target() for failure */
1901 memcpy_to_target(sp, k_platform, len);
1902 } else {
1903 memcpy_to_target(sp, k_platform, len);
1904 u_platform = sp;
1905 sp += len + 1;
1906 }
1907 }
1908
1909 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1910 * the argv and envp pointers.
1911 */
1912 if (STACK_GROWS_DOWN) {
1913 sp = QEMU_ALIGN_DOWN(sp, 16);
1914 } else {
1915 sp = QEMU_ALIGN_UP(sp, 16);
1916 }
1917
1918 /*
1919 * Generate 16 random bytes for userspace PRNG seeding.
1920 */
1921 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1922 if (STACK_GROWS_DOWN) {
1923 sp -= 16;
1924 u_rand_bytes = sp;
1925 /* FIXME - check return value of memcpy_to_target() for failure */
1926 memcpy_to_target(sp, k_rand_bytes, 16);
1927 } else {
1928 memcpy_to_target(sp, k_rand_bytes, 16);
1929 u_rand_bytes = sp;
1930 sp += 16;
1931 }
1932
1933 size = (DLINFO_ITEMS + 1) * 2;
1934 if (k_platform)
1935 size += 2;
1936 #ifdef DLINFO_ARCH_ITEMS
1937 size += DLINFO_ARCH_ITEMS * 2;
1938 #endif
1939 #ifdef ELF_HWCAP2
1940 size += 2;
1941 #endif
1942 info->auxv_len = size * n;
1943
1944 size += envc + argc + 2;
1945 size += 1; /* argc itself */
1946 size *= n;
1947
1948 /* Allocate space and finalize stack alignment for entry now. */
1949 if (STACK_GROWS_DOWN) {
1950 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1951 sp = u_argc;
1952 } else {
1953 u_argc = sp;
1954 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1955 }
1956
1957 u_argv = u_argc + n;
1958 u_envp = u_argv + (argc + 1) * n;
1959 u_auxv = u_envp + (envc + 1) * n;
1960 info->saved_auxv = u_auxv;
1961 info->arg_start = u_argv;
1962 info->arg_end = u_argv + argc * n;
1963
1964 /* This is correct because Linux defines
1965 * elf_addr_t as Elf32_Off / Elf64_Off
1966 */
1967 #define NEW_AUX_ENT(id, val) do { \
1968 put_user_ual(id, u_auxv); u_auxv += n; \
1969 put_user_ual(val, u_auxv); u_auxv += n; \
1970 } while(0)
1971
1972 #ifdef ARCH_DLINFO
1973 /*
1974 * ARCH_DLINFO must come first so platform specific code can enforce
1975 * special alignment requirements on the AUXV if necessary (eg. PPC).
1976 */
1977 ARCH_DLINFO;
1978 #endif
1979 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1980 * on info->auxv_len will trigger.
1981 */
1982 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1983 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1984 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1985 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1986 /* Target doesn't support host page size alignment */
1987 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1988 } else {
1989 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1990 qemu_host_page_size)));
1991 }
1992 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1993 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1994 NEW_AUX_ENT(AT_ENTRY, info->entry);
1995 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1996 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1997 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1998 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1999 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2000 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2001 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2002 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2003 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2004
2005 #ifdef ELF_HWCAP2
2006 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2007 #endif
2008
2009 if (u_platform) {
2010 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2011 }
2012 NEW_AUX_ENT (AT_NULL, 0);
2013 #undef NEW_AUX_ENT
2014
2015 /* Check that our initial calculation of the auxv length matches how much
2016 * we actually put into it.
2017 */
2018 assert(info->auxv_len == u_auxv - info->saved_auxv);
2019
2020 put_user_ual(argc, u_argc);
2021
2022 p = info->arg_strings;
2023 for (i = 0; i < argc; ++i) {
2024 put_user_ual(p, u_argv);
2025 u_argv += n;
2026 p += target_strlen(p) + 1;
2027 }
2028 put_user_ual(0, u_argv);
2029
2030 p = info->env_strings;
2031 for (i = 0; i < envc; ++i) {
2032 put_user_ual(p, u_envp);
2033 u_envp += n;
2034 p += target_strlen(p) + 1;
2035 }
2036 put_user_ual(0, u_envp);
2037
2038 return sp;
2039 }
2040
2041 #ifndef ARM_COMMPAGE
2042 #define ARM_COMMPAGE 0
2043 #define init_guest_commpage() true
2044 #endif
2045
2046 static void pgb_fail_in_use(const char *image_name)
2047 {
2048 error_report("%s: requires virtual address space that is in use "
2049 "(omit the -B option or choose a different value)",
2050 image_name);
2051 exit(EXIT_FAILURE);
2052 }
2053
2054 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2055 abi_ulong guest_hiaddr, long align)
2056 {
2057 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2058 void *addr, *test;
2059
2060 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2061 fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
2062 "host minimum alignment (0x%lx)\n",
2063 guest_base, align);
2064 exit(EXIT_FAILURE);
2065 }
2066
2067 /* Sanity check the guest binary. */
2068 if (reserved_va) {
2069 if (guest_hiaddr > reserved_va) {
2070 error_report("%s: requires more than reserved virtual "
2071 "address space (0x%" PRIx64 " > 0x%lx)",
2072 image_name, (uint64_t)guest_hiaddr, reserved_va);
2073 exit(EXIT_FAILURE);
2074 }
2075 } else {
2076 #if HOST_LONG_BITS < TARGET_ABI_BITS
2077 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2078 error_report("%s: requires more virtual address space "
2079 "than the host can provide (0x%" PRIx64 ")",
2080 image_name, (uint64_t)guest_hiaddr - guest_base);
2081 exit(EXIT_FAILURE);
2082 }
2083 #endif
2084 }
2085
2086 /*
2087 * Expand the allocation to the entire reserved_va.
2088 * Exclude the mmap_min_addr hole.
2089 */
2090 if (reserved_va) {
2091 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2092 : mmap_min_addr - guest_base);
2093 guest_hiaddr = reserved_va;
2094 }
2095
2096 /* Reserve the address space for the binary, or reserved_va. */
2097 test = g2h(guest_loaddr);
2098 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2099 if (test != addr) {
2100 pgb_fail_in_use(image_name);
2101 }
2102 }
2103
2104 /**
2105 * pgd_find_hole_fallback: potential mmap address
2106 * @guest_size: size of available space
2107 * @brk: location of break
2108 * @align: memory alignment
2109 *
2110 * This is a fallback method for finding a hole in the host address
2111 * space if we don't have the benefit of being able to access
2112 * /proc/self/map. It can potentially take a very long time as we can
2113 * only dumbly iterate up the host address space seeing if the
2114 * allocation would work.
2115 */
2116 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2117 long align, uintptr_t offset)
2118 {
2119 uintptr_t base;
2120
2121 /* Start (aligned) at the bottom and work our way up */
2122 base = ROUND_UP(mmap_min_addr, align);
2123
2124 while (true) {
2125 uintptr_t align_start, end;
2126 align_start = ROUND_UP(base, align);
2127 end = align_start + guest_size + offset;
2128
2129 /* if brk is anywhere in the range give ourselves some room to grow. */
2130 if (align_start <= brk && brk < end) {
2131 base = brk + (16 * MiB);
2132 continue;
2133 } else if (align_start + guest_size < align_start) {
2134 /* we have run out of space */
2135 return -1;
2136 } else {
2137 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | MAP_FIXED;
2138 void * mmap_start = mmap((void *) align_start, guest_size,
2139 PROT_NONE, flags, -1, 0);
2140 if (mmap_start != MAP_FAILED) {
2141 munmap((void *) align_start, guest_size);
2142 return (uintptr_t) mmap_start + offset;
2143 }
2144 base += qemu_host_page_size;
2145 }
2146 }
2147 }
2148
2149 /* Return value for guest_base, or -1 if no hole found. */
2150 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2151 long align, uintptr_t offset)
2152 {
2153 GSList *maps, *iter;
2154 uintptr_t this_start, this_end, next_start, brk;
2155 intptr_t ret = -1;
2156
2157 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2158
2159 maps = read_self_maps();
2160
2161 /* Read brk after we've read the maps, which will malloc. */
2162 brk = (uintptr_t)sbrk(0);
2163
2164 if (!maps) {
2165 return pgd_find_hole_fallback(guest_size, brk, align, offset);
2166 }
2167
2168 /* The first hole is before the first map entry. */
2169 this_start = mmap_min_addr;
2170
2171 for (iter = maps; iter;
2172 this_start = next_start, iter = g_slist_next(iter)) {
2173 uintptr_t align_start, hole_size;
2174
2175 this_end = ((MapInfo *)iter->data)->start;
2176 next_start = ((MapInfo *)iter->data)->end;
2177 align_start = ROUND_UP(this_start + offset, align);
2178
2179 /* Skip holes that are too small. */
2180 if (align_start >= this_end) {
2181 continue;
2182 }
2183 hole_size = this_end - align_start;
2184 if (hole_size < guest_size) {
2185 continue;
2186 }
2187
2188 /* If this hole contains brk, give ourselves some room to grow. */
2189 if (this_start <= brk && brk < this_end) {
2190 hole_size -= guest_size;
2191 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2192 align_start += 1 * GiB;
2193 } else if (hole_size >= 16 * MiB) {
2194 align_start += 16 * MiB;
2195 } else {
2196 align_start = (this_end - guest_size) & -align;
2197 if (align_start < this_start) {
2198 continue;
2199 }
2200 }
2201 }
2202
2203 /* Record the lowest successful match. */
2204 if (ret < 0) {
2205 ret = align_start - guest_loaddr;
2206 }
2207 /* If this hole contains the identity map, select it. */
2208 if (align_start <= guest_loaddr &&
2209 guest_loaddr + guest_size <= this_end) {
2210 ret = 0;
2211 }
2212 /* If this hole ends above the identity map, stop looking. */
2213 if (this_end >= guest_loaddr) {
2214 break;
2215 }
2216 }
2217 free_self_maps(maps);
2218
2219 return ret;
2220 }
2221
2222 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2223 abi_ulong orig_hiaddr, long align)
2224 {
2225 uintptr_t loaddr = orig_loaddr;
2226 uintptr_t hiaddr = orig_hiaddr;
2227 uintptr_t offset = 0;
2228 uintptr_t addr;
2229
2230 if (hiaddr != orig_hiaddr) {
2231 error_report("%s: requires virtual address space that the "
2232 "host cannot provide (0x%" PRIx64 ")",
2233 image_name, (uint64_t)orig_hiaddr);
2234 exit(EXIT_FAILURE);
2235 }
2236
2237 loaddr &= -align;
2238 if (ARM_COMMPAGE) {
2239 /*
2240 * Extend the allocation to include the commpage.
2241 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2242 * need to ensure there is space bellow the guest_base so we
2243 * can map the commpage in the place needed when the address
2244 * arithmetic wraps around.
2245 */
2246 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2247 hiaddr = (uintptr_t) 4 << 30;
2248 } else {
2249 offset = -(ARM_COMMPAGE & -align);
2250 }
2251 }
2252
2253 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2254 if (addr == -1) {
2255 /*
2256 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2257 * that can satisfy both. But as the normal arm32 link base address
2258 * is ~32k, and we extend down to include the commpage, making the
2259 * overhead only ~96k, this is unlikely.
2260 */
2261 error_report("%s: Unable to allocate %#zx bytes of "
2262 "virtual address space", image_name,
2263 (size_t)(hiaddr - loaddr));
2264 exit(EXIT_FAILURE);
2265 }
2266
2267 guest_base = addr;
2268 }
2269
2270 static void pgb_dynamic(const char *image_name, long align)
2271 {
2272 /*
2273 * The executable is dynamic and does not require a fixed address.
2274 * All we need is a commpage that satisfies align.
2275 * If we do not need a commpage, leave guest_base == 0.
2276 */
2277 if (ARM_COMMPAGE) {
2278 uintptr_t addr, commpage;
2279
2280 /* 64-bit hosts should have used reserved_va. */
2281 assert(sizeof(uintptr_t) == 4);
2282
2283 /*
2284 * By putting the commpage at the first hole, that puts guest_base
2285 * just above that, and maximises the positive guest addresses.
2286 */
2287 commpage = ARM_COMMPAGE & -align;
2288 addr = pgb_find_hole(commpage, -commpage, align, 0);
2289 assert(addr != -1);
2290 guest_base = addr;
2291 }
2292 }
2293
2294 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2295 abi_ulong guest_hiaddr, long align)
2296 {
2297 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2298 void *addr, *test;
2299
2300 if (guest_hiaddr > reserved_va) {
2301 error_report("%s: requires more than reserved virtual "
2302 "address space (0x%" PRIx64 " > 0x%lx)",
2303 image_name, (uint64_t)guest_hiaddr, reserved_va);
2304 exit(EXIT_FAILURE);
2305 }
2306
2307 /* Widen the "image" to the entire reserved address space. */
2308 pgb_static(image_name, 0, reserved_va, align);
2309
2310 /* Reserve the memory on the host. */
2311 assert(guest_base != 0);
2312 test = g2h(0);
2313 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2314 if (addr == MAP_FAILED) {
2315 error_report("Unable to reserve 0x%lx bytes of virtual address "
2316 "space for use as guest address space (check your "
2317 "virtual memory ulimit setting or reserve less "
2318 "using -R option)", reserved_va);
2319 exit(EXIT_FAILURE);
2320 }
2321 assert(addr == test);
2322 }
2323
2324 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2325 abi_ulong guest_hiaddr)
2326 {
2327 /* In order to use host shmat, we must be able to honor SHMLBA. */
2328 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2329
2330 if (have_guest_base) {
2331 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2332 } else if (reserved_va) {
2333 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2334 } else if (guest_loaddr) {
2335 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2336 } else {
2337 pgb_dynamic(image_name, align);
2338 }
2339
2340 /* Reserve and initialize the commpage. */
2341 if (!init_guest_commpage()) {
2342 /*
2343 * With have_guest_base, the user has selected the address and
2344 * we are trying to work with that. Otherwise, we have selected
2345 * free space and init_guest_commpage must succeeded.
2346 */
2347 assert(have_guest_base);
2348 pgb_fail_in_use(image_name);
2349 }
2350
2351 assert(QEMU_IS_ALIGNED(guest_base, align));
2352 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2353 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2354 }
2355
2356 /* Load an ELF image into the address space.
2357
2358 IMAGE_NAME is the filename of the image, to use in error messages.
2359 IMAGE_FD is the open file descriptor for the image.
2360
2361 BPRM_BUF is a copy of the beginning of the file; this of course
2362 contains the elf file header at offset 0. It is assumed that this
2363 buffer is sufficiently aligned to present no problems to the host
2364 in accessing data at aligned offsets within the buffer.
2365
2366 On return: INFO values will be filled in, as necessary or available. */
2367
2368 static void load_elf_image(const char *image_name, int image_fd,
2369 struct image_info *info, char **pinterp_name,
2370 char bprm_buf[BPRM_BUF_SIZE])
2371 {
2372 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2373 struct elf_phdr *phdr;
2374 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2375 int i, retval;
2376 const char *errmsg;
2377
2378 /* First of all, some simple consistency checks */
2379 errmsg = "Invalid ELF image for this architecture";
2380 if (!elf_check_ident(ehdr)) {
2381 goto exit_errmsg;
2382 }
2383 bswap_ehdr(ehdr);
2384 if (!elf_check_ehdr(ehdr)) {
2385 goto exit_errmsg;
2386 }
2387
2388 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2389 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2390 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2391 } else {
2392 phdr = (struct elf_phdr *) alloca(i);
2393 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2394 if (retval != i) {
2395 goto exit_read;
2396 }
2397 }
2398 bswap_phdr(phdr, ehdr->e_phnum);
2399
2400 info->nsegs = 0;
2401 info->pt_dynamic_addr = 0;
2402
2403 mmap_lock();
2404
2405 /* Find the maximum size of the image and allocate an appropriate
2406 amount of memory to handle that. */
2407 loaddr = -1, hiaddr = 0;
2408 info->alignment = 0;
2409 for (i = 0; i < ehdr->e_phnum; ++i) {
2410 if (phdr[i].p_type == PT_LOAD) {
2411 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2412 if (a < loaddr) {
2413 loaddr = a;
2414 }
2415 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2416 if (a > hiaddr) {
2417 hiaddr = a;
2418 }
2419 ++info->nsegs;
2420 info->alignment |= phdr[i].p_align;
2421 }
2422 }
2423
2424 if (pinterp_name != NULL) {
2425 /*
2426 * This is the main executable.
2427 *
2428 * Reserve extra space for brk.
2429 * We hold on to this space while placing the interpreter
2430 * and the stack, lest they be placed immediately after
2431 * the data segment and block allocation from the brk.
2432 *
2433 * 16MB is chosen as "large enough" without being so large
2434 * as to allow the result to not fit with a 32-bit guest on
2435 * a 32-bit host.
2436 */
2437 info->reserve_brk = 16 * MiB;
2438 hiaddr += info->reserve_brk;
2439
2440 if (ehdr->e_type == ET_EXEC) {
2441 /*
2442 * Make sure that the low address does not conflict with
2443 * MMAP_MIN_ADDR or the QEMU application itself.
2444 */
2445 probe_guest_base(image_name, loaddr, hiaddr);
2446 } else {
2447 /*
2448 * The binary is dynamic, but we still need to
2449 * select guest_base. In this case we pass a size.
2450 */
2451 probe_guest_base(image_name, 0, hiaddr - loaddr);
2452 }
2453 }
2454
2455 /*
2456 * Reserve address space for all of this.
2457 *
2458 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2459 * exactly the address range that is required.
2460 *
2461 * Otherwise this is ET_DYN, and we are searching for a location
2462 * that can hold the memory space required. If the image is
2463 * pre-linked, LOADDR will be non-zero, and the kernel should
2464 * honor that address if it happens to be free.
2465 *
2466 * In both cases, we will overwrite pages in this range with mappings
2467 * from the executable.
2468 */
2469 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2470 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2471 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2472 -1, 0);
2473 if (load_addr == -1) {
2474 goto exit_perror;
2475 }
2476 load_bias = load_addr - loaddr;
2477
2478 if (elf_is_fdpic(ehdr)) {
2479 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2480 g_malloc(sizeof(*loadsegs) * info->nsegs);
2481
2482 for (i = 0; i < ehdr->e_phnum; ++i) {
2483 switch (phdr[i].p_type) {
2484 case PT_DYNAMIC:
2485 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2486 break;
2487 case PT_LOAD:
2488 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2489 loadsegs->p_vaddr = phdr[i].p_vaddr;
2490 loadsegs->p_memsz = phdr[i].p_memsz;
2491 ++loadsegs;
2492 break;
2493 }
2494 }
2495 }
2496
2497 info->load_bias = load_bias;
2498 info->code_offset = load_bias;
2499 info->data_offset = load_bias;
2500 info->load_addr = load_addr;
2501 info->entry = ehdr->e_entry + load_bias;
2502 info->start_code = -1;
2503 info->end_code = 0;
2504 info->start_data = -1;
2505 info->end_data = 0;
2506 info->brk = 0;
2507 info->elf_flags = ehdr->e_flags;
2508
2509 for (i = 0; i < ehdr->e_phnum; i++) {
2510 struct elf_phdr *eppnt = phdr + i;
2511 if (eppnt->p_type == PT_LOAD) {
2512 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2513 int elf_prot = 0;
2514
2515 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2516 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2517 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2518
2519 vaddr = load_bias + eppnt->p_vaddr;
2520 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2521 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2522 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2523
2524 /*
2525 * Some segments may be completely empty without any backing file
2526 * segment, in that case just let zero_bss allocate an empty buffer
2527 * for it.
2528 */
2529 if (eppnt->p_filesz != 0) {
2530 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2531 MAP_PRIVATE | MAP_FIXED,
2532 image_fd, eppnt->p_offset - vaddr_po);
2533
2534 if (error == -1) {
2535 goto exit_perror;
2536 }
2537 }
2538
2539 vaddr_ef = vaddr + eppnt->p_filesz;
2540 vaddr_em = vaddr + eppnt->p_memsz;
2541
2542 /* If the load segment requests extra zeros (e.g. bss), map it. */
2543 if (vaddr_ef < vaddr_em) {
2544 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2545 }
2546
2547 /* Find the full program boundaries. */
2548 if (elf_prot & PROT_EXEC) {
2549 if (vaddr < info->start_code) {
2550 info->start_code = vaddr;
2551 }
2552 if (vaddr_ef > info->end_code) {
2553 info->end_code = vaddr_ef;
2554 }
2555 }
2556 if (elf_prot & PROT_WRITE) {
2557 if (vaddr < info->start_data) {
2558 info->start_data = vaddr;
2559 }
2560 if (vaddr_ef > info->end_data) {
2561 info->end_data = vaddr_ef;
2562 }
2563 if (vaddr_em > info->brk) {
2564 info->brk = vaddr_em;
2565 }
2566 }
2567 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2568 char *interp_name;
2569
2570 if (*pinterp_name) {
2571 errmsg = "Multiple PT_INTERP entries";
2572 goto exit_errmsg;
2573 }
2574 interp_name = malloc(eppnt->p_filesz);
2575 if (!interp_name) {
2576 goto exit_perror;
2577 }
2578
2579 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2580 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2581 eppnt->p_filesz);
2582 } else {
2583 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2584 eppnt->p_offset);
2585 if (retval != eppnt->p_filesz) {
2586 goto exit_perror;
2587 }
2588 }
2589 if (interp_name[eppnt->p_filesz - 1] != 0) {
2590 errmsg = "Invalid PT_INTERP entry";
2591 goto exit_errmsg;
2592 }
2593 *pinterp_name = interp_name;
2594 #ifdef TARGET_MIPS
2595 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2596 Mips_elf_abiflags_v0 abiflags;
2597 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2598 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2599 goto exit_errmsg;
2600 }
2601 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2602 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2603 sizeof(Mips_elf_abiflags_v0));
2604 } else {
2605 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2606 eppnt->p_offset);
2607 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2608 goto exit_perror;
2609 }
2610 }
2611 bswap_mips_abiflags(&abiflags);
2612 info->fp_abi = abiflags.fp_abi;
2613 #endif
2614 }
2615 }
2616
2617 if (info->end_data == 0) {
2618 info->start_data = info->end_code;
2619 info->end_data = info->end_code;
2620 info->brk = info->end_code;
2621 }
2622
2623 if (qemu_log_enabled()) {
2624 load_symbols(ehdr, image_fd, load_bias);
2625 }
2626
2627 mmap_unlock();
2628
2629 close(image_fd);
2630 return;
2631
2632 exit_read:
2633 if (retval >= 0) {
2634 errmsg = "Incomplete read of file header";
2635 goto exit_errmsg;
2636 }
2637 exit_perror:
2638 errmsg = strerror(errno);
2639 exit_errmsg:
2640 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2641 exit(-1);
2642 }
2643
2644 static void load_elf_interp(const char *filename, struct image_info *info,
2645 char bprm_buf[BPRM_BUF_SIZE])
2646 {
2647 int fd, retval;
2648
2649 fd = open(path(filename), O_RDONLY);
2650 if (fd < 0) {
2651 goto exit_perror;
2652 }
2653
2654 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2655 if (retval < 0) {
2656 goto exit_perror;
2657 }
2658 if (retval < BPRM_BUF_SIZE) {
2659 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2660 }
2661
2662 load_elf_image(filename, fd, info, NULL, bprm_buf);
2663 return;
2664
2665 exit_perror:
2666 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2667 exit(-1);
2668 }
2669
2670 static int symfind(const void *s0, const void *s1)
2671 {
2672 target_ulong addr = *(target_ulong *)s0;
2673 struct elf_sym *sym = (struct elf_sym *)s1;
2674 int result = 0;
2675 if (addr < sym->st_value) {
2676 result = -1;
2677 } else if (addr >= sym->st_value + sym->st_size) {
2678 result = 1;
2679 }
2680 return result;
2681 }
2682
2683 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2684 {
2685 #if ELF_CLASS == ELFCLASS32
2686 struct elf_sym *syms = s->disas_symtab.elf32;
2687 #else
2688 struct elf_sym *syms = s->disas_symtab.elf64;
2689 #endif
2690
2691 // binary search
2692 struct elf_sym *sym;
2693
2694 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2695 if (sym != NULL) {
2696 return s->disas_strtab + sym->st_name;
2697 }
2698
2699 return "";
2700 }
2701
2702 /* FIXME: This should use elf_ops.h */
2703 static int symcmp(const void *s0, const void *s1)
2704 {
2705 struct elf_sym *sym0 = (struct elf_sym *)s0;
2706 struct elf_sym *sym1 = (struct elf_sym *)s1;
2707 return (sym0->st_value < sym1->st_value)
2708 ? -1
2709 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2710 }
2711
2712 /* Best attempt to load symbols from this ELF object. */
2713 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2714 {
2715 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2716 uint64_t segsz;
2717 struct elf_shdr *shdr;
2718 char *strings = NULL;
2719 struct syminfo *s = NULL;
2720 struct elf_sym *new_syms, *syms = NULL;
2721
2722 shnum = hdr->e_shnum;
2723 i = shnum * sizeof(struct elf_shdr);
2724 shdr = (struct elf_shdr *)alloca(i);
2725 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2726 return;
2727 }
2728
2729 bswap_shdr(shdr, shnum);
2730 for (i = 0; i < shnum; ++i) {
2731 if (shdr[i].sh_type == SHT_SYMTAB) {
2732 sym_idx = i;
2733 str_idx = shdr[i].sh_link;
2734 goto found;
2735 }
2736 }
2737
2738 /* There will be no symbol table if the file was stripped. */
2739 return;
2740
2741 found:
2742 /* Now know where the strtab and symtab are. Snarf them. */
2743 s = g_try_new(struct syminfo, 1);
2744 if (!s) {
2745 goto give_up;
2746 }
2747
2748 segsz = shdr[str_idx].sh_size;
2749 s->disas_strtab = strings = g_try_malloc(segsz);
2750 if (!strings ||
2751 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2752 goto give_up;
2753 }
2754
2755 segsz = shdr[sym_idx].sh_size;
2756 syms = g_try_malloc(segsz);
2757 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2758 goto give_up;
2759 }
2760
2761 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2762 /* Implausibly large symbol table: give up rather than ploughing
2763 * on with the number of symbols calculation overflowing
2764 */
2765 goto give_up;
2766 }
2767 nsyms = segsz / sizeof(struct elf_sym);
2768 for (i = 0; i < nsyms; ) {
2769 bswap_sym(syms + i);
2770 /* Throw away entries which we do not need. */
2771 if (syms[i].st_shndx == SHN_UNDEF
2772 || syms[i].st_shndx >= SHN_LORESERVE
2773 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2774 if (i < --nsyms) {
2775 syms[i] = syms[nsyms];
2776 }
2777 } else {
2778 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2779 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2780 syms[i].st_value &= ~(target_ulong)1;
2781 #endif
2782 syms[i].st_value += load_bias;
2783 i++;
2784 }
2785 }
2786
2787 /* No "useful" symbol. */
2788 if (nsyms == 0) {
2789 goto give_up;
2790 }
2791
2792 /* Attempt to free the storage associated with the local symbols
2793 that we threw away. Whether or not this has any effect on the
2794 memory allocation depends on the malloc implementation and how
2795 many symbols we managed to discard. */
2796 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2797 if (new_syms == NULL) {
2798 goto give_up;
2799 }
2800 syms = new_syms;
2801
2802 qsort(syms, nsyms, sizeof(*syms), symcmp);
2803
2804 s->disas_num_syms = nsyms;
2805 #if ELF_CLASS == ELFCLASS32
2806 s->disas_symtab.elf32 = syms;
2807 #else
2808 s->disas_symtab.elf64 = syms;
2809 #endif
2810 s->lookup_symbol = lookup_symbolxx;
2811 s->next = syminfos;
2812 syminfos = s;
2813
2814 return;
2815
2816 give_up:
2817 g_free(s);
2818 g_free(strings);
2819 g_free(syms);
2820 }
2821
2822 uint32_t get_elf_eflags(int fd)
2823 {
2824 struct elfhdr ehdr;
2825 off_t offset;
2826 int ret;
2827
2828 /* Read ELF header */
2829 offset = lseek(fd, 0, SEEK_SET);
2830 if (offset == (off_t) -1) {
2831 return 0;
2832 }
2833 ret = read(fd, &ehdr, sizeof(ehdr));
2834 if (ret < sizeof(ehdr)) {
2835 return 0;
2836 }
2837 offset = lseek(fd, offset, SEEK_SET);
2838 if (offset == (off_t) -1) {
2839 return 0;
2840 }
2841
2842 /* Check ELF signature */
2843 if (!elf_check_ident(&ehdr)) {
2844 return 0;
2845 }
2846
2847 /* check header */
2848 bswap_ehdr(&ehdr);
2849 if (!elf_check_ehdr(&ehdr)) {
2850 return 0;
2851 }
2852
2853 /* return architecture id */
2854 return ehdr.e_flags;
2855 }
2856
2857 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2858 {
2859 struct image_info interp_info;
2860 struct elfhdr elf_ex;
2861 char *elf_interpreter = NULL;
2862 char *scratch;
2863
2864 memset(&interp_info, 0, sizeof(interp_info));
2865 #ifdef TARGET_MIPS
2866 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2867 #endif
2868
2869 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2870
2871 load_elf_image(bprm->filename, bprm->fd, info,
2872 &elf_interpreter, bprm->buf);
2873
2874 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2875 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2876 when we load the interpreter. */
2877 elf_ex = *(struct elfhdr *)bprm->buf;
2878
2879 /* Do this so that we can load the interpreter, if need be. We will
2880 change some of these later */
2881 bprm->p = setup_arg_pages(bprm, info);
2882
2883 scratch = g_new0(char, TARGET_PAGE_SIZE);
2884 if (STACK_GROWS_DOWN) {
2885 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2886 bprm->p, info->stack_limit);
2887 info->file_string = bprm->p;
2888 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2889 bprm->p, info->stack_limit);
2890 info->env_strings = bprm->p;
2891 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2892 bprm->p, info->stack_limit);
2893 info->arg_strings = bprm->p;
2894 } else {
2895 info->arg_strings = bprm->p;
2896 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2897 bprm->p, info->stack_limit);
2898 info->env_strings = bprm->p;
2899 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2900 bprm->p, info->stack_limit);
2901 info->file_string = bprm->p;
2902 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2903 bprm->p, info->stack_limit);
2904 }
2905
2906 g_free(scratch);
2907
2908 if (!bprm->p) {
2909 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2910 exit(-1);
2911 }
2912
2913 if (elf_interpreter) {
2914 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2915
2916 /* If the program interpreter is one of these two, then assume
2917 an iBCS2 image. Otherwise assume a native linux image. */
2918
2919 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2920 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2921 info->personality = PER_SVR4;
2922
2923 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2924 and some applications "depend" upon this behavior. Since
2925 we do not have the power to recompile these, we emulate
2926 the SVr4 behavior. Sigh. */
2927 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2928 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2929 }
2930 #ifdef TARGET_MIPS
2931 info->interp_fp_abi = interp_info.fp_abi;
2932 #endif
2933 }
2934
2935 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2936 info, (elf_interpreter ? &interp_info : NULL));
2937 info->start_stack = bprm->p;
2938
2939 /* If we have an interpreter, set that as the program's entry point.
2940 Copy the load_bias as well, to help PPC64 interpret the entry
2941 point as a function descriptor. Do this after creating elf tables
2942 so that we copy the original program entry point into the AUXV. */
2943 if (elf_interpreter) {
2944 info->load_bias = interp_info.load_bias;
2945 info->entry = interp_info.entry;
2946 free(elf_interpreter);
2947 }
2948
2949 #ifdef USE_ELF_CORE_DUMP
2950 bprm->core_dump = &elf_core_dump;
2951 #endif
2952
2953 /*
2954 * If we reserved extra space for brk, release it now.
2955 * The implementation of do_brk in syscalls.c expects to be able
2956 * to mmap pages in this space.
2957 */
2958 if (info->reserve_brk) {
2959 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
2960 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
2961 target_munmap(start_brk, end_brk - start_brk);
2962 }
2963
2964 return 0;
2965 }
2966
2967 #ifdef USE_ELF_CORE_DUMP
2968 /*
2969 * Definitions to generate Intel SVR4-like core files.
2970 * These mostly have the same names as the SVR4 types with "target_elf_"
2971 * tacked on the front to prevent clashes with linux definitions,
2972 * and the typedef forms have been avoided. This is mostly like
2973 * the SVR4 structure, but more Linuxy, with things that Linux does
2974 * not support and which gdb doesn't really use excluded.
2975 *
2976 * Fields we don't dump (their contents is zero) in linux-user qemu
2977 * are marked with XXX.
2978 *
2979 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2980 *
2981 * Porting ELF coredump for target is (quite) simple process. First you
2982 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2983 * the target resides):
2984 *
2985 * #define USE_ELF_CORE_DUMP
2986 *
2987 * Next you define type of register set used for dumping. ELF specification
2988 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2989 *
2990 * typedef <target_regtype> target_elf_greg_t;
2991 * #define ELF_NREG <number of registers>
2992 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2993 *
2994 * Last step is to implement target specific function that copies registers
2995 * from given cpu into just specified register set. Prototype is:
2996 *
2997 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2998 * const CPUArchState *env);
2999 *
3000 * Parameters:
3001 * regs - copy register values into here (allocated and zeroed by caller)
3002 * env - copy registers from here
3003 *
3004 * Example for ARM target is provided in this file.
3005 */
3006
3007 /* An ELF note in memory */
3008 struct memelfnote {
3009 const char *name;
3010 size_t namesz;
3011 size_t namesz_rounded;
3012 int type;
3013 size_t datasz;
3014 size_t datasz_rounded;
3015 void *data;
3016 size_t notesz;
3017 };
3018
3019 struct target_elf_siginfo {
3020 abi_int si_signo; /* signal number */
3021 abi_int si_code; /* extra code */
3022 abi_int si_errno; /* errno */
3023 };
3024
3025 struct target_elf_prstatus {
3026 struct target_elf_siginfo pr_info; /* Info associated with signal */
3027 abi_short pr_cursig; /* Current signal */
3028 abi_ulong pr_sigpend; /* XXX */
3029 abi_ulong pr_sighold; /* XXX */
3030 target_pid_t pr_pid;
3031 target_pid_t pr_ppid;
3032 target_pid_t pr_pgrp;
3033 target_pid_t pr_sid;
3034 struct target_timeval pr_utime; /* XXX User time */
3035 struct target_timeval pr_stime; /* XXX System time */
3036 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3037 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3038 target_elf_gregset_t pr_reg; /* GP registers */
3039 abi_int pr_fpvalid; /* XXX */
3040 };
3041
3042 #define ELF_PRARGSZ (80) /* Number of chars for args */
3043
3044 struct target_elf_prpsinfo {
3045 char pr_state; /* numeric process state */
3046 char pr_sname; /* char for pr_state */
3047 char pr_zomb; /* zombie */
3048 char pr_nice; /* nice val */
3049 abi_ulong pr_flag; /* flags */
3050 target_uid_t pr_uid;
3051 target_gid_t pr_gid;
3052 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3053 /* Lots missing */
3054 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3055 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3056 };
3057
3058 /* Here is the structure in which status of each thread is captured. */
3059 struct elf_thread_status {
3060 QTAILQ_ENTRY(elf_thread_status) ets_link;
3061 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3062 #if 0
3063 elf_fpregset_t fpu; /* NT_PRFPREG */
3064 struct task_struct *thread;
3065 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3066 #endif
3067 struct memelfnote notes[1];
3068 int num_notes;
3069 };
3070
3071 struct elf_note_info {
3072 struct memelfnote *notes;
3073 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3074 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3075
3076 QTAILQ_HEAD(, elf_thread_status) thread_list;
3077 #if 0
3078 /*
3079 * Current version of ELF coredump doesn't support
3080 * dumping fp regs etc.
3081 */
3082 elf_fpregset_t *fpu;
3083 elf_fpxregset_t *xfpu;
3084 int thread_status_size;
3085 #endif
3086 int notes_size;
3087 int numnote;
3088 };
3089
3090 struct vm_area_struct {
3091 target_ulong vma_start; /* start vaddr of memory region */
3092 target_ulong vma_end; /* end vaddr of memory region */
3093 abi_ulong vma_flags; /* protection etc. flags for the region */
3094 QTAILQ_ENTRY(vm_area_struct) vma_link;
3095 };
3096
3097 struct mm_struct {
3098 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3099 int mm_count; /* number of mappings */
3100 };
3101
3102 static struct mm_struct *vma_init(void);
3103 static void vma_delete(struct mm_struct *);
3104 static int vma_add_mapping(struct mm_struct *, target_ulong,
3105 target_ulong, abi_ulong);
3106 static int vma_get_mapping_count(const struct mm_struct *);
3107 static struct vm_area_struct *vma_first(const struct mm_struct *);
3108 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3109 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3110 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3111 unsigned long flags);
3112
3113 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3114 static void fill_note(struct memelfnote *, const char *, int,
3115 unsigned int, void *);
3116 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3117 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3118 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3119 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3120 static size_t note_size(const struct memelfnote *);
3121 static void free_note_info(struct elf_note_info *);
3122 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3123 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3124 static int core_dump_filename(const TaskState *, char *, size_t);
3125
3126 static int dump_write(int, const void *, size_t);
3127 static int write_note(struct memelfnote *, int);
3128 static int write_note_info(struct elf_note_info *, int);
3129
3130 #ifdef BSWAP_NEEDED
3131 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3132 {
3133 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3134 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3135 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3136 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3137 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3138 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3139 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3140 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3141 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3142 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3143 /* cpu times are not filled, so we skip them */
3144 /* regs should be in correct format already */
3145 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3146 }
3147
3148 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3149 {
3150 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3151 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3152 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3153 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3154 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3155 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3156 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3157 }
3158
3159 static void bswap_note(struct elf_note *en)
3160 {
3161 bswap32s(&en->n_namesz);
3162 bswap32s(&en->n_descsz);
3163 bswap32s(&en->n_type);
3164 }
3165 #else
3166 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3167 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3168 static inline void bswap_note(struct elf_note *en) { }
3169 #endif /* BSWAP_NEEDED */
3170
3171 /*
3172 * Minimal support for linux memory regions. These are needed
3173 * when we are finding out what memory exactly belongs to
3174 * emulated process. No locks needed here, as long as
3175 * thread that received the signal is stopped.
3176 */
3177
3178 static struct mm_struct *vma_init(void)
3179 {
3180 struct mm_struct *mm;
3181
3182 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3183 return (NULL);
3184
3185 mm->mm_count = 0;
3186 QTAILQ_INIT(&mm->mm_mmap);
3187
3188 return (mm);
3189 }
3190
3191 static void vma_delete(struct mm_struct *mm)
3192 {
3193 struct vm_area_struct *vma;
3194
3195 while ((vma = vma_first(mm)) != NULL) {
3196 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3197 g_free(vma);
3198 }
3199 g_free(mm);
3200 }
3201
3202 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3203 target_ulong end, abi_ulong flags)
3204 {
3205 struct vm_area_struct *vma;
3206
3207 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3208 return (-1);
3209
3210 vma->vma_start = start;
3211 vma->vma_end = end;
3212 vma->vma_flags = flags;
3213
3214 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3215 mm->mm_count++;
3216
3217 return (0);
3218 }
3219
3220 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3221 {
3222 return (QTAILQ_FIRST(&mm->mm_mmap));
3223 }
3224
3225 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3226 {
3227 return (QTAILQ_NEXT(vma, vma_link));
3228 }
3229
3230 static int vma_get_mapping_count(const struct mm_struct *mm)
3231 {
3232 return (mm->mm_count);
3233 }
3234
3235 /*
3236 * Calculate file (dump) size of given memory region.
3237 */
3238 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3239 {
3240 /* if we cannot even read the first page, skip it */
3241 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3242 return (0);
3243
3244 /*
3245 * Usually we don't dump executable pages as they contain
3246 * non-writable code that debugger can read directly from
3247 * target library etc. However, thread stacks are marked
3248 * also executable so we read in first page of given region
3249 * and check whether it contains elf header. If there is
3250 * no elf header, we dump it.
3251 */
3252 if (vma->vma_flags & PROT_EXEC) {
3253 char page[TARGET_PAGE_SIZE];
3254
3255 copy_from_user(page, vma->vma_start, sizeof (page));
3256 if ((page[EI_MAG0] == ELFMAG0) &&
3257 (page[EI_MAG1] == ELFMAG1) &&
3258 (page[EI_MAG2] == ELFMAG2) &&
3259 (page[EI_MAG3] == ELFMAG3)) {
3260 /*
3261 * Mappings are possibly from ELF binary. Don't dump
3262 * them.
3263 */
3264 return (0);
3265 }
3266 }
3267
3268 return (vma->vma_end - vma->vma_start);
3269 }
3270
3271 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3272 unsigned long flags)
3273 {
3274 struct mm_struct *mm = (struct mm_struct *)priv;
3275
3276 vma_add_mapping(mm, start, end, flags);
3277 return (0);
3278 }
3279
3280 static void fill_note(struct memelfnote *note, const char *name, int type,
3281 unsigned int sz, void *data)
3282 {
3283 unsigned int namesz;
3284
3285 namesz = strlen(name) + 1;
3286 note->name = name;
3287 note->namesz = namesz;
3288 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3289 note->type = type;
3290 note->datasz = sz;
3291 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3292
3293 note->data = data;
3294
3295 /*
3296 * We calculate rounded up note size here as specified by
3297 * ELF document.
3298 */
3299 note->notesz = sizeof (struct elf_note) +
3300 note->namesz_rounded + note->datasz_rounded;
3301 }
3302
3303 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3304 uint32_t flags)
3305 {
3306 (void) memset(elf, 0, sizeof(*elf));
3307
3308 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3309 elf->e_ident[EI_CLASS] = ELF_CLASS;
3310 elf->e_ident[EI_DATA] = ELF_DATA;
3311 elf->e_ident[EI_VERSION] = EV_CURRENT;
3312 elf->e_ident[EI_OSABI] = ELF_OSABI;
3313
3314 elf->e_type = ET_CORE;
3315 elf->e_machine = machine;
3316 elf->e_version = EV_CURRENT;
3317 elf->e_phoff = sizeof(struct elfhdr);
3318 elf->e_flags = flags;
3319 elf->e_ehsize = sizeof(struct elfhdr);