Merge tag 'linux-user-for-7.1-pull-request' of https://gitlab.com/laurent_vivier...
[qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "target_signal.h"
22
23 #ifdef _ARCH_PPC64
24 #undef ARCH_DLINFO
25 #undef ELF_PLATFORM
26 #undef ELF_HWCAP
27 #undef ELF_HWCAP2
28 #undef ELF_CLASS
29 #undef ELF_DATA
30 #undef ELF_ARCH
31 #endif
32
33 #define ELF_OSABI ELFOSABI_SYSV
34
35 /* from personality.h */
36
37 /*
38 * Flags for bug emulation.
39 *
40 * These occupy the top three bytes.
41 */
42 enum {
43 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
44 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
45 descriptors (signal handling) */
46 MMAP_PAGE_ZERO = 0x0100000,
47 ADDR_COMPAT_LAYOUT = 0x0200000,
48 READ_IMPLIES_EXEC = 0x0400000,
49 ADDR_LIMIT_32BIT = 0x0800000,
50 SHORT_INODE = 0x1000000,
51 WHOLE_SECONDS = 0x2000000,
52 STICKY_TIMEOUTS = 0x4000000,
53 ADDR_LIMIT_3GB = 0x8000000,
54 };
55
56 /*
57 * Personality types.
58 *
59 * These go in the low byte. Avoid using the top bit, it will
60 * conflict with error returns.
61 */
62 enum {
63 PER_LINUX = 0x0000,
64 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
65 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
66 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
67 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
69 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
70 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
72 PER_BSD = 0x0006,
73 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
74 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
75 PER_LINUX32 = 0x0008,
76 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
77 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
78 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
79 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
80 PER_RISCOS = 0x000c,
81 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
82 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
83 PER_OSF4 = 0x000f, /* OSF/1 v4 */
84 PER_HPUX = 0x0010,
85 PER_MASK = 0x00ff,
86 };
87
88 /*
89 * Return the base personality without flags.
90 */
91 #define personality(pers) (pers & PER_MASK)
92
93 int info_is_fdpic(struct image_info *info)
94 {
95 return info->personality == PER_LINUX_FDPIC;
96 }
97
98 /* this flag is uneffective under linux too, should be deleted */
99 #ifndef MAP_DENYWRITE
100 #define MAP_DENYWRITE 0
101 #endif
102
103 /* should probably go in elf.h */
104 #ifndef ELIBBAD
105 #define ELIBBAD 80
106 #endif
107
108 #ifdef TARGET_WORDS_BIGENDIAN
109 #define ELF_DATA ELFDATA2MSB
110 #else
111 #define ELF_DATA ELFDATA2LSB
112 #endif
113
114 #ifdef TARGET_ABI_MIPSN32
115 typedef abi_ullong target_elf_greg_t;
116 #define tswapreg(ptr) tswap64(ptr)
117 #else
118 typedef abi_ulong target_elf_greg_t;
119 #define tswapreg(ptr) tswapal(ptr)
120 #endif
121
122 #ifdef USE_UID16
123 typedef abi_ushort target_uid_t;
124 typedef abi_ushort target_gid_t;
125 #else
126 typedef abi_uint target_uid_t;
127 typedef abi_uint target_gid_t;
128 #endif
129 typedef abi_int target_pid_t;
130
131 #ifdef TARGET_I386
132
133 #define ELF_PLATFORM get_elf_platform()
134
135 static const char *get_elf_platform(void)
136 {
137 static char elf_platform[] = "i386";
138 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
139 if (family > 6)
140 family = 6;
141 if (family >= 3)
142 elf_platform[1] = '0' + family;
143 return elf_platform;
144 }
145
146 #define ELF_HWCAP get_elf_hwcap()
147
148 static uint32_t get_elf_hwcap(void)
149 {
150 X86CPU *cpu = X86_CPU(thread_cpu);
151
152 return cpu->env.features[FEAT_1_EDX];
153 }
154
155 #ifdef TARGET_X86_64
156 #define ELF_START_MMAP 0x2aaaaab000ULL
157
158 #define ELF_CLASS ELFCLASS64
159 #define ELF_ARCH EM_X86_64
160
161 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
162 {
163 regs->rax = 0;
164 regs->rsp = infop->start_stack;
165 regs->rip = infop->entry;
166 }
167
168 #define ELF_NREG 27
169 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
170
171 /*
172 * Note that ELF_NREG should be 29 as there should be place for
173 * TRAPNO and ERR "registers" as well but linux doesn't dump
174 * those.
175 *
176 * See linux kernel: arch/x86/include/asm/elf.h
177 */
178 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
179 {
180 (*regs)[0] = tswapreg(env->regs[15]);
181 (*regs)[1] = tswapreg(env->regs[14]);
182 (*regs)[2] = tswapreg(env->regs[13]);
183 (*regs)[3] = tswapreg(env->regs[12]);
184 (*regs)[4] = tswapreg(env->regs[R_EBP]);
185 (*regs)[5] = tswapreg(env->regs[R_EBX]);
186 (*regs)[6] = tswapreg(env->regs[11]);
187 (*regs)[7] = tswapreg(env->regs[10]);
188 (*regs)[8] = tswapreg(env->regs[9]);
189 (*regs)[9] = tswapreg(env->regs[8]);
190 (*regs)[10] = tswapreg(env->regs[R_EAX]);
191 (*regs)[11] = tswapreg(env->regs[R_ECX]);
192 (*regs)[12] = tswapreg(env->regs[R_EDX]);
193 (*regs)[13] = tswapreg(env->regs[R_ESI]);
194 (*regs)[14] = tswapreg(env->regs[R_EDI]);
195 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
196 (*regs)[16] = tswapreg(env->eip);
197 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
198 (*regs)[18] = tswapreg(env->eflags);
199 (*regs)[19] = tswapreg(env->regs[R_ESP]);
200 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
201 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
202 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
203 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
204 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
205 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
206 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
207 }
208
209 #else
210
211 #define ELF_START_MMAP 0x80000000
212
213 /*
214 * This is used to ensure we don't load something for the wrong architecture.
215 */
216 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
217
218 /*
219 * These are used to set parameters in the core dumps.
220 */
221 #define ELF_CLASS ELFCLASS32
222 #define ELF_ARCH EM_386
223
224 static inline void init_thread(struct target_pt_regs *regs,
225 struct image_info *infop)
226 {
227 regs->esp = infop->start_stack;
228 regs->eip = infop->entry;
229
230 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
231 starts %edx contains a pointer to a function which might be
232 registered using `atexit'. This provides a mean for the
233 dynamic linker to call DT_FINI functions for shared libraries
234 that have been loaded before the code runs.
235
236 A value of 0 tells we have no such handler. */
237 regs->edx = 0;
238 }
239
240 #define ELF_NREG 17
241 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
242
243 /*
244 * Note that ELF_NREG should be 19 as there should be place for
245 * TRAPNO and ERR "registers" as well but linux doesn't dump
246 * those.
247 *
248 * See linux kernel: arch/x86/include/asm/elf.h
249 */
250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
251 {
252 (*regs)[0] = tswapreg(env->regs[R_EBX]);
253 (*regs)[1] = tswapreg(env->regs[R_ECX]);
254 (*regs)[2] = tswapreg(env->regs[R_EDX]);
255 (*regs)[3] = tswapreg(env->regs[R_ESI]);
256 (*regs)[4] = tswapreg(env->regs[R_EDI]);
257 (*regs)[5] = tswapreg(env->regs[R_EBP]);
258 (*regs)[6] = tswapreg(env->regs[R_EAX]);
259 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
260 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
261 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
262 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
263 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
264 (*regs)[12] = tswapreg(env->eip);
265 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
266 (*regs)[14] = tswapreg(env->eflags);
267 (*regs)[15] = tswapreg(env->regs[R_ESP]);
268 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
269 }
270 #endif
271
272 #define USE_ELF_CORE_DUMP
273 #define ELF_EXEC_PAGESIZE 4096
274
275 #endif
276
277 #ifdef TARGET_ARM
278
279 #ifndef TARGET_AARCH64
280 /* 32 bit ARM definitions */
281
282 #define ELF_START_MMAP 0x80000000
283
284 #define ELF_ARCH EM_ARM
285 #define ELF_CLASS ELFCLASS32
286
287 static inline void init_thread(struct target_pt_regs *regs,
288 struct image_info *infop)
289 {
290 abi_long stack = infop->start_stack;
291 memset(regs, 0, sizeof(*regs));
292
293 regs->uregs[16] = ARM_CPU_MODE_USR;
294 if (infop->entry & 1) {
295 regs->uregs[16] |= CPSR_T;
296 }
297 regs->uregs[15] = infop->entry & 0xfffffffe;
298 regs->uregs[13] = infop->start_stack;
299 /* FIXME - what to for failure of get_user()? */
300 get_user_ual(regs->uregs[2], stack + 8); /* envp */
301 get_user_ual(regs->uregs[1], stack + 4); /* envp */
302 /* XXX: it seems that r0 is zeroed after ! */
303 regs->uregs[0] = 0;
304 /* For uClinux PIC binaries. */
305 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
306 regs->uregs[10] = infop->start_data;
307
308 /* Support ARM FDPIC. */
309 if (info_is_fdpic(infop)) {
310 /* As described in the ABI document, r7 points to the loadmap info
311 * prepared by the kernel. If an interpreter is needed, r8 points
312 * to the interpreter loadmap and r9 points to the interpreter
313 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
314 * r9 points to the main program PT_DYNAMIC info.
315 */
316 regs->uregs[7] = infop->loadmap_addr;
317 if (infop->interpreter_loadmap_addr) {
318 /* Executable is dynamically loaded. */
319 regs->uregs[8] = infop->interpreter_loadmap_addr;
320 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
321 } else {
322 regs->uregs[8] = 0;
323 regs->uregs[9] = infop->pt_dynamic_addr;
324 }
325 }
326 }
327
328 #define ELF_NREG 18
329 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
330
331 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
332 {
333 (*regs)[0] = tswapreg(env->regs[0]);
334 (*regs)[1] = tswapreg(env->regs[1]);
335 (*regs)[2] = tswapreg(env->regs[2]);
336 (*regs)[3] = tswapreg(env->regs[3]);
337 (*regs)[4] = tswapreg(env->regs[4]);
338 (*regs)[5] = tswapreg(env->regs[5]);
339 (*regs)[6] = tswapreg(env->regs[6]);
340 (*regs)[7] = tswapreg(env->regs[7]);
341 (*regs)[8] = tswapreg(env->regs[8]);
342 (*regs)[9] = tswapreg(env->regs[9]);
343 (*regs)[10] = tswapreg(env->regs[10]);
344 (*regs)[11] = tswapreg(env->regs[11]);
345 (*regs)[12] = tswapreg(env->regs[12]);
346 (*regs)[13] = tswapreg(env->regs[13]);
347 (*regs)[14] = tswapreg(env->regs[14]);
348 (*regs)[15] = tswapreg(env->regs[15]);
349
350 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
351 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
352 }
353
354 #define USE_ELF_CORE_DUMP
355 #define ELF_EXEC_PAGESIZE 4096
356
357 enum
358 {
359 ARM_HWCAP_ARM_SWP = 1 << 0,
360 ARM_HWCAP_ARM_HALF = 1 << 1,
361 ARM_HWCAP_ARM_THUMB = 1 << 2,
362 ARM_HWCAP_ARM_26BIT = 1 << 3,
363 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
364 ARM_HWCAP_ARM_FPA = 1 << 5,
365 ARM_HWCAP_ARM_VFP = 1 << 6,
366 ARM_HWCAP_ARM_EDSP = 1 << 7,
367 ARM_HWCAP_ARM_JAVA = 1 << 8,
368 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
369 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
370 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
371 ARM_HWCAP_ARM_NEON = 1 << 12,
372 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
373 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
374 ARM_HWCAP_ARM_TLS = 1 << 15,
375 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
376 ARM_HWCAP_ARM_IDIVA = 1 << 17,
377 ARM_HWCAP_ARM_IDIVT = 1 << 18,
378 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
379 ARM_HWCAP_ARM_LPAE = 1 << 20,
380 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
381 };
382
383 enum {
384 ARM_HWCAP2_ARM_AES = 1 << 0,
385 ARM_HWCAP2_ARM_PMULL = 1 << 1,
386 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
387 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
388 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
389 };
390
391 /* The commpage only exists for 32 bit kernels */
392
393 #define HI_COMMPAGE (intptr_t)0xffff0f00u
394
395 static bool init_guest_commpage(void)
396 {
397 void *want = g2h_untagged(HI_COMMPAGE & -qemu_host_page_size);
398 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
399 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
400
401 if (addr == MAP_FAILED) {
402 perror("Allocating guest commpage");
403 exit(EXIT_FAILURE);
404 }
405 if (addr != want) {
406 return false;
407 }
408
409 /* Set kernel helper versions; rest of page is 0. */
410 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
411
412 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
413 perror("Protecting guest commpage");
414 exit(EXIT_FAILURE);
415 }
416 return true;
417 }
418
419 #define ELF_HWCAP get_elf_hwcap()
420 #define ELF_HWCAP2 get_elf_hwcap2()
421
422 static uint32_t get_elf_hwcap(void)
423 {
424 ARMCPU *cpu = ARM_CPU(thread_cpu);
425 uint32_t hwcaps = 0;
426
427 hwcaps |= ARM_HWCAP_ARM_SWP;
428 hwcaps |= ARM_HWCAP_ARM_HALF;
429 hwcaps |= ARM_HWCAP_ARM_THUMB;
430 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
431
432 /* probe for the extra features */
433 #define GET_FEATURE(feat, hwcap) \
434 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
435
436 #define GET_FEATURE_ID(feat, hwcap) \
437 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
438
439 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
440 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
441 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
442 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
443 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
444 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
445 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
446 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
447 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
448 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
449
450 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
451 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
452 hwcaps |= ARM_HWCAP_ARM_VFPv3;
453 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
454 hwcaps |= ARM_HWCAP_ARM_VFPD32;
455 } else {
456 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
457 }
458 }
459 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
460
461 return hwcaps;
462 }
463
464 static uint32_t get_elf_hwcap2(void)
465 {
466 ARMCPU *cpu = ARM_CPU(thread_cpu);
467 uint32_t hwcaps = 0;
468
469 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
470 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
471 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
472 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
473 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
474 return hwcaps;
475 }
476
477 #undef GET_FEATURE
478 #undef GET_FEATURE_ID
479
480 #define ELF_PLATFORM get_elf_platform()
481
482 static const char *get_elf_platform(void)
483 {
484 CPUARMState *env = thread_cpu->env_ptr;
485
486 #ifdef TARGET_WORDS_BIGENDIAN
487 # define END "b"
488 #else
489 # define END "l"
490 #endif
491
492 if (arm_feature(env, ARM_FEATURE_V8)) {
493 return "v8" END;
494 } else if (arm_feature(env, ARM_FEATURE_V7)) {
495 if (arm_feature(env, ARM_FEATURE_M)) {
496 return "v7m" END;
497 } else {
498 return "v7" END;
499 }
500 } else if (arm_feature(env, ARM_FEATURE_V6)) {
501 return "v6" END;
502 } else if (arm_feature(env, ARM_FEATURE_V5)) {
503 return "v5" END;
504 } else {
505 return "v4" END;
506 }
507
508 #undef END
509 }
510
511 #else
512 /* 64 bit ARM definitions */
513 #define ELF_START_MMAP 0x80000000
514
515 #define ELF_ARCH EM_AARCH64
516 #define ELF_CLASS ELFCLASS64
517 #ifdef TARGET_WORDS_BIGENDIAN
518 # define ELF_PLATFORM "aarch64_be"
519 #else
520 # define ELF_PLATFORM "aarch64"
521 #endif
522
523 static inline void init_thread(struct target_pt_regs *regs,
524 struct image_info *infop)
525 {
526 abi_long stack = infop->start_stack;
527 memset(regs, 0, sizeof(*regs));
528
529 regs->pc = infop->entry & ~0x3ULL;
530 regs->sp = stack;
531 }
532
533 #define ELF_NREG 34
534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
535
536 static void elf_core_copy_regs(target_elf_gregset_t *regs,
537 const CPUARMState *env)
538 {
539 int i;
540
541 for (i = 0; i < 32; i++) {
542 (*regs)[i] = tswapreg(env->xregs[i]);
543 }
544 (*regs)[32] = tswapreg(env->pc);
545 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
546 }
547
548 #define USE_ELF_CORE_DUMP
549 #define ELF_EXEC_PAGESIZE 4096
550
551 enum {
552 ARM_HWCAP_A64_FP = 1 << 0,
553 ARM_HWCAP_A64_ASIMD = 1 << 1,
554 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
555 ARM_HWCAP_A64_AES = 1 << 3,
556 ARM_HWCAP_A64_PMULL = 1 << 4,
557 ARM_HWCAP_A64_SHA1 = 1 << 5,
558 ARM_HWCAP_A64_SHA2 = 1 << 6,
559 ARM_HWCAP_A64_CRC32 = 1 << 7,
560 ARM_HWCAP_A64_ATOMICS = 1 << 8,
561 ARM_HWCAP_A64_FPHP = 1 << 9,
562 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
563 ARM_HWCAP_A64_CPUID = 1 << 11,
564 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
565 ARM_HWCAP_A64_JSCVT = 1 << 13,
566 ARM_HWCAP_A64_FCMA = 1 << 14,
567 ARM_HWCAP_A64_LRCPC = 1 << 15,
568 ARM_HWCAP_A64_DCPOP = 1 << 16,
569 ARM_HWCAP_A64_SHA3 = 1 << 17,
570 ARM_HWCAP_A64_SM3 = 1 << 18,
571 ARM_HWCAP_A64_SM4 = 1 << 19,
572 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
573 ARM_HWCAP_A64_SHA512 = 1 << 21,
574 ARM_HWCAP_A64_SVE = 1 << 22,
575 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
576 ARM_HWCAP_A64_DIT = 1 << 24,
577 ARM_HWCAP_A64_USCAT = 1 << 25,
578 ARM_HWCAP_A64_ILRCPC = 1 << 26,
579 ARM_HWCAP_A64_FLAGM = 1 << 27,
580 ARM_HWCAP_A64_SSBS = 1 << 28,
581 ARM_HWCAP_A64_SB = 1 << 29,
582 ARM_HWCAP_A64_PACA = 1 << 30,
583 ARM_HWCAP_A64_PACG = 1UL << 31,
584
585 ARM_HWCAP2_A64_DCPODP = 1 << 0,
586 ARM_HWCAP2_A64_SVE2 = 1 << 1,
587 ARM_HWCAP2_A64_SVEAES = 1 << 2,
588 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
589 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
590 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
591 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
592 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
593 ARM_HWCAP2_A64_FRINT = 1 << 8,
594 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
595 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
596 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
597 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
598 ARM_HWCAP2_A64_I8MM = 1 << 13,
599 ARM_HWCAP2_A64_BF16 = 1 << 14,
600 ARM_HWCAP2_A64_DGH = 1 << 15,
601 ARM_HWCAP2_A64_RNG = 1 << 16,
602 ARM_HWCAP2_A64_BTI = 1 << 17,
603 ARM_HWCAP2_A64_MTE = 1 << 18,
604 };
605
606 #define ELF_HWCAP get_elf_hwcap()
607 #define ELF_HWCAP2 get_elf_hwcap2()
608
609 #define GET_FEATURE_ID(feat, hwcap) \
610 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
611
612 static uint32_t get_elf_hwcap(void)
613 {
614 ARMCPU *cpu = ARM_CPU(thread_cpu);
615 uint32_t hwcaps = 0;
616
617 hwcaps |= ARM_HWCAP_A64_FP;
618 hwcaps |= ARM_HWCAP_A64_ASIMD;
619 hwcaps |= ARM_HWCAP_A64_CPUID;
620
621 /* probe for the extra features */
622
623 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
624 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
625 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
626 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
627 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
628 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
629 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
630 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
631 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
632 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
633 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
634 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
635 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
636 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
637 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
638 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
639 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
640 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
641 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
642 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
643 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
644 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
645 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
646
647 return hwcaps;
648 }
649
650 static uint32_t get_elf_hwcap2(void)
651 {
652 ARMCPU *cpu = ARM_CPU(thread_cpu);
653 uint32_t hwcaps = 0;
654
655 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
656 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
657 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
658 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
659 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
660 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
661 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
662 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
663 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
664 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
665 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
666 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
667 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
668 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
669 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
670 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
671 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
672 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
673
674 return hwcaps;
675 }
676
677 #undef GET_FEATURE_ID
678
679 #endif /* not TARGET_AARCH64 */
680 #endif /* TARGET_ARM */
681
682 #ifdef TARGET_SPARC
683 #ifdef TARGET_SPARC64
684
685 #define ELF_START_MMAP 0x80000000
686 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
687 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
688 #ifndef TARGET_ABI32
689 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
690 #else
691 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
692 #endif
693
694 #define ELF_CLASS ELFCLASS64
695 #define ELF_ARCH EM_SPARCV9
696 #else
697 #define ELF_START_MMAP 0x80000000
698 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
699 | HWCAP_SPARC_MULDIV)
700 #define ELF_CLASS ELFCLASS32
701 #define ELF_ARCH EM_SPARC
702 #endif /* TARGET_SPARC64 */
703
704 static inline void init_thread(struct target_pt_regs *regs,
705 struct image_info *infop)
706 {
707 /* Note that target_cpu_copy_regs does not read psr/tstate. */
708 regs->pc = infop->entry;
709 regs->npc = regs->pc + 4;
710 regs->y = 0;
711 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
712 - TARGET_STACK_BIAS);
713 }
714 #endif /* TARGET_SPARC */
715
716 #ifdef TARGET_PPC
717
718 #define ELF_MACHINE PPC_ELF_MACHINE
719 #define ELF_START_MMAP 0x80000000
720
721 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
722
723 #define elf_check_arch(x) ( (x) == EM_PPC64 )
724
725 #define ELF_CLASS ELFCLASS64
726
727 #else
728
729 #define ELF_CLASS ELFCLASS32
730
731 #endif
732
733 #define ELF_ARCH EM_PPC
734
735 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
736 See arch/powerpc/include/asm/cputable.h. */
737 enum {
738 QEMU_PPC_FEATURE_32 = 0x80000000,
739 QEMU_PPC_FEATURE_64 = 0x40000000,
740 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
741 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
742 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
743 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
744 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
745 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
746 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
747 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
748 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
749 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
750 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
751 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
752 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
753 QEMU_PPC_FEATURE_CELL = 0x00010000,
754 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
755 QEMU_PPC_FEATURE_SMT = 0x00004000,
756 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
757 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
758 QEMU_PPC_FEATURE_PA6T = 0x00000800,
759 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
760 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
761 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
762 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
763 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
764
765 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
766 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
767
768 /* Feature definitions in AT_HWCAP2. */
769 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
770 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
771 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
772 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
773 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
774 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
775 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
776 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
777 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
778 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
779 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
780 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
781 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
782 };
783
784 #define ELF_HWCAP get_elf_hwcap()
785
786 static uint32_t get_elf_hwcap(void)
787 {
788 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
789 uint32_t features = 0;
790
791 /* We don't have to be terribly complete here; the high points are
792 Altivec/FP/SPE support. Anything else is just a bonus. */
793 #define GET_FEATURE(flag, feature) \
794 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
795 #define GET_FEATURE2(flags, feature) \
796 do { \
797 if ((cpu->env.insns_flags2 & flags) == flags) { \
798 features |= feature; \
799 } \
800 } while (0)
801 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
802 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
803 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
804 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
805 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
806 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
807 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
808 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
809 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
810 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
811 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
812 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
813 QEMU_PPC_FEATURE_ARCH_2_06);
814 #undef GET_FEATURE
815 #undef GET_FEATURE2
816
817 return features;
818 }
819
820 #define ELF_HWCAP2 get_elf_hwcap2()
821
822 static uint32_t get_elf_hwcap2(void)
823 {
824 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
825 uint32_t features = 0;
826
827 #define GET_FEATURE(flag, feature) \
828 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
829 #define GET_FEATURE2(flag, feature) \
830 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
831
832 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
833 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
834 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
835 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
836 QEMU_PPC_FEATURE2_VEC_CRYPTO);
837 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
838 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
839
840 #undef GET_FEATURE
841 #undef GET_FEATURE2
842
843 return features;
844 }
845
846 /*
847 * The requirements here are:
848 * - keep the final alignment of sp (sp & 0xf)
849 * - make sure the 32-bit value at the first 16 byte aligned position of
850 * AUXV is greater than 16 for glibc compatibility.
851 * AT_IGNOREPPC is used for that.
852 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
853 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
854 */
855 #define DLINFO_ARCH_ITEMS 5
856 #define ARCH_DLINFO \
857 do { \
858 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
859 /* \
860 * Handle glibc compatibility: these magic entries must \
861 * be at the lowest addresses in the final auxv. \
862 */ \
863 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
864 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
865 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
866 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
867 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
868 } while (0)
869
870 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
871 {
872 _regs->gpr[1] = infop->start_stack;
873 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
874 if (get_ppc64_abi(infop) < 2) {
875 uint64_t val;
876 get_user_u64(val, infop->entry + 8);
877 _regs->gpr[2] = val + infop->load_bias;
878 get_user_u64(val, infop->entry);
879 infop->entry = val + infop->load_bias;
880 } else {
881 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
882 }
883 #endif
884 _regs->nip = infop->entry;
885 }
886
887 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
888 #define ELF_NREG 48
889 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
890
891 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
892 {
893 int i;
894 target_ulong ccr = 0;
895
896 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
897 (*regs)[i] = tswapreg(env->gpr[i]);
898 }
899
900 (*regs)[32] = tswapreg(env->nip);
901 (*regs)[33] = tswapreg(env->msr);
902 (*regs)[35] = tswapreg(env->ctr);
903 (*regs)[36] = tswapreg(env->lr);
904 (*regs)[37] = tswapreg(cpu_read_xer(env));
905
906 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
907 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
908 }
909 (*regs)[38] = tswapreg(ccr);
910 }
911
912 #define USE_ELF_CORE_DUMP
913 #define ELF_EXEC_PAGESIZE 4096
914
915 #endif
916
917 #ifdef TARGET_MIPS
918
919 #define ELF_START_MMAP 0x80000000
920
921 #ifdef TARGET_MIPS64
922 #define ELF_CLASS ELFCLASS64
923 #else
924 #define ELF_CLASS ELFCLASS32
925 #endif
926 #define ELF_ARCH EM_MIPS
927
928 #ifdef TARGET_ABI_MIPSN32
929 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
930 #else
931 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
932 #endif
933
934 static inline void init_thread(struct target_pt_regs *regs,
935 struct image_info *infop)
936 {
937 regs->cp0_status = 2 << CP0St_KSU;
938 regs->cp0_epc = infop->entry;
939 regs->regs[29] = infop->start_stack;
940 }
941
942 /* See linux kernel: arch/mips/include/asm/elf.h. */
943 #define ELF_NREG 45
944 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
945
946 /* See linux kernel: arch/mips/include/asm/reg.h. */
947 enum {
948 #ifdef TARGET_MIPS64
949 TARGET_EF_R0 = 0,
950 #else
951 TARGET_EF_R0 = 6,
952 #endif
953 TARGET_EF_R26 = TARGET_EF_R0 + 26,
954 TARGET_EF_R27 = TARGET_EF_R0 + 27,
955 TARGET_EF_LO = TARGET_EF_R0 + 32,
956 TARGET_EF_HI = TARGET_EF_R0 + 33,
957 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
958 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
959 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
960 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
961 };
962
963 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
964 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
965 {
966 int i;
967
968 for (i = 0; i < TARGET_EF_R0; i++) {
969 (*regs)[i] = 0;
970 }
971 (*regs)[TARGET_EF_R0] = 0;
972
973 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
974 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
975 }
976
977 (*regs)[TARGET_EF_R26] = 0;
978 (*regs)[TARGET_EF_R27] = 0;
979 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
980 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
981 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
982 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
983 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
984 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
985 }
986
987 #define USE_ELF_CORE_DUMP
988 #define ELF_EXEC_PAGESIZE 4096
989
990 /* See arch/mips/include/uapi/asm/hwcap.h. */
991 enum {
992 HWCAP_MIPS_R6 = (1 << 0),
993 HWCAP_MIPS_MSA = (1 << 1),
994 HWCAP_MIPS_CRC32 = (1 << 2),
995 HWCAP_MIPS_MIPS16 = (1 << 3),
996 HWCAP_MIPS_MDMX = (1 << 4),
997 HWCAP_MIPS_MIPS3D = (1 << 5),
998 HWCAP_MIPS_SMARTMIPS = (1 << 6),
999 HWCAP_MIPS_DSP = (1 << 7),
1000 HWCAP_MIPS_DSP2 = (1 << 8),
1001 HWCAP_MIPS_DSP3 = (1 << 9),
1002 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1003 HWCAP_LOONGSON_MMI = (1 << 11),
1004 HWCAP_LOONGSON_EXT = (1 << 12),
1005 HWCAP_LOONGSON_EXT2 = (1 << 13),
1006 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1007 };
1008
1009 #define ELF_HWCAP get_elf_hwcap()
1010
1011 #define GET_FEATURE_INSN(_flag, _hwcap) \
1012 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1013
1014 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1015 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1016
1017 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1018 do { \
1019 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1020 hwcaps |= _hwcap; \
1021 } \
1022 } while (0)
1023
1024 static uint32_t get_elf_hwcap(void)
1025 {
1026 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1027 uint32_t hwcaps = 0;
1028
1029 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1030 2, HWCAP_MIPS_R6);
1031 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1032 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1033 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1034
1035 return hwcaps;
1036 }
1037
1038 #undef GET_FEATURE_REG_EQU
1039 #undef GET_FEATURE_REG_SET
1040 #undef GET_FEATURE_INSN
1041
1042 #endif /* TARGET_MIPS */
1043
1044 #ifdef TARGET_MICROBLAZE
1045
1046 #define ELF_START_MMAP 0x80000000
1047
1048 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1049
1050 #define ELF_CLASS ELFCLASS32
1051 #define ELF_ARCH EM_MICROBLAZE
1052
1053 static inline void init_thread(struct target_pt_regs *regs,
1054 struct image_info *infop)
1055 {
1056 regs->pc = infop->entry;
1057 regs->r1 = infop->start_stack;
1058
1059 }
1060
1061 #define ELF_EXEC_PAGESIZE 4096
1062
1063 #define USE_ELF_CORE_DUMP
1064 #define ELF_NREG 38
1065 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1066
1067 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1068 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1069 {
1070 int i, pos = 0;
1071
1072 for (i = 0; i < 32; i++) {
1073 (*regs)[pos++] = tswapreg(env->regs[i]);
1074 }
1075
1076 (*regs)[pos++] = tswapreg(env->pc);
1077 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1078 (*regs)[pos++] = 0;
1079 (*regs)[pos++] = tswapreg(env->ear);
1080 (*regs)[pos++] = 0;
1081 (*regs)[pos++] = tswapreg(env->esr);
1082 }
1083
1084 #endif /* TARGET_MICROBLAZE */
1085
1086 #ifdef TARGET_NIOS2
1087
1088 #define ELF_START_MMAP 0x80000000
1089
1090 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1091
1092 #define ELF_CLASS ELFCLASS32
1093 #define ELF_ARCH EM_ALTERA_NIOS2
1094
1095 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1096 {
1097 regs->ea = infop->entry;
1098 regs->sp = infop->start_stack;
1099 regs->estatus = 0x3;
1100 }
1101
1102 #define LO_COMMPAGE TARGET_PAGE_SIZE
1103
1104 static bool init_guest_commpage(void)
1105 {
1106 static const uint8_t kuser_page[4 + 2 * 64] = {
1107 /* __kuser_helper_version */
1108 [0x00] = 0x02, 0x00, 0x00, 0x00,
1109
1110 /* __kuser_cmpxchg */
1111 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1112 0x3a, 0x28, 0x00, 0xf8, /* ret */
1113
1114 /* __kuser_sigtramp */
1115 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1116 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1117 };
1118
1119 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1120 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1121 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1122
1123 if (addr == MAP_FAILED) {
1124 perror("Allocating guest commpage");
1125 exit(EXIT_FAILURE);
1126 }
1127 if (addr != want) {
1128 return false;
1129 }
1130
1131 memcpy(addr, kuser_page, sizeof(kuser_page));
1132
1133 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1134 perror("Protecting guest commpage");
1135 exit(EXIT_FAILURE);
1136 }
1137
1138 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1139 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1140 return true;
1141 }
1142
1143 #define ELF_EXEC_PAGESIZE 4096
1144
1145 #define USE_ELF_CORE_DUMP
1146 #define ELF_NREG 49
1147 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1148
1149 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1150 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1151 const CPUNios2State *env)
1152 {
1153 int i;
1154
1155 (*regs)[0] = -1;
1156 for (i = 1; i < 8; i++) /* r0-r7 */
1157 (*regs)[i] = tswapreg(env->regs[i + 7]);
1158
1159 for (i = 8; i < 16; i++) /* r8-r15 */
1160 (*regs)[i] = tswapreg(env->regs[i - 8]);
1161
1162 for (i = 16; i < 24; i++) /* r16-r23 */
1163 (*regs)[i] = tswapreg(env->regs[i + 7]);
1164 (*regs)[24] = -1; /* R_ET */
1165 (*regs)[25] = -1; /* R_BT */
1166 (*regs)[26] = tswapreg(env->regs[R_GP]);
1167 (*regs)[27] = tswapreg(env->regs[R_SP]);
1168 (*regs)[28] = tswapreg(env->regs[R_FP]);
1169 (*regs)[29] = tswapreg(env->regs[R_EA]);
1170 (*regs)[30] = -1; /* R_SSTATUS */
1171 (*regs)[31] = tswapreg(env->regs[R_RA]);
1172
1173 (*regs)[32] = tswapreg(env->regs[R_PC]);
1174
1175 (*regs)[33] = -1; /* R_STATUS */
1176 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1177
1178 for (i = 35; i < 49; i++) /* ... */
1179 (*regs)[i] = -1;
1180 }
1181
1182 #endif /* TARGET_NIOS2 */
1183
1184 #ifdef TARGET_OPENRISC
1185
1186 #define ELF_START_MMAP 0x08000000
1187
1188 #define ELF_ARCH EM_OPENRISC
1189 #define ELF_CLASS ELFCLASS32
1190 #define ELF_DATA ELFDATA2MSB
1191
1192 static inline void init_thread(struct target_pt_regs *regs,
1193 struct image_info *infop)
1194 {
1195 regs->pc = infop->entry;
1196 regs->gpr[1] = infop->start_stack;
1197 }
1198
1199 #define USE_ELF_CORE_DUMP
1200 #define ELF_EXEC_PAGESIZE 8192
1201
1202 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1203 #define ELF_NREG 34 /* gprs and pc, sr */
1204 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1205
1206 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1207 const CPUOpenRISCState *env)
1208 {
1209 int i;
1210
1211 for (i = 0; i < 32; i++) {
1212 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1213 }
1214 (*regs)[32] = tswapreg(env->pc);
1215 (*regs)[33] = tswapreg(cpu_get_sr(env));
1216 }
1217 #define ELF_HWCAP 0
1218 #define ELF_PLATFORM NULL
1219
1220 #endif /* TARGET_OPENRISC */
1221
1222 #ifdef TARGET_SH4
1223
1224 #define ELF_START_MMAP 0x80000000
1225
1226 #define ELF_CLASS ELFCLASS32
1227 #define ELF_ARCH EM_SH
1228
1229 static inline void init_thread(struct target_pt_regs *regs,
1230 struct image_info *infop)
1231 {
1232 /* Check other registers XXXXX */
1233 regs->pc = infop->entry;
1234 regs->regs[15] = infop->start_stack;
1235 }
1236
1237 /* See linux kernel: arch/sh/include/asm/elf.h. */
1238 #define ELF_NREG 23
1239 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1240
1241 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1242 enum {
1243 TARGET_REG_PC = 16,
1244 TARGET_REG_PR = 17,
1245 TARGET_REG_SR = 18,
1246 TARGET_REG_GBR = 19,
1247 TARGET_REG_MACH = 20,
1248 TARGET_REG_MACL = 21,
1249 TARGET_REG_SYSCALL = 22
1250 };
1251
1252 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1253 const CPUSH4State *env)
1254 {
1255 int i;
1256
1257 for (i = 0; i < 16; i++) {
1258 (*regs)[i] = tswapreg(env->gregs[i]);
1259 }
1260
1261 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1262 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1263 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1264 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1265 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1266 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1267 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1268 }
1269
1270 #define USE_ELF_CORE_DUMP
1271 #define ELF_EXEC_PAGESIZE 4096
1272
1273 enum {
1274 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1275 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1276 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1277 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1278 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1279 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1280 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1281 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1282 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1283 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1284 };
1285
1286 #define ELF_HWCAP get_elf_hwcap()
1287
1288 static uint32_t get_elf_hwcap(void)
1289 {
1290 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1291 uint32_t hwcap = 0;
1292
1293 hwcap |= SH_CPU_HAS_FPU;
1294
1295 if (cpu->env.features & SH_FEATURE_SH4A) {
1296 hwcap |= SH_CPU_HAS_LLSC;
1297 }
1298
1299 return hwcap;
1300 }
1301
1302 #endif
1303
1304 #ifdef TARGET_CRIS
1305
1306 #define ELF_START_MMAP 0x80000000
1307
1308 #define ELF_CLASS ELFCLASS32
1309 #define ELF_ARCH EM_CRIS
1310
1311 static inline void init_thread(struct target_pt_regs *regs,
1312 struct image_info *infop)
1313 {
1314 regs->erp = infop->entry;
1315 }
1316
1317 #define ELF_EXEC_PAGESIZE 8192
1318
1319 #endif
1320
1321 #ifdef TARGET_M68K
1322
1323 #define ELF_START_MMAP 0x80000000
1324
1325 #define ELF_CLASS ELFCLASS32
1326 #define ELF_ARCH EM_68K
1327
1328 /* ??? Does this need to do anything?
1329 #define ELF_PLAT_INIT(_r) */
1330
1331 static inline void init_thread(struct target_pt_regs *regs,
1332 struct image_info *infop)
1333 {
1334 regs->usp = infop->start_stack;
1335 regs->sr = 0;
1336 regs->pc = infop->entry;
1337 }
1338
1339 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1340 #define ELF_NREG 20
1341 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1342
1343 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1344 {
1345 (*regs)[0] = tswapreg(env->dregs[1]);
1346 (*regs)[1] = tswapreg(env->dregs[2]);
1347 (*regs)[2] = tswapreg(env->dregs[3]);
1348 (*regs)[3] = tswapreg(env->dregs[4]);
1349 (*regs)[4] = tswapreg(env->dregs[5]);
1350 (*regs)[5] = tswapreg(env->dregs[6]);
1351 (*regs)[6] = tswapreg(env->dregs[7]);
1352 (*regs)[7] = tswapreg(env->aregs[0]);
1353 (*regs)[8] = tswapreg(env->aregs[1]);
1354 (*regs)[9] = tswapreg(env->aregs[2]);
1355 (*regs)[10] = tswapreg(env->aregs[3]);
1356 (*regs)[11] = tswapreg(env->aregs[4]);
1357 (*regs)[12] = tswapreg(env->aregs[5]);
1358 (*regs)[13] = tswapreg(env->aregs[6]);
1359 (*regs)[14] = tswapreg(env->dregs[0]);
1360 (*regs)[15] = tswapreg(env->aregs[7]);
1361 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1362 (*regs)[17] = tswapreg(env->sr);
1363 (*regs)[18] = tswapreg(env->pc);
1364 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1365 }
1366
1367 #define USE_ELF_CORE_DUMP
1368 #define ELF_EXEC_PAGESIZE 8192
1369
1370 #endif
1371
1372 #ifdef TARGET_ALPHA
1373
1374 #define ELF_START_MMAP (0x30000000000ULL)
1375
1376 #define ELF_CLASS ELFCLASS64
1377 #define ELF_ARCH EM_ALPHA
1378
1379 static inline void init_thread(struct target_pt_regs *regs,
1380 struct image_info *infop)
1381 {
1382 regs->pc = infop->entry;
1383 regs->ps = 8;
1384 regs->usp = infop->start_stack;
1385 }
1386
1387 #define ELF_EXEC_PAGESIZE 8192
1388
1389 #endif /* TARGET_ALPHA */
1390
1391 #ifdef TARGET_S390X
1392
1393 #define ELF_START_MMAP (0x20000000000ULL)
1394
1395 #define ELF_CLASS ELFCLASS64
1396 #define ELF_DATA ELFDATA2MSB
1397 #define ELF_ARCH EM_S390
1398
1399 #include "elf.h"
1400
1401 #define ELF_HWCAP get_elf_hwcap()
1402
1403 #define GET_FEATURE(_feat, _hwcap) \
1404 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1405
1406 static uint32_t get_elf_hwcap(void)
1407 {
1408 /*
1409 * Let's assume we always have esan3 and zarch.
1410 * 31-bit processes can use 64-bit registers (high gprs).
1411 */
1412 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1413
1414 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1415 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1416 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1417 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1418 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1419 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1420 hwcap |= HWCAP_S390_ETF3EH;
1421 }
1422 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1423 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1424
1425 return hwcap;
1426 }
1427
1428 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1429 {
1430 regs->psw.addr = infop->entry;
1431 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1432 regs->gprs[15] = infop->start_stack;
1433 }
1434
1435 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1436 #define ELF_NREG 27
1437 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1438
1439 enum {
1440 TARGET_REG_PSWM = 0,
1441 TARGET_REG_PSWA = 1,
1442 TARGET_REG_GPRS = 2,
1443 TARGET_REG_ARS = 18,
1444 TARGET_REG_ORIG_R2 = 26,
1445 };
1446
1447 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1448 const CPUS390XState *env)
1449 {
1450 int i;
1451 uint32_t *aregs;
1452
1453 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1454 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1455 for (i = 0; i < 16; i++) {
1456 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1457 }
1458 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1459 for (i = 0; i < 16; i++) {
1460 aregs[i] = tswap32(env->aregs[i]);
1461 }
1462 (*regs)[TARGET_REG_ORIG_R2] = 0;
1463 }
1464
1465 #define USE_ELF_CORE_DUMP
1466 #define ELF_EXEC_PAGESIZE 4096
1467
1468 #endif /* TARGET_S390X */
1469
1470 #ifdef TARGET_RISCV
1471
1472 #define ELF_START_MMAP 0x80000000
1473 #define ELF_ARCH EM_RISCV
1474
1475 #ifdef TARGET_RISCV32
1476 #define ELF_CLASS ELFCLASS32
1477 #else
1478 #define ELF_CLASS ELFCLASS64
1479 #endif
1480
1481 #define ELF_HWCAP get_elf_hwcap()
1482
1483 static uint32_t get_elf_hwcap(void)
1484 {
1485 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1486 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1487 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1488 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1489
1490 return cpu->env.misa_ext & mask;
1491 #undef MISA_BIT
1492 }
1493
1494 static inline void init_thread(struct target_pt_regs *regs,
1495 struct image_info *infop)
1496 {
1497 regs->sepc = infop->entry;
1498 regs->sp = infop->start_stack;
1499 }
1500
1501 #define ELF_EXEC_PAGESIZE 4096
1502
1503 #endif /* TARGET_RISCV */
1504
1505 #ifdef TARGET_HPPA
1506
1507 #define ELF_START_MMAP 0x80000000
1508 #define ELF_CLASS ELFCLASS32
1509 #define ELF_ARCH EM_PARISC
1510 #define ELF_PLATFORM "PARISC"
1511 #define STACK_GROWS_DOWN 0
1512 #define STACK_ALIGNMENT 64
1513
1514 static inline void init_thread(struct target_pt_regs *regs,
1515 struct image_info *infop)
1516 {
1517 regs->iaoq[0] = infop->entry;
1518 regs->iaoq[1] = infop->entry + 4;
1519 regs->gr[23] = 0;
1520 regs->gr[24] = infop->arg_start;
1521 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1522 /* The top-of-stack contains a linkage buffer. */
1523 regs->gr[30] = infop->start_stack + 64;
1524 regs->gr[31] = infop->entry;
1525 }
1526
1527 #endif /* TARGET_HPPA */
1528
1529 #ifdef TARGET_XTENSA
1530
1531 #define ELF_START_MMAP 0x20000000
1532
1533 #define ELF_CLASS ELFCLASS32
1534 #define ELF_ARCH EM_XTENSA
1535
1536 static inline void init_thread(struct target_pt_regs *regs,
1537 struct image_info *infop)
1538 {
1539 regs->windowbase = 0;
1540 regs->windowstart = 1;
1541 regs->areg[1] = infop->start_stack;
1542 regs->pc = infop->entry;
1543 }
1544
1545 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1546 #define ELF_NREG 128
1547 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1548
1549 enum {
1550 TARGET_REG_PC,
1551 TARGET_REG_PS,
1552 TARGET_REG_LBEG,
1553 TARGET_REG_LEND,
1554 TARGET_REG_LCOUNT,
1555 TARGET_REG_SAR,
1556 TARGET_REG_WINDOWSTART,
1557 TARGET_REG_WINDOWBASE,
1558 TARGET_REG_THREADPTR,
1559 TARGET_REG_AR0 = 64,
1560 };
1561
1562 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1563 const CPUXtensaState *env)
1564 {
1565 unsigned i;
1566
1567 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1568 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1569 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1570 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1571 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1572 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1573 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1574 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1575 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1576 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1577 for (i = 0; i < env->config->nareg; ++i) {
1578 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1579 }
1580 }
1581
1582 #define USE_ELF_CORE_DUMP
1583 #define ELF_EXEC_PAGESIZE 4096
1584
1585 #endif /* TARGET_XTENSA */
1586
1587 #ifdef TARGET_HEXAGON
1588
1589 #define ELF_START_MMAP 0x20000000
1590
1591 #define ELF_CLASS ELFCLASS32
1592 #define ELF_ARCH EM_HEXAGON
1593
1594 static inline void init_thread(struct target_pt_regs *regs,
1595 struct image_info *infop)
1596 {
1597 regs->sepc = infop->entry;
1598 regs->sp = infop->start_stack;
1599 }
1600
1601 #endif /* TARGET_HEXAGON */
1602
1603 #ifndef ELF_PLATFORM
1604 #define ELF_PLATFORM (NULL)
1605 #endif
1606
1607 #ifndef ELF_MACHINE
1608 #define ELF_MACHINE ELF_ARCH
1609 #endif
1610
1611 #ifndef elf_check_arch
1612 #define elf_check_arch(x) ((x) == ELF_ARCH)
1613 #endif
1614
1615 #ifndef elf_check_abi
1616 #define elf_check_abi(x) (1)
1617 #endif
1618
1619 #ifndef ELF_HWCAP
1620 #define ELF_HWCAP 0
1621 #endif
1622
1623 #ifndef STACK_GROWS_DOWN
1624 #define STACK_GROWS_DOWN 1
1625 #endif
1626
1627 #ifndef STACK_ALIGNMENT
1628 #define STACK_ALIGNMENT 16
1629 #endif
1630
1631 #ifdef TARGET_ABI32
1632 #undef ELF_CLASS
1633 #define ELF_CLASS ELFCLASS32
1634 #undef bswaptls
1635 #define bswaptls(ptr) bswap32s(ptr)
1636 #endif
1637
1638 #include "elf.h"
1639
1640 /* We must delay the following stanzas until after "elf.h". */
1641 #if defined(TARGET_AARCH64)
1642
1643 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1644 const uint32_t *data,
1645 struct image_info *info,
1646 Error **errp)
1647 {
1648 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1649 if (pr_datasz != sizeof(uint32_t)) {
1650 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1651 return false;
1652 }
1653 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1654 info->note_flags = *data;
1655 }
1656 return true;
1657 }
1658 #define ARCH_USE_GNU_PROPERTY 1
1659
1660 #else
1661
1662 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1663 const uint32_t *data,
1664 struct image_info *info,
1665 Error **errp)
1666 {
1667 g_assert_not_reached();
1668 }
1669 #define ARCH_USE_GNU_PROPERTY 0
1670
1671 #endif
1672
1673 struct exec
1674 {
1675 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1676 unsigned int a_text; /* length of text, in bytes */
1677 unsigned int a_data; /* length of data, in bytes */
1678 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1679 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1680 unsigned int a_entry; /* start address */
1681 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1682 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1683 };
1684
1685
1686 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1687 #define OMAGIC 0407
1688 #define NMAGIC 0410
1689 #define ZMAGIC 0413
1690 #define QMAGIC 0314
1691
1692 /* Necessary parameters */
1693 #define TARGET_ELF_EXEC_PAGESIZE \
1694 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1695 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1696 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1697 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1698 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1699 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1700
1701 #define DLINFO_ITEMS 16
1702
1703 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1704 {
1705 memcpy(to, from, n);
1706 }
1707
1708 #ifdef BSWAP_NEEDED
1709 static void bswap_ehdr(struct elfhdr *ehdr)
1710 {
1711 bswap16s(&ehdr->e_type); /* Object file type */
1712 bswap16s(&ehdr->e_machine); /* Architecture */
1713 bswap32s(&ehdr->e_version); /* Object file version */
1714 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1715 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1716 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1717 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1718 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1719 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1720 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1721 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1722 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1723 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1724 }
1725
1726 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1727 {
1728 int i;
1729 for (i = 0; i < phnum; ++i, ++phdr) {
1730 bswap32s(&phdr->p_type); /* Segment type */
1731 bswap32s(&phdr->p_flags); /* Segment flags */
1732 bswaptls(&phdr->p_offset); /* Segment file offset */
1733 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1734 bswaptls(&phdr->p_paddr); /* Segment physical address */
1735 bswaptls(&phdr->p_filesz); /* Segment size in file */
1736 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1737 bswaptls(&phdr->p_align); /* Segment alignment */
1738 }
1739 }
1740
1741 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1742 {
1743 int i;
1744 for (i = 0; i < shnum; ++i, ++shdr) {
1745 bswap32s(&shdr->sh_name);
1746 bswap32s(&shdr->sh_type);
1747 bswaptls(&shdr->sh_flags);
1748 bswaptls(&shdr->sh_addr);
1749 bswaptls(&shdr->sh_offset);
1750 bswaptls(&shdr->sh_size);
1751 bswap32s(&shdr->sh_link);
1752 bswap32s(&shdr->sh_info);
1753 bswaptls(&shdr->sh_addralign);
1754 bswaptls(&shdr->sh_entsize);
1755 }
1756 }
1757
1758 static void bswap_sym(struct elf_sym *sym)
1759 {
1760 bswap32s(&sym->st_name);
1761 bswaptls(&sym->st_value);
1762 bswaptls(&sym->st_size);
1763 bswap16s(&sym->st_shndx);
1764 }
1765
1766 #ifdef TARGET_MIPS
1767 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1768 {
1769 bswap16s(&abiflags->version);
1770 bswap32s(&abiflags->ases);
1771 bswap32s(&abiflags->isa_ext);
1772 bswap32s(&abiflags->flags1);
1773 bswap32s(&abiflags->flags2);
1774 }
1775 #endif
1776 #else
1777 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1778 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1779 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1780 static inline void bswap_sym(struct elf_sym *sym) { }
1781 #ifdef TARGET_MIPS
1782 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1783 #endif
1784 #endif
1785
1786 #ifdef USE_ELF_CORE_DUMP
1787 static int elf_core_dump(int, const CPUArchState *);
1788 #endif /* USE_ELF_CORE_DUMP */
1789 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1790
1791 /* Verify the portions of EHDR within E_IDENT for the target.
1792 This can be performed before bswapping the entire header. */
1793 static bool elf_check_ident(struct elfhdr *ehdr)
1794 {
1795 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1796 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1797 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1798 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1799 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1800 && ehdr->e_ident[EI_DATA] == ELF_DATA
1801 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1802 }
1803
1804 /* Verify the portions of EHDR outside of E_IDENT for the target.
1805 This has to wait until after bswapping the header. */
1806 static bool elf_check_ehdr(struct elfhdr *ehdr)
1807 {
1808 return (elf_check_arch(ehdr->e_machine)
1809 && elf_check_abi(ehdr->e_flags)
1810 && ehdr->e_ehsize == sizeof(struct elfhdr)
1811 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1812 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1813 }
1814
1815 /*
1816 * 'copy_elf_strings()' copies argument/envelope strings from user
1817 * memory to free pages in kernel mem. These are in a format ready
1818 * to be put directly into the top of new user memory.
1819 *
1820 */
1821 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1822 abi_ulong p, abi_ulong stack_limit)
1823 {
1824 char *tmp;
1825 int len, i;
1826 abi_ulong top = p;
1827
1828 if (!p) {
1829 return 0; /* bullet-proofing */
1830 }
1831
1832 if (STACK_GROWS_DOWN) {
1833 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1834 for (i = argc - 1; i >= 0; --i) {
1835 tmp = argv[i];
1836 if (!tmp) {
1837 fprintf(stderr, "VFS: argc is wrong");
1838 exit(-1);
1839 }
1840 len = strlen(tmp) + 1;
1841 tmp += len;
1842
1843 if (len > (p - stack_limit)) {
1844 return 0;
1845 }
1846 while (len) {
1847 int bytes_to_copy = (len > offset) ? offset : len;
1848 tmp -= bytes_to_copy;
1849 p -= bytes_to_copy;
1850 offset -= bytes_to_copy;
1851 len -= bytes_to_copy;
1852
1853 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1854
1855 if (offset == 0) {
1856 memcpy_to_target(p, scratch, top - p);
1857 top = p;
1858 offset = TARGET_PAGE_SIZE;
1859 }
1860 }
1861 }
1862 if (p != top) {
1863 memcpy_to_target(p, scratch + offset, top - p);
1864 }
1865 } else {
1866 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1867 for (i = 0; i < argc; ++i) {
1868 tmp = argv[i];
1869 if (!tmp) {
1870 fprintf(stderr, "VFS: argc is wrong");
1871 exit(-1);
1872 }
1873 len = strlen(tmp) + 1;
1874 if (len > (stack_limit - p)) {
1875 return 0;
1876 }
1877 while (len) {
1878 int bytes_to_copy = (len > remaining) ? remaining : len;
1879
1880 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1881
1882 tmp += bytes_to_copy;
1883 remaining -= bytes_to_copy;
1884 p += bytes_to_copy;
1885 len -= bytes_to_copy;
1886
1887 if (remaining == 0) {
1888 memcpy_to_target(top, scratch, p - top);
1889 top = p;
1890 remaining = TARGET_PAGE_SIZE;
1891 }
1892 }
1893 }
1894 if (p != top) {
1895 memcpy_to_target(top, scratch, p - top);
1896 }
1897 }
1898
1899 return p;
1900 }
1901
1902 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1903 * argument/environment space. Newer kernels (>2.6.33) allow more,
1904 * dependent on stack size, but guarantee at least 32 pages for
1905 * backwards compatibility.
1906 */
1907 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1908
1909 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1910 struct image_info *info)
1911 {
1912 abi_ulong size, error, guard;
1913
1914 size = guest_stack_size;
1915 if (size < STACK_LOWER_LIMIT) {
1916 size = STACK_LOWER_LIMIT;
1917 }
1918 guard = TARGET_PAGE_SIZE;
1919 if (guard < qemu_real_host_page_size) {
1920 guard = qemu_real_host_page_size;
1921 }
1922
1923 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1924 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1925 if (error == -1) {
1926 perror("mmap stack");
1927 exit(-1);
1928 }
1929
1930 /* We reserve one extra page at the top of the stack as guard. */
1931 if (STACK_GROWS_DOWN) {
1932 target_mprotect(error, guard, PROT_NONE);
1933 info->stack_limit = error + guard;
1934 return info->stack_limit + size - sizeof(void *);
1935 } else {
1936 target_mprotect(error + size, guard, PROT_NONE);
1937 info->stack_limit = error + size;
1938 return error;
1939 }
1940 }
1941
1942 /* Map and zero the bss. We need to explicitly zero any fractional pages
1943 after the data section (i.e. bss). */
1944 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1945 {
1946 uintptr_t host_start, host_map_start, host_end;
1947
1948 last_bss = TARGET_PAGE_ALIGN(last_bss);
1949
1950 /* ??? There is confusion between qemu_real_host_page_size and
1951 qemu_host_page_size here and elsewhere in target_mmap, which
1952 may lead to the end of the data section mapping from the file
1953 not being mapped. At least there was an explicit test and
1954 comment for that here, suggesting that "the file size must
1955 be known". The comment probably pre-dates the introduction
1956 of the fstat system call in target_mmap which does in fact
1957 find out the size. What isn't clear is if the workaround
1958 here is still actually needed. For now, continue with it,
1959 but merge it with the "normal" mmap that would allocate the bss. */
1960
1961 host_start = (uintptr_t) g2h_untagged(elf_bss);
1962 host_end = (uintptr_t) g2h_untagged(last_bss);
1963 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1964
1965 if (host_map_start < host_end) {
1966 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1967 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1968 if (p == MAP_FAILED) {
1969 perror("cannot mmap brk");
1970 exit(-1);
1971 }
1972 }
1973
1974 /* Ensure that the bss page(s) are valid */
1975 if ((page_get_flags(last_bss-1) & prot) != prot) {
1976 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1977 }
1978
1979 if (host_start < host_map_start) {
1980 memset((void *)host_start, 0, host_map_start - host_start);
1981 }
1982 }
1983
1984 #ifdef TARGET_ARM
1985 static int elf_is_fdpic(struct elfhdr *exec)
1986 {
1987 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1988 }
1989 #else
1990 /* Default implementation, always false. */
1991 static int elf_is_fdpic(struct elfhdr *exec)
1992 {
1993 return 0;
1994 }
1995 #endif
1996
1997 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1998 {
1999 uint16_t n;
2000 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2001
2002 /* elf32_fdpic_loadseg */
2003 n = info->nsegs;
2004 while (n--) {
2005 sp -= 12;
2006 put_user_u32(loadsegs[n].addr, sp+0);
2007 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2008 put_user_u32(loadsegs[n].p_memsz, sp+8);
2009 }
2010
2011 /* elf32_fdpic_loadmap */
2012 sp -= 4;
2013 put_user_u16(0, sp+0); /* version */
2014 put_user_u16(info->nsegs, sp+2); /* nsegs */
2015
2016 info->personality = PER_LINUX_FDPIC;
2017 info->loadmap_addr = sp;
2018
2019 return sp;
2020 }
2021
2022 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2023 struct elfhdr *exec,
2024 struct image_info *info,
2025 struct image_info *interp_info)
2026 {
2027 abi_ulong sp;
2028 abi_ulong u_argc, u_argv, u_envp, u_auxv;
2029 int size;
2030 int i;
2031 abi_ulong u_rand_bytes;
2032 uint8_t k_rand_bytes[16];
2033 abi_ulong u_platform;
2034 const char *k_platform;
2035 const int n = sizeof(elf_addr_t);
2036
2037 sp = p;
2038
2039 /* Needs to be before we load the env/argc/... */
2040 if (elf_is_fdpic(exec)) {
2041 /* Need 4 byte alignment for these structs */
2042 sp &= ~3;
2043 sp = loader_build_fdpic_loadmap(info, sp);
2044 info->other_info = interp_info;
2045 if (interp_info) {
2046 interp_info->other_info = info;
2047 sp = loader_build_fdpic_loadmap(interp_info, sp);
2048 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2049 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2050 } else {
2051 info->interpreter_loadmap_addr = 0;
2052 info->interpreter_pt_dynamic_addr = 0;
2053 }
2054 }
2055
2056 u_platform = 0;
2057 k_platform = ELF_PLATFORM;
2058 if (k_platform) {
2059 size_t len = strlen(k_platform) + 1;
2060 if (STACK_GROWS_DOWN) {
2061 sp -= (len + n - 1) & ~(n - 1);
2062 u_platform = sp;
2063 /* FIXME - check return value of memcpy_to_target() for failure */
2064 memcpy_to_target(sp, k_platform, len);
2065 } else {
2066 memcpy_to_target(sp, k_platform, len);
2067 u_platform = sp;
2068 sp += len + 1;
2069 }
2070 }
2071
2072 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2073 * the argv and envp pointers.
2074 */
2075 if (STACK_GROWS_DOWN) {
2076 sp = QEMU_ALIGN_DOWN(sp, 16);
2077 } else {
2078 sp = QEMU_ALIGN_UP(sp, 16);
2079 }
2080
2081 /*
2082 * Generate 16 random bytes for userspace PRNG seeding.
2083 */
2084 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2085 if (STACK_GROWS_DOWN) {
2086 sp -= 16;
2087 u_rand_bytes = sp;
2088 /* FIXME - check return value of memcpy_to_target() for failure */
2089 memcpy_to_target(sp, k_rand_bytes, 16);
2090 } else {
2091 memcpy_to_target(sp, k_rand_bytes, 16);
2092 u_rand_bytes = sp;
2093 sp += 16;
2094 }
2095
2096 size = (DLINFO_ITEMS + 1) * 2;
2097 if (k_platform)
2098 size += 2;
2099 #ifdef DLINFO_ARCH_ITEMS
2100 size += DLINFO_ARCH_ITEMS * 2;
2101 #endif
2102 #ifdef ELF_HWCAP2
2103 size += 2;
2104 #endif
2105 info->auxv_len = size * n;
2106
2107 size += envc + argc + 2;
2108 size += 1; /* argc itself */
2109 size *= n;
2110
2111 /* Allocate space and finalize stack alignment for entry now. */
2112 if (STACK_GROWS_DOWN) {
2113 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2114 sp = u_argc;
2115 } else {
2116 u_argc = sp;
2117 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2118 }
2119
2120 u_argv = u_argc + n;
2121 u_envp = u_argv + (argc + 1) * n;
2122 u_auxv = u_envp + (envc + 1) * n;
2123 info->saved_auxv = u_auxv;
2124 info->arg_start = u_argv;
2125 info->arg_end = u_argv + argc * n;
2126
2127 /* This is correct because Linux defines
2128 * elf_addr_t as Elf32_Off / Elf64_Off
2129 */
2130 #define NEW_AUX_ENT(id, val) do { \
2131 put_user_ual(id, u_auxv); u_auxv += n; \
2132 put_user_ual(val, u_auxv); u_auxv += n; \
2133 } while(0)
2134
2135 #ifdef ARCH_DLINFO
2136 /*
2137 * ARCH_DLINFO must come first so platform specific code can enforce
2138 * special alignment requirements on the AUXV if necessary (eg. PPC).
2139 */
2140 ARCH_DLINFO;
2141 #endif
2142 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2143 * on info->auxv_len will trigger.
2144 */
2145 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2146 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2147 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2148 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2149 /* Target doesn't support host page size alignment */
2150 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2151 } else {
2152 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2153 qemu_host_page_size)));
2154 }
2155 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2156 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2157 NEW_AUX_ENT(AT_ENTRY, info->entry);
2158 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2159 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2160 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2161 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2162 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2163 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2164 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2165 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2166 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2167
2168 #ifdef ELF_HWCAP2
2169 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2170 #endif
2171
2172 if (u_platform) {
2173 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2174 }
2175 NEW_AUX_ENT (AT_NULL, 0);
2176 #undef NEW_AUX_ENT
2177
2178 /* Check that our initial calculation of the auxv length matches how much
2179 * we actually put into it.
2180 */
2181 assert(info->auxv_len == u_auxv - info->saved_auxv);
2182
2183 put_user_ual(argc, u_argc);
2184
2185 p = info->arg_strings;
2186 for (i = 0; i < argc; ++i) {
2187 put_user_ual(p, u_argv);
2188 u_argv += n;
2189 p += target_strlen(p) + 1;
2190 }
2191 put_user_ual(0, u_argv);
2192
2193 p = info->env_strings;
2194 for (i = 0; i < envc; ++i) {
2195 put_user_ual(p, u_envp);
2196 u_envp += n;
2197 p += target_strlen(p) + 1;
2198 }
2199 put_user_ual(0, u_envp);
2200
2201 return sp;
2202 }
2203
2204 #if defined(HI_COMMPAGE)
2205 #define LO_COMMPAGE 0
2206 #elif defined(LO_COMMPAGE)
2207 #define HI_COMMPAGE 0
2208 #else
2209 #define HI_COMMPAGE 0
2210 #define LO_COMMPAGE 0
2211 #define init_guest_commpage() true
2212 #endif
2213
2214 static void pgb_fail_in_use(const char *image_name)
2215 {
2216 error_report("%s: requires virtual address space that is in use "
2217 "(omit the -B option or choose a different value)",
2218 image_name);
2219 exit(EXIT_FAILURE);
2220 }
2221
2222 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2223 abi_ulong guest_hiaddr, long align)
2224 {
2225 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2226 void *addr, *test;
2227
2228 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2229 fprintf(stderr, "Requested guest base %p does not satisfy "
2230 "host minimum alignment (0x%lx)\n",
2231 (void *)guest_base, align);
2232 exit(EXIT_FAILURE);
2233 }
2234
2235 /* Sanity check the guest binary. */
2236 if (reserved_va) {
2237 if (guest_hiaddr > reserved_va) {
2238 error_report("%s: requires more than reserved virtual "
2239 "address space (0x%" PRIx64 " > 0x%lx)",
2240 image_name, (uint64_t)guest_hiaddr, reserved_va);
2241 exit(EXIT_FAILURE);
2242 }
2243 } else {
2244 #if HOST_LONG_BITS < TARGET_ABI_BITS
2245 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2246 error_report("%s: requires more virtual address space "
2247 "than the host can provide (0x%" PRIx64 ")",
2248 image_name, (uint64_t)guest_hiaddr - guest_base);
2249 exit(EXIT_FAILURE);
2250 }
2251 #endif
2252 }
2253
2254 /*
2255 * Expand the allocation to the entire reserved_va.
2256 * Exclude the mmap_min_addr hole.
2257 */
2258 if (reserved_va) {
2259 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2260 : mmap_min_addr - guest_base);
2261 guest_hiaddr = reserved_va;
2262 }
2263
2264 /* Reserve the address space for the binary, or reserved_va. */
2265 test = g2h_untagged(guest_loaddr);
2266 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2267 if (test != addr) {
2268 pgb_fail_in_use(image_name);
2269 }
2270 }
2271
2272 /**
2273 * pgd_find_hole_fallback: potential mmap address
2274 * @guest_size: size of available space
2275 * @brk: location of break
2276 * @align: memory alignment
2277 *
2278 * This is a fallback method for finding a hole in the host address
2279 * space if we don't have the benefit of being able to access
2280 * /proc/self/map. It can potentially take a very long time as we can
2281 * only dumbly iterate up the host address space seeing if the
2282 * allocation would work.
2283 */
2284 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2285 long align, uintptr_t offset)
2286 {
2287 uintptr_t base;
2288
2289 /* Start (aligned) at the bottom and work our way up */
2290 base = ROUND_UP(mmap_min_addr, align);
2291
2292 while (true) {
2293 uintptr_t align_start, end;
2294 align_start = ROUND_UP(base, align);
2295 end = align_start + guest_size + offset;
2296
2297 /* if brk is anywhere in the range give ourselves some room to grow. */
2298 if (align_start <= brk && brk < end) {
2299 base = brk + (16 * MiB);
2300 continue;
2301 } else if (align_start + guest_size < align_start) {
2302 /* we have run out of space */
2303 return -1;
2304 } else {
2305 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2306 MAP_FIXED_NOREPLACE;
2307 void * mmap_start = mmap((void *) align_start, guest_size,
2308 PROT_NONE, flags, -1, 0);
2309 if (mmap_start != MAP_FAILED) {
2310 munmap(mmap_start, guest_size);
2311 if (mmap_start == (void *) align_start) {
2312 return (uintptr_t) mmap_start + offset;
2313 }
2314 }
2315 base += qemu_host_page_size;
2316 }
2317 }
2318 }
2319
2320 /* Return value for guest_base, or -1 if no hole found. */
2321 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2322 long align, uintptr_t offset)
2323 {
2324 GSList *maps, *iter;
2325 uintptr_t this_start, this_end, next_start, brk;
2326 intptr_t ret = -1;
2327
2328 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2329
2330 maps = read_self_maps();
2331
2332 /* Read brk after we've read the maps, which will malloc. */
2333 brk = (uintptr_t)sbrk(0);
2334
2335 if (!maps) {
2336 ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2337 return ret == -1 ? -1 : ret - guest_loaddr;
2338 }
2339
2340 /* The first hole is before the first map entry. */
2341 this_start = mmap_min_addr;
2342
2343 for (iter = maps; iter;
2344 this_start = next_start, iter = g_slist_next(iter)) {
2345 uintptr_t align_start, hole_size;
2346
2347 this_end = ((MapInfo *)iter->data)->start;
2348 next_start = ((MapInfo *)iter->data)->end;
2349 align_start = ROUND_UP(this_start + offset, align);
2350
2351 /* Skip holes that are too small. */
2352 if (align_start >= this_end) {
2353 continue;
2354 }
2355 hole_size = this_end - align_start;
2356 if (hole_size < guest_size) {
2357 continue;
2358 }
2359
2360 /* If this hole contains brk, give ourselves some room to grow. */
2361 if (this_start <= brk && brk < this_end) {
2362 hole_size -= guest_size;
2363 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2364 align_start += 1 * GiB;
2365 } else if (hole_size >= 16 * MiB) {
2366 align_start += 16 * MiB;
2367 } else {
2368 align_start = (this_end - guest_size) & -align;
2369 if (align_start < this_start) {
2370 continue;
2371 }
2372 }
2373 }
2374
2375 /* Record the lowest successful match. */
2376 if (ret < 0) {
2377 ret = align_start - guest_loaddr;
2378 }
2379 /* If this hole contains the identity map, select it. */
2380 if (align_start <= guest_loaddr &&
2381 guest_loaddr + guest_size <= this_end) {
2382 ret = 0;
2383 }
2384 /* If this hole ends above the identity map, stop looking. */
2385 if (this_end >= guest_loaddr) {
2386 break;
2387 }
2388 }
2389 free_self_maps(maps);
2390
2391 return ret;
2392 }
2393
2394 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2395 abi_ulong orig_hiaddr, long align)
2396 {
2397 uintptr_t loaddr = orig_loaddr;
2398 uintptr_t hiaddr = orig_hiaddr;
2399 uintptr_t offset = 0;
2400 uintptr_t addr;
2401
2402 if (hiaddr != orig_hiaddr) {
2403 error_report("%s: requires virtual address space that the "
2404 "host cannot provide (0x%" PRIx64 ")",
2405 image_name, (uint64_t)orig_hiaddr);
2406 exit(EXIT_FAILURE);
2407 }
2408
2409 loaddr &= -align;
2410 if (HI_COMMPAGE) {
2411 /*
2412 * Extend the allocation to include the commpage.
2413 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2414 * need to ensure there is space bellow the guest_base so we
2415 * can map the commpage in the place needed when the address
2416 * arithmetic wraps around.
2417 */
2418 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2419 hiaddr = (uintptr_t) 4 << 30;
2420 } else {
2421 offset = -(HI_COMMPAGE & -align);
2422 }
2423 } else if (LO_COMMPAGE != 0) {
2424 loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2425 }
2426
2427 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2428 if (addr == -1) {
2429 /*
2430 * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2431 * that can satisfy both. But as the normal arm32 link base address
2432 * is ~32k, and we extend down to include the commpage, making the
2433 * overhead only ~96k, this is unlikely.
2434 */
2435 error_report("%s: Unable to allocate %#zx bytes of "
2436 "virtual address space", image_name,
2437 (size_t)(hiaddr - loaddr));
2438 exit(EXIT_FAILURE);
2439 }
2440
2441 guest_base = addr;
2442 }
2443
2444 static void pgb_dynamic(const char *image_name, long align)
2445 {
2446 /*
2447 * The executable is dynamic and does not require a fixed address.
2448 * All we need is a commpage that satisfies align.
2449 * If we do not need a commpage, leave guest_base == 0.
2450 */
2451 if (HI_COMMPAGE) {
2452 uintptr_t addr, commpage;
2453
2454 /* 64-bit hosts should have used reserved_va. */
2455 assert(sizeof(uintptr_t) == 4);
2456
2457 /*
2458 * By putting the commpage at the first hole, that puts guest_base
2459 * just above that, and maximises the positive guest addresses.
2460 */
2461 commpage = HI_COMMPAGE & -align;
2462 addr = pgb_find_hole(commpage, -commpage, align, 0);
2463 assert(addr != -1);
2464 guest_base = addr;
2465 }
2466 }
2467
2468 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2469 abi_ulong guest_hiaddr, long align)
2470 {
2471 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2472 void *addr, *test;
2473
2474 if (guest_hiaddr > reserved_va) {
2475 error_report("%s: requires more than reserved virtual "
2476 "address space (0x%" PRIx64 " > 0x%lx)",
2477 image_name, (uint64_t)guest_hiaddr, reserved_va);
2478 exit(EXIT_FAILURE);
2479 }
2480
2481 /* Widen the "image" to the entire reserved address space. */
2482 pgb_static(image_name, 0, reserved_va, align);
2483
2484 /* osdep.h defines this as 0 if it's missing */
2485 flags |= MAP_FIXED_NOREPLACE;
2486
2487 /* Reserve the memory on the host. */
2488 assert(guest_base != 0);
2489 test = g2h_untagged(0);
2490 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2491 if (addr == MAP_FAILED || addr != test) {
2492 error_report("Unable to reserve 0x%lx bytes of virtual address "
2493 "space at %p (%s) for use as guest address space (check your"
2494 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2495 "using -R option)", reserved_va, test, strerror(errno));
2496 exit(EXIT_FAILURE);
2497 }
2498 }
2499
2500 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2501 abi_ulong guest_hiaddr)
2502 {
2503 /* In order to use host shmat, we must be able to honor SHMLBA. */
2504 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2505
2506 if (have_guest_base) {
2507 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2508 } else if (reserved_va) {
2509 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2510 } else if (guest_loaddr) {
2511 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2512 } else {
2513 pgb_dynamic(image_name, align);
2514 }
2515
2516 /* Reserve and initialize the commpage. */
2517 if (!init_guest_commpage()) {
2518 /*
2519 * With have_guest_base, the user has selected the address and
2520 * we are trying to work with that. Otherwise, we have selected
2521 * free space and init_guest_commpage must succeeded.
2522 */
2523 assert(have_guest_base);
2524 pgb_fail_in_use(image_name);
2525 }
2526
2527 assert(QEMU_IS_ALIGNED(guest_base, align));
2528 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2529 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2530 }
2531
2532 enum {
2533 /* The string "GNU\0" as a magic number. */
2534 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2535 NOTE_DATA_SZ = 1 * KiB,
2536 NOTE_NAME_SZ = 4,
2537 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2538 };
2539
2540 /*
2541 * Process a single gnu_property entry.
2542 * Return false for error.
2543 */
2544 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2545 struct image_info *info, bool have_prev_type,
2546 uint32_t *prev_type, Error **errp)
2547 {
2548 uint32_t pr_type, pr_datasz, step;
2549
2550 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2551 goto error_data;
2552 }
2553 datasz -= *off;
2554 data += *off / sizeof(uint32_t);
2555
2556 if (datasz < 2 * sizeof(uint32_t)) {
2557 goto error_data;
2558 }
2559 pr_type = data[0];
2560 pr_datasz = data[1];
2561 data += 2;
2562 datasz -= 2 * sizeof(uint32_t);
2563 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2564 if (step > datasz) {
2565 goto error_data;
2566 }
2567
2568 /* Properties are supposed to be unique and sorted on pr_type. */
2569 if (have_prev_type && pr_type <= *prev_type) {
2570 if (pr_type == *prev_type) {
2571 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2572 } else {
2573 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2574 }
2575 return false;
2576 }
2577 *prev_type = pr_type;
2578
2579 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2580 return false;
2581 }
2582
2583 *off += 2 * sizeof(uint32_t) + step;
2584 return true;
2585
2586 error_data:
2587 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2588 return false;
2589 }
2590
2591 /* Process NT_GNU_PROPERTY_TYPE_0. */
2592 static bool parse_elf_properties(int image_fd,
2593 struct image_info *info,
2594 const struct elf_phdr *phdr,
2595 char bprm_buf[BPRM_BUF_SIZE],
2596 Error **errp)
2597 {
2598 union {
2599 struct elf_note nhdr;
2600 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2601 } note;
2602
2603 int n, off, datasz;
2604 bool have_prev_type;
2605 uint32_t prev_type;
2606
2607 /* Unless the arch requires properties, ignore them. */
2608 if (!ARCH_USE_GNU_PROPERTY) {
2609 return true;
2610 }
2611
2612 /* If the properties are crazy large, that's too bad. */
2613 n = phdr->p_filesz;
2614 if (n > sizeof(note)) {
2615 error_setg(errp, "PT_GNU_PROPERTY too large");
2616 return false;
2617 }
2618 if (n < sizeof(note.nhdr)) {
2619 error_setg(errp, "PT_GNU_PROPERTY too small");
2620 return false;
2621 }
2622
2623 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2624 memcpy(&note, bprm_buf + phdr->p_offset, n);
2625 } else {
2626 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2627 if (len != n) {
2628 error_setg_errno(errp, errno, "Error reading file header");
2629 return false;
2630 }
2631 }
2632
2633 /*
2634 * The contents of a valid PT_GNU_PROPERTY is a sequence
2635 * of uint32_t -- swap them all now.
2636 */
2637 #ifdef BSWAP_NEEDED
2638 for (int i = 0; i < n / 4; i++) {
2639 bswap32s(note.data + i);
2640 }
2641 #endif
2642
2643 /*
2644 * Note that nhdr is 3 words, and that the "name" described by namesz
2645 * immediately follows nhdr and is thus at the 4th word. Further, all
2646 * of the inputs to the kernel's round_up are multiples of 4.
2647 */
2648 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2649 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2650 note.data[3] != GNU0_MAGIC) {
2651 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2652 return false;
2653 }
2654 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2655
2656 datasz = note.nhdr.n_descsz + off;
2657 if (datasz > n) {
2658 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2659 return false;
2660 }
2661
2662 have_prev_type = false;
2663 prev_type = 0;
2664 while (1) {
2665 if (off == datasz) {
2666 return true; /* end, exit ok */
2667 }
2668 if (!parse_elf_property(note.data, &off, datasz, info,
2669 have_prev_type, &prev_type, errp)) {
2670 return false;
2671 }
2672 have_prev_type = true;
2673 }
2674 }
2675
2676 /* Load an ELF image into the address space.
2677
2678 IMAGE_NAME is the filename of the image, to use in error messages.
2679 IMAGE_FD is the open file descriptor for the image.
2680
2681 BPRM_BUF is a copy of the beginning of the file; this of course
2682 contains the elf file header at offset 0. It is assumed that this
2683 buffer is sufficiently aligned to present no problems to the host
2684 in accessing data at aligned offsets within the buffer.
2685
2686 On return: INFO values will be filled in, as necessary or available. */
2687
2688 static void load_elf_image(const char *image_name, int image_fd,
2689 struct image_info *info, char **pinterp_name,
2690 char bprm_buf[BPRM_BUF_SIZE])
2691 {
2692 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2693 struct elf_phdr *phdr;
2694 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2695 int i, retval, prot_exec;
2696 Error *err = NULL;
2697
2698 /* First of all, some simple consistency checks */
2699 if (!elf_check_ident(ehdr)) {
2700 error_setg(&err, "Invalid ELF image for this architecture");
2701 goto exit_errmsg;
2702 }
2703 bswap_ehdr(ehdr);
2704 if (!elf_check_ehdr(ehdr)) {
2705 error_setg(&err, "Invalid ELF image for this architecture");
2706 goto exit_errmsg;
2707 }
2708
2709 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2710 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2711 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2712 } else {
2713 phdr = (struct elf_phdr *) alloca(i);
2714 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2715 if (retval != i) {
2716 goto exit_read;
2717 }
2718 }
2719 bswap_phdr(phdr, ehdr->e_phnum);
2720
2721 info->nsegs = 0;
2722 info->pt_dynamic_addr = 0;
2723
2724 mmap_lock();
2725
2726 /*
2727 * Find the maximum size of the image and allocate an appropriate
2728 * amount of memory to handle that. Locate the interpreter, if any.
2729 */
2730 loaddr = -1, hiaddr = 0;
2731 info->alignment = 0;
2732 for (i = 0; i < ehdr->e_phnum; ++i) {
2733 struct elf_phdr *eppnt = phdr + i;
2734 if (eppnt->p_type == PT_LOAD) {
2735 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2736 if (a < loaddr) {
2737 loaddr = a;
2738 }
2739 a = eppnt->p_vaddr + eppnt->p_memsz;
2740 if (a > hiaddr) {
2741 hiaddr = a;
2742 }
2743 ++info->nsegs;
2744 info->alignment |= eppnt->p_align;
2745 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2746 g_autofree char *interp_name = NULL;
2747
2748 if (*pinterp_name) {
2749 error_setg(&err, "Multiple PT_INTERP entries");
2750 goto exit_errmsg;
2751 }
2752
2753 interp_name = g_malloc(eppnt->p_filesz);
2754
2755 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2756 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2757 eppnt->p_filesz);
2758 } else {
2759 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2760 eppnt->p_offset);
2761 if (retval != eppnt->p_filesz) {
2762 goto exit_read;
2763 }
2764 }
2765 if (interp_name[eppnt->p_filesz - 1] != 0) {
2766 error_setg(&err, "Invalid PT_INTERP entry");
2767 goto exit_errmsg;
2768 }
2769 *pinterp_name = g_steal_pointer(&interp_name);
2770 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2771 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2772 goto exit_errmsg;
2773 }
2774 }
2775 }
2776
2777 if (pinterp_name != NULL) {
2778 /*
2779 * This is the main executable.
2780 *
2781 * Reserve extra space for brk.
2782 * We hold on to this space while placing the interpreter
2783 * and the stack, lest they be placed immediately after
2784 * the data segment and block allocation from the brk.
2785 *
2786 * 16MB is chosen as "large enough" without being so large
2787 * as to allow the result to not fit with a 32-bit guest on
2788 * a 32-bit host.
2789 */
2790 info->reserve_brk = 16 * MiB;
2791 hiaddr += info->reserve_brk;
2792
2793 if (ehdr->e_type == ET_EXEC) {
2794 /*
2795 * Make sure that the low address does not conflict with
2796 * MMAP_MIN_ADDR or the QEMU application itself.
2797 */
2798 probe_guest_base(image_name, loaddr, hiaddr);
2799 } else {
2800 /*
2801 * The binary is dynamic, but we still need to
2802 * select guest_base. In this case we pass a size.
2803 */
2804 probe_guest_base(image_name, 0, hiaddr - loaddr);
2805 }
2806 }
2807
2808 /*
2809 * Reserve address space for all of this.
2810 *
2811 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2812 * exactly the address range that is required.
2813 *
2814 * Otherwise this is ET_DYN, and we are searching for a location
2815 * that can hold the memory space required. If the image is
2816 * pre-linked, LOADDR will be non-zero, and the kernel should
2817 * honor that address if it happens to be free.
2818 *
2819 * In both cases, we will overwrite pages in this range with mappings
2820 * from the executable.
2821 */
2822 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2823 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2824 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2825 -1, 0);
2826 if (load_addr == -1) {
2827 goto exit_mmap;
2828 }
2829 load_bias = load_addr - loaddr;
2830
2831 if (elf_is_fdpic(ehdr)) {
2832 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2833 g_malloc(sizeof(*loadsegs) * info->nsegs);
2834
2835 for (i = 0; i < ehdr->e_phnum; ++i) {
2836 switch (phdr[i].p_type) {
2837 case PT_DYNAMIC:
2838 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2839 break;
2840 case PT_LOAD:
2841 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2842 loadsegs->p_vaddr = phdr[i].p_vaddr;
2843 loadsegs->p_memsz = phdr[i].p_memsz;
2844 ++loadsegs;
2845 break;
2846 }
2847 }
2848 }
2849
2850 info->load_bias = load_bias;
2851 info->code_offset = load_bias;
2852 info->data_offset = load_bias;
2853 info->load_addr = load_addr;
2854 info->entry = ehdr->e_entry + load_bias;
2855 info->start_code = -1;
2856 info->end_code = 0;
2857 info->start_data = -1;
2858 info->end_data = 0;
2859 info->brk = 0;
2860 info->elf_flags = ehdr->e_flags;
2861
2862 prot_exec = PROT_EXEC;
2863 #ifdef TARGET_AARCH64
2864 /*
2865 * If the BTI feature is present, this indicates that the executable
2866 * pages of the startup binary should be mapped with PROT_BTI, so that
2867 * branch targets are enforced.
2868 *
2869 * The startup binary is either the interpreter or the static executable.
2870 * The interpreter is responsible for all pages of a dynamic executable.
2871 *
2872 * Elf notes are backward compatible to older cpus.
2873 * Do not enable BTI unless it is supported.
2874 */
2875 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2876 && (pinterp_name == NULL || *pinterp_name == 0)
2877 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2878 prot_exec |= TARGET_PROT_BTI;
2879 }
2880 #endif
2881
2882 for (i = 0; i < ehdr->e_phnum; i++) {
2883 struct elf_phdr *eppnt = phdr + i;
2884 if (eppnt->p_type == PT_LOAD) {
2885 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2886 int elf_prot = 0;
2887
2888 if (eppnt->p_flags & PF_R) {
2889 elf_prot |= PROT_READ;
2890 }
2891 if (eppnt->p_flags & PF_W) {
2892 elf_prot |= PROT_WRITE;
2893 }
2894 if (eppnt->p_flags & PF_X) {
2895 elf_prot |= prot_exec;
2896 }
2897
2898 vaddr = load_bias + eppnt->p_vaddr;
2899 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2900 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2901
2902 vaddr_ef = vaddr + eppnt->p_filesz;
2903 vaddr_em = vaddr + eppnt->p_memsz;
2904
2905 /*
2906 * Some segments may be completely empty, with a non-zero p_memsz
2907 * but no backing file segment.
2908 */
2909 if (eppnt->p_filesz != 0) {
2910 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2911 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2912 MAP_PRIVATE | MAP_FIXED,
2913 image_fd, eppnt->p_offset - vaddr_po);
2914
2915 if (error == -1) {
2916 goto exit_mmap;
2917 }
2918
2919 /*
2920 * If the load segment requests extra zeros (e.g. bss), map it.
2921 */
2922 if (eppnt->p_filesz < eppnt->p_memsz) {
2923 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2924 }
2925 } else if (eppnt->p_memsz != 0) {
2926 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2927 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2928 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2929 -1, 0);
2930
2931 if (error == -1) {
2932 goto exit_mmap;
2933 }
2934 }
2935
2936 /* Find the full program boundaries. */
2937 if (elf_prot & PROT_EXEC) {
2938 if (vaddr < info->start_code) {
2939 info->start_code = vaddr;
2940 }
2941 if (vaddr_ef > info->end_code) {
2942 info->end_code = vaddr_ef;
2943 }
2944 }
2945 if (elf_prot & PROT_WRITE) {
2946 if (vaddr < info->start_data) {
2947 info->start_data = vaddr;
2948 }
2949 if (vaddr_ef > info->end_data) {
2950 info->end_data = vaddr_ef;
2951 }
2952 }
2953 if (vaddr_em > info->brk) {
2954 info->brk = vaddr_em;
2955 }
2956 #ifdef TARGET_MIPS
2957 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2958 Mips_elf_abiflags_v0 abiflags;
2959 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2960 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2961 goto exit_errmsg;
2962 }
2963 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2964 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2965 sizeof(Mips_elf_abiflags_v0));
2966 } else {
2967 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2968 eppnt->p_offset);
2969 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2970 goto exit_read;
2971 }
2972 }
2973 bswap_mips_abiflags(&abiflags);
2974 info->fp_abi = abiflags.fp_abi;
2975 #endif
2976 }
2977 }
2978
2979 if (info->end_data == 0) {
2980 info->start_data = info->end_code;
2981 info->end_data = info->end_code;
2982 }
2983
2984 if (qemu_log_enabled()) {
2985 load_symbols(ehdr, image_fd, load_bias);
2986 }
2987
2988 mmap_unlock();
2989
2990 close(image_fd);
2991 return;
2992
2993 exit_read:
2994 if (retval >= 0) {
2995 error_setg(&err, "Incomplete read of file header");
2996 } else {
2997 error_setg_errno(&err, errno, "Error reading file header");
2998 }
2999 goto exit_errmsg;
3000 exit_mmap:
3001 error_setg_errno(&err, errno, "Error mapping file");
3002 goto exit_errmsg;
3003 exit_errmsg:
3004 error_reportf_err(err, "%s: ", image_name);
3005 exit(-1);
3006 }
3007
3008 static void load_elf_interp(const char *filename, struct image_info *info,
3009 char bprm_buf[BPRM_BUF_SIZE])
3010 {
3011 int fd, retval;
3012 Error *err = NULL;
3013
3014 fd = open(path(filename), O_RDONLY);
3015 if (fd < 0) {
3016 error_setg_file_open(&err, errno, filename);
3017 error_report_err(err);
3018 exit(-1);
3019 }
3020
3021 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3022 if (retval < 0) {
3023 error_setg_errno(&err, errno, "Error reading file header");
3024 error_reportf_err(err, "%s: ", filename);
3025 exit(-1);
3026 }
3027
3028 if (retval < BPRM_BUF_SIZE) {
3029 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3030 }
3031
3032 load_elf_image(filename, fd, info, NULL, bprm_buf);
3033 }
3034
3035 static int symfind(const void *s0, const void *s1)
3036 {
3037 target_ulong addr = *(target_ulong *)s0;
3038 struct elf_sym *sym = (struct elf_sym *)s1;
3039 int result = 0;
3040 if (addr < sym->st_value) {
3041 result = -1;
3042 } else if (addr >= sym->st_value + sym->st_size) {
3043 result = 1;
3044 }
3045 return result;
3046 }
3047
3048 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3049 {
3050 #if ELF_CLASS == ELFCLASS32
3051 struct elf_sym *syms = s->disas_symtab.elf32;
3052 #else
3053 struct elf_sym *syms = s->disas_symtab.elf64;
3054 #endif
3055
3056 // binary search
3057 struct elf_sym *sym;
3058
3059 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3060 if (sym != NULL) {
3061 return s->disas_strtab + sym->st_name;
3062 }
3063
3064 return "";
3065 }
3066
3067 /* FIXME: This should use elf_ops.h */
3068 static int symcmp(const void *s0, const void *s1)
3069 {
3070 struct elf_sym *sym0 = (struct elf_sym *)s0;
3071 struct elf_sym *sym1 = (struct elf_sym *)s1;
3072 return (sym0->st_value < sym1->st_value)
3073 ? -1
3074 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3075 }
3076
3077 /* Best attempt to load symbols from this ELF object. */
3078 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3079 {
3080 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3081 uint64_t segsz;
3082 struct elf_shdr *shdr;
3083 char *strings = NULL;
3084 struct syminfo *s = NULL;
3085 struct elf_sym *new_syms, *syms = NULL;
3086
3087 shnum = hdr->e_shnum;
3088 i = shnum * sizeof(struct elf_shdr);
3089 shdr = (struct elf_shdr *)alloca(i);
3090 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3091 return;
3092 }
3093
3094 bswap_shdr(shdr, shnum);
3095 for (i = 0; i < shnum; ++i) {
3096 if (shdr[i].sh_type == SHT_SYMTAB) {
3097 sym_idx = i;
3098 str_idx = shdr[i].sh_link;
3099 goto found;
3100 }
3101 }
3102
3103 /* There will be no symbol table if the file was stripped. */
3104 return;
3105
3106 found:
3107 /* Now know where the strtab and symtab are. Snarf them. */
3108 s = g_try_new(struct syminfo, 1);
3109 if (!s) {
3110 goto give_up;
3111 }
3112
3113 segsz = shdr[str_idx].sh_size;
3114 s->disas_strtab = strings = g_try_malloc(segsz);
3115 if (!strings ||
3116 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3117 goto give_up;
3118 }
3119
3120 segsz = shdr[sym_idx].sh_size;
3121 syms = g_try_malloc(segsz);
3122 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3123 goto give_up;
3124 }
3125
3126 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3127 /* Implausibly large symbol table: give up rather than ploughing
3128 * on with the number of symbols calculation overflowing
3129 */
3130 goto give_up;
3131 }
3132 nsyms = segsz / sizeof(struct elf_sym);
3133 for (i = 0; i < nsyms; ) {
3134 bswap_sym(syms + i);
3135 /* Throw away entries which we do not need. */
3136 if (syms[i].st_shndx == SHN_UNDEF
3137 || syms[i].st_shndx >= SHN_LORESERVE
3138 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3139 if (i < --nsyms) {
3140 syms[i] = syms[nsyms];
3141 }
3142 } else {
3143 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3144 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3145 syms[i].st_value &= ~(target_ulong)1;
3146 #endif
3147 syms[i].st_value += load_bias;
3148 i++;
3149 }
3150 }
3151
3152 /* No "useful" symbol. */
3153 if (nsyms == 0) {
3154 goto give_up;
3155 }
3156
3157 /* Attempt to free the storage associated with the local symbols
3158 that we threw away. Whether or not this has any effect on the
3159 memory allocation depends on the malloc implementation and how
3160 many symbols we managed to discard. */
3161 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3162 if (new_syms == NULL) {
3163 goto give_up;
3164 }
3165 syms = new_syms;
3166
3167 qsort(syms, nsyms, sizeof(*syms), symcmp);
3168
3169 s->disas_num_syms = nsyms;
3170 #if ELF_CLASS == ELFCLASS32
3171 s->disas_symtab.elf32 = syms;
3172 #else
3173 s->disas_symtab.elf64 = syms;
3174 #endif
3175 s->lookup_symbol = lookup_symbolxx;
3176 s->next = syminfos;
3177 syminfos = s;
3178
3179 return;
3180
3181 give_up:
3182 g_free(s);
3183 g_free(strings);
3184 g_free(syms);
3185 }
3186
3187 uint32_t get_elf_eflags(int fd)
3188 {
3189 struct elfhdr ehdr;
3190 off_t offset;
3191 int ret;
3192
3193 /* Read ELF header */
3194 offset = lseek(fd, 0, SEEK_SET);
3195 if (offset == (off_t) -1) {
3196 return 0;
3197 }
3198 ret = read(fd, &ehdr, sizeof(ehdr));
3199 if (ret < sizeof(ehdr)) {
3200 return 0;
3201 }
3202 offset = lseek(fd, offset, SEEK_SET);
3203 if (offset == (off_t) -1) {
3204 return 0;
3205 }
3206
3207 /* Check ELF signature */
3208 if (!elf_check_ident(&ehdr)) {
3209 return 0;
3210 }
3211
3212 /* check header */
3213 bswap_ehdr(&ehdr);
3214 if (!elf_check_ehdr(&ehdr)) {
3215 return 0;
3216 }
3217
3218 /* return architecture id */
3219 return ehdr.e_flags;
3220 }
3221
3222 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3223 {
3224 struct image_info interp_info;
3225 struct elfhdr elf_ex;
3226 char *elf_interpreter = NULL;
3227 char *scratch;
3228
3229 memset(&interp_info, 0, sizeof(interp_info));
3230 #ifdef TARGET_MIPS
3231 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3232 #endif
3233
3234 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3235
3236 load_elf_image(bprm->filename, bprm->fd, info,
3237 &elf_interpreter, bprm->buf);
3238
3239 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3240 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3241 when we load the interpreter. */
3242 elf_ex = *(struct elfhdr *)bprm->buf;
3243
3244 /* Do this so that we can load the interpreter, if need be. We will
3245 change some of these later */
3246 bprm->p = setup_arg_pages(bprm, info);
3247
3248 scratch = g_new0(char, TARGET_PAGE_SIZE);
3249 if (STACK_GROWS_DOWN) {
3250 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3251 bprm->p, info->stack_limit);
3252 info->file_string = bprm->p;
3253 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3254 bprm->p, info->stack_limit);
3255 info->env_strings = bprm->p;
3256 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3257 bprm->p, info->stack_limit);
3258 info->arg_strings = bprm->p;
3259 } else {
3260 info->arg_strings = bprm->p;
3261 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3262 bprm->p, info->stack_limit);
3263 info->env_strings = bprm->p;
3264 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3265 bprm->p, info->stack_limit);
3266 info->file_string = bprm->p;
3267 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3268 bprm->p, info->stack_limit);
3269 }
3270
3271 g_free(scratch);
3272
3273 if (!bprm->p) {
3274 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3275 exit(-1);
3276 }
3277
3278 if (elf_interpreter) {
3279 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3280
3281 /* If the program interpreter is one of these two, then assume
3282 an iBCS2 image. Otherwise assume a native linux image. */
3283
3284 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3285 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3286 info->personality = PER_SVR4;
3287
3288 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3289 and some applications "depend" upon this behavior. Since
3290 we do not have the power to recompile these, we emulate
3291 the SVr4 behavior. Sigh. */
3292 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3293 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3294 }
3295 #ifdef TARGET_MIPS
3296 info->interp_fp_abi = interp_info.fp_abi;
3297 #endif
3298 }
3299
3300 /*
3301 * TODO: load a vdso, which would also contain the signal trampolines.
3302 * Otherwise, allocate a private page to hold them.
3303 */
3304 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3305 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3306 PROT_READ | PROT_WRITE,
3307 MAP_PRIVATE | MAP_ANON, -1, 0);
3308 if (tramp_page == -1) {
3309 return -errno;
3310 }
3311
3312 setup_sigtramp(tramp_page);
3313 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3314 }
3315
3316 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3317 info, (elf_interpreter ? &interp_info : NULL));
3318 info->start_stack = bprm->p;
3319
3320 /* If we have an interpreter, set that as the program's entry point.
3321 Copy the load_bias as well, to help PPC64 interpret the entry
3322 point as a function descriptor. Do this after creating elf tables
3323 so that we copy the original program entry point into the AUXV. */
3324 if (elf_interpreter) {
3325 info->load_bias = interp_info.load_bias;
3326 info->entry = interp_info.entry;
3327 g_free(elf_interpreter);
3328 }
3329
3330 #ifdef USE_ELF_CORE_DUMP
3331 bprm->core_dump = &elf_core_dump;
3332 #endif
3333
3334 /*
3335 * If we reserved extra space for brk, release it now.
3336 * The implementation of do_brk in syscalls.c expects to be able
3337 * to mmap pages in this space.
3338 */
3339 if (info->reserve_brk) {
3340 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3341 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3342 target_munmap(start_brk, end_brk - start_brk);
3343 }
3344
3345 return 0;
3346 }
3347
3348 #ifdef USE_ELF_CORE_DUMP
3349 /*
3350 * Definitions to generate Intel SVR4-like core files.
3351 * These mostly have the same names as the SVR4 types with "target_elf_"
3352 * tacked on the front to prevent clashes with linux definitions,
3353 * and the typedef forms have been avoided. This is mostly like
3354 * the SVR4 structure, but more Linuxy, with things that Linux does
3355 * not support and which gdb doesn't really use excluded.
3356 *
3357 * Fields we don't dump (their contents is zero) in linux-user qemu
3358 * are marked with XXX.
3359 *
3360 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3361 *
3362 * Porting ELF coredump for target is (quite) simple process. First you
3363 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3364 * the target resides):
3365 *
3366 * #define USE_ELF_CORE_DUMP
3367 *
3368 * Next you define type of register set used for dumping. ELF specification
3369 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3370 *
3371 * typedef <target_regtype> target_elf_greg_t;
3372 * #define ELF_NREG <number of registers>
3373 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3374 *
3375 * Last step is to implement target specific function that copies registers
3376 * from given cpu into just specified register set. Prototype is:
3377 *
3378 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3379 * const CPUArchState *env);
3380 *
3381 * Parameters:
3382 * regs - copy register values into here (allocated and zeroed by caller)
3383 * env - copy registers from here
3384 *
3385 * Example for ARM target is provided in this file.
3386 */
3387
3388 /* An ELF note in memory */
3389 struct memelfnote {
3390 const char *name;
3391 size_t namesz;
3392 size_t namesz_rounded;
3393 int type;
3394 size_t datasz;
3395 size_t datasz_rounded;
3396 void *data;
3397 size_t notesz;
3398 };
3399
3400 struct target_elf_siginfo {
3401 abi_int si_signo; /* signal number */
3402 abi_int si_code; /* extra code */
3403 abi_int si_errno; /* errno */
3404 };
3405
3406 struct target_elf_prstatus {
3407 struct target_elf_siginfo pr_info; /* Info associated with signal */
3408 abi_short pr_cursig; /* Current signal */
3409 abi_ulong pr_sigpend; /* XXX */
3410 abi_ulong pr_sighold; /* XXX */
3411 target_pid_t pr_pid;
3412 target_pid_t pr_ppid;
3413 target_pid_t pr_pgrp;
3414 target_pid_t pr_sid;
3415 struct target_timeval pr_utime; /* XXX User time */
3416 struct target_timeval pr_stime; /* XXX System time */
3417 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3418 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3419 target_elf_gregset_t pr_reg; /* GP registers */
3420 abi_int pr_fpvalid; /* XXX */
3421 };
3422
3423 #define ELF_PRARGSZ (80) /* Number of chars for args */
3424
3425 struct target_elf_prpsinfo {
3426 char pr_state; /* numeric process state */
3427 char pr_sname; /* char for pr_state */
3428 char pr_zomb; /* zombie */
3429 char pr_nice; /* nice val */
3430 abi_ulong pr_flag; /* flags */
3431 target_uid_t pr_uid;
3432 target_gid_t pr_gid;
3433 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3434 /* Lots missing */
3435 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3436 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3437 };
3438
3439 /* Here is the structure in which status of each thread is captured. */
3440 struct elf_thread_status {
3441 QTAILQ_ENTRY(elf_thread_status) ets_link;
3442 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3443 #if 0
3444 elf_fpregset_t fpu; /* NT_PRFPREG */
3445 struct task_struct *thread;
3446 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3447 #endif
3448 struct memelfnote notes[1];
3449 int num_notes;
3450 };
3451
3452 struct elf_note_info {
3453 struct memelfnote *notes;
3454 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3455 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3456
3457 QTAILQ_HEAD(, elf_thread_status) thread_list;
3458 #if 0
3459 /*
3460 * Current version of ELF coredump doesn't support
3461 * dumping fp regs etc.
3462 */
3463 elf_fpregset_t *fpu;
3464 elf_fpxregset_t *xfpu;
3465 int thread_status_size;
3466 #endif
3467 int notes_size;
3468 int numnote;
3469 };
3470
3471 struct vm_area_struct {
3472 target_ulong vma_start; /* start vaddr of memory region */
3473 target_ulong vma_end; /* end vaddr of memory region */
3474 abi_ulong vma_flags; /* protection etc. flags for the region */
3475 QTAILQ_ENTRY(vm_area_struct) vma_link;
3476 };
3477
3478 struct mm_struct {
3479 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3480 int mm_count; /* number of mappings */
3481 };
3482
3483 static struct mm_struct *vma_init(void);
3484 static void vma_delete(struct mm_struct *);
3485 static int vma_add_mapping(struct mm_struct *, target_ulong,
3486 target_ulong, abi_ulong);
3487 static int vma_get_mapping_count(const struct mm_struct *);
3488 static struct vm_area_struct *vma_first(const struct mm_struct *);
3489 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3490 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3491 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3492 unsigned long flags);
3493
3494 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3495 static void fill_note(struct memelfnote *, const char *, int,
3496 unsigned int, void *);
3497 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3498 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3499 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3500 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3501 static size_t note_size(const struct memelfnote *);
3502 static void free_note_info(struct elf_note_info *);
3503 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3504 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3505
3506 static int dump_write(int, const void *, size_t);
3507 static int write_note(struct memelfnote *, int);
3508 static int write_note_info(struct elf_note_info *, int);
3509
3510 #ifdef BSWAP_NEEDED
3511 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3512 {
3513 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3514 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3515 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3516 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3517 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3518 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3519 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3520 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3521 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3522 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3523 /* cpu times are not filled, so we skip them */
3524 /* regs should be in correct format already */
3525 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3526 }
3527
3528 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3529 {
3530 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3531 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3532 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3533 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3534 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3535 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3536 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3537 }
3538
3539 static void bswap_note(struct elf_note *en)
3540 {
3541 bswap32s(&en->n_namesz);
3542 bswap32s(&en->n_descsz);
3543 bswap32s(&en->n_type);
3544 }
3545 #else
3546 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3547 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3548 static inline void bswap_note(struct elf_note *en) { }
3549 #endif /* BSWAP_NEEDED */
3550
3551 /*
3552 * Minimal support for linux memory regions. These are needed
3553 * when we are finding out what memory exactly belongs to
3554 * emulated process. No locks needed here, as long as
3555 * thread that received the signal is stopped.
3556 */
3557
3558 static struct mm_struct *vma_init(void)
3559 {
3560 struct mm_struct *mm;
3561
3562 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3563 return (NULL);
3564
3565 mm->mm_count = 0;
3566 QTAILQ_INIT(&mm->mm_mmap);
3567
3568 return (mm);
3569 }
3570
3571 static void vma_delete(struct mm_struct *mm)
3572 {
3573 struct vm_area_struct *vma;
3574
3575 while ((vma = vma_first(mm)) != NULL) {
3576 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3577 g_free(vma);
3578 }
3579 g_free(mm);
3580 }
3581
3582 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3583 target_ulong end, abi_ulong flags)
3584 {
3585 struct vm_area_struct *vma;
3586
3587 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3588 return (-1);
3589
3590 vma->vma_start = start;
3591 vma->vma_end = end;
3592 vma->vma_flags = flags;
3593
3594 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3595 mm->mm_count++;
3596
3597 return (0);
3598 }
3599
3600 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3601 {
3602 return (QTAILQ_FIRST(&mm->mm_mmap));
3603 }
3604
3605 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3606 {
3607 return (QTAILQ_NEXT(vma, vma_link));
3608 }
3609
3610 static int vma_get_mapping_count(const struct mm_struct *mm)
3611 {
3612 return (mm->mm_count);
3613 }
3614
3615 /*
3616 * Calculate file (dump) size of given memory region.
3617 */
3618 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3619 {
3620 /* if we cannot even read the first page, skip it */
3621 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3622 return (0);
3623
3624 /*
3625 * Usually we don't dump executable pages as they contain
3626 * non-writable code that debugger can read directly from
3627 * target library etc. However, thread stacks are marked
3628 * also executable so we read in first page of given region
3629 * and check whether it contains elf header. If there is
3630 * no elf header, we dump it.
3631 */
3632 if (vma->vma_flags & PROT_EXEC) {
3633 char page[TARGET_PAGE_SIZE];
3634
3635 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3636 return 0;
3637 }
3638 if ((page[EI_MAG0] == ELFMAG0) &&
3639 (page[EI_MAG1] == ELFMAG1) &&
3640 (page[EI_MAG2] == ELFMAG2) &&
3641 (page[EI_MAG3] == ELFMAG3)) {
3642 /*
3643 * Mappings are possibly from ELF binary. Don't dump
3644 * them.
3645 */
3646 return (0);
3647 }
3648 }
3649
3650 return (vma->vma_end - vma->vma_start);
3651 }
3652
3653 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3654 unsigned long flags)
3655 {
3656 struct mm_struct *mm = (struct mm_struct *)priv;
3657
3658 vma_add_mapping(mm, start, end, flags);
3659 return (0);
3660 }
3661
3662 static void fill_note(struct memelfnote *note, const char *name, int type,
3663 unsigned int sz, void *data)
3664 {
3665 unsigned int namesz;
3666
3667 namesz = strlen(name) + 1;
3668 note->name = name;
3669 note->namesz = namesz;
3670 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3671 note->type = type;
3672 note->datasz = sz;
3673 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3674
3675 note->data = data;
3676
3677 /*
3678 * We calculate rounded up note size here as specified by
3679 * ELF document.
3680 */
3681 note->notesz = sizeof (struct elf_note) +
3682 note->namesz_rounded + note->datasz_rounded;
3683 }
3684
3685 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3686 uint32_t flags)
3687 {
3688 (void) memset(elf, 0, sizeof(*elf));
3689
3690 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3691 elf->e_ident[EI_CLASS] = ELF_CLASS;
3692 elf->e_ident[EI_DATA] = ELF_DATA;
3693 elf->e_ident[EI_VERSION] = EV_CURRENT;
3694 elf->e_ident[EI_OSABI] = ELF_OSABI;
3695
3696 elf->e_type = ET_CORE;
3697 elf->e_machine = machine;
3698 elf->e_version = EV_CURRENT;
3699 elf->e_phoff = sizeof(struct elfhdr);
3700 elf->e_flags = flags;
3701 elf->e_ehsize = sizeof(struct elfhdr);
3702 elf->e_phentsize = sizeof(struct elf_phdr);
3703 elf->e_phnum = segs;
3704
3705 bswap_ehdr(elf);
3706 }
3707
3708 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3709 {
3710 phdr->p_type = PT_NOTE;
3711 phdr->p_offset = offset;
3712 phdr->p_vaddr = 0;
3713 phdr->p_paddr = 0;
3714 phdr->p_filesz = sz;
3715 phdr->p_memsz = 0;
3716 phdr->p_flags = 0;
3717 phdr->p_align = 0;
3718
3719 bswap_phdr(phdr, 1);
3720 }
3721
3722 static size_t note_size(const struct memelfnote *note)
3723 {
3724 return (note->notesz);
3725 }
3726
3727 static void fill_prstatus(struct target_elf_prstatu