scsi: esp: check buffer length before reading scsi command
[qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20
21 #define ELF_OSABI ELFOSABI_SYSV
22
23 /* from personality.h */
24
25 /*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
42 };
43
44 /*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
74 };
75
76 /*
77 * Return the base personality without flags.
78 */
79 #define personality(pers) (pers & PER_MASK)
80
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
85
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
90
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
96
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
104
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
113
114 #ifdef TARGET_I386
115
116 #define ELF_PLATFORM get_elf_platform()
117
118 static const char *get_elf_platform(void)
119 {
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127 }
128
129 #define ELF_HWCAP get_elf_hwcap()
130
131 static uint32_t get_elf_hwcap(void)
132 {
133 X86CPU *cpu = X86_CPU(thread_cpu);
134
135 return cpu->env.features[FEAT_1_EDX];
136 }
137
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
140
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
143
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145 {
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
149 }
150
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
153
154 /*
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
158 *
159 * See linux kernel: arch/x86/include/asm/elf.h
160 */
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
162 {
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190 }
191
192 #else
193
194 #define ELF_START_MMAP 0x80000000
195
196 /*
197 * This is used to ensure we don't load something for the wrong architecture.
198 */
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200
201 /*
202 * These are used to set parameters in the core dumps.
203 */
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
206
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
209 {
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
212
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
218
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
221 }
222
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
225
226 /*
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
230 *
231 * See linux kernel: arch/x86/include/asm/elf.h
232 */
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
234 {
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252 }
253 #endif
254
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
257
258 #endif
259
260 #ifdef TARGET_ARM
261
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
264
265 #define ELF_START_MMAP 0x80000000
266
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
269
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
272 {
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
275
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
279 }
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
290 }
291
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
294
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
296 {
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
313
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
316 }
317
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
320
321 enum
322 {
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
345 };
346
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
353 };
354
355 /* The commpage only exists for 32 bit kernels */
356
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
365 */
366 static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
368 {
369 unsigned long real_start, test_page_addr;
370
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
373 */
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
375
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
378 */
379 if (test_page_addr >= guest_base
380 && test_page_addr <= (guest_base + guest_size)) {
381 return -1;
382 }
383
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
393 }
394
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
399 }
400
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
403 */
404
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
412 }
413
414 return 1; /* All good */
415 }
416
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
419
420 static uint32_t get_elf_hwcap(void)
421 {
422 ARMCPU *cpu = ARM_CPU(thread_cpu);
423 uint32_t hwcaps = 0;
424
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
429
430 /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
448 */
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
451
452 return hwcaps;
453 }
454
455 static uint32_t get_elf_hwcap2(void)
456 {
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
459
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
466 }
467
468 #undef GET_FEATURE
469
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
473
474 #define ELF_ARCH EM_AARCH64
475 #define ELF_CLASS ELFCLASS64
476 #define ELF_PLATFORM "aarch64"
477
478 static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
480 {
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
483
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
486 }
487
488 #define ELF_NREG 34
489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
490
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
493 {
494 int i;
495
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
498 }
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501 }
502
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE 4096
505
506 enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515 };
516
517 #define ELF_HWCAP get_elf_hwcap()
518
519 static uint32_t get_elf_hwcap(void)
520 {
521 ARMCPU *cpu = ARM_CPU(thread_cpu);
522 uint32_t hwcaps = 0;
523
524 hwcaps |= ARM_HWCAP_A64_FP;
525 hwcaps |= ARM_HWCAP_A64_ASIMD;
526
527 /* probe for the extra features */
528 #define GET_FEATURE(feat, hwcap) \
529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
535 #undef GET_FEATURE
536
537 return hwcaps;
538 }
539
540 #endif /* not TARGET_AARCH64 */
541 #endif /* TARGET_ARM */
542
543 #ifdef TARGET_UNICORE32
544
545 #define ELF_START_MMAP 0x80000000
546
547 #define ELF_CLASS ELFCLASS32
548 #define ELF_DATA ELFDATA2LSB
549 #define ELF_ARCH EM_UNICORE32
550
551 static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
553 {
554 abi_long stack = infop->start_stack;
555 memset(regs, 0, sizeof(*regs));
556 regs->UC32_REG_asr = 0x10;
557 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558 regs->UC32_REG_sp = infop->start_stack;
559 /* FIXME - what to for failure of get_user()? */
560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562 /* XXX: it seems that r0 is zeroed after ! */
563 regs->UC32_REG_00 = 0;
564 }
565
566 #define ELF_NREG 34
567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
568
569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
570 {
571 (*regs)[0] = env->regs[0];
572 (*regs)[1] = env->regs[1];
573 (*regs)[2] = env->regs[2];
574 (*regs)[3] = env->regs[3];
575 (*regs)[4] = env->regs[4];
576 (*regs)[5] = env->regs[5];
577 (*regs)[6] = env->regs[6];
578 (*regs)[7] = env->regs[7];
579 (*regs)[8] = env->regs[8];
580 (*regs)[9] = env->regs[9];
581 (*regs)[10] = env->regs[10];
582 (*regs)[11] = env->regs[11];
583 (*regs)[12] = env->regs[12];
584 (*regs)[13] = env->regs[13];
585 (*regs)[14] = env->regs[14];
586 (*regs)[15] = env->regs[15];
587 (*regs)[16] = env->regs[16];
588 (*regs)[17] = env->regs[17];
589 (*regs)[18] = env->regs[18];
590 (*regs)[19] = env->regs[19];
591 (*regs)[20] = env->regs[20];
592 (*regs)[21] = env->regs[21];
593 (*regs)[22] = env->regs[22];
594 (*regs)[23] = env->regs[23];
595 (*regs)[24] = env->regs[24];
596 (*regs)[25] = env->regs[25];
597 (*regs)[26] = env->regs[26];
598 (*regs)[27] = env->regs[27];
599 (*regs)[28] = env->regs[28];
600 (*regs)[29] = env->regs[29];
601 (*regs)[30] = env->regs[30];
602 (*regs)[31] = env->regs[31];
603
604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
605 (*regs)[33] = env->regs[0]; /* XXX */
606 }
607
608 #define USE_ELF_CORE_DUMP
609 #define ELF_EXEC_PAGESIZE 4096
610
611 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
612
613 #endif
614
615 #ifdef TARGET_SPARC
616 #ifdef TARGET_SPARC64
617
618 #define ELF_START_MMAP 0x80000000
619 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
621 #ifndef TARGET_ABI32
622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
623 #else
624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625 #endif
626
627 #define ELF_CLASS ELFCLASS64
628 #define ELF_ARCH EM_SPARCV9
629
630 #define STACK_BIAS 2047
631
632 static inline void init_thread(struct target_pt_regs *regs,
633 struct image_info *infop)
634 {
635 #ifndef TARGET_ABI32
636 regs->tstate = 0;
637 #endif
638 regs->pc = infop->entry;
639 regs->npc = regs->pc + 4;
640 regs->y = 0;
641 #ifdef TARGET_ABI32
642 regs->u_regs[14] = infop->start_stack - 16 * 4;
643 #else
644 if (personality(infop->personality) == PER_LINUX32)
645 regs->u_regs[14] = infop->start_stack - 16 * 4;
646 else
647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
648 #endif
649 }
650
651 #else
652 #define ELF_START_MMAP 0x80000000
653 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654 | HWCAP_SPARC_MULDIV)
655
656 #define ELF_CLASS ELFCLASS32
657 #define ELF_ARCH EM_SPARC
658
659 static inline void init_thread(struct target_pt_regs *regs,
660 struct image_info *infop)
661 {
662 regs->psr = 0;
663 regs->pc = infop->entry;
664 regs->npc = regs->pc + 4;
665 regs->y = 0;
666 regs->u_regs[14] = infop->start_stack - 16 * 4;
667 }
668
669 #endif
670 #endif
671
672 #ifdef TARGET_PPC
673
674 #define ELF_MACHINE PPC_ELF_MACHINE
675 #define ELF_START_MMAP 0x80000000
676
677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
678
679 #define elf_check_arch(x) ( (x) == EM_PPC64 )
680
681 #define ELF_CLASS ELFCLASS64
682
683 #else
684
685 #define ELF_CLASS ELFCLASS32
686
687 #endif
688
689 #define ELF_ARCH EM_PPC
690
691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692 See arch/powerpc/include/asm/cputable.h. */
693 enum {
694 QEMU_PPC_FEATURE_32 = 0x80000000,
695 QEMU_PPC_FEATURE_64 = 0x40000000,
696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709 QEMU_PPC_FEATURE_CELL = 0x00010000,
710 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711 QEMU_PPC_FEATURE_SMT = 0x00004000,
712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714 QEMU_PPC_FEATURE_PA6T = 0x00000800,
715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
720
721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
723
724 /* Feature definitions in AT_HWCAP2. */
725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
731 };
732
733 #define ELF_HWCAP get_elf_hwcap()
734
735 static uint32_t get_elf_hwcap(void)
736 {
737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
738 uint32_t features = 0;
739
740 /* We don't have to be terribly complete here; the high points are
741 Altivec/FP/SPE support. Anything else is just a bonus. */
742 #define GET_FEATURE(flag, feature) \
743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
744 #define GET_FEATURE2(flag, feature) \
745 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
746 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
747 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
748 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
749 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
750 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
751 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
752 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
753 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
754 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
755 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
756 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
757 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
758 QEMU_PPC_FEATURE_ARCH_2_06);
759 #undef GET_FEATURE
760 #undef GET_FEATURE2
761
762 return features;
763 }
764
765 #define ELF_HWCAP2 get_elf_hwcap2()
766
767 static uint32_t get_elf_hwcap2(void)
768 {
769 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
770 uint32_t features = 0;
771
772 #define GET_FEATURE(flag, feature) \
773 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
774 #define GET_FEATURE2(flag, feature) \
775 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
776
777 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
778 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
779 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
780 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
781
782 #undef GET_FEATURE
783 #undef GET_FEATURE2
784
785 return features;
786 }
787
788 /*
789 * The requirements here are:
790 * - keep the final alignment of sp (sp & 0xf)
791 * - make sure the 32-bit value at the first 16 byte aligned position of
792 * AUXV is greater than 16 for glibc compatibility.
793 * AT_IGNOREPPC is used for that.
794 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
795 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
796 */
797 #define DLINFO_ARCH_ITEMS 5
798 #define ARCH_DLINFO \
799 do { \
800 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
801 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
802 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
803 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
804 /* \
805 * Now handle glibc compatibility. \
806 */ \
807 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
808 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
809 } while (0)
810
811 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
812 {
813 _regs->gpr[1] = infop->start_stack;
814 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
815 if (get_ppc64_abi(infop) < 2) {
816 uint64_t val;
817 get_user_u64(val, infop->entry + 8);
818 _regs->gpr[2] = val + infop->load_bias;
819 get_user_u64(val, infop->entry);
820 infop->entry = val + infop->load_bias;
821 } else {
822 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
823 }
824 #endif
825 _regs->nip = infop->entry;
826 }
827
828 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
829 #define ELF_NREG 48
830 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
831
832 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
833 {
834 int i;
835 target_ulong ccr = 0;
836
837 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
838 (*regs)[i] = tswapreg(env->gpr[i]);
839 }
840
841 (*regs)[32] = tswapreg(env->nip);
842 (*regs)[33] = tswapreg(env->msr);
843 (*regs)[35] = tswapreg(env->ctr);
844 (*regs)[36] = tswapreg(env->lr);
845 (*regs)[37] = tswapreg(env->xer);
846
847 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
848 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
849 }
850 (*regs)[38] = tswapreg(ccr);
851 }
852
853 #define USE_ELF_CORE_DUMP
854 #define ELF_EXEC_PAGESIZE 4096
855
856 #endif
857
858 #ifdef TARGET_MIPS
859
860 #define ELF_START_MMAP 0x80000000
861
862 #ifdef TARGET_MIPS64
863 #define ELF_CLASS ELFCLASS64
864 #else
865 #define ELF_CLASS ELFCLASS32
866 #endif
867 #define ELF_ARCH EM_MIPS
868
869 static inline void init_thread(struct target_pt_regs *regs,
870 struct image_info *infop)
871 {
872 regs->cp0_status = 2 << CP0St_KSU;
873 regs->cp0_epc = infop->entry;
874 regs->regs[29] = infop->start_stack;
875 }
876
877 /* See linux kernel: arch/mips/include/asm/elf.h. */
878 #define ELF_NREG 45
879 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
880
881 /* See linux kernel: arch/mips/include/asm/reg.h. */
882 enum {
883 #ifdef TARGET_MIPS64
884 TARGET_EF_R0 = 0,
885 #else
886 TARGET_EF_R0 = 6,
887 #endif
888 TARGET_EF_R26 = TARGET_EF_R0 + 26,
889 TARGET_EF_R27 = TARGET_EF_R0 + 27,
890 TARGET_EF_LO = TARGET_EF_R0 + 32,
891 TARGET_EF_HI = TARGET_EF_R0 + 33,
892 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
893 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
894 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
895 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
896 };
897
898 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
899 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
900 {
901 int i;
902
903 for (i = 0; i < TARGET_EF_R0; i++) {
904 (*regs)[i] = 0;
905 }
906 (*regs)[TARGET_EF_R0] = 0;
907
908 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
909 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
910 }
911
912 (*regs)[TARGET_EF_R26] = 0;
913 (*regs)[TARGET_EF_R27] = 0;
914 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
915 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
916 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
917 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
918 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
919 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
920 }
921
922 #define USE_ELF_CORE_DUMP
923 #define ELF_EXEC_PAGESIZE 4096
924
925 #endif /* TARGET_MIPS */
926
927 #ifdef TARGET_MICROBLAZE
928
929 #define ELF_START_MMAP 0x80000000
930
931 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
932
933 #define ELF_CLASS ELFCLASS32
934 #define ELF_ARCH EM_MICROBLAZE
935
936 static inline void init_thread(struct target_pt_regs *regs,
937 struct image_info *infop)
938 {
939 regs->pc = infop->entry;
940 regs->r1 = infop->start_stack;
941
942 }
943
944 #define ELF_EXEC_PAGESIZE 4096
945
946 #define USE_ELF_CORE_DUMP
947 #define ELF_NREG 38
948 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
949
950 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
951 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
952 {
953 int i, pos = 0;
954
955 for (i = 0; i < 32; i++) {
956 (*regs)[pos++] = tswapreg(env->regs[i]);
957 }
958
959 for (i = 0; i < 6; i++) {
960 (*regs)[pos++] = tswapreg(env->sregs[i]);
961 }
962 }
963
964 #endif /* TARGET_MICROBLAZE */
965
966 #ifdef TARGET_OPENRISC
967
968 #define ELF_START_MMAP 0x08000000
969
970 #define ELF_ARCH EM_OPENRISC
971 #define ELF_CLASS ELFCLASS32
972 #define ELF_DATA ELFDATA2MSB
973
974 static inline void init_thread(struct target_pt_regs *regs,
975 struct image_info *infop)
976 {
977 regs->pc = infop->entry;
978 regs->gpr[1] = infop->start_stack;
979 }
980
981 #define USE_ELF_CORE_DUMP
982 #define ELF_EXEC_PAGESIZE 8192
983
984 /* See linux kernel arch/openrisc/include/asm/elf.h. */
985 #define ELF_NREG 34 /* gprs and pc, sr */
986 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
987
988 static void elf_core_copy_regs(target_elf_gregset_t *regs,
989 const CPUOpenRISCState *env)
990 {
991 int i;
992
993 for (i = 0; i < 32; i++) {
994 (*regs)[i] = tswapreg(env->gpr[i]);
995 }
996
997 (*regs)[32] = tswapreg(env->pc);
998 (*regs)[33] = tswapreg(env->sr);
999 }
1000 #define ELF_HWCAP 0
1001 #define ELF_PLATFORM NULL
1002
1003 #endif /* TARGET_OPENRISC */
1004
1005 #ifdef TARGET_SH4
1006
1007 #define ELF_START_MMAP 0x80000000
1008
1009 #define ELF_CLASS ELFCLASS32
1010 #define ELF_ARCH EM_SH
1011
1012 static inline void init_thread(struct target_pt_regs *regs,
1013 struct image_info *infop)
1014 {
1015 /* Check other registers XXXXX */
1016 regs->pc = infop->entry;
1017 regs->regs[15] = infop->start_stack;
1018 }
1019
1020 /* See linux kernel: arch/sh/include/asm/elf.h. */
1021 #define ELF_NREG 23
1022 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1023
1024 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1025 enum {
1026 TARGET_REG_PC = 16,
1027 TARGET_REG_PR = 17,
1028 TARGET_REG_SR = 18,
1029 TARGET_REG_GBR = 19,
1030 TARGET_REG_MACH = 20,
1031 TARGET_REG_MACL = 21,
1032 TARGET_REG_SYSCALL = 22
1033 };
1034
1035 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1036 const CPUSH4State *env)
1037 {
1038 int i;
1039
1040 for (i = 0; i < 16; i++) {
1041 (*regs[i]) = tswapreg(env->gregs[i]);
1042 }
1043
1044 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1045 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1046 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1047 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1048 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1049 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1050 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1051 }
1052
1053 #define USE_ELF_CORE_DUMP
1054 #define ELF_EXEC_PAGESIZE 4096
1055
1056 enum {
1057 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1058 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1059 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1060 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1061 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1062 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1063 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1064 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1065 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1066 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1067 };
1068
1069 #define ELF_HWCAP get_elf_hwcap()
1070
1071 static uint32_t get_elf_hwcap(void)
1072 {
1073 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1074 uint32_t hwcap = 0;
1075
1076 hwcap |= SH_CPU_HAS_FPU;
1077
1078 if (cpu->env.features & SH_FEATURE_SH4A) {
1079 hwcap |= SH_CPU_HAS_LLSC;
1080 }
1081
1082 return hwcap;
1083 }
1084
1085 #endif
1086
1087 #ifdef TARGET_CRIS
1088
1089 #define ELF_START_MMAP 0x80000000
1090
1091 #define ELF_CLASS ELFCLASS32
1092 #define ELF_ARCH EM_CRIS
1093
1094 static inline void init_thread(struct target_pt_regs *regs,
1095 struct image_info *infop)
1096 {
1097 regs->erp = infop->entry;
1098 }
1099
1100 #define ELF_EXEC_PAGESIZE 8192
1101
1102 #endif
1103
1104 #ifdef TARGET_M68K
1105
1106 #define ELF_START_MMAP 0x80000000
1107
1108 #define ELF_CLASS ELFCLASS32
1109 #define ELF_ARCH EM_68K
1110
1111 /* ??? Does this need to do anything?
1112 #define ELF_PLAT_INIT(_r) */
1113
1114 static inline void init_thread(struct target_pt_regs *regs,
1115 struct image_info *infop)
1116 {
1117 regs->usp = infop->start_stack;
1118 regs->sr = 0;
1119 regs->pc = infop->entry;
1120 }
1121
1122 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1123 #define ELF_NREG 20
1124 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1125
1126 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1127 {
1128 (*regs)[0] = tswapreg(env->dregs[1]);
1129 (*regs)[1] = tswapreg(env->dregs[2]);
1130 (*regs)[2] = tswapreg(env->dregs[3]);
1131 (*regs)[3] = tswapreg(env->dregs[4]);
1132 (*regs)[4] = tswapreg(env->dregs[5]);
1133 (*regs)[5] = tswapreg(env->dregs[6]);
1134 (*regs)[6] = tswapreg(env->dregs[7]);
1135 (*regs)[7] = tswapreg(env->aregs[0]);
1136 (*regs)[8] = tswapreg(env->aregs[1]);
1137 (*regs)[9] = tswapreg(env->aregs[2]);
1138 (*regs)[10] = tswapreg(env->aregs[3]);
1139 (*regs)[11] = tswapreg(env->aregs[4]);
1140 (*regs)[12] = tswapreg(env->aregs[5]);
1141 (*regs)[13] = tswapreg(env->aregs[6]);
1142 (*regs)[14] = tswapreg(env->dregs[0]);
1143 (*regs)[15] = tswapreg(env->aregs[7]);
1144 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1145 (*regs)[17] = tswapreg(env->sr);
1146 (*regs)[18] = tswapreg(env->pc);
1147 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1148 }
1149
1150 #define USE_ELF_CORE_DUMP
1151 #define ELF_EXEC_PAGESIZE 8192
1152
1153 #endif
1154
1155 #ifdef TARGET_ALPHA
1156
1157 #define ELF_START_MMAP (0x30000000000ULL)
1158
1159 #define ELF_CLASS ELFCLASS64
1160 #define ELF_ARCH EM_ALPHA
1161
1162 static inline void init_thread(struct target_pt_regs *regs,
1163 struct image_info *infop)
1164 {
1165 regs->pc = infop->entry;
1166 regs->ps = 8;
1167 regs->usp = infop->start_stack;
1168 }
1169
1170 #define ELF_EXEC_PAGESIZE 8192
1171
1172 #endif /* TARGET_ALPHA */
1173
1174 #ifdef TARGET_S390X
1175
1176 #define ELF_START_MMAP (0x20000000000ULL)
1177
1178 #define ELF_CLASS ELFCLASS64
1179 #define ELF_DATA ELFDATA2MSB
1180 #define ELF_ARCH EM_S390
1181
1182 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1183 {
1184 regs->psw.addr = infop->entry;
1185 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1186 regs->gprs[15] = infop->start_stack;
1187 }
1188
1189 #endif /* TARGET_S390X */
1190
1191 #ifdef TARGET_TILEGX
1192
1193 /* 42 bits real used address, a half for user mode */
1194 #define ELF_START_MMAP (0x00000020000000000ULL)
1195
1196 #define elf_check_arch(x) ((x) == EM_TILEGX)
1197
1198 #define ELF_CLASS ELFCLASS64
1199 #define ELF_DATA ELFDATA2LSB
1200 #define ELF_ARCH EM_TILEGX
1201
1202 static inline void init_thread(struct target_pt_regs *regs,
1203 struct image_info *infop)
1204 {
1205 regs->pc = infop->entry;
1206 regs->sp = infop->start_stack;
1207
1208 }
1209
1210 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1211
1212 #endif /* TARGET_TILEGX */
1213
1214 #ifndef ELF_PLATFORM
1215 #define ELF_PLATFORM (NULL)
1216 #endif
1217
1218 #ifndef ELF_MACHINE
1219 #define ELF_MACHINE ELF_ARCH
1220 #endif
1221
1222 #ifndef elf_check_arch
1223 #define elf_check_arch(x) ((x) == ELF_ARCH)
1224 #endif
1225
1226 #ifndef ELF_HWCAP
1227 #define ELF_HWCAP 0
1228 #endif
1229
1230 #ifdef TARGET_ABI32
1231 #undef ELF_CLASS
1232 #define ELF_CLASS ELFCLASS32
1233 #undef bswaptls
1234 #define bswaptls(ptr) bswap32s(ptr)
1235 #endif
1236
1237 #include "elf.h"
1238
1239 struct exec
1240 {
1241 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1242 unsigned int a_text; /* length of text, in bytes */
1243 unsigned int a_data; /* length of data, in bytes */
1244 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1245 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1246 unsigned int a_entry; /* start address */
1247 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1248 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1249 };
1250
1251
1252 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1253 #define OMAGIC 0407
1254 #define NMAGIC 0410
1255 #define ZMAGIC 0413
1256 #define QMAGIC 0314
1257
1258 /* Necessary parameters */
1259 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1260 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1261 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1262 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1263
1264 #define DLINFO_ITEMS 14
1265
1266 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1267 {
1268 memcpy(to, from, n);
1269 }
1270
1271 #ifdef BSWAP_NEEDED
1272 static void bswap_ehdr(struct elfhdr *ehdr)
1273 {
1274 bswap16s(&ehdr->e_type); /* Object file type */
1275 bswap16s(&ehdr->e_machine); /* Architecture */
1276 bswap32s(&ehdr->e_version); /* Object file version */
1277 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1278 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1279 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1280 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1281 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1282 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1283 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1284 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1285 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1286 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1287 }
1288
1289 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1290 {
1291 int i;
1292 for (i = 0; i < phnum; ++i, ++phdr) {
1293 bswap32s(&phdr->p_type); /* Segment type */
1294 bswap32s(&phdr->p_flags); /* Segment flags */
1295 bswaptls(&phdr->p_offset); /* Segment file offset */
1296 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1297 bswaptls(&phdr->p_paddr); /* Segment physical address */
1298 bswaptls(&phdr->p_filesz); /* Segment size in file */
1299 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1300 bswaptls(&phdr->p_align); /* Segment alignment */
1301 }
1302 }
1303
1304 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1305 {
1306 int i;
1307 for (i = 0; i < shnum; ++i, ++shdr) {
1308 bswap32s(&shdr->sh_name);
1309 bswap32s(&shdr->sh_type);
1310 bswaptls(&shdr->sh_flags);
1311 bswaptls(&shdr->sh_addr);
1312 bswaptls(&shdr->sh_offset);
1313 bswaptls(&shdr->sh_size);
1314 bswap32s(&shdr->sh_link);
1315 bswap32s(&shdr->sh_info);
1316 bswaptls(&shdr->sh_addralign);
1317 bswaptls(&shdr->sh_entsize);
1318 }
1319 }
1320
1321 static void bswap_sym(struct elf_sym *sym)
1322 {
1323 bswap32s(&sym->st_name);
1324 bswaptls(&sym->st_value);
1325 bswaptls(&sym->st_size);
1326 bswap16s(&sym->st_shndx);
1327 }
1328 #else
1329 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1330 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1331 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1332 static inline void bswap_sym(struct elf_sym *sym) { }
1333 #endif
1334
1335 #ifdef USE_ELF_CORE_DUMP
1336 static int elf_core_dump(int, const CPUArchState *);
1337 #endif /* USE_ELF_CORE_DUMP */
1338 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1339
1340 /* Verify the portions of EHDR within E_IDENT for the target.
1341 This can be performed before bswapping the entire header. */
1342 static bool elf_check_ident(struct elfhdr *ehdr)
1343 {
1344 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1345 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1346 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1347 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1348 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1349 && ehdr->e_ident[EI_DATA] == ELF_DATA
1350 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1351 }
1352
1353 /* Verify the portions of EHDR outside of E_IDENT for the target.
1354 This has to wait until after bswapping the header. */
1355 static bool elf_check_ehdr(struct elfhdr *ehdr)
1356 {
1357 return (elf_check_arch(ehdr->e_machine)
1358 && ehdr->e_ehsize == sizeof(struct elfhdr)
1359 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1360 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1361 }
1362
1363 /*
1364 * 'copy_elf_strings()' copies argument/envelope strings from user
1365 * memory to free pages in kernel mem. These are in a format ready
1366 * to be put directly into the top of new user memory.
1367 *
1368 */
1369 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1370 abi_ulong p, abi_ulong stack_limit)
1371 {
1372 char *tmp;
1373 int len, offset;
1374 abi_ulong top = p;
1375
1376 if (!p) {
1377 return 0; /* bullet-proofing */
1378 }
1379
1380 offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1381
1382 while (argc-- > 0) {
1383 tmp = argv[argc];
1384 if (!tmp) {
1385 fprintf(stderr, "VFS: argc is wrong");
1386 exit(-1);
1387 }
1388 len = strlen(tmp) + 1;
1389 tmp += len;
1390
1391 if (len > (p - stack_limit)) {
1392 return 0;
1393 }
1394 while (len) {
1395 int bytes_to_copy = (len > offset) ? offset : len;
1396 tmp -= bytes_to_copy;
1397 p -= bytes_to_copy;
1398 offset -= bytes_to_copy;
1399 len -= bytes_to_copy;
1400
1401 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1402
1403 if (offset == 0) {
1404 memcpy_to_target(p, scratch, top - p);
1405 top = p;
1406 offset = TARGET_PAGE_SIZE;
1407 }
1408 }
1409 }
1410 if (offset) {
1411 memcpy_to_target(p, scratch + offset, top - p);
1412 }
1413
1414 return p;
1415 }
1416
1417 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1418 * argument/environment space. Newer kernels (>2.6.33) allow more,
1419 * dependent on stack size, but guarantee at least 32 pages for
1420 * backwards compatibility.
1421 */
1422 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1423
1424 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1425 struct image_info *info)
1426 {
1427 abi_ulong size, error, guard;
1428
1429 size = guest_stack_size;
1430 if (size < STACK_LOWER_LIMIT) {
1431 size = STACK_LOWER_LIMIT;
1432 }
1433 guard = TARGET_PAGE_SIZE;
1434 if (guard < qemu_real_host_page_size) {
1435 guard = qemu_real_host_page_size;
1436 }
1437
1438 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1439 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1440 if (error == -1) {
1441 perror("mmap stack");
1442 exit(-1);
1443 }
1444
1445 /* We reserve one extra page at the top of the stack as guard. */
1446 target_mprotect(error, guard, PROT_NONE);
1447
1448 info->stack_limit = error + guard;
1449
1450 return info->stack_limit + size - sizeof(void *);
1451 }
1452
1453 /* Map and zero the bss. We need to explicitly zero any fractional pages
1454 after the data section (i.e. bss). */
1455 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1456 {
1457 uintptr_t host_start, host_map_start, host_end;
1458
1459 last_bss = TARGET_PAGE_ALIGN(last_bss);
1460
1461 /* ??? There is confusion between qemu_real_host_page_size and
1462 qemu_host_page_size here and elsewhere in target_mmap, which
1463 may lead to the end of the data section mapping from the file
1464 not being mapped. At least there was an explicit test and
1465 comment for that here, suggesting that "the file size must
1466 be known". The comment probably pre-dates the introduction
1467 of the fstat system call in target_mmap which does in fact
1468 find out the size. What isn't clear is if the workaround
1469 here is still actually needed. For now, continue with it,
1470 but merge it with the "normal" mmap that would allocate the bss. */
1471
1472 host_start = (uintptr_t) g2h(elf_bss);
1473 host_end = (uintptr_t) g2h(last_bss);
1474 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1475
1476 if (host_map_start < host_end) {
1477 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1478 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1479 if (p == MAP_FAILED) {
1480 perror("cannot mmap brk");
1481 exit(-1);
1482 }
1483 }
1484
1485 /* Ensure that the bss page(s) are valid */
1486 if ((page_get_flags(last_bss-1) & prot) != prot) {
1487 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1488 }
1489
1490 if (host_start < host_map_start) {
1491 memset((void *)host_start, 0, host_map_start - host_start);
1492 }
1493 }
1494
1495 #ifdef CONFIG_USE_FDPIC
1496 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1497 {
1498 uint16_t n;
1499 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1500
1501 /* elf32_fdpic_loadseg */
1502 n = info->nsegs;
1503 while (n--) {
1504 sp -= 12;
1505 put_user_u32(loadsegs[n].addr, sp+0);
1506 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1507 put_user_u32(loadsegs[n].p_memsz, sp+8);
1508 }
1509
1510 /* elf32_fdpic_loadmap */
1511 sp -= 4;
1512 put_user_u16(0, sp+0); /* version */
1513 put_user_u16(info->nsegs, sp+2); /* nsegs */
1514
1515 info->personality = PER_LINUX_FDPIC;
1516 info->loadmap_addr = sp;
1517
1518 return sp;
1519 }
1520 #endif
1521
1522 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1523 struct elfhdr *exec,
1524 struct image_info *info,
1525 struct image_info *interp_info)
1526 {
1527 abi_ulong sp;
1528 abi_ulong sp_auxv;
1529 int size;
1530 int i;
1531 abi_ulong u_rand_bytes;
1532 uint8_t k_rand_bytes[16];
1533 abi_ulong u_platform;
1534 const char *k_platform;
1535 const int n = sizeof(elf_addr_t);
1536
1537 sp = p;
1538
1539 #ifdef CONFIG_USE_FDPIC
1540 /* Needs to be before we load the env/argc/... */
1541 if (elf_is_fdpic(exec)) {
1542 /* Need 4 byte alignment for these structs */
1543 sp &= ~3;
1544 sp = loader_build_fdpic_loadmap(info, sp);
1545 info->other_info = interp_info;
1546 if (interp_info) {
1547 interp_info->other_info = info;
1548 sp = loader_build_fdpic_loadmap(interp_info, sp);
1549 }
1550 }
1551 #endif
1552
1553 u_platform = 0;
1554 k_platform = ELF_PLATFORM;
1555 if (k_platform) {
1556 size_t len = strlen(k_platform) + 1;
1557 sp -= (len + n - 1) & ~(n - 1);
1558 u_platform = sp;
1559 /* FIXME - check return value of memcpy_to_target() for failure */
1560 memcpy_to_target(sp, k_platform, len);
1561 }
1562
1563 /*
1564 * Generate 16 random bytes for userspace PRNG seeding (not
1565 * cryptically secure but it's not the aim of QEMU).
1566 */
1567 for (i = 0; i < 16; i++) {
1568 k_rand_bytes[i] = rand();
1569 }
1570 sp -= 16;
1571 u_rand_bytes = sp;
1572 /* FIXME - check return value of memcpy_to_target() for failure */
1573 memcpy_to_target(sp, k_rand_bytes, 16);
1574
1575 /*
1576 * Force 16 byte _final_ alignment here for generality.
1577 */
1578 sp = sp &~ (abi_ulong)15;
1579 size = (DLINFO_ITEMS + 1) * 2;
1580 if (k_platform)
1581 size += 2;
1582 #ifdef DLINFO_ARCH_ITEMS
1583 size += DLINFO_ARCH_ITEMS * 2;
1584 #endif
1585 #ifdef ELF_HWCAP2
1586 size += 2;
1587 #endif
1588 size += envc + argc + 2;
1589 size += 1; /* argc itself */
1590 size *= n;
1591 if (size & 15)
1592 sp -= 16 - (size & 15);
1593
1594 /* This is correct because Linux defines
1595 * elf_addr_t as Elf32_Off / Elf64_Off
1596 */
1597 #define NEW_AUX_ENT(id, val) do { \
1598 sp -= n; put_user_ual(val, sp); \
1599 sp -= n; put_user_ual(id, sp); \
1600 } while(0)
1601
1602 sp_auxv = sp;
1603 NEW_AUX_ENT (AT_NULL, 0);
1604
1605 /* There must be exactly DLINFO_ITEMS entries here. */
1606 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1607 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1608 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1609 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1610 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1611 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1612 NEW_AUX_ENT(AT_ENTRY, info->entry);
1613 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1614 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1615 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1616 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1617 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1618 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1619 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1620
1621 #ifdef ELF_HWCAP2
1622 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1623 #endif
1624
1625 if (k_platform)
1626 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1627 #ifdef ARCH_DLINFO
1628 /*
1629 * ARCH_DLINFO must come last so platform specific code can enforce
1630 * special alignment requirements on the AUXV if necessary (eg. PPC).
1631 */
1632 ARCH_DLINFO;
1633 #endif
1634 #undef NEW_AUX_ENT
1635
1636 info->saved_auxv = sp;
1637 info->auxv_len = sp_auxv - sp;
1638
1639 sp = loader_build_argptr(envc, argc, sp, p, 0);
1640 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1641 assert(sp_auxv - sp == size);
1642 return sp;
1643 }
1644
1645 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1646 /* If the guest doesn't have a validation function just agree */
1647 static int validate_guest_space(unsigned long guest_base,
1648 unsigned long guest_size)
1649 {
1650 return 1;
1651 }
1652 #endif
1653
1654 unsigned long init_guest_space(unsigned long host_start,
1655 unsigned long host_size,
1656 unsigned long guest_start,
1657 bool fixed)
1658 {
1659 unsigned long current_start, real_start;
1660 int flags;
1661
1662 assert(host_start || host_size);
1663
1664 /* If just a starting address is given, then just verify that
1665 * address. */
1666 if (host_start && !host_size) {
1667 if (validate_guest_space(host_start, host_size) == 1) {
1668 return host_start;
1669 } else {
1670 return (unsigned long)-1;
1671 }
1672 }
1673
1674 /* Setup the initial flags and start address. */
1675 current_start = host_start & qemu_host_page_mask;
1676 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1677 if (fixed) {
1678 flags |= MAP_FIXED;
1679 }
1680
1681 /* Otherwise, a non-zero size region of memory needs to be mapped
1682 * and validated. */
1683 while (1) {
1684 unsigned long real_size = host_size;
1685
1686 /* Do not use mmap_find_vma here because that is limited to the
1687 * guest address space. We are going to make the
1688 * guest address space fit whatever we're given.
1689 */
1690 real_start = (unsigned long)
1691 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1692 if (real_start == (unsigned long)-1) {
1693 return (unsigned long)-1;
1694 }
1695
1696 /* Ensure the address is properly aligned. */
1697 if (real_start & ~qemu_host_page_mask) {
1698 munmap((void *)real_start, host_size);
1699 real_size = host_size + qemu_host_page_size;
1700 real_start = (unsigned long)
1701 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1702 if (real_start == (unsigned long)-1) {
1703 return (unsigned long)-1;
1704 }
1705 real_start = HOST_PAGE_ALIGN(real_start);
1706 }
1707
1708 /* Check to see if the address is valid. */
1709 if (!host_start || real_start == current_start) {
1710 int valid = validate_guest_space(real_start - guest_start,
1711 real_size);
1712 if (valid == 1) {
1713 break;
1714 } else if (valid == -1) {
1715 return (unsigned long)-1;
1716 }
1717 /* valid == 0, so try again. */
1718 }
1719
1720 /* That address didn't work. Unmap and try a different one.
1721 * The address the host picked because is typically right at
1722 * the top of the host address space and leaves the guest with
1723 * no usable address space. Resort to a linear search. We
1724 * already compensated for mmap_min_addr, so this should not
1725 * happen often. Probably means we got unlucky and host
1726 * address space randomization put a shared library somewhere
1727 * inconvenient.
1728 */
1729 munmap((void *)real_start, host_size);
1730 current_start += qemu_host_page_size;
1731 if (host_start == current_start) {
1732 /* Theoretically possible if host doesn't have any suitably
1733 * aligned areas. Normally the first mmap will fail.
1734 */
1735 return (unsigned long)-1;
1736 }
1737 }
1738
1739 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1740
1741 return real_start;
1742 }
1743
1744 static void probe_guest_base(const char *image_name,
1745 abi_ulong loaddr, abi_ulong hiaddr)
1746 {
1747 /* Probe for a suitable guest base address, if the user has not set
1748 * it explicitly, and set guest_base appropriately.
1749 * In case of error we will print a suitable message and exit.
1750 */
1751 const char *errmsg;
1752 if (!have_guest_base && !reserved_va) {
1753 unsigned long host_start, real_start, host_size;
1754
1755 /* Round addresses to page boundaries. */
1756 loaddr &= qemu_host_page_mask;
1757 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1758
1759 if (loaddr < mmap_min_addr) {
1760 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1761 } else {
1762 host_start = loaddr;
1763 if (host_start != loaddr) {
1764 errmsg = "Address overflow loading ELF binary";
1765 goto exit_errmsg;
1766 }
1767 }
1768 host_size = hiaddr - loaddr;
1769
1770 /* Setup the initial guest memory space with ranges gleaned from
1771 * the ELF image that is being loaded.
1772 */
1773 real_start = init_guest_space(host_start, host_size, loaddr, false);
1774 if (real_start == (unsigned long)-1) {
1775 errmsg = "Unable to find space for application";
1776 goto exit_errmsg;
1777 }
1778 guest_base = real_start - loaddr;
1779
1780 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1781 TARGET_ABI_FMT_lx " to 0x%lx\n",
1782 loaddr, real_start);
1783 }
1784 return;
1785
1786 exit_errmsg:
1787 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1788 exit(-1);
1789 }
1790
1791
1792 /* Load an ELF image into the address space.
1793
1794 IMAGE_NAME is the filename of the image, to use in error messages.
1795 IMAGE_FD is the open file descriptor for the image.
1796
1797 BPRM_BUF is a copy of the beginning of the file; this of course
1798 contains the elf file header at offset 0. It is assumed that this
1799 buffer is sufficiently aligned to present no problems to the host
1800 in accessing data at aligned offsets within the buffer.
1801
1802 On return: INFO values will be filled in, as necessary or available. */
1803
1804 static void load_elf_image(const char *image_name, int image_fd,
1805 struct image_info *info, char **pinterp_name,
1806 char bprm_buf[BPRM_BUF_SIZE])
1807 {
1808 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1809 struct elf_phdr *phdr;
1810 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1811 int i, retval;
1812 const char *errmsg;
1813
1814 /* First of all, some simple consistency checks */
1815 errmsg = "Invalid ELF image for this architecture";
1816 if (!elf_check_ident(ehdr)) {
1817 goto exit_errmsg;
1818 }
1819 bswap_ehdr(ehdr);
1820 if (!elf_check_ehdr(ehdr)) {
1821 goto exit_errmsg;
1822 }
1823
1824 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1825 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1826 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1827 } else {
1828 phdr = (struct elf_phdr *) alloca(i);
1829 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1830 if (retval != i) {
1831 goto exit_read;
1832 }
1833 }
1834 bswap_phdr(phdr, ehdr->e_phnum);
1835
1836 #ifdef CONFIG_USE_FDPIC
1837 info->nsegs = 0;
1838 info->pt_dynamic_addr = 0;
1839 #endif
1840
1841 /* Find the maximum size of the image and allocate an appropriate
1842 amount of memory to handle that. */
1843 loaddr = -1, hiaddr = 0;
1844 for (i = 0; i < ehdr->e_phnum; ++i) {
1845 if (phdr[i].p_type == PT_LOAD) {
1846 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1847 if (a < loaddr) {
1848 loaddr = a;
1849 }
1850 a = phdr[i].p_vaddr + phdr[i].p_memsz;
1851 if (a > hiaddr) {
1852 hiaddr = a;
1853 }
1854 #ifdef CONFIG_USE_FDPIC
1855 ++info->nsegs;
1856 #endif
1857 }
1858 }
1859
1860 load_addr = loaddr;
1861 if (ehdr->e_type == ET_DYN) {
1862 /* The image indicates that it can be loaded anywhere. Find a
1863 location that can hold the memory space required. If the
1864 image is pre-linked, LOADDR will be non-zero. Since we do
1865 not supply MAP_FIXED here we'll use that address if and
1866 only if it remains available. */
1867 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1868 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1869 -1, 0);
1870 if (load_addr == -1) {
1871 goto exit_perror;
1872 }
1873 } else if (pinterp_name != NULL) {
1874 /* This is the main executable. Make sure that the low
1875 address does not conflict with MMAP_MIN_ADDR or the
1876 QEMU application itself. */
1877 probe_guest_base(image_name, loaddr, hiaddr);
1878 }
1879 load_bias = load_addr - loaddr;
1880
1881 #ifdef CONFIG_USE_FDPIC
1882 {
1883 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1884 g_malloc(sizeof(*loadsegs) * info->nsegs);
1885
1886 for (i = 0; i < ehdr->e_phnum; ++i) {
1887 switch (phdr[i].p_type) {
1888 case PT_DYNAMIC:
1889 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1890 break;
1891 case PT_LOAD:
1892 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1893 loadsegs->p_vaddr = phdr[i].p_vaddr;
1894 loadsegs->p_memsz = phdr[i].p_memsz;
1895 ++loadsegs;
1896 break;
1897 }
1898 }
1899 }
1900 #endif
1901
1902 info->load_bias = load_bias;
1903 info->load_addr = load_addr;
1904 info->entry = ehdr->e_entry + load_bias;
1905 info->start_code = -1;
1906 info->end_code = 0;
1907 info->start_data = -1;
1908 info->end_data = 0;
1909 info->brk = 0;
1910 info->elf_flags = ehdr->e_flags;
1911
1912 for (i = 0; i < ehdr->e_phnum; i++) {
1913 struct elf_phdr *eppnt = phdr + i;
1914 if (eppnt->p_type == PT_LOAD) {
1915 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1916 int elf_prot = 0;
1917
1918 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1919 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1920 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1921
1922 vaddr = load_bias + eppnt->p_vaddr;
1923 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1924 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1925
1926 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1927 elf_prot, MAP_PRIVATE | MAP_FIXED,
1928 image_fd, eppnt->p_offset - vaddr_po);
1929 if (error == -1) {
1930 goto exit_perror;
1931 }
1932
1933 vaddr_ef = vaddr + eppnt->p_filesz;
1934 vaddr_em = vaddr + eppnt->p_memsz;
1935
1936 /* If the load segment requests extra zeros (e.g. bss), map it. */
1937 if (vaddr_ef < vaddr_em) {
1938 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1939 }
1940
1941 /* Find the full program boundaries. */
1942 if (elf_prot & PROT_EXEC) {
1943 if (vaddr < info->start_code) {
1944 info->start_code = vaddr;
1945 }
1946 if (vaddr_ef > info->end_code) {
1947 info->end_code = vaddr_ef;
1948 }
1949 }
1950 if (elf_prot & PROT_WRITE) {
1951 if (vaddr < info->start_data) {
1952 info->start_data = vaddr;
1953 }
1954 if (vaddr_ef > info->end_data) {
1955 info->end_data = vaddr_ef;
1956 }
1957 if (vaddr_em > info->brk) {
1958 info->brk = vaddr_em;
1959 }
1960 }
1961 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1962 char *interp_name;
1963
1964 if (*pinterp_name) {
1965 errmsg = "Multiple PT_INTERP entries";
1966 goto exit_errmsg;
1967 }
1968 interp_name = malloc(eppnt->p_filesz);
1969 if (!interp_name) {
1970 goto exit_perror;
1971 }
1972
1973 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1974 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1975 eppnt->p_filesz);
1976 } else {
1977 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1978 eppnt->p_offset);
1979 if (retval != eppnt->p_filesz) {
1980 goto exit_perror;
1981 }
1982 }
1983 if (interp_name[eppnt->p_filesz - 1] != 0) {
1984 errmsg = "Invalid PT_INTERP entry";
1985 goto exit_errmsg;
1986 }
1987 *pinterp_name = interp_name;
1988 }
1989 }
1990
1991 if (info->end_data == 0) {
1992 info->start_data = info->end_code;
1993 info->end_data = info->end_code;
1994 info->brk = info->end_code;
1995 }
1996
1997 if (qemu_log_enabled()) {
1998 load_symbols(ehdr, image_fd, load_bias);
1999 }
2000
2001 close(image_fd);
2002 return;
2003
2004 exit_read:
2005 if (retval >= 0) {
2006 errmsg = "Incomplete read of file header";
2007 goto exit_errmsg;
2008 }
2009 exit_perror:
2010 errmsg = strerror(errno);
2011 exit_errmsg:
2012 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2013 exit(-1);
2014 }
2015
2016 static void load_elf_interp(const char *filename, struct image_info *info,
2017 char bprm_buf[BPRM_BUF_SIZE])
2018 {
2019 int fd, retval;
2020
2021 fd = open(path(filename), O_RDONLY);
2022 if (fd < 0) {
2023 goto exit_perror;
2024 }
2025
2026 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2027 if (retval < 0) {
2028 goto exit_perror;
2029 }
2030 if (retval < BPRM_BUF_SIZE) {
2031 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2032 }
2033
2034 load_elf_image(filename, fd, info, NULL, bprm_buf);
2035 return;
2036
2037 exit_perror:
2038 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2039 exit(-1);
2040 }
2041
2042 static int symfind(const void *s0, const void *s1)
2043 {
2044 target_ulong addr = *(target_ulong *)s0;
2045 struct elf_sym *sym = (struct elf_sym *)s1;
2046 int result = 0;
2047 if (addr < sym->st_value) {
2048 result = -1;
2049 } else if (addr >= sym->st_value + sym->st_size) {
2050 result = 1;
2051 }
2052 return result;
2053 }
2054
2055 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2056 {
2057 #if ELF_CLASS == ELFCLASS32
2058 struct elf_sym *syms = s->disas_symtab.elf32;
2059 #else
2060 struct elf_sym *syms = s->disas_symtab.elf64;
2061 #endif
2062
2063 // binary search
2064 struct elf_sym *sym;
2065
2066 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2067 if (sym != NULL) {
2068 return s->disas_strtab + sym->st_name;
2069 }
2070
2071 return "";
2072 }
2073
2074 /* FIXME: This should use elf_ops.h */
2075 static int symcmp(const void *s0, const void *s1)
2076 {
2077 struct elf_sym *sym0 = (struct elf_sym *)s0;
2078 struct elf_sym *sym1 = (struct elf_sym *)s1;
2079 return (sym0->st_value < sym1->st_value)
2080 ? -1
2081 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2082 }
2083
2084 /* Best attempt to load symbols from this ELF object. */
2085 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2086 {
2087 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2088 struct elf_shdr *shdr;
2089 char *strings = NULL;
2090 struct syminfo *s = NULL;
2091 struct elf_sym *new_syms, *syms = NULL;
2092
2093 shnum = hdr->e_shnum;
2094 i = shnum * sizeof(struct elf_shdr);
2095 shdr = (struct elf_shdr *)alloca(i);
2096 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2097 return;
2098 }
2099
2100 bswap_shdr(shdr, shnum);
2101 for (i = 0; i < shnum; ++i) {
2102 if (shdr[i].sh_type == SHT_SYMTAB) {
2103 sym_idx = i;
2104 str_idx = shdr[i].sh_link;
2105 goto found;
2106 }
2107 }
2108
2109 /* There will be no symbol table if the file was stripped. */
2110 return;
2111
2112 found:
2113 /* Now know where the strtab and symtab are. Snarf them. */
2114 s = malloc(sizeof(*s));
2115 if (!s) {
2116 goto give_up;
2117 }
2118
2119 i = shdr[str_idx].sh_size;
2120 s->disas_strtab = strings = malloc(i);
2121 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2122 goto give_up;
2123 }
2124
2125 i = shdr[sym_idx].sh_size;
2126 syms = malloc(i);
2127 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2128 goto give_up;
2129 }
2130
2131 nsyms = i / sizeof(struct elf_sym);
2132 for (i = 0; i < nsyms; ) {
2133 bswap_sym(syms + i);
2134 /* Throw away entries which we do not need. */
2135 if (syms[i].st_shndx == SHN_UNDEF
2136 || syms[i].st_shndx >= SHN_LORESERVE
2137 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2138 if (i < --nsyms) {
2139 syms[i] = syms[nsyms];
2140 }
2141 } else {
2142 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2143 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2144 syms[i].st_value &= ~(target_ulong)1;
2145 #endif
2146 syms[i].st_value += load_bias;
2147 i++;
2148 }
2149 }
2150
2151 /* No "useful" symbol. */
2152 if (nsyms == 0) {
2153 goto give_up;
2154 }
2155
2156 /* Attempt to free the storage associated with the local symbols
2157 that we threw away. Whether or not this has any effect on the
2158 memory allocation depends on the malloc implementation and how
2159 many symbols we managed to discard. */
2160 new_syms = realloc(syms, nsyms * sizeof(*syms));
2161 if (new_syms == NULL) {
2162 goto give_up;
2163 }
2164 syms = new_syms;
2165
2166 qsort(syms, nsyms, sizeof(*syms), symcmp);
2167
2168 s->disas_num_syms = nsyms;
2169 #if ELF_CLASS == ELFCLASS32
2170 s->disas_symtab.elf32 = syms;
2171 #else
2172 s->disas_symtab.elf64 = syms;
2173 #endif
2174 s->lookup_symbol = lookup_symbolxx;
2175 s->next = syminfos;
2176 syminfos = s;
2177
2178 return;
2179
2180 give_up:
2181 free(s);
2182 free(strings);
2183 free(syms);
2184 }
2185
2186 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2187 {
2188 struct image_info interp_info;
2189 struct elfhdr elf_ex;
2190 char *elf_interpreter = NULL;
2191 char *scratch;
2192
2193 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2194
2195 load_elf_image(bprm->filename, bprm->fd, info,
2196 &elf_interpreter, bprm->buf);
2197
2198 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2199 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2200 when we load the interpreter. */
2201 elf_ex = *(struct elfhdr *)bprm->buf;
2202
2203 /* Do this so that we can load the interpreter, if need be. We will
2204 change some of these later */
2205 bprm->p = setup_arg_pages(bprm, info);
2206
2207 scratch = g_new0(char, TARGET_PAGE_SIZE);
2208 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2209 bprm->p, info->stack_limit);
2210 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2211 bprm->p, info->stack_limit);
2212 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2213 bprm->p, info->stack_limit);
2214 g_free(scratch);
2215
2216 if (!bprm->p) {
2217 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2218 exit(-1);
2219 }
2220
2221 if (elf_interpreter) {
2222 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2223
2224 /* If the program interpreter is one of these two, then assume
2225 an iBCS2 image. Otherwise assume a native linux image. */
2226
2227 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2228 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2229 info->personality = PER_SVR4;
2230
2231 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2232 and some applications "depend" upon this behavior. Since
2233 we do not have the power to recompile these, we emulate
2234 the SVr4 behavior. Sigh. */
2235 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2236 MAP_FIXED | MAP_PRIVATE, -1, 0);
2237 }
2238 }
2239
2240 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2241 info, (elf_interpreter ? &interp_info : NULL));
2242 info->start_stack = bprm->p;
2243
2244 /* If we have an interpreter, set that as the program's entry point.
2245 Copy the load_bias as well, to help PPC64 interpret the entry
2246 point as a function descriptor. Do this after creating elf tables
2247 so that we copy the original program entry point into the AUXV. */
2248 if (elf_interpreter) {
2249 info->load_bias = interp_info.load_bias;
2250 info->entry = interp_info.entry;
2251 free(elf_interpreter);
2252 }
2253
2254 #ifdef USE_ELF_CORE_DUMP
2255 bprm->core_dump = &elf_core_dump;
2256 #endif
2257
2258 return 0;
2259 }
2260
2261 #ifdef USE_ELF_CORE_DUMP
2262 /*
2263 * Definitions to generate Intel SVR4-like core files.
2264 * These mostly have the same names as the SVR4 types with "target_elf_"
2265 * tacked on the front to prevent clashes with linux definitions,
2266 * and the typedef forms have been avoided. This is mostly like
2267 * the SVR4 structure, but more Linuxy, with things that Linux does
2268 * not support and which gdb doesn't really use excluded.
2269 *
2270 * Fields we don't dump (their contents is zero) in linux-user qemu
2271 * are marked with XXX.
2272 *
2273 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2274 *
2275 * Porting ELF coredump for target is (quite) simple process. First you
2276 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2277 * the target resides):
2278 *
2279 * #define USE_ELF_CORE_DUMP
2280 *
2281 * Next you define type of register set used for dumping. ELF specification
2282 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2283 *
2284 * typedef <target_regtype> target_elf_greg_t;
2285 * #define ELF_NREG <number of registers>
2286 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2287 *
2288 * Last step is to implement target specific function that copies registers
2289 * from given cpu into just specified register set. Prototype is:
2290 *
2291 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2292 * const CPUArchState *env);
2293 *
2294 * Parameters:
2295 * regs - copy register values into here (allocated and zeroed by caller)
2296 * env - copy registers from here
2297 *
2298 * Example for ARM target is provided in this file.
2299 */
2300
2301 /* An ELF note in memory */
2302 struct memelfnote {
2303 const char *name;
2304 size_t namesz;
2305 size_t namesz_rounded;
2306 int type;
2307 size_t datasz;
2308 size_t datasz_rounded;
2309 void *data;
2310 size_t notesz;
2311 };
2312
2313 struct target_elf_siginfo {
2314 abi_int si_signo; /* signal number */
2315 abi_int si_code; /* extra code */
2316 abi_int si_errno; /* errno */
2317 };
2318
2319 struct target_elf_prstatus {
2320 struct target_elf_siginfo pr_info; /* Info associated with signal */
2321 abi_short pr_cursig; /* Current signal */
2322 abi_ulong pr_sigpend; /* XXX */
2323 abi_ulong pr_sighold; /* XXX */
2324 target_pid_t pr_pid;
2325 target_pid_t pr_ppid;
2326 target_pid_t pr_pgrp;
2327 target_pid_t pr_sid;
2328 struct target_timeval pr_utime; /* XXX User time */
2329 struct target_timeval pr_stime; /* XXX System time */
2330 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2331 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2332 target_elf_gregset_t pr_reg; /* GP registers */
2333 abi_int pr_fpvalid; /* XXX */
2334 };
2335
2336 #define ELF_PRARGSZ (80) /* Number of chars for args */
2337
2338 struct target_elf_prpsinfo {
2339 char pr_state; /* numeric process state */
2340 char pr_sname; /* char for pr_state */
2341 char pr_zomb; /* zombie */
2342 char pr_nice; /* nice val */
2343 abi_ulong pr_flag; /* flags */
2344 target_uid_t pr_uid;
2345 target_gid_t pr_gid;
2346 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2347 /* Lots missing */
2348 char pr_fname[16]; /* filename of executable */
2349 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2350 };
2351
2352 /* Here is the structure in which status of each thread is captured. */
2353 struct elf_thread_status {
2354 QTAILQ_ENTRY(elf_thread_status) ets_link;
2355 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2356 #if 0
2357 elf_fpregset_t fpu; /* NT_PRFPREG */
2358 struct task_struct *thread;
2359 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2360 #endif
2361 struct memelfnote notes[1];
2362 int num_notes;
2363 };
2364
2365 struct elf_note_info {
2366 struct memelfnote *notes;
2367 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2368 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2369
2370 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2371 #if 0
2372 /*
2373 * Current version of ELF coredump doesn't support
2374 * dumping fp regs etc.
2375 */
2376 elf_fpregset_t *fpu;
2377 elf_fpxregset_t *xfpu;
2378 int thread_status_size;
2379 #endif
2380 int notes_size;
2381 int numnote;
2382 };
2383
2384 struct vm_area_struct {
2385 target_ulong vma_start; /* start vaddr of memory region */
2386 target_ulong vma_end; /* end vaddr of memory region */
2387 abi_ulong vma_flags; /* protection etc. flags for the region */
2388 QTAILQ_ENTRY(vm_area_struct) vma_link;
2389 };
2390
2391 struct mm_struct {
2392 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2393 int mm_count; /* number of mappings */
2394 };
2395
2396 static struct mm_struct *vma_init(void);
2397 static void vma_delete(struct mm_struct *);
2398 static int vma_add_mapping(struct mm_struct *, target_ulong,
2399 target_ulong, abi_ulong);
2400 static int vma_get_mapping_count(const struct mm_struct *);
2401 static struct vm_area_struct *vma_first(const struct mm_struct *);
2402 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2403 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2404 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2405 unsigned long flags);
2406
2407 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2408 static void fill_note(struct memelfnote *, const char *, int,
2409 unsigned int, void *);
2410 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2411 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2412 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2413 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2414 static size_t note_size(const struct memelfnote *);
2415 static void free_note_info(struct elf_note_info *);
2416 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2417 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2418 static int core_dump_filename(const TaskState *, char *, size_t);
2419
2420 static int dump_write(int, const void *, size_t);
2421 static int write_note(struct memelfnote *, int);
2422 static int write_note_info(struct elf_note_info *, int);
2423
2424 #ifdef BSWAP_NEEDED
2425 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2426 {
2427 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2428 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2429 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2430 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2431 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2432 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2433 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2434 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2435 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2436 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2437 /* cpu times are not filled, so we skip them */
2438 /* regs should be in correct format already */
2439 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2440 }
2441
2442 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2443 {
2444 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2445 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2446 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2447 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2448 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2449 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2450 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2451 }
2452
2453 static void bswap_note(struct elf_note *en)
2454 {
2455 bswap32s(&en->n_namesz);
2456 bswap32s(&en->n_descsz);
2457 bswap32s(&en->n_type);
2458 }
2459 #else
2460 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2461 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2462 static inline void bswap_note(struct elf_note *en) { }
2463 #endif /* BSWAP_NEEDED */
2464
2465 /*
2466 * Minimal support for linux memory regions. These are needed
2467 * when we are finding out what memory exactly belongs to
2468 * emulated process. No locks needed here, as long as
2469 * thread that received the signal is stopped.
2470 */
2471
2472 static struct mm_struct *vma_init(void)
2473 {
2474 struct mm_struct *mm;
2475
2476 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2477 return (NULL);
2478
2479 mm->mm_count = 0;
2480 QTAILQ_INIT(&mm->mm_mmap);
2481
2482 return (mm);
2483 }
2484
2485 static void vma_delete(struct mm_struct *mm)
2486 {
2487 struct vm_area_struct *vma;
2488
2489 while ((vma = vma_first(mm)) != NULL) {
2490 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2491 g_free(vma);
2492 }
2493 g_free(mm);
2494 }
2495
2496 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2497 target_ulong end, abi_ulong flags)
2498 {
2499 struct vm_area_struct *vma;
2500
2501 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2502 return (-1);
2503
2504 vma->vma_start = start;
2505 vma->vma_end = end;
2506 vma->vma_flags = flags;
2507
2508 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2509 mm->mm_count++;
2510
2511 return (0);
2512 }
2513
2514 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2515 {
2516 return (QTAILQ_FIRST(&mm->mm_mmap));
2517 }
2518
2519 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2520 {
2521 return (QTAILQ_NEXT(vma, vma_link));
2522 }
2523
2524 static int vma_get_mapping_count(const struct mm_struct *mm)
2525 {
2526 return (mm->mm_count);
2527 }
2528
2529 /*
2530 * Calculate file (dump) size of given memory region.
2531 */
2532 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2533 {
2534 /* if we cannot even read the first page, skip it */
2535 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2536 return (0);
2537
2538 /*
2539 * Usually we don't dump executable pages as they contain
2540 * non-writable code that debugger can read directly from
2541 * target library etc. However, thread stacks are marked
2542 * also executable so we read in first page of given region
2543 * and check whether it contains elf header. If there is
2544 * no elf header, we dump it.
2545 */
2546 if (vma->vma_flags & PROT_EXEC) {
2547 char page[TARGET_PAGE_SIZE];
2548
2549 copy_from_user(page, vma->vma_start, sizeof (page));
2550 if ((page[EI_MAG0] == ELFMAG0) &&
2551 (page[EI_MAG1] == ELFMAG1) &&
2552 (page[EI_MAG2] == ELFMAG2) &&
2553 (page[EI_MAG3] == ELFMAG3)) {
2554 /*
2555 * Mappings are possibly from ELF binary. Don't dump
2556 * them.
2557 */
2558 return (0);
2559 }
2560 }
2561
2562 return (vma->vma_end - vma->vma_start);
2563 }
2564
2565 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2566 unsigned long flags)
2567 {
2568 struct mm_struct *mm = (struct mm_struct *)priv;
2569
2570 vma_add_mapping(mm, start, end, flags);
2571 return (0);
2572 }
2573
2574 static void fill_note(struct memelfnote *note, const char *name, int type,
2575 unsigned int sz, void *data)
2576 {
2577 unsigned int namesz;
2578
2579 namesz = strlen(name) + 1;
2580 note->name = name;
2581 note->namesz = namesz;
2582 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2583 note->type = type;
2584 note->datasz = sz;
2585 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2586
2587 note->data = data;
2588
2589 /*
2590 * We calculate rounded up note size here as specified by
2591 * ELF document.
2592 */
2593 note->notesz = sizeof (struct elf_note) +
2594 note->namesz_rounded + note->datasz_rounded;
2595 }
2596
2597 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2598 uint32_t flags)
2599 {
2600 (void) memset(elf, 0, sizeof(*elf));
2601
2602 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2603 elf->e_ident[EI_CLASS] = ELF_CLASS;
2604 elf->e_ident[EI_DATA] = ELF_DATA;
2605 elf->e_ident[EI_VERSION] = EV_CURRENT;
2606 elf->e_ident[EI_OSABI] = ELF_OSABI;
2607
2608 elf->e_type = ET_CORE;
2609 elf->e_machine = machine;
2610 elf->e_version = EV_CURRENT;
2611 elf->e_phoff = sizeof(struct elfhdr);
2612 elf->e_flags = flags;
2613 elf->e_ehsize = sizeof(struct elfhdr);
2614 elf->e_phentsize = sizeof(struct elf_phdr);
2615 elf->e_phnum = segs;
2616
2617 bswap_ehdr(elf);
2618 }
2619
2620 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2621 {
2622 phdr->p_type = PT_NOTE;
2623 phdr->p_offset = offset;
2624 phdr->p_vaddr = 0;
2625 phdr->p_paddr = 0;
2626 phdr->p_filesz = sz;
2627 phdr->p_memsz = 0;
2628 phdr->p_flags = 0;
2629 phdr->p_align = 0;
2630
2631 bswap_phdr(phdr, 1);
2632 }
2633
2634 static size_t note_size(const struct memelfnote *note)
2635 {
2636 return (note->notesz);
2637 }
2638
2639 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2640 const TaskState *ts, int signr)
2641 {
2642 (void) memset(prstatus, 0, sizeof (*prstatus));
2643 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2644 prstatus->pr_pid = ts->ts_tid;
2645 prstatus->pr_ppid = getppid();
2646 prstatus->pr_pgrp = getpgrp();
2647 prstatus->pr_sid = getsid(0);
2648
2649 bswap_prstatus(prstatus);
2650 }
2651
2652 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2653 {
2654 char *base_filename;
2655 unsigned int i, len;
2656
2657 (void) memset(psinfo, 0, sizeof (*psinfo));
2658
2659 len = ts->info->arg_end - ts->info->arg_start;
2660 if (len >= ELF_PRARGSZ)
2661 len = ELF_PRARGSZ - 1;
2662 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2663 return -EFAULT;
2664 for (i = 0; i < len; i++)
2665 if (psinfo->pr_psargs[i] == 0)
2666 psinfo->pr_psargs[i] = ' ';
2667 psinfo->pr_psargs[len] = 0;
2668
2669 psinfo->pr_pid = getpid();
2670 psinfo->pr_ppid = getppid();
2671 psinfo->pr_pgrp = getpgrp();
2672 psinfo->pr_sid = getsid(0);
2673 psinfo->pr_uid = getuid();
2674 psinfo->pr_gid = getgid();
2675
2676 base_filename = g_path_get_basename(ts->bprm->filename);
2677 /*
2678 * Using strncpy here is fine: at max-length,
2679 * this field is not NUL-terminated.
2680 */
2681 (void) strncpy(psinfo->pr_fname, base_filename,
2682 sizeof(psinfo->pr_fname));
2683
2684 g_free(base_filename);
2685 bswap_psinfo(psinfo);
2686 return (0);
2687 }
2688
2689 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2690 {
2691 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2692 elf_addr_t orig_auxv = auxv;
2693 void *ptr;
2694 int len = ts->info->auxv_len;
2695
2696 /*
2697 * Auxiliary vector is stored in target process stack. It contains
2698 * {type, value} pairs that we need to dump into note. This is not
2699 * strictly necessary but we do it here for sake of completeness.
2700 */
2701
2702 /* read in whole auxv vector and copy it to memelfnote */
2703 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2704 if (ptr != NULL) {
2705 fill_note(note, "CORE", NT_AUXV, len, ptr);
2706 unlock_user(ptr, auxv, len);
2707 }
2708 }
2709
2710 /*
2711 * Constructs name of coredump file. We have following convention
2712 * for the name:
2713 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2714 *
2715 * Returns 0 in case of success, -1 otherwise (errno is set).
2716 */
2717 static int core_dump_filename(const TaskState *ts, char *buf,
2718 size_t bufsize)
2719 {
2720 char timestamp[64];
2721 char *filename = NULL;
2722 char *base_filename = NULL;
2723 struct timeval tv;
2724 struct tm tm;
2725
2726 assert(bufsize >= PATH_MAX);
2727
2728 if (gettimeofday(&tv, NULL) < 0) {
2729 (void) fprintf(stderr, "unable to get current timestamp: %s",
2730 strerror(errno));
2731 return (-1);
2732 }
2733
2734 filename = strdup(ts->bprm->filename);
2735 base_filename = strdup(basename(filename));
2736 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2737 localtime_r(&tv.tv_sec, &tm));
2738 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2739 base_filename, timestamp, (int)getpid());
2740 free(base_filename);
2741 free(filename);
2742
2743 return (0);
2744 }
2745
2746 static int dump_write(int fd, const void *ptr, size_t size)
2747 {
2748 const char *bufp = (const char *)ptr;
2749 ssize_t bytes_written, bytes_left;
2750 struct rlimit dumpsize;
2751 off_t pos;
2752
2753 bytes_written = 0;
2754 getrlimit(RLIMIT_CORE, &dumpsize);
2755 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2756 if (errno == ESPIPE) { /* not a seekable stream */
2757 bytes_left = size;
2758 } else {
2759 return pos;
2760 }
2761 } else {
2762 if (dumpsize.rlim_cur <= pos) {
2763 return -1;
2764 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2765 bytes_left = size;
2766 } else {
2767 size_t limit_left=dumpsize.rlim_cur - pos;
2768 bytes_left = limit_left >= size ? size : limit_left ;
2769 }
2770 }
2771
2772 /*
2773 * In normal conditions, single write(2) should do but
2774 * in case of socket etc. this mechanism is more portable.
2775 */
2776 do {
2777 bytes_written = write(fd, bufp, bytes_left);
2778 if (bytes_written < 0) {
2779 if (errno == EINTR)
2780 continue;
2781 return (-1);
2782 } else if (bytes_written == 0) { /* eof */
2783 return (-1);
2784 }
2785 bufp += bytes_written;
2786 bytes_left -= bytes_written;
2787 } while (bytes_left > 0);
2788
2789 return (0);
2790 }
2791
2792 static int write_note(struct memelfnote *men, int fd)
2793 {
2794 struct elf_note en;
2795
2796 en.n_namesz = men->namesz;
2797 en.n_type = men->type;
2798 en.n_descsz = men->datasz;
2799
2800 bswap_note(&en);
2801
2802 if (dump_write(fd, &en, sizeof(en)) != 0)
2803 return (-1);
2804 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2805 return (-1);
2806 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2807 return (-1);
2808
2809 return (0);
2810 }
2811
2812 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2813 {
2814 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2815 TaskState *ts = (TaskState *)cpu->opaque;
2816 struct elf_thread_status *ets;
2817
2818 ets = g_malloc0(sizeof (*ets));
2819 ets->num_notes = 1; /* only prstatus is dumped */
2820 fill_prstatus(&ets->prstatus, ts, 0);
2821 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2822 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2823 &ets->prstatus);
2824
2825 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2826
2827 info->notes_size += note_size(&ets->notes[0]);
2828 }
2829
2830 static void init_note_info(struct elf_note_info *info)
2831 {
2832 /* Initialize the elf_note_info structure so that it is at
2833 * least safe to call free_note_info() on it. Must be
2834 * called before calling fill_note_info().
2835 */
2836 memset(info, 0, sizeof (*info));
2837 QTAILQ_INIT(&info->thread_list);
2838 }
2839
2840 static int fill_note_info(struct elf_note_info *info,
2841 long signr, const CPUArchState *env)
2842 {
2843 #define NUMNOTES 3
2844 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2845 TaskState *ts = (TaskState *)cpu->opaque;
2846 int i;
2847
2848 info->notes = g_new0(struct memelfnote, NUMNOTES);
2849 if (info->notes == NULL)
2850 return (-ENOMEM);
2851 info->prstatus = g_malloc0(sizeof (*info->prstatus));
2852 if (info->prstatus == NULL)
2853 return (-ENOMEM);
2854 info->psinfo = g_malloc0(sizeof (*info->psinfo));
2855 if (info->prstatus == NULL)
2856 return (-ENOMEM);
2857
2858 /*
2859 * First fill in status (and registers) of current thread
2860 * including process info & aux vector.
2861 */
2862 fill_prstatus(info->prstatus, ts, signr);
2863 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2864 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2865 sizeof (*info->prstatus), info->prstatus);
2866 fill_psinfo(info->psinfo, ts);
2867 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2868 sizeof (*info->psinfo), info->psinfo);
2869 fill_auxv_note(&info->notes[2], ts);
2870 info->numnote = 3;
2871
2872 info->notes_size = 0;
2873 for (i = 0; i < info->numnote; i++)
2874 info->notes_size += note_size(&info->notes[i]);
2875
2876 /* read and fill status of all threads */
2877 cpu_list_lock();
2878 CPU_FOREACH(cpu) {
2879 if (cpu == thread_cpu) {
2880 continue;
2881 }
2882 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2883 }
2884 cpu_list_unlock();
2885
2886 return (0);
2887 }
2888
2889 static void free_note_info(struct elf_note_info *info)
2890 {
2891 struct elf_thread_status *ets;
2892
2893 while (!QTAILQ_EMPTY(&info->thread_list)) {
2894 ets = QTAILQ_FIRST(&info->thread_list);
2895 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2896 g_free(ets);
2897 }
2898
2899 g_free(info->prstatus);
2900 g_free(info->psinfo);
2901 g_free(info->notes);
2902 }
2903
2904 static int write_note_info(struct elf_note_info *info, int fd)
2905 {
2906 struct elf_thread_status *ets;
2907 int i, error = 0;
2908
2909 /* write prstatus, psinfo and auxv for current thread */
2910 for (i = 0; i < info->numnote; i++)
2911 if ((error = write_note(&info->notes[i], fd)) != 0)
2912 return (error);
2913
2914 /* write prstatus for each thread */
2915 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
2916 if ((error = write_note(&ets->notes[0], fd)) != 0)
2917 return (error);
2918 }
2919
2920 return (0);
2921 }
2922
2923 /*
2924 * Write out ELF coredump.
2925 *
2926 * See documentation of ELF object file format in:
2927 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2928 *
2929 * Coredump format in linux is following:
2930 *
2931 * 0 +----------------------+ \
2932 * | ELF header | ET_CORE |
2933 * +----------------------+ |
2934 * | ELF program headers | |--- headers
2935 * | - NOTE section | |
2936 * | - PT_LOAD sections | |
2937 * +----------------------+ /
2938 * | NOTEs: |
2939 * | - NT_PRSTATUS |
2940 * | - NT_PRSINFO |
2941 * | - NT_AUXV |
2942 * +----------------------+ <-- aligned to target page
2943 * | Process memory dump |
2944 * : :
2945 * . .
2946 * : :
2947 * | |
2948 * +----------------------+
2949 *
2950 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2951 * NT_PRSINFO -> struct elf_prpsinfo
2952 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2953 *
2954 * Format follows System V format as close as possible. Current
2955 * version limitations are as follows:
2956 * - no floating point registers are dumped
2957 *
2958 * Function returns 0 in case of success, negative errno otherwise.
2959 *
2960 * TODO: make this work also during runtime: it should be
2961 * possible to force coredump from running process and then
2962 * continue processing. For example qemu could set up SIGUSR2
2963 * handler (provided that target process haven't registered
2964 * handler for that) that does the dump when signal is received.
2965 */
2966 static int elf_core_dump(int signr, const CPUArchState *env)
2967 {
2968 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2969 const TaskState *ts = (const TaskState *)cpu->opaque;
2970 struct vm_area_struct *vma = NULL;
2971 char corefile[PATH_MAX];
2972 struct elf_note_info info;
2973 struct elfhdr elf;
2974 struct elf_phdr phdr;
2975 struct rlimit dumpsize;
2976 struct mm_struct *mm = NULL;
2977 off_t offset = 0, data_offset = 0;
2978 int segs = 0;
2979 int fd = -1;
2980
2981 init_note_info(&info);
2982
2983 errno = 0;
2984 getrlimit(RLIMIT_CORE, &dumpsize);
2985 if (dumpsize.rlim_cur == 0)
2986 return 0;
2987
2988 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2989 return (-errno);
2990
2991 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2992 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2993 return (-errno);
2994
2995 /*
2996 * Walk through target process memory mappings and
2997 * set up structure containing this information. After
2998 * this point vma_xxx functions can be used.
2999 */
3000 if ((mm = vma_init()) == NULL)
3001 goto out;
3002
3003 walk_memory_regions(mm, vma_walker);
3004 segs = vma_get_mapping_count(mm);
3005
3006 /*
3007 * Construct valid coredump ELF header. We also
3008 * add one more segment for notes.
3009 */
3010 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3011 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3012 goto out;
3013
3014 /* fill in the in-memory version of notes */
3015 if (fill_note_info(&info, signr, env) < 0)
3016 goto out;
3017
3018 offset += sizeof (elf); /* elf header */
3019 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3020
3021 /* write out notes program header */
3022 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3023
3024 offset += info.notes_size;
3025 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3026 goto out;
3027
3028 /*
3029 * ELF specification wants data to start at page boundary so
3030 * we align it here.
3031 */
3032 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3033
3034 /*
3035 * Write program headers for memory regions mapped in
3036 * the target process.
3037 */
3038 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3039 (void) memset(&phdr, 0, sizeof (phdr));
3040
3041 phdr.p_type = PT_LOAD;
3042 phdr.p_offset = offset;
3043 phdr.p_vaddr = vma->vma_start;
3044 phdr.p_paddr = 0;
3045 phdr.p_filesz = vma_dump_size(vma);
3046 offset += phdr.p_filesz;
3047 phdr.p_memsz = vma->vma_end - vma->vma_start;
3048 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3049 if (vma->vma_flags & PROT_WRITE)
3050 phdr.p_flags |= PF_W;
3051 if (vma->vma_flags & PROT_EXEC)
3052 phdr.p_flags |= PF_X;
3053 phdr.p_align = ELF_EXEC_PAGESIZE;
3054
3055 bswap_phdr(&phdr, 1);
3056 dump_write(fd, &phdr, sizeof (phdr));
3057 }
3058
3059 /*
3060 * Next we write notes just after program headers. No
3061 * alignment needed here.
3062 */
3063 if (write_note_info(&info, fd) < 0)
3064 goto out;
3065
3066 /* align data to page boundary */
3067 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3068 goto out;
3069
3070 /*
3071 * Finally we can dump process memory into corefile as well.
3072 */
3073 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3074 abi_ulong addr;
3075 abi_ulong end;
3076
3077 end = vma->vma_start + vma_dump_size(vma);
3078
3079 for (addr = vma->vma_start; addr < end;
3080 addr += TARGET_PAGE_SIZE) {
3081 char page[TARGET_PAGE_SIZE];
3082 int error;
3083
3084 /*
3085 * Read in page from target process memory and
3086 * write it to coredump file.
3087 */
3088 error = copy_from_user(page, addr, sizeof (page));
3089 if (error != 0) {
3090 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3091 addr);
3092 errno = -error;
3093 goto out;
3094 }
3095 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3096 goto out;
3097 }
3098 }
3099
3100 out:
3101 free_note_info(&info);
3102 if (mm != NULL)
3103 vma_delete(mm);
3104 (void) close(fd);
3105
3106 if (errno != 0)
3107 return (-errno);
3108 return (0);
3109 }
3110 #endif /* USE_ELF_CORE_DUMP */
3111
3112 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3113 {
3114 init_thread(regs, infop);
3115 }