cirrus: fix off-by-one in cirrus_bitblt_rop_bkwd_transp_*_16
[qemu.git] / linux-user / qemu.h
1 #ifndef QEMU_H
2 #define QEMU_H
3
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
12
13 #include "exec/user/abitypes.h"
14
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 #include "qemu/queue.h"
20
21 #define THREAD __thread
22
23 /* This is the size of the host kernel's sigset_t, needed where we make
24 * direct system calls that take a sigset_t pointer and a size.
25 */
26 #define SIGSET_T_SIZE (_NSIG / 8)
27
28 /* This struct is used to hold certain information about the image.
29 * Basically, it replicates in user space what would be certain
30 * task_struct fields in the kernel
31 */
32 struct image_info {
33 abi_ulong load_bias;
34 abi_ulong load_addr;
35 abi_ulong start_code;
36 abi_ulong end_code;
37 abi_ulong start_data;
38 abi_ulong end_data;
39 abi_ulong start_brk;
40 abi_ulong brk;
41 abi_ulong start_mmap;
42 abi_ulong start_stack;
43 abi_ulong stack_limit;
44 abi_ulong entry;
45 abi_ulong code_offset;
46 abi_ulong data_offset;
47 abi_ulong saved_auxv;
48 abi_ulong auxv_len;
49 abi_ulong arg_start;
50 abi_ulong arg_end;
51 abi_ulong arg_strings;
52 abi_ulong env_strings;
53 abi_ulong file_string;
54 uint32_t elf_flags;
55 int personality;
56 #ifdef CONFIG_USE_FDPIC
57 abi_ulong loadmap_addr;
58 uint16_t nsegs;
59 void *loadsegs;
60 abi_ulong pt_dynamic_addr;
61 struct image_info *other_info;
62 #endif
63 };
64
65 #ifdef TARGET_I386
66 /* Information about the current linux thread */
67 struct vm86_saved_state {
68 uint32_t eax; /* return code */
69 uint32_t ebx;
70 uint32_t ecx;
71 uint32_t edx;
72 uint32_t esi;
73 uint32_t edi;
74 uint32_t ebp;
75 uint32_t esp;
76 uint32_t eflags;
77 uint32_t eip;
78 uint16_t cs, ss, ds, es, fs, gs;
79 };
80 #endif
81
82 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
83 /* FPU emulator */
84 #include "nwfpe/fpa11.h"
85 #endif
86
87 #define MAX_SIGQUEUE_SIZE 1024
88
89 struct emulated_sigtable {
90 int pending; /* true if signal is pending */
91 target_siginfo_t info;
92 };
93
94 /* NOTE: we force a big alignment so that the stack stored after is
95 aligned too */
96 typedef struct TaskState {
97 pid_t ts_tid; /* tid (or pid) of this task */
98 #ifdef TARGET_ARM
99 # ifdef TARGET_ABI32
100 /* FPA state */
101 FPA11 fpa;
102 # endif
103 int swi_errno;
104 #endif
105 #ifdef TARGET_UNICORE32
106 int swi_errno;
107 #endif
108 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
109 abi_ulong target_v86;
110 struct vm86_saved_state vm86_saved_regs;
111 struct target_vm86plus_struct vm86plus;
112 uint32_t v86flags;
113 uint32_t v86mask;
114 #endif
115 abi_ulong child_tidptr;
116 #ifdef TARGET_M68K
117 int sim_syscalls;
118 abi_ulong tp_value;
119 #endif
120 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
121 /* Extra fields for semihosted binaries. */
122 abi_ulong heap_base;
123 abi_ulong heap_limit;
124 #endif
125 abi_ulong stack_base;
126 int used; /* non zero if used */
127 struct image_info *info;
128 struct linux_binprm *bprm;
129
130 struct emulated_sigtable sync_signal;
131 struct emulated_sigtable sigtab[TARGET_NSIG];
132 /* This thread's signal mask, as requested by the guest program.
133 * The actual signal mask of this thread may differ:
134 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
135 * + sometimes we block all signals to avoid races
136 */
137 sigset_t signal_mask;
138 /* The signal mask imposed by a guest sigsuspend syscall, if we are
139 * currently in the middle of such a syscall
140 */
141 sigset_t sigsuspend_mask;
142 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
143 int in_sigsuspend;
144
145 /* Nonzero if process_pending_signals() needs to do something (either
146 * handle a pending signal or unblock signals).
147 * This flag is written from a signal handler so should be accessed via
148 * the atomic_read() and atomic_write() functions. (It is not accessed
149 * from multiple threads.)
150 */
151 int signal_pending;
152
153 } __attribute__((aligned(16))) TaskState;
154
155 extern char *exec_path;
156 void init_task_state(TaskState *ts);
157 void task_settid(TaskState *);
158 void stop_all_tasks(void);
159 extern const char *qemu_uname_release;
160 extern unsigned long mmap_min_addr;
161
162 /* ??? See if we can avoid exposing so much of the loader internals. */
163
164 /* Read a good amount of data initially, to hopefully get all the
165 program headers loaded. */
166 #define BPRM_BUF_SIZE 1024
167
168 /*
169 * This structure is used to hold the arguments that are
170 * used when loading binaries.
171 */
172 struct linux_binprm {
173 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
174 abi_ulong p;
175 int fd;
176 int e_uid, e_gid;
177 int argc, envc;
178 char **argv;
179 char **envp;
180 char * filename; /* Name of binary */
181 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
182 };
183
184 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
185 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
186 abi_ulong stringp, int push_ptr);
187 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
188 struct target_pt_regs * regs, struct image_info *infop,
189 struct linux_binprm *);
190
191 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
192 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
193
194 abi_long memcpy_to_target(abi_ulong dest, const void *src,
195 unsigned long len);
196 void target_set_brk(abi_ulong new_brk);
197 abi_long do_brk(abi_ulong new_brk);
198 void syscall_init(void);
199 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
200 abi_long arg2, abi_long arg3, abi_long arg4,
201 abi_long arg5, abi_long arg6, abi_long arg7,
202 abi_long arg8);
203 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
204 extern THREAD CPUState *thread_cpu;
205 void cpu_loop(CPUArchState *env);
206 const char *target_strerror(int err);
207 int get_osversion(void);
208 void init_qemu_uname_release(void);
209 void fork_start(void);
210 void fork_end(int child);
211
212 /* Creates the initial guest address space in the host memory space using
213 * the given host start address hint and size. The guest_start parameter
214 * specifies the start address of the guest space. guest_base will be the
215 * difference between the host start address computed by this function and
216 * guest_start. If fixed is specified, then the mapped address space must
217 * start at host_start. The real start address of the mapped memory space is
218 * returned or -1 if there was an error.
219 */
220 unsigned long init_guest_space(unsigned long host_start,
221 unsigned long host_size,
222 unsigned long guest_start,
223 bool fixed);
224
225 #include "qemu/log.h"
226
227 /* safe_syscall.S */
228
229 /**
230 * safe_syscall:
231 * @int number: number of system call to make
232 * ...: arguments to the system call
233 *
234 * Call a system call if guest signal not pending.
235 * This has the same API as the libc syscall() function, except that it
236 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
237 *
238 * Returns: the system call result, or -1 with an error code in errno
239 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
240 * with any of the host errno values.)
241 */
242
243 /* A guide to using safe_syscall() to handle interactions between guest
244 * syscalls and guest signals:
245 *
246 * Guest syscalls come in two flavours:
247 *
248 * (1) Non-interruptible syscalls
249 *
250 * These are guest syscalls that never get interrupted by signals and
251 * so never return EINTR. They can be implemented straightforwardly in
252 * QEMU: just make sure that if the implementation code has to make any
253 * blocking calls that those calls are retried if they return EINTR.
254 * It's also OK to implement these with safe_syscall, though it will be
255 * a little less efficient if a signal is delivered at the 'wrong' moment.
256 *
257 * Some non-interruptible syscalls need to be handled using block_signals()
258 * to block signals for the duration of the syscall. This mainly applies
259 * to code which needs to modify the data structures used by the
260 * host_signal_handler() function and the functions it calls, including
261 * all syscalls which change the thread's signal mask.
262 *
263 * (2) Interruptible syscalls
264 *
265 * These are guest syscalls that can be interrupted by signals and
266 * for which we need to either return EINTR or arrange for the guest
267 * syscall to be restarted. This category includes both syscalls which
268 * always restart (and in the kernel return -ERESTARTNOINTR), ones
269 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
270 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
271 * if the handler was registered with SA_RESTART (kernel returns
272 * -ERESTARTSYS). System calls which are only interruptible in some
273 * situations (like 'open') also need to be handled this way.
274 *
275 * Here it is important that the host syscall is made
276 * via this safe_syscall() function, and *not* via the host libc.
277 * If the host libc is used then the implementation will appear to work
278 * most of the time, but there will be a race condition where a
279 * signal could arrive just before we make the host syscall inside libc,
280 * and then then guest syscall will not correctly be interrupted.
281 * Instead the implementation of the guest syscall can use the safe_syscall
282 * function but otherwise just return the result or errno in the usual
283 * way; the main loop code will take care of restarting the syscall
284 * if appropriate.
285 *
286 * (If the implementation needs to make multiple host syscalls this is
287 * OK; any which might really block must be via safe_syscall(); for those
288 * which are only technically blocking (ie which we know in practice won't
289 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
290 * You must be able to cope with backing out correctly if some safe_syscall
291 * you make in the implementation returns either -TARGET_ERESTARTSYS or
292 * EINTR though.)
293 *
294 * block_signals() cannot be used for interruptible syscalls.
295 *
296 *
297 * How and why the safe_syscall implementation works:
298 *
299 * The basic setup is that we make the host syscall via a known
300 * section of host native assembly. If a signal occurs, our signal
301 * handler checks the interrupted host PC against the addresse of that
302 * known section. If the PC is before or at the address of the syscall
303 * instruction then we change the PC to point at a "return
304 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
305 * (causing the safe_syscall() call to immediately return that value).
306 * Then in the main.c loop if we see this magic return value we adjust
307 * the guest PC to wind it back to before the system call, and invoke
308 * the guest signal handler as usual.
309 *
310 * This winding-back will happen in two cases:
311 * (1) signal came in just before we took the host syscall (a race);
312 * in this case we'll take the guest signal and have another go
313 * at the syscall afterwards, and this is indistinguishable for the
314 * guest from the timing having been different such that the guest
315 * signal really did win the race
316 * (2) signal came in while the host syscall was blocking, and the
317 * host kernel decided the syscall should be restarted;
318 * in this case we want to restart the guest syscall also, and so
319 * rewinding is the right thing. (Note that "restart" semantics mean
320 * "first call the signal handler, then reattempt the syscall".)
321 * The other situation to consider is when a signal came in while the
322 * host syscall was blocking, and the host kernel decided that the syscall
323 * should not be restarted; in this case QEMU's host signal handler will
324 * be invoked with the PC pointing just after the syscall instruction,
325 * with registers indicating an EINTR return; the special code in the
326 * handler will not kick in, and we will return EINTR to the guest as
327 * we should.
328 *
329 * Notice that we can leave the host kernel to make the decision for
330 * us about whether to do a restart of the syscall or not; we do not
331 * need to check SA_RESTART flags in QEMU or distinguish the various
332 * kinds of restartability.
333 */
334 #ifdef HAVE_SAFE_SYSCALL
335 /* The core part of this function is implemented in assembly */
336 extern long safe_syscall_base(int *pending, long number, ...);
337
338 #define safe_syscall(...) \
339 ({ \
340 long ret_; \
341 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
342 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
343 if (is_error(ret_)) { \
344 errno = -ret_; \
345 ret_ = -1; \
346 } \
347 ret_; \
348 })
349
350 #else
351
352 /* Fallback for architectures which don't yet provide a safe-syscall assembly
353 * fragment; note that this is racy!
354 * This should go away when all host architectures have been updated.
355 */
356 #define safe_syscall syscall
357
358 #endif
359
360 /* syscall.c */
361 int host_to_target_waitstatus(int status);
362
363 /* strace.c */
364 void print_syscall(int num,
365 abi_long arg1, abi_long arg2, abi_long arg3,
366 abi_long arg4, abi_long arg5, abi_long arg6);
367 void print_syscall_ret(int num, abi_long arg1);
368 /**
369 * print_taken_signal:
370 * @target_signum: target signal being taken
371 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
372 *
373 * Print strace output indicating that this signal is being taken by the guest,
374 * in a format similar to:
375 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
376 */
377 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
378 extern int do_strace;
379
380 /* signal.c */
381 void process_pending_signals(CPUArchState *cpu_env);
382 void signal_init(void);
383 int queue_signal(CPUArchState *env, int sig, int si_type,
384 target_siginfo_t *info);
385 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
386 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
387 int target_to_host_signal(int sig);
388 int host_to_target_signal(int sig);
389 long do_sigreturn(CPUArchState *env);
390 long do_rt_sigreturn(CPUArchState *env);
391 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
392 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
393 /**
394 * block_signals: block all signals while handling this guest syscall
395 *
396 * Block all signals, and arrange that the signal mask is returned to
397 * its correct value for the guest before we resume execution of guest code.
398 * If this function returns non-zero, then the caller should immediately
399 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
400 * signal and restart execution of the syscall.
401 * If block_signals() returns zero, then the caller can continue with
402 * emulation of the system call knowing that no signals can be taken
403 * (and therefore that no race conditions will result).
404 * This should only be called once, because if it is called a second time
405 * it will always return non-zero. (Think of it like a mutex that can't
406 * be recursively locked.)
407 * Signals will be unblocked again by process_pending_signals().
408 *
409 * Return value: non-zero if there was a pending signal, zero if not.
410 */
411 int block_signals(void); /* Returns non zero if signal pending */
412
413 #ifdef TARGET_I386
414 /* vm86.c */
415 void save_v86_state(CPUX86State *env);
416 void handle_vm86_trap(CPUX86State *env, int trapno);
417 void handle_vm86_fault(CPUX86State *env);
418 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
419 #elif defined(TARGET_SPARC64)
420 void sparc64_set_context(CPUSPARCState *env);
421 void sparc64_get_context(CPUSPARCState *env);
422 #endif
423
424 /* mmap.c */
425 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
426 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
427 int flags, int fd, abi_ulong offset);
428 int target_munmap(abi_ulong start, abi_ulong len);
429 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
430 abi_ulong new_size, unsigned long flags,
431 abi_ulong new_addr);
432 int target_msync(abi_ulong start, abi_ulong len, int flags);
433 extern unsigned long last_brk;
434 extern abi_ulong mmap_next_start;
435 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
436 void mmap_fork_start(void);
437 void mmap_fork_end(int child);
438
439 /* main.c */
440 extern unsigned long guest_stack_size;
441
442 /* user access */
443
444 #define VERIFY_READ 0
445 #define VERIFY_WRITE 1 /* implies read access */
446
447 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
448 {
449 return page_check_range((target_ulong)addr, size,
450 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
451 }
452
453 /* NOTE __get_user and __put_user use host pointers and don't check access.
454 These are usually used to access struct data members once the struct has
455 been locked - usually with lock_user_struct. */
456
457 /* Tricky points:
458 - Use __builtin_choose_expr to avoid type promotion from ?:,
459 - Invalid sizes result in a compile time error stemming from
460 the fact that abort has no parameters.
461 - It's easier to use the endian-specific unaligned load/store
462 functions than host-endian unaligned load/store plus tswapN. */
463
464 #define __put_user_e(x, hptr, e) \
465 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
466 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
467 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
468 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
469 ((hptr), (x)), (void)0)
470
471 #define __get_user_e(x, hptr, e) \
472 ((x) = (typeof(*hptr))( \
473 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
474 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
475 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
476 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
477 (hptr)), (void)0)
478
479 #ifdef TARGET_WORDS_BIGENDIAN
480 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
481 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
482 #else
483 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
484 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
485 #endif
486
487 /* put_user()/get_user() take a guest address and check access */
488 /* These are usually used to access an atomic data type, such as an int,
489 * that has been passed by address. These internally perform locking
490 * and unlocking on the data type.
491 */
492 #define put_user(x, gaddr, target_type) \
493 ({ \
494 abi_ulong __gaddr = (gaddr); \
495 target_type *__hptr; \
496 abi_long __ret = 0; \
497 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
498 __put_user((x), __hptr); \
499 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
500 } else \
501 __ret = -TARGET_EFAULT; \
502 __ret; \
503 })
504
505 #define get_user(x, gaddr, target_type) \
506 ({ \
507 abi_ulong __gaddr = (gaddr); \
508 target_type *__hptr; \
509 abi_long __ret = 0; \
510 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
511 __get_user((x), __hptr); \
512 unlock_user(__hptr, __gaddr, 0); \
513 } else { \
514 /* avoid warning */ \
515 (x) = 0; \
516 __ret = -TARGET_EFAULT; \
517 } \
518 __ret; \
519 })
520
521 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
522 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
523 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
524 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
525 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
526 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
527 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
528 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
529 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
530 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
531
532 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
533 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
534 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
535 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
536 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
537 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
538 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
539 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
540 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
541 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
542
543 /* copy_from_user() and copy_to_user() are usually used to copy data
544 * buffers between the target and host. These internally perform
545 * locking/unlocking of the memory.
546 */
547 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
548 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
549
550 /* Functions for accessing guest memory. The tget and tput functions
551 read/write single values, byteswapping as necessary. The lock_user function
552 gets a pointer to a contiguous area of guest memory, but does not perform
553 any byteswapping. lock_user may return either a pointer to the guest
554 memory, or a temporary buffer. */
555
556 /* Lock an area of guest memory into the host. If copy is true then the
557 host area will have the same contents as the guest. */
558 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
559 {
560 if (!access_ok(type, guest_addr, len))
561 return NULL;
562 #ifdef DEBUG_REMAP
563 {
564 void *addr;
565 addr = g_malloc(len);
566 if (copy)
567 memcpy(addr, g2h(guest_addr), len);
568 else
569 memset(addr, 0, len);
570 return addr;
571 }
572 #else
573 return g2h(guest_addr);
574 #endif
575 }
576
577 /* Unlock an area of guest memory. The first LEN bytes must be
578 flushed back to guest memory. host_ptr = NULL is explicitly
579 allowed and does nothing. */
580 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
581 long len)
582 {
583
584 #ifdef DEBUG_REMAP
585 if (!host_ptr)
586 return;
587 if (host_ptr == g2h(guest_addr))
588 return;
589 if (len > 0)
590 memcpy(g2h(guest_addr), host_ptr, len);
591 g_free(host_ptr);
592 #endif
593 }
594
595 /* Return the length of a string in target memory or -TARGET_EFAULT if
596 access error. */
597 abi_long target_strlen(abi_ulong gaddr);
598
599 /* Like lock_user but for null terminated strings. */
600 static inline void *lock_user_string(abi_ulong guest_addr)
601 {
602 abi_long len;
603 len = target_strlen(guest_addr);
604 if (len < 0)
605 return NULL;
606 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
607 }
608
609 /* Helper macros for locking/unlocking a target struct. */
610 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
611 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
612 #define unlock_user_struct(host_ptr, guest_addr, copy) \
613 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
614
615 #include <pthread.h>
616
617 /* Include target-specific struct and function definitions;
618 * they may need access to the target-independent structures
619 * above, so include them last.
620 */
621 #include "target_cpu.h"
622 #include "target_signal.h"
623 #include "target_structs.h"
624
625 #endif /* QEMU_H */