tmp105: Correct handling of temperature limit checks
[qemu.git] / linux-user / qemu.h
1 #ifndef QEMU_H
2 #define QEMU_H
3
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
12
13 #include "exec/user/abitypes.h"
14
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19
20 /* This is the size of the host kernel's sigset_t, needed where we make
21 * direct system calls that take a sigset_t pointer and a size.
22 */
23 #define SIGSET_T_SIZE (_NSIG / 8)
24
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
28 */
29 struct image_info {
30 abi_ulong load_bias;
31 abi_ulong load_addr;
32 abi_ulong start_code;
33 abi_ulong end_code;
34 abi_ulong start_data;
35 abi_ulong end_data;
36 abi_ulong start_brk;
37 abi_ulong brk;
38 abi_ulong reserve_brk;
39 abi_ulong start_mmap;
40 abi_ulong start_stack;
41 abi_ulong stack_limit;
42 abi_ulong entry;
43 abi_ulong code_offset;
44 abi_ulong data_offset;
45 abi_ulong saved_auxv;
46 abi_ulong auxv_len;
47 abi_ulong arg_start;
48 abi_ulong arg_end;
49 abi_ulong arg_strings;
50 abi_ulong env_strings;
51 abi_ulong file_string;
52 uint32_t elf_flags;
53 int personality;
54 abi_ulong alignment;
55
56 /* The fields below are used in FDPIC mode. */
57 abi_ulong loadmap_addr;
58 uint16_t nsegs;
59 void *loadsegs;
60 abi_ulong pt_dynamic_addr;
61 abi_ulong interpreter_loadmap_addr;
62 abi_ulong interpreter_pt_dynamic_addr;
63 struct image_info *other_info;
64
65 /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */
66 uint32_t note_flags;
67
68 #ifdef TARGET_MIPS
69 int fp_abi;
70 int interp_fp_abi;
71 #endif
72 };
73
74 #ifdef TARGET_I386
75 /* Information about the current linux thread */
76 struct vm86_saved_state {
77 uint32_t eax; /* return code */
78 uint32_t ebx;
79 uint32_t ecx;
80 uint32_t edx;
81 uint32_t esi;
82 uint32_t edi;
83 uint32_t ebp;
84 uint32_t esp;
85 uint32_t eflags;
86 uint32_t eip;
87 uint16_t cs, ss, ds, es, fs, gs;
88 };
89 #endif
90
91 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
92 /* FPU emulator */
93 #include "nwfpe/fpa11.h"
94 #endif
95
96 #define MAX_SIGQUEUE_SIZE 1024
97
98 struct emulated_sigtable {
99 int pending; /* true if signal is pending */
100 target_siginfo_t info;
101 };
102
103 /* NOTE: we force a big alignment so that the stack stored after is
104 aligned too */
105 typedef struct TaskState {
106 pid_t ts_tid; /* tid (or pid) of this task */
107 #ifdef TARGET_ARM
108 # ifdef TARGET_ABI32
109 /* FPA state */
110 FPA11 fpa;
111 # endif
112 int swi_errno;
113 #endif
114 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
115 abi_ulong target_v86;
116 struct vm86_saved_state vm86_saved_regs;
117 struct target_vm86plus_struct vm86plus;
118 uint32_t v86flags;
119 uint32_t v86mask;
120 #endif
121 abi_ulong child_tidptr;
122 #ifdef TARGET_M68K
123 abi_ulong tp_value;
124 #endif
125 #if defined(TARGET_ARM) || defined(TARGET_M68K)
126 /* Extra fields for semihosted binaries. */
127 abi_ulong heap_base;
128 abi_ulong heap_limit;
129 #endif
130 abi_ulong stack_base;
131 int used; /* non zero if used */
132 struct image_info *info;
133 struct linux_binprm *bprm;
134
135 struct emulated_sigtable sync_signal;
136 struct emulated_sigtable sigtab[TARGET_NSIG];
137 /* This thread's signal mask, as requested by the guest program.
138 * The actual signal mask of this thread may differ:
139 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
140 * + sometimes we block all signals to avoid races
141 */
142 sigset_t signal_mask;
143 /* The signal mask imposed by a guest sigsuspend syscall, if we are
144 * currently in the middle of such a syscall
145 */
146 sigset_t sigsuspend_mask;
147 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
148 int in_sigsuspend;
149
150 /* Nonzero if process_pending_signals() needs to do something (either
151 * handle a pending signal or unblock signals).
152 * This flag is written from a signal handler so should be accessed via
153 * the qatomic_read() and qatomic_set() functions. (It is not accessed
154 * from multiple threads.)
155 */
156 int signal_pending;
157
158 /* This thread's sigaltstack, if it has one */
159 struct target_sigaltstack sigaltstack_used;
160 } __attribute__((aligned(16))) TaskState;
161
162 extern char *exec_path;
163 void init_task_state(TaskState *ts);
164 void task_settid(TaskState *);
165 void stop_all_tasks(void);
166 extern const char *qemu_uname_release;
167 extern unsigned long mmap_min_addr;
168
169 /* ??? See if we can avoid exposing so much of the loader internals. */
170
171 /* Read a good amount of data initially, to hopefully get all the
172 program headers loaded. */
173 #define BPRM_BUF_SIZE 1024
174
175 /*
176 * This structure is used to hold the arguments that are
177 * used when loading binaries.
178 */
179 struct linux_binprm {
180 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
181 abi_ulong p;
182 int fd;
183 int e_uid, e_gid;
184 int argc, envc;
185 char **argv;
186 char **envp;
187 char * filename; /* Name of binary */
188 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
189 };
190
191 typedef struct IOCTLEntry IOCTLEntry;
192
193 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
194 int fd, int cmd, abi_long arg);
195
196 struct IOCTLEntry {
197 int target_cmd;
198 unsigned int host_cmd;
199 const char *name;
200 int access;
201 do_ioctl_fn *do_ioctl;
202 const argtype arg_type[5];
203 };
204
205 extern IOCTLEntry ioctl_entries[];
206
207 #define IOC_R 0x0001
208 #define IOC_W 0x0002
209 #define IOC_RW (IOC_R | IOC_W)
210
211 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
212 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
213 abi_ulong stringp, int push_ptr);
214 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
215 struct target_pt_regs * regs, struct image_info *infop,
216 struct linux_binprm *);
217
218 /* Returns true if the image uses the FDPIC ABI. If this is the case,
219 * we have to provide some information (loadmap, pt_dynamic_info) such
220 * that the program can be relocated adequately. This is also useful
221 * when handling signals.
222 */
223 int info_is_fdpic(struct image_info *info);
224
225 uint32_t get_elf_eflags(int fd);
226 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
227 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
228
229 abi_long memcpy_to_target(abi_ulong dest, const void *src,
230 unsigned long len);
231 void target_set_brk(abi_ulong new_brk);
232 abi_long do_brk(abi_ulong new_brk);
233 void syscall_init(void);
234 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
235 abi_long arg2, abi_long arg3, abi_long arg4,
236 abi_long arg5, abi_long arg6, abi_long arg7,
237 abi_long arg8);
238 extern __thread CPUState *thread_cpu;
239 void cpu_loop(CPUArchState *env);
240 const char *target_strerror(int err);
241 int get_osversion(void);
242 void init_qemu_uname_release(void);
243 void fork_start(void);
244 void fork_end(int child);
245
246 /**
247 * probe_guest_base:
248 * @image_name: the executable being loaded
249 * @loaddr: the lowest fixed address in the executable
250 * @hiaddr: the highest fixed address in the executable
251 *
252 * Creates the initial guest address space in the host memory space.
253 *
254 * If @loaddr == 0, then no address in the executable is fixed,
255 * i.e. it is fully relocatable. In that case @hiaddr is the size
256 * of the executable.
257 *
258 * This function will not return if a valid value for guest_base
259 * cannot be chosen. On return, the executable loader can expect
260 *
261 * target_mmap(loaddr, hiaddr - loaddr, ...)
262 *
263 * to succeed.
264 */
265 void probe_guest_base(const char *image_name,
266 abi_ulong loaddr, abi_ulong hiaddr);
267
268 #include "qemu/log.h"
269
270 /* safe_syscall.S */
271
272 /**
273 * safe_syscall:
274 * @int number: number of system call to make
275 * ...: arguments to the system call
276 *
277 * Call a system call if guest signal not pending.
278 * This has the same API as the libc syscall() function, except that it
279 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
280 *
281 * Returns: the system call result, or -1 with an error code in errno
282 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
283 * with any of the host errno values.)
284 */
285
286 /* A guide to using safe_syscall() to handle interactions between guest
287 * syscalls and guest signals:
288 *
289 * Guest syscalls come in two flavours:
290 *
291 * (1) Non-interruptible syscalls
292 *
293 * These are guest syscalls that never get interrupted by signals and
294 * so never return EINTR. They can be implemented straightforwardly in
295 * QEMU: just make sure that if the implementation code has to make any
296 * blocking calls that those calls are retried if they return EINTR.
297 * It's also OK to implement these with safe_syscall, though it will be
298 * a little less efficient if a signal is delivered at the 'wrong' moment.
299 *
300 * Some non-interruptible syscalls need to be handled using block_signals()
301 * to block signals for the duration of the syscall. This mainly applies
302 * to code which needs to modify the data structures used by the
303 * host_signal_handler() function and the functions it calls, including
304 * all syscalls which change the thread's signal mask.
305 *
306 * (2) Interruptible syscalls
307 *
308 * These are guest syscalls that can be interrupted by signals and
309 * for which we need to either return EINTR or arrange for the guest
310 * syscall to be restarted. This category includes both syscalls which
311 * always restart (and in the kernel return -ERESTARTNOINTR), ones
312 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
313 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
314 * if the handler was registered with SA_RESTART (kernel returns
315 * -ERESTARTSYS). System calls which are only interruptible in some
316 * situations (like 'open') also need to be handled this way.
317 *
318 * Here it is important that the host syscall is made
319 * via this safe_syscall() function, and *not* via the host libc.
320 * If the host libc is used then the implementation will appear to work
321 * most of the time, but there will be a race condition where a
322 * signal could arrive just before we make the host syscall inside libc,
323 * and then then guest syscall will not correctly be interrupted.
324 * Instead the implementation of the guest syscall can use the safe_syscall
325 * function but otherwise just return the result or errno in the usual
326 * way; the main loop code will take care of restarting the syscall
327 * if appropriate.
328 *
329 * (If the implementation needs to make multiple host syscalls this is
330 * OK; any which might really block must be via safe_syscall(); for those
331 * which are only technically blocking (ie which we know in practice won't
332 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
333 * You must be able to cope with backing out correctly if some safe_syscall
334 * you make in the implementation returns either -TARGET_ERESTARTSYS or
335 * EINTR though.)
336 *
337 * block_signals() cannot be used for interruptible syscalls.
338 *
339 *
340 * How and why the safe_syscall implementation works:
341 *
342 * The basic setup is that we make the host syscall via a known
343 * section of host native assembly. If a signal occurs, our signal
344 * handler checks the interrupted host PC against the addresse of that
345 * known section. If the PC is before or at the address of the syscall
346 * instruction then we change the PC to point at a "return
347 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
348 * (causing the safe_syscall() call to immediately return that value).
349 * Then in the main.c loop if we see this magic return value we adjust
350 * the guest PC to wind it back to before the system call, and invoke
351 * the guest signal handler as usual.
352 *
353 * This winding-back will happen in two cases:
354 * (1) signal came in just before we took the host syscall (a race);
355 * in this case we'll take the guest signal and have another go
356 * at the syscall afterwards, and this is indistinguishable for the
357 * guest from the timing having been different such that the guest
358 * signal really did win the race
359 * (2) signal came in while the host syscall was blocking, and the
360 * host kernel decided the syscall should be restarted;
361 * in this case we want to restart the guest syscall also, and so
362 * rewinding is the right thing. (Note that "restart" semantics mean
363 * "first call the signal handler, then reattempt the syscall".)
364 * The other situation to consider is when a signal came in while the
365 * host syscall was blocking, and the host kernel decided that the syscall
366 * should not be restarted; in this case QEMU's host signal handler will
367 * be invoked with the PC pointing just after the syscall instruction,
368 * with registers indicating an EINTR return; the special code in the
369 * handler will not kick in, and we will return EINTR to the guest as
370 * we should.
371 *
372 * Notice that we can leave the host kernel to make the decision for
373 * us about whether to do a restart of the syscall or not; we do not
374 * need to check SA_RESTART flags in QEMU or distinguish the various
375 * kinds of restartability.
376 */
377 #ifdef HAVE_SAFE_SYSCALL
378 /* The core part of this function is implemented in assembly */
379 extern long safe_syscall_base(int *pending, long number, ...);
380
381 #define safe_syscall(...) \
382 ({ \
383 long ret_; \
384 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
385 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
386 if (is_error(ret_)) { \
387 errno = -ret_; \
388 ret_ = -1; \
389 } \
390 ret_; \
391 })
392
393 #else
394
395 /* Fallback for architectures which don't yet provide a safe-syscall assembly
396 * fragment; note that this is racy!
397 * This should go away when all host architectures have been updated.
398 */
399 #define safe_syscall syscall
400
401 #endif
402
403 /* syscall.c */
404 int host_to_target_waitstatus(int status);
405
406 /* strace.c */
407 void print_syscall(void *cpu_env, int num,
408 abi_long arg1, abi_long arg2, abi_long arg3,
409 abi_long arg4, abi_long arg5, abi_long arg6);
410 void print_syscall_ret(void *cpu_env, int num, abi_long ret,
411 abi_long arg1, abi_long arg2, abi_long arg3,
412 abi_long arg4, abi_long arg5, abi_long arg6);
413 /**
414 * print_taken_signal:
415 * @target_signum: target signal being taken
416 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
417 *
418 * Print strace output indicating that this signal is being taken by the guest,
419 * in a format similar to:
420 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
421 */
422 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
423
424 /* signal.c */
425 void process_pending_signals(CPUArchState *cpu_env);
426 void signal_init(void);
427 int queue_signal(CPUArchState *env, int sig, int si_type,
428 target_siginfo_t *info);
429 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
430 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
431 int target_to_host_signal(int sig);
432 int host_to_target_signal(int sig);
433 long do_sigreturn(CPUArchState *env);
434 long do_rt_sigreturn(CPUArchState *env);
435 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
436 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
437 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
438 abi_ulong unew_ctx, abi_long ctx_size);
439 /**
440 * block_signals: block all signals while handling this guest syscall
441 *
442 * Block all signals, and arrange that the signal mask is returned to
443 * its correct value for the guest before we resume execution of guest code.
444 * If this function returns non-zero, then the caller should immediately
445 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
446 * signal and restart execution of the syscall.
447 * If block_signals() returns zero, then the caller can continue with
448 * emulation of the system call knowing that no signals can be taken
449 * (and therefore that no race conditions will result).
450 * This should only be called once, because if it is called a second time
451 * it will always return non-zero. (Think of it like a mutex that can't
452 * be recursively locked.)
453 * Signals will be unblocked again by process_pending_signals().
454 *
455 * Return value: non-zero if there was a pending signal, zero if not.
456 */
457 int block_signals(void); /* Returns non zero if signal pending */
458
459 #ifdef TARGET_I386
460 /* vm86.c */
461 void save_v86_state(CPUX86State *env);
462 void handle_vm86_trap(CPUX86State *env, int trapno);
463 void handle_vm86_fault(CPUX86State *env);
464 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
465 #elif defined(TARGET_SPARC64)
466 void sparc64_set_context(CPUSPARCState *env);
467 void sparc64_get_context(CPUSPARCState *env);
468 #endif
469
470 /* mmap.c */
471 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
472 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
473 int flags, int fd, abi_ulong offset);
474 int target_munmap(abi_ulong start, abi_ulong len);
475 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
476 abi_ulong new_size, unsigned long flags,
477 abi_ulong new_addr);
478 extern unsigned long last_brk;
479 extern abi_ulong mmap_next_start;
480 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
481 void mmap_fork_start(void);
482 void mmap_fork_end(int child);
483
484 /* main.c */
485 extern unsigned long guest_stack_size;
486
487 /* user access */
488
489 #define VERIFY_READ 0
490 #define VERIFY_WRITE 1 /* implies read access */
491
492 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
493 {
494 return guest_addr_valid(addr) &&
495 (size == 0 || guest_addr_valid(addr + size - 1)) &&
496 page_check_range((target_ulong)addr, size,
497 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
498 }
499
500 /* NOTE __get_user and __put_user use host pointers and don't check access.
501 These are usually used to access struct data members once the struct has
502 been locked - usually with lock_user_struct. */
503
504 /*
505 * Tricky points:
506 * - Use __builtin_choose_expr to avoid type promotion from ?:,
507 * - Invalid sizes result in a compile time error stemming from
508 * the fact that abort has no parameters.
509 * - It's easier to use the endian-specific unaligned load/store
510 * functions than host-endian unaligned load/store plus tswapN.
511 * - The pragmas are necessary only to silence a clang false-positive
512 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
513 * - gcc has bugs in its _Pragma() support in some versions, eg
514 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
515 * include the warning-suppression pragmas for clang
516 */
517 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
518 #define PRAGMA_DISABLE_PACKED_WARNING \
519 _Pragma("GCC diagnostic push"); \
520 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
521
522 #define PRAGMA_REENABLE_PACKED_WARNING \
523 _Pragma("GCC diagnostic pop")
524
525 #else
526 #define PRAGMA_DISABLE_PACKED_WARNING
527 #define PRAGMA_REENABLE_PACKED_WARNING
528 #endif
529
530 #define __put_user_e(x, hptr, e) \
531 do { \
532 PRAGMA_DISABLE_PACKED_WARNING; \
533 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
534 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
535 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
536 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
537 ((hptr), (x)), (void)0); \
538 PRAGMA_REENABLE_PACKED_WARNING; \
539 } while (0)
540
541 #define __get_user_e(x, hptr, e) \
542 do { \
543 PRAGMA_DISABLE_PACKED_WARNING; \
544 ((x) = (typeof(*hptr))( \
545 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
546 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
547 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
548 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
549 (hptr)), (void)0); \
550 PRAGMA_REENABLE_PACKED_WARNING; \
551 } while (0)
552
553
554 #ifdef TARGET_WORDS_BIGENDIAN
555 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
556 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
557 #else
558 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
559 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
560 #endif
561
562 /* put_user()/get_user() take a guest address and check access */
563 /* These are usually used to access an atomic data type, such as an int,
564 * that has been passed by address. These internally perform locking
565 * and unlocking on the data type.
566 */
567 #define put_user(x, gaddr, target_type) \
568 ({ \
569 abi_ulong __gaddr = (gaddr); \
570 target_type *__hptr; \
571 abi_long __ret = 0; \
572 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
573 __put_user((x), __hptr); \
574 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
575 } else \
576 __ret = -TARGET_EFAULT; \
577 __ret; \
578 })
579
580 #define get_user(x, gaddr, target_type) \
581 ({ \
582 abi_ulong __gaddr = (gaddr); \
583 target_type *__hptr; \
584 abi_long __ret = 0; \
585 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
586 __get_user((x), __hptr); \
587 unlock_user(__hptr, __gaddr, 0); \
588 } else { \
589 /* avoid warning */ \
590 (x) = 0; \
591 __ret = -TARGET_EFAULT; \
592 } \
593 __ret; \
594 })
595
596 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
597 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
598 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
599 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
600 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
601 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
602 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
603 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
604 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
605 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
606
607 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
608 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
609 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
610 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
611 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
612 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
613 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
614 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
615 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
616 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
617
618 /* copy_from_user() and copy_to_user() are usually used to copy data
619 * buffers between the target and host. These internally perform
620 * locking/unlocking of the memory.
621 */
622 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
623 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
624
625 /* Functions for accessing guest memory. The tget and tput functions
626 read/write single values, byteswapping as necessary. The lock_user function
627 gets a pointer to a contiguous area of guest memory, but does not perform
628 any byteswapping. lock_user may return either a pointer to the guest
629 memory, or a temporary buffer. */
630
631 /* Lock an area of guest memory into the host. If copy is true then the
632 host area will have the same contents as the guest. */
633 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
634 {
635 if (!access_ok(type, guest_addr, len))
636 return NULL;
637 #ifdef DEBUG_REMAP
638 {
639 void *addr;
640 addr = g_malloc(len);
641 if (copy)
642 memcpy(addr, g2h(guest_addr), len);
643 else
644 memset(addr, 0, len);
645 return addr;
646 }
647 #else
648 return g2h(guest_addr);
649 #endif
650 }
651
652 /* Unlock an area of guest memory. The first LEN bytes must be
653 flushed back to guest memory. host_ptr = NULL is explicitly
654 allowed and does nothing. */
655 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
656 long len)
657 {
658
659 #ifdef DEBUG_REMAP
660 if (!host_ptr)
661 return;
662 if (host_ptr == g2h(guest_addr))
663 return;
664 if (len > 0)
665 memcpy(g2h(guest_addr), host_ptr, len);
666 g_free(host_ptr);
667 #endif
668 }
669
670 /* Return the length of a string in target memory or -TARGET_EFAULT if
671 access error. */
672 abi_long target_strlen(abi_ulong gaddr);
673
674 /* Like lock_user but for null terminated strings. */
675 static inline void *lock_user_string(abi_ulong guest_addr)
676 {
677 abi_long len;
678 len = target_strlen(guest_addr);
679 if (len < 0)
680 return NULL;
681 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
682 }
683
684 /* Helper macros for locking/unlocking a target struct. */
685 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
686 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
687 #define unlock_user_struct(host_ptr, guest_addr, copy) \
688 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
689
690 #include <pthread.h>
691
692 static inline int is_error(abi_long ret)
693 {
694 return (abi_ulong)ret >= (abi_ulong)(-4096);
695 }
696
697 #if TARGET_ABI_BITS == 32
698 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
699 {
700 #ifdef TARGET_WORDS_BIGENDIAN
701 return ((uint64_t)word0 << 32) | word1;
702 #else
703 return ((uint64_t)word1 << 32) | word0;
704 #endif
705 }
706 #else /* TARGET_ABI_BITS == 32 */
707 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
708 {
709 return word0;
710 }
711 #endif /* TARGET_ABI_BITS != 32 */
712
713 void print_termios(void *arg);
714
715 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
716 #ifdef TARGET_ARM
717 static inline int regpairs_aligned(void *cpu_env, int num)
718 {
719 return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
720 }
721 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
722 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
723 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
724 /*
725 * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
726 * of registers which translates to the same as ARM/MIPS, because we start with
727 * r3 as arg1
728 */
729 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
730 #elif defined(TARGET_SH4)
731 /* SH4 doesn't align register pairs, except for p{read,write}64 */
732 static inline int regpairs_aligned(void *cpu_env, int num)
733 {
734 switch (num) {
735 case TARGET_NR_pread64:
736 case TARGET_NR_pwrite64:
737 return 1;
738
739 default:
740 return 0;
741 }
742 }
743 #elif defined(TARGET_XTENSA)
744 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
745 #else
746 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
747 #endif
748
749 /**
750 * preexit_cleanup: housekeeping before the guest exits
751 *
752 * env: the CPU state
753 * code: the exit code
754 */
755 void preexit_cleanup(CPUArchState *env, int code);
756
757 /* Include target-specific struct and function definitions;
758 * they may need access to the target-independent structures
759 * above, so include them last.
760 */
761 #include "target_cpu.h"
762 #include "target_structs.h"
763
764 #endif /* QEMU_H */