quorum: Inline quorum_aio_cb()
[qemu.git] / linux-user / qemu.h
1 #ifndef QEMU_H
2 #define QEMU_H
3
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
12
13 #include "exec/user/abitypes.h"
14
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 #include "qemu/queue.h"
20
21 #define THREAD __thread
22
23 /* This is the size of the host kernel's sigset_t, needed where we make
24 * direct system calls that take a sigset_t pointer and a size.
25 */
26 #define SIGSET_T_SIZE (_NSIG / 8)
27
28 /* This struct is used to hold certain information about the image.
29 * Basically, it replicates in user space what would be certain
30 * task_struct fields in the kernel
31 */
32 struct image_info {
33 abi_ulong load_bias;
34 abi_ulong load_addr;
35 abi_ulong start_code;
36 abi_ulong end_code;
37 abi_ulong start_data;
38 abi_ulong end_data;
39 abi_ulong start_brk;
40 abi_ulong brk;
41 abi_ulong start_mmap;
42 abi_ulong start_stack;
43 abi_ulong stack_limit;
44 abi_ulong entry;
45 abi_ulong code_offset;
46 abi_ulong data_offset;
47 abi_ulong saved_auxv;
48 abi_ulong auxv_len;
49 abi_ulong arg_start;
50 abi_ulong arg_end;
51 uint32_t elf_flags;
52 int personality;
53 #ifdef CONFIG_USE_FDPIC
54 abi_ulong loadmap_addr;
55 uint16_t nsegs;
56 void *loadsegs;
57 abi_ulong pt_dynamic_addr;
58 struct image_info *other_info;
59 #endif
60 };
61
62 #ifdef TARGET_I386
63 /* Information about the current linux thread */
64 struct vm86_saved_state {
65 uint32_t eax; /* return code */
66 uint32_t ebx;
67 uint32_t ecx;
68 uint32_t edx;
69 uint32_t esi;
70 uint32_t edi;
71 uint32_t ebp;
72 uint32_t esp;
73 uint32_t eflags;
74 uint32_t eip;
75 uint16_t cs, ss, ds, es, fs, gs;
76 };
77 #endif
78
79 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
80 /* FPU emulator */
81 #include "nwfpe/fpa11.h"
82 #endif
83
84 #define MAX_SIGQUEUE_SIZE 1024
85
86 struct emulated_sigtable {
87 int pending; /* true if signal is pending */
88 target_siginfo_t info;
89 };
90
91 /* NOTE: we force a big alignment so that the stack stored after is
92 aligned too */
93 typedef struct TaskState {
94 pid_t ts_tid; /* tid (or pid) of this task */
95 #ifdef TARGET_ARM
96 # ifdef TARGET_ABI32
97 /* FPA state */
98 FPA11 fpa;
99 # endif
100 int swi_errno;
101 #endif
102 #ifdef TARGET_UNICORE32
103 int swi_errno;
104 #endif
105 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
106 abi_ulong target_v86;
107 struct vm86_saved_state vm86_saved_regs;
108 struct target_vm86plus_struct vm86plus;
109 uint32_t v86flags;
110 uint32_t v86mask;
111 #endif
112 abi_ulong child_tidptr;
113 #ifdef TARGET_M68K
114 int sim_syscalls;
115 abi_ulong tp_value;
116 #endif
117 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
118 /* Extra fields for semihosted binaries. */
119 abi_ulong heap_base;
120 abi_ulong heap_limit;
121 #endif
122 abi_ulong stack_base;
123 int used; /* non zero if used */
124 struct image_info *info;
125 struct linux_binprm *bprm;
126
127 struct emulated_sigtable sync_signal;
128 struct emulated_sigtable sigtab[TARGET_NSIG];
129 /* This thread's signal mask, as requested by the guest program.
130 * The actual signal mask of this thread may differ:
131 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
132 * + sometimes we block all signals to avoid races
133 */
134 sigset_t signal_mask;
135 /* The signal mask imposed by a guest sigsuspend syscall, if we are
136 * currently in the middle of such a syscall
137 */
138 sigset_t sigsuspend_mask;
139 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
140 int in_sigsuspend;
141
142 /* Nonzero if process_pending_signals() needs to do something (either
143 * handle a pending signal or unblock signals).
144 * This flag is written from a signal handler so should be accessed via
145 * the atomic_read() and atomic_write() functions. (It is not accessed
146 * from multiple threads.)
147 */
148 int signal_pending;
149
150 } __attribute__((aligned(16))) TaskState;
151
152 extern char *exec_path;
153 void init_task_state(TaskState *ts);
154 void task_settid(TaskState *);
155 void stop_all_tasks(void);
156 extern const char *qemu_uname_release;
157 extern unsigned long mmap_min_addr;
158
159 /* ??? See if we can avoid exposing so much of the loader internals. */
160
161 /* Read a good amount of data initially, to hopefully get all the
162 program headers loaded. */
163 #define BPRM_BUF_SIZE 1024
164
165 /*
166 * This structure is used to hold the arguments that are
167 * used when loading binaries.
168 */
169 struct linux_binprm {
170 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
171 abi_ulong p;
172 int fd;
173 int e_uid, e_gid;
174 int argc, envc;
175 char **argv;
176 char **envp;
177 char * filename; /* Name of binary */
178 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
179 };
180
181 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
182 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
183 abi_ulong stringp, int push_ptr);
184 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
185 struct target_pt_regs * regs, struct image_info *infop,
186 struct linux_binprm *);
187
188 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
189 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
190
191 abi_long memcpy_to_target(abi_ulong dest, const void *src,
192 unsigned long len);
193 void target_set_brk(abi_ulong new_brk);
194 abi_long do_brk(abi_ulong new_brk);
195 void syscall_init(void);
196 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
197 abi_long arg2, abi_long arg3, abi_long arg4,
198 abi_long arg5, abi_long arg6, abi_long arg7,
199 abi_long arg8);
200 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
201 extern THREAD CPUState *thread_cpu;
202 void cpu_loop(CPUArchState *env);
203 const char *target_strerror(int err);
204 int get_osversion(void);
205 void init_qemu_uname_release(void);
206 void fork_start(void);
207 void fork_end(int child);
208
209 /* Creates the initial guest address space in the host memory space using
210 * the given host start address hint and size. The guest_start parameter
211 * specifies the start address of the guest space. guest_base will be the
212 * difference between the host start address computed by this function and
213 * guest_start. If fixed is specified, then the mapped address space must
214 * start at host_start. The real start address of the mapped memory space is
215 * returned or -1 if there was an error.
216 */
217 unsigned long init_guest_space(unsigned long host_start,
218 unsigned long host_size,
219 unsigned long guest_start,
220 bool fixed);
221
222 #include "qemu/log.h"
223
224 /* safe_syscall.S */
225
226 /**
227 * safe_syscall:
228 * @int number: number of system call to make
229 * ...: arguments to the system call
230 *
231 * Call a system call if guest signal not pending.
232 * This has the same API as the libc syscall() function, except that it
233 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
234 *
235 * Returns: the system call result, or -1 with an error code in errno
236 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
237 * with any of the host errno values.)
238 */
239
240 /* A guide to using safe_syscall() to handle interactions between guest
241 * syscalls and guest signals:
242 *
243 * Guest syscalls come in two flavours:
244 *
245 * (1) Non-interruptible syscalls
246 *
247 * These are guest syscalls that never get interrupted by signals and
248 * so never return EINTR. They can be implemented straightforwardly in
249 * QEMU: just make sure that if the implementation code has to make any
250 * blocking calls that those calls are retried if they return EINTR.
251 * It's also OK to implement these with safe_syscall, though it will be
252 * a little less efficient if a signal is delivered at the 'wrong' moment.
253 *
254 * Some non-interruptible syscalls need to be handled using block_signals()
255 * to block signals for the duration of the syscall. This mainly applies
256 * to code which needs to modify the data structures used by the
257 * host_signal_handler() function and the functions it calls, including
258 * all syscalls which change the thread's signal mask.
259 *
260 * (2) Interruptible syscalls
261 *
262 * These are guest syscalls that can be interrupted by signals and
263 * for which we need to either return EINTR or arrange for the guest
264 * syscall to be restarted. This category includes both syscalls which
265 * always restart (and in the kernel return -ERESTARTNOINTR), ones
266 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
267 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
268 * if the handler was registered with SA_RESTART (kernel returns
269 * -ERESTARTSYS). System calls which are only interruptible in some
270 * situations (like 'open') also need to be handled this way.
271 *
272 * Here it is important that the host syscall is made
273 * via this safe_syscall() function, and *not* via the host libc.
274 * If the host libc is used then the implementation will appear to work
275 * most of the time, but there will be a race condition where a
276 * signal could arrive just before we make the host syscall inside libc,
277 * and then then guest syscall will not correctly be interrupted.
278 * Instead the implementation of the guest syscall can use the safe_syscall
279 * function but otherwise just return the result or errno in the usual
280 * way; the main loop code will take care of restarting the syscall
281 * if appropriate.
282 *
283 * (If the implementation needs to make multiple host syscalls this is
284 * OK; any which might really block must be via safe_syscall(); for those
285 * which are only technically blocking (ie which we know in practice won't
286 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
287 * You must be able to cope with backing out correctly if some safe_syscall
288 * you make in the implementation returns either -TARGET_ERESTARTSYS or
289 * EINTR though.)
290 *
291 * block_signals() cannot be used for interruptible syscalls.
292 *
293 *
294 * How and why the safe_syscall implementation works:
295 *
296 * The basic setup is that we make the host syscall via a known
297 * section of host native assembly. If a signal occurs, our signal
298 * handler checks the interrupted host PC against the addresse of that
299 * known section. If the PC is before or at the address of the syscall
300 * instruction then we change the PC to point at a "return
301 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
302 * (causing the safe_syscall() call to immediately return that value).
303 * Then in the main.c loop if we see this magic return value we adjust
304 * the guest PC to wind it back to before the system call, and invoke
305 * the guest signal handler as usual.
306 *
307 * This winding-back will happen in two cases:
308 * (1) signal came in just before we took the host syscall (a race);
309 * in this case we'll take the guest signal and have another go
310 * at the syscall afterwards, and this is indistinguishable for the
311 * guest from the timing having been different such that the guest
312 * signal really did win the race
313 * (2) signal came in while the host syscall was blocking, and the
314 * host kernel decided the syscall should be restarted;
315 * in this case we want to restart the guest syscall also, and so
316 * rewinding is the right thing. (Note that "restart" semantics mean
317 * "first call the signal handler, then reattempt the syscall".)
318 * The other situation to consider is when a signal came in while the
319 * host syscall was blocking, and the host kernel decided that the syscall
320 * should not be restarted; in this case QEMU's host signal handler will
321 * be invoked with the PC pointing just after the syscall instruction,
322 * with registers indicating an EINTR return; the special code in the
323 * handler will not kick in, and we will return EINTR to the guest as
324 * we should.
325 *
326 * Notice that we can leave the host kernel to make the decision for
327 * us about whether to do a restart of the syscall or not; we do not
328 * need to check SA_RESTART flags in QEMU or distinguish the various
329 * kinds of restartability.
330 */
331 #ifdef HAVE_SAFE_SYSCALL
332 /* The core part of this function is implemented in assembly */
333 extern long safe_syscall_base(int *pending, long number, ...);
334
335 #define safe_syscall(...) \
336 ({ \
337 long ret_; \
338 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
339 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
340 if (is_error(ret_)) { \
341 errno = -ret_; \
342 ret_ = -1; \
343 } \
344 ret_; \
345 })
346
347 #else
348
349 /* Fallback for architectures which don't yet provide a safe-syscall assembly
350 * fragment; note that this is racy!
351 * This should go away when all host architectures have been updated.
352 */
353 #define safe_syscall syscall
354
355 #endif
356
357 /* syscall.c */
358 int host_to_target_waitstatus(int status);
359
360 /* strace.c */
361 void print_syscall(int num,
362 abi_long arg1, abi_long arg2, abi_long arg3,
363 abi_long arg4, abi_long arg5, abi_long arg6);
364 void print_syscall_ret(int num, abi_long arg1);
365 /**
366 * print_taken_signal:
367 * @target_signum: target signal being taken
368 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
369 *
370 * Print strace output indicating that this signal is being taken by the guest,
371 * in a format similar to:
372 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
373 */
374 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
375 extern int do_strace;
376
377 /* signal.c */
378 void process_pending_signals(CPUArchState *cpu_env);
379 void signal_init(void);
380 int queue_signal(CPUArchState *env, int sig, int si_type,
381 target_siginfo_t *info);
382 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
383 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
384 int target_to_host_signal(int sig);
385 int host_to_target_signal(int sig);
386 long do_sigreturn(CPUArchState *env);
387 long do_rt_sigreturn(CPUArchState *env);
388 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
389 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
390 /**
391 * block_signals: block all signals while handling this guest syscall
392 *
393 * Block all signals, and arrange that the signal mask is returned to
394 * its correct value for the guest before we resume execution of guest code.
395 * If this function returns non-zero, then the caller should immediately
396 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
397 * signal and restart execution of the syscall.
398 * If block_signals() returns zero, then the caller can continue with
399 * emulation of the system call knowing that no signals can be taken
400 * (and therefore that no race conditions will result).
401 * This should only be called once, because if it is called a second time
402 * it will always return non-zero. (Think of it like a mutex that can't
403 * be recursively locked.)
404 * Signals will be unblocked again by process_pending_signals().
405 *
406 * Return value: non-zero if there was a pending signal, zero if not.
407 */
408 int block_signals(void); /* Returns non zero if signal pending */
409
410 #ifdef TARGET_I386
411 /* vm86.c */
412 void save_v86_state(CPUX86State *env);
413 void handle_vm86_trap(CPUX86State *env, int trapno);
414 void handle_vm86_fault(CPUX86State *env);
415 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
416 #elif defined(TARGET_SPARC64)
417 void sparc64_set_context(CPUSPARCState *env);
418 void sparc64_get_context(CPUSPARCState *env);
419 #endif
420
421 /* mmap.c */
422 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
423 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
424 int flags, int fd, abi_ulong offset);
425 int target_munmap(abi_ulong start, abi_ulong len);
426 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
427 abi_ulong new_size, unsigned long flags,
428 abi_ulong new_addr);
429 int target_msync(abi_ulong start, abi_ulong len, int flags);
430 extern unsigned long last_brk;
431 extern abi_ulong mmap_next_start;
432 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
433 void mmap_fork_start(void);
434 void mmap_fork_end(int child);
435
436 /* main.c */
437 extern unsigned long guest_stack_size;
438
439 /* user access */
440
441 #define VERIFY_READ 0
442 #define VERIFY_WRITE 1 /* implies read access */
443
444 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
445 {
446 return page_check_range((target_ulong)addr, size,
447 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
448 }
449
450 /* NOTE __get_user and __put_user use host pointers and don't check access.
451 These are usually used to access struct data members once the struct has
452 been locked - usually with lock_user_struct. */
453
454 /* Tricky points:
455 - Use __builtin_choose_expr to avoid type promotion from ?:,
456 - Invalid sizes result in a compile time error stemming from
457 the fact that abort has no parameters.
458 - It's easier to use the endian-specific unaligned load/store
459 functions than host-endian unaligned load/store plus tswapN. */
460
461 #define __put_user_e(x, hptr, e) \
462 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
463 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
464 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
465 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
466 ((hptr), (x)), (void)0)
467
468 #define __get_user_e(x, hptr, e) \
469 ((x) = (typeof(*hptr))( \
470 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
471 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
472 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
473 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
474 (hptr)), (void)0)
475
476 #ifdef TARGET_WORDS_BIGENDIAN
477 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
478 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
479 #else
480 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
481 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
482 #endif
483
484 /* put_user()/get_user() take a guest address and check access */
485 /* These are usually used to access an atomic data type, such as an int,
486 * that has been passed by address. These internally perform locking
487 * and unlocking on the data type.
488 */
489 #define put_user(x, gaddr, target_type) \
490 ({ \
491 abi_ulong __gaddr = (gaddr); \
492 target_type *__hptr; \
493 abi_long __ret = 0; \
494 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
495 __put_user((x), __hptr); \
496 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
497 } else \
498 __ret = -TARGET_EFAULT; \
499 __ret; \
500 })
501
502 #define get_user(x, gaddr, target_type) \
503 ({ \
504 abi_ulong __gaddr = (gaddr); \
505 target_type *__hptr; \
506 abi_long __ret = 0; \
507 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
508 __get_user((x), __hptr); \
509 unlock_user(__hptr, __gaddr, 0); \
510 } else { \
511 /* avoid warning */ \
512 (x) = 0; \
513 __ret = -TARGET_EFAULT; \
514 } \
515 __ret; \
516 })
517
518 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
519 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
520 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
521 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
522 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
523 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
524 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
525 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
526 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
527 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
528
529 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
530 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
531 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
532 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
533 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
534 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
535 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
536 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
537 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
538 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
539
540 /* copy_from_user() and copy_to_user() are usually used to copy data
541 * buffers between the target and host. These internally perform
542 * locking/unlocking of the memory.
543 */
544 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
545 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
546
547 /* Functions for accessing guest memory. The tget and tput functions
548 read/write single values, byteswapping as necessary. The lock_user function
549 gets a pointer to a contiguous area of guest memory, but does not perform
550 any byteswapping. lock_user may return either a pointer to the guest
551 memory, or a temporary buffer. */
552
553 /* Lock an area of guest memory into the host. If copy is true then the
554 host area will have the same contents as the guest. */
555 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
556 {
557 if (!access_ok(type, guest_addr, len))
558 return NULL;
559 #ifdef DEBUG_REMAP
560 {
561 void *addr;
562 addr = g_malloc(len);
563 if (copy)
564 memcpy(addr, g2h(guest_addr), len);
565 else
566 memset(addr, 0, len);
567 return addr;
568 }
569 #else
570 return g2h(guest_addr);
571 #endif
572 }
573
574 /* Unlock an area of guest memory. The first LEN bytes must be
575 flushed back to guest memory. host_ptr = NULL is explicitly
576 allowed and does nothing. */
577 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
578 long len)
579 {
580
581 #ifdef DEBUG_REMAP
582 if (!host_ptr)
583 return;
584 if (host_ptr == g2h(guest_addr))
585 return;
586 if (len > 0)
587 memcpy(g2h(guest_addr), host_ptr, len);
588 g_free(host_ptr);
589 #endif
590 }
591
592 /* Return the length of a string in target memory or -TARGET_EFAULT if
593 access error. */
594 abi_long target_strlen(abi_ulong gaddr);
595
596 /* Like lock_user but for null terminated strings. */
597 static inline void *lock_user_string(abi_ulong guest_addr)
598 {
599 abi_long len;
600 len = target_strlen(guest_addr);
601 if (len < 0)
602 return NULL;
603 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
604 }
605
606 /* Helper macros for locking/unlocking a target struct. */
607 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
608 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
609 #define unlock_user_struct(host_ptr, guest_addr, copy) \
610 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
611
612 #include <pthread.h>
613
614 /* Include target-specific struct and function definitions;
615 * they may need access to the target-independent structures
616 * above, so include them last.
617 */
618 #include "target_cpu.h"
619 #include "target_signal.h"
620 #include "target_structs.h"
621
622 #endif /* QEMU_H */