Merge remote-tracking branch 'remotes/mcayland/tags/qemu-sparc-20210412' into staging
[qemu.git] / linux-user / syscall.c
1 /*
2 * Linux syscalls
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <linux/wireless.h>
59 #include <linux/icmp.h>
60 #include <linux/icmpv6.h>
61 #include <linux/if_tun.h>
62 #include <linux/in6.h>
63 #include <linux/errqueue.h>
64 #include <linux/random.h>
65 #ifdef CONFIG_TIMERFD
66 #include <sys/timerfd.h>
67 #endif
68 #ifdef CONFIG_EVENTFD
69 #include <sys/eventfd.h>
70 #endif
71 #ifdef CONFIG_EPOLL
72 #include <sys/epoll.h>
73 #endif
74 #ifdef CONFIG_ATTR
75 #include "qemu/xattr.h"
76 #endif
77 #ifdef CONFIG_SENDFILE
78 #include <sys/sendfile.h>
79 #endif
80 #ifdef HAVE_SYS_KCOV_H
81 #include <sys/kcov.h>
82 #endif
83
84 #define termios host_termios
85 #define winsize host_winsize
86 #define termio host_termio
87 #define sgttyb host_sgttyb /* same as target */
88 #define tchars host_tchars /* same as target */
89 #define ltchars host_ltchars /* same as target */
90
91 #include <linux/termios.h>
92 #include <linux/unistd.h>
93 #include <linux/cdrom.h>
94 #include <linux/hdreg.h>
95 #include <linux/soundcard.h>
96 #include <linux/kd.h>
97 #include <linux/mtio.h>
98 #include <linux/fs.h>
99 #include <linux/fd.h>
100 #if defined(CONFIG_FIEMAP)
101 #include <linux/fiemap.h>
102 #endif
103 #include <linux/fb.h>
104 #if defined(CONFIG_USBFS)
105 #include <linux/usbdevice_fs.h>
106 #include <linux/usb/ch9.h>
107 #endif
108 #include <linux/vt.h>
109 #include <linux/dm-ioctl.h>
110 #include <linux/reboot.h>
111 #include <linux/route.h>
112 #include <linux/filter.h>
113 #include <linux/blkpg.h>
114 #include <netpacket/packet.h>
115 #include <linux/netlink.h>
116 #include <linux/if_alg.h>
117 #include <linux/rtc.h>
118 #include <sound/asound.h>
119 #ifdef HAVE_BTRFS_H
120 #include <linux/btrfs.h>
121 #endif
122 #ifdef HAVE_DRM_H
123 #include <libdrm/drm.h>
124 #include <libdrm/i915_drm.h>
125 #endif
126 #include "linux_loop.h"
127 #include "uname.h"
128
129 #include "qemu.h"
130 #include "qemu/guest-random.h"
131 #include "qemu/selfmap.h"
132 #include "user/syscall-trace.h"
133 #include "qapi/error.h"
134 #include "fd-trans.h"
135 #include "tcg/tcg.h"
136
137 #ifndef CLONE_IO
138 #define CLONE_IO 0x80000000 /* Clone io context */
139 #endif
140
141 /* We can't directly call the host clone syscall, because this will
142 * badly confuse libc (breaking mutexes, for example). So we must
143 * divide clone flags into:
144 * * flag combinations that look like pthread_create()
145 * * flag combinations that look like fork()
146 * * flags we can implement within QEMU itself
147 * * flags we can't support and will return an error for
148 */
149 /* For thread creation, all these flags must be present; for
150 * fork, none must be present.
151 */
152 #define CLONE_THREAD_FLAGS \
153 (CLONE_VM | CLONE_FS | CLONE_FILES | \
154 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
155
156 /* These flags are ignored:
157 * CLONE_DETACHED is now ignored by the kernel;
158 * CLONE_IO is just an optimisation hint to the I/O scheduler
159 */
160 #define CLONE_IGNORED_FLAGS \
161 (CLONE_DETACHED | CLONE_IO)
162
163 /* Flags for fork which we can implement within QEMU itself */
164 #define CLONE_OPTIONAL_FORK_FLAGS \
165 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
166 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
167
168 /* Flags for thread creation which we can implement within QEMU itself */
169 #define CLONE_OPTIONAL_THREAD_FLAGS \
170 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
171 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
172
173 #define CLONE_INVALID_FORK_FLAGS \
174 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
175
176 #define CLONE_INVALID_THREAD_FLAGS \
177 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
178 CLONE_IGNORED_FLAGS))
179
180 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
181 * have almost all been allocated. We cannot support any of
182 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
183 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
184 * The checks against the invalid thread masks above will catch these.
185 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
186 */
187
188 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
189 * once. This exercises the codepaths for restart.
190 */
191 //#define DEBUG_ERESTARTSYS
192
193 //#include <linux/msdos_fs.h>
194 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
195 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
196
197 #undef _syscall0
198 #undef _syscall1
199 #undef _syscall2
200 #undef _syscall3
201 #undef _syscall4
202 #undef _syscall5
203 #undef _syscall6
204
205 #define _syscall0(type,name) \
206 static type name (void) \
207 { \
208 return syscall(__NR_##name); \
209 }
210
211 #define _syscall1(type,name,type1,arg1) \
212 static type name (type1 arg1) \
213 { \
214 return syscall(__NR_##name, arg1); \
215 }
216
217 #define _syscall2(type,name,type1,arg1,type2,arg2) \
218 static type name (type1 arg1,type2 arg2) \
219 { \
220 return syscall(__NR_##name, arg1, arg2); \
221 }
222
223 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
224 static type name (type1 arg1,type2 arg2,type3 arg3) \
225 { \
226 return syscall(__NR_##name, arg1, arg2, arg3); \
227 }
228
229 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
230 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
231 { \
232 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
233 }
234
235 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
236 type5,arg5) \
237 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
238 { \
239 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
240 }
241
242
243 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
244 type5,arg5,type6,arg6) \
245 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
246 type6 arg6) \
247 { \
248 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
249 }
250
251
252 #define __NR_sys_uname __NR_uname
253 #define __NR_sys_getcwd1 __NR_getcwd
254 #define __NR_sys_getdents __NR_getdents
255 #define __NR_sys_getdents64 __NR_getdents64
256 #define __NR_sys_getpriority __NR_getpriority
257 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
258 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
259 #define __NR_sys_syslog __NR_syslog
260 #if defined(__NR_futex)
261 # define __NR_sys_futex __NR_futex
262 #endif
263 #if defined(__NR_futex_time64)
264 # define __NR_sys_futex_time64 __NR_futex_time64
265 #endif
266 #define __NR_sys_inotify_init __NR_inotify_init
267 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
268 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
269 #define __NR_sys_statx __NR_statx
270
271 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
272 #define __NR__llseek __NR_lseek
273 #endif
274
275 /* Newer kernel ports have llseek() instead of _llseek() */
276 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
277 #define TARGET_NR__llseek TARGET_NR_llseek
278 #endif
279
280 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
281 #ifndef TARGET_O_NONBLOCK_MASK
282 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
283 #endif
284
285 #define __NR_sys_gettid __NR_gettid
286 _syscall0(int, sys_gettid)
287
288 /* For the 64-bit guest on 32-bit host case we must emulate
289 * getdents using getdents64, because otherwise the host
290 * might hand us back more dirent records than we can fit
291 * into the guest buffer after structure format conversion.
292 * Otherwise we emulate getdents with getdents if the host has it.
293 */
294 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
295 #define EMULATE_GETDENTS_WITH_GETDENTS
296 #endif
297
298 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
299 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
300 #endif
301 #if (defined(TARGET_NR_getdents) && \
302 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
303 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
304 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
305 #endif
306 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
307 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
308 loff_t *, res, uint, wh);
309 #endif
310 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
311 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
312 siginfo_t *, uinfo)
313 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
314 #ifdef __NR_exit_group
315 _syscall1(int,exit_group,int,error_code)
316 #endif
317 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
318 _syscall1(int,set_tid_address,int *,tidptr)
319 #endif
320 #if defined(__NR_futex)
321 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
322 const struct timespec *,timeout,int *,uaddr2,int,val3)
323 #endif
324 #if defined(__NR_futex_time64)
325 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
326 const struct timespec *,timeout,int *,uaddr2,int,val3)
327 #endif
328 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
329 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
330 unsigned long *, user_mask_ptr);
331 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
332 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
333 unsigned long *, user_mask_ptr);
334 #define __NR_sys_getcpu __NR_getcpu
335 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
336 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
337 void *, arg);
338 _syscall2(int, capget, struct __user_cap_header_struct *, header,
339 struct __user_cap_data_struct *, data);
340 _syscall2(int, capset, struct __user_cap_header_struct *, header,
341 struct __user_cap_data_struct *, data);
342 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
343 _syscall2(int, ioprio_get, int, which, int, who)
344 #endif
345 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
346 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
347 #endif
348 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
349 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
350 #endif
351
352 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
353 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
354 unsigned long, idx1, unsigned long, idx2)
355 #endif
356
357 /*
358 * It is assumed that struct statx is architecture independent.
359 */
360 #if defined(TARGET_NR_statx) && defined(__NR_statx)
361 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
362 unsigned int, mask, struct target_statx *, statxbuf)
363 #endif
364 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
365 _syscall2(int, membarrier, int, cmd, int, flags)
366 #endif
367
368 static bitmask_transtbl fcntl_flags_tbl[] = {
369 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
370 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
371 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
372 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
373 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
374 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
375 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
376 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
377 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
378 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
379 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
380 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
381 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
382 #if defined(O_DIRECT)
383 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
384 #endif
385 #if defined(O_NOATIME)
386 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
387 #endif
388 #if defined(O_CLOEXEC)
389 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
390 #endif
391 #if defined(O_PATH)
392 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
393 #endif
394 #if defined(O_TMPFILE)
395 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
396 #endif
397 /* Don't terminate the list prematurely on 64-bit host+guest. */
398 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
399 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
400 #endif
401 { 0, 0, 0, 0 }
402 };
403
404 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
405
406 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
407 #if defined(__NR_utimensat)
408 #define __NR_sys_utimensat __NR_utimensat
409 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
410 const struct timespec *,tsp,int,flags)
411 #else
412 static int sys_utimensat(int dirfd, const char *pathname,
413 const struct timespec times[2], int flags)
414 {
415 errno = ENOSYS;
416 return -1;
417 }
418 #endif
419 #endif /* TARGET_NR_utimensat */
420
421 #ifdef TARGET_NR_renameat2
422 #if defined(__NR_renameat2)
423 #define __NR_sys_renameat2 __NR_renameat2
424 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
425 const char *, new, unsigned int, flags)
426 #else
427 static int sys_renameat2(int oldfd, const char *old,
428 int newfd, const char *new, int flags)
429 {
430 if (flags == 0) {
431 return renameat(oldfd, old, newfd, new);
432 }
433 errno = ENOSYS;
434 return -1;
435 }
436 #endif
437 #endif /* TARGET_NR_renameat2 */
438
439 #ifdef CONFIG_INOTIFY
440 #include <sys/inotify.h>
441
442 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
443 static int sys_inotify_init(void)
444 {
445 return (inotify_init());
446 }
447 #endif
448 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
449 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
450 {
451 return (inotify_add_watch(fd, pathname, mask));
452 }
453 #endif
454 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
455 static int sys_inotify_rm_watch(int fd, int32_t wd)
456 {
457 return (inotify_rm_watch(fd, wd));
458 }
459 #endif
460 #ifdef CONFIG_INOTIFY1
461 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
462 static int sys_inotify_init1(int flags)
463 {
464 return (inotify_init1(flags));
465 }
466 #endif
467 #endif
468 #else
469 /* Userspace can usually survive runtime without inotify */
470 #undef TARGET_NR_inotify_init
471 #undef TARGET_NR_inotify_init1
472 #undef TARGET_NR_inotify_add_watch
473 #undef TARGET_NR_inotify_rm_watch
474 #endif /* CONFIG_INOTIFY */
475
476 #if defined(TARGET_NR_prlimit64)
477 #ifndef __NR_prlimit64
478 # define __NR_prlimit64 -1
479 #endif
480 #define __NR_sys_prlimit64 __NR_prlimit64
481 /* The glibc rlimit structure may not be that used by the underlying syscall */
482 struct host_rlimit64 {
483 uint64_t rlim_cur;
484 uint64_t rlim_max;
485 };
486 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
487 const struct host_rlimit64 *, new_limit,
488 struct host_rlimit64 *, old_limit)
489 #endif
490
491
492 #if defined(TARGET_NR_timer_create)
493 /* Maximum of 32 active POSIX timers allowed at any one time. */
494 static timer_t g_posix_timers[32] = { 0, } ;
495
496 static inline int next_free_host_timer(void)
497 {
498 int k ;
499 /* FIXME: Does finding the next free slot require a lock? */
500 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
501 if (g_posix_timers[k] == 0) {
502 g_posix_timers[k] = (timer_t) 1;
503 return k;
504 }
505 }
506 return -1;
507 }
508 #endif
509
510 #define ERRNO_TABLE_SIZE 1200
511
512 /* target_to_host_errno_table[] is initialized from
513 * host_to_target_errno_table[] in syscall_init(). */
514 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
515 };
516
517 /*
518 * This list is the union of errno values overridden in asm-<arch>/errno.h
519 * minus the errnos that are not actually generic to all archs.
520 */
521 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
522 [EAGAIN] = TARGET_EAGAIN,
523 [EIDRM] = TARGET_EIDRM,
524 [ECHRNG] = TARGET_ECHRNG,
525 [EL2NSYNC] = TARGET_EL2NSYNC,
526 [EL3HLT] = TARGET_EL3HLT,
527 [EL3RST] = TARGET_EL3RST,
528 [ELNRNG] = TARGET_ELNRNG,
529 [EUNATCH] = TARGET_EUNATCH,
530 [ENOCSI] = TARGET_ENOCSI,
531 [EL2HLT] = TARGET_EL2HLT,
532 [EDEADLK] = TARGET_EDEADLK,
533 [ENOLCK] = TARGET_ENOLCK,
534 [EBADE] = TARGET_EBADE,
535 [EBADR] = TARGET_EBADR,
536 [EXFULL] = TARGET_EXFULL,
537 [ENOANO] = TARGET_ENOANO,
538 [EBADRQC] = TARGET_EBADRQC,
539 [EBADSLT] = TARGET_EBADSLT,
540 [EBFONT] = TARGET_EBFONT,
541 [ENOSTR] = TARGET_ENOSTR,
542 [ENODATA] = TARGET_ENODATA,
543 [ETIME] = TARGET_ETIME,
544 [ENOSR] = TARGET_ENOSR,
545 [ENONET] = TARGET_ENONET,
546 [ENOPKG] = TARGET_ENOPKG,
547 [EREMOTE] = TARGET_EREMOTE,
548 [ENOLINK] = TARGET_ENOLINK,
549 [EADV] = TARGET_EADV,
550 [ESRMNT] = TARGET_ESRMNT,
551 [ECOMM] = TARGET_ECOMM,
552 [EPROTO] = TARGET_EPROTO,
553 [EDOTDOT] = TARGET_EDOTDOT,
554 [EMULTIHOP] = TARGET_EMULTIHOP,
555 [EBADMSG] = TARGET_EBADMSG,
556 [ENAMETOOLONG] = TARGET_ENAMETOOLONG,
557 [EOVERFLOW] = TARGET_EOVERFLOW,
558 [ENOTUNIQ] = TARGET_ENOTUNIQ,
559 [EBADFD] = TARGET_EBADFD,
560 [EREMCHG] = TARGET_EREMCHG,
561 [ELIBACC] = TARGET_ELIBACC,
562 [ELIBBAD] = TARGET_ELIBBAD,
563 [ELIBSCN] = TARGET_ELIBSCN,
564 [ELIBMAX] = TARGET_ELIBMAX,
565 [ELIBEXEC] = TARGET_ELIBEXEC,
566 [EILSEQ] = TARGET_EILSEQ,
567 [ENOSYS] = TARGET_ENOSYS,
568 [ELOOP] = TARGET_ELOOP,
569 [ERESTART] = TARGET_ERESTART,
570 [ESTRPIPE] = TARGET_ESTRPIPE,
571 [ENOTEMPTY] = TARGET_ENOTEMPTY,
572 [EUSERS] = TARGET_EUSERS,
573 [ENOTSOCK] = TARGET_ENOTSOCK,
574 [EDESTADDRREQ] = TARGET_EDESTADDRREQ,
575 [EMSGSIZE] = TARGET_EMSGSIZE,
576 [EPROTOTYPE] = TARGET_EPROTOTYPE,
577 [ENOPROTOOPT] = TARGET_ENOPROTOOPT,
578 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT,
579 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT,
580 [EOPNOTSUPP] = TARGET_EOPNOTSUPP,
581 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT,
582 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT,
583 [EADDRINUSE] = TARGET_EADDRINUSE,
584 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL,
585 [ENETDOWN] = TARGET_ENETDOWN,
586 [ENETUNREACH] = TARGET_ENETUNREACH,
587 [ENETRESET] = TARGET_ENETRESET,
588 [ECONNABORTED] = TARGET_ECONNABORTED,
589 [ECONNRESET] = TARGET_ECONNRESET,
590 [ENOBUFS] = TARGET_ENOBUFS,
591 [EISCONN] = TARGET_EISCONN,
592 [ENOTCONN] = TARGET_ENOTCONN,
593 [EUCLEAN] = TARGET_EUCLEAN,
594 [ENOTNAM] = TARGET_ENOTNAM,
595 [ENAVAIL] = TARGET_ENAVAIL,
596 [EISNAM] = TARGET_EISNAM,
597 [EREMOTEIO] = TARGET_EREMOTEIO,
598 [EDQUOT] = TARGET_EDQUOT,
599 [ESHUTDOWN] = TARGET_ESHUTDOWN,
600 [ETOOMANYREFS] = TARGET_ETOOMANYREFS,
601 [ETIMEDOUT] = TARGET_ETIMEDOUT,
602 [ECONNREFUSED] = TARGET_ECONNREFUSED,
603 [EHOSTDOWN] = TARGET_EHOSTDOWN,
604 [EHOSTUNREACH] = TARGET_EHOSTUNREACH,
605 [EALREADY] = TARGET_EALREADY,
606 [EINPROGRESS] = TARGET_EINPROGRESS,
607 [ESTALE] = TARGET_ESTALE,
608 [ECANCELED] = TARGET_ECANCELED,
609 [ENOMEDIUM] = TARGET_ENOMEDIUM,
610 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE,
611 #ifdef ENOKEY
612 [ENOKEY] = TARGET_ENOKEY,
613 #endif
614 #ifdef EKEYEXPIRED
615 [EKEYEXPIRED] = TARGET_EKEYEXPIRED,
616 #endif
617 #ifdef EKEYREVOKED
618 [EKEYREVOKED] = TARGET_EKEYREVOKED,
619 #endif
620 #ifdef EKEYREJECTED
621 [EKEYREJECTED] = TARGET_EKEYREJECTED,
622 #endif
623 #ifdef EOWNERDEAD
624 [EOWNERDEAD] = TARGET_EOWNERDEAD,
625 #endif
626 #ifdef ENOTRECOVERABLE
627 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE,
628 #endif
629 #ifdef ENOMSG
630 [ENOMSG] = TARGET_ENOMSG,
631 #endif
632 #ifdef ERKFILL
633 [ERFKILL] = TARGET_ERFKILL,
634 #endif
635 #ifdef EHWPOISON
636 [EHWPOISON] = TARGET_EHWPOISON,
637 #endif
638 };
639
640 static inline int host_to_target_errno(int err)
641 {
642 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
643 host_to_target_errno_table[err]) {
644 return host_to_target_errno_table[err];
645 }
646 return err;
647 }
648
649 static inline int target_to_host_errno(int err)
650 {
651 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
652 target_to_host_errno_table[err]) {
653 return target_to_host_errno_table[err];
654 }
655 return err;
656 }
657
658 static inline abi_long get_errno(abi_long ret)
659 {
660 if (ret == -1)
661 return -host_to_target_errno(errno);
662 else
663 return ret;
664 }
665
666 const char *target_strerror(int err)
667 {
668 if (err == TARGET_ERESTARTSYS) {
669 return "To be restarted";
670 }
671 if (err == TARGET_QEMU_ESIGRETURN) {
672 return "Successful exit from sigreturn";
673 }
674
675 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
676 return NULL;
677 }
678 return strerror(target_to_host_errno(err));
679 }
680
681 #define safe_syscall0(type, name) \
682 static type safe_##name(void) \
683 { \
684 return safe_syscall(__NR_##name); \
685 }
686
687 #define safe_syscall1(type, name, type1, arg1) \
688 static type safe_##name(type1 arg1) \
689 { \
690 return safe_syscall(__NR_##name, arg1); \
691 }
692
693 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
694 static type safe_##name(type1 arg1, type2 arg2) \
695 { \
696 return safe_syscall(__NR_##name, arg1, arg2); \
697 }
698
699 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
700 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
701 { \
702 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
703 }
704
705 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
706 type4, arg4) \
707 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
708 { \
709 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
710 }
711
712 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
713 type4, arg4, type5, arg5) \
714 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
715 type5 arg5) \
716 { \
717 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
718 }
719
720 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
721 type4, arg4, type5, arg5, type6, arg6) \
722 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
723 type5 arg5, type6 arg6) \
724 { \
725 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
726 }
727
728 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
729 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
730 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
731 int, flags, mode_t, mode)
732 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
733 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
734 struct rusage *, rusage)
735 #endif
736 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
737 int, options, struct rusage *, rusage)
738 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
739 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
740 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
741 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
742 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
743 #endif
744 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
745 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
746 struct timespec *, tsp, const sigset_t *, sigmask,
747 size_t, sigsetsize)
748 #endif
749 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
750 int, maxevents, int, timeout, const sigset_t *, sigmask,
751 size_t, sigsetsize)
752 #if defined(__NR_futex)
753 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
754 const struct timespec *,timeout,int *,uaddr2,int,val3)
755 #endif
756 #if defined(__NR_futex_time64)
757 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
758 const struct timespec *,timeout,int *,uaddr2,int,val3)
759 #endif
760 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
761 safe_syscall2(int, kill, pid_t, pid, int, sig)
762 safe_syscall2(int, tkill, int, tid, int, sig)
763 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
764 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
765 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
766 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
767 unsigned long, pos_l, unsigned long, pos_h)
768 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
769 unsigned long, pos_l, unsigned long, pos_h)
770 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
771 socklen_t, addrlen)
772 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
773 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
774 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
775 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
776 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
777 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
778 safe_syscall2(int, flock, int, fd, int, operation)
779 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
780 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
781 const struct timespec *, uts, size_t, sigsetsize)
782 #endif
783 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
784 int, flags)
785 #if defined(TARGET_NR_nanosleep)
786 safe_syscall2(int, nanosleep, const struct timespec *, req,
787 struct timespec *, rem)
788 #endif
789 #if defined(TARGET_NR_clock_nanosleep) || \
790 defined(TARGET_NR_clock_nanosleep_time64)
791 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
792 const struct timespec *, req, struct timespec *, rem)
793 #endif
794 #ifdef __NR_ipc
795 #ifdef __s390x__
796 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
797 void *, ptr)
798 #else
799 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
800 void *, ptr, long, fifth)
801 #endif
802 #endif
803 #ifdef __NR_msgsnd
804 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
805 int, flags)
806 #endif
807 #ifdef __NR_msgrcv
808 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
809 long, msgtype, int, flags)
810 #endif
811 #ifdef __NR_semtimedop
812 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
813 unsigned, nsops, const struct timespec *, timeout)
814 #endif
815 #if defined(TARGET_NR_mq_timedsend) || \
816 defined(TARGET_NR_mq_timedsend_time64)
817 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
818 size_t, len, unsigned, prio, const struct timespec *, timeout)
819 #endif
820 #if defined(TARGET_NR_mq_timedreceive) || \
821 defined(TARGET_NR_mq_timedreceive_time64)
822 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
823 size_t, len, unsigned *, prio, const struct timespec *, timeout)
824 #endif
825 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
826 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
827 int, outfd, loff_t *, poutoff, size_t, length,
828 unsigned int, flags)
829 #endif
830
831 /* We do ioctl like this rather than via safe_syscall3 to preserve the
832 * "third argument might be integer or pointer or not present" behaviour of
833 * the libc function.
834 */
835 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
836 /* Similarly for fcntl. Note that callers must always:
837 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
838 * use the flock64 struct rather than unsuffixed flock
839 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
840 */
841 #ifdef __NR_fcntl64
842 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
843 #else
844 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
845 #endif
846
847 static inline int host_to_target_sock_type(int host_type)
848 {
849 int target_type;
850
851 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
852 case SOCK_DGRAM:
853 target_type = TARGET_SOCK_DGRAM;
854 break;
855 case SOCK_STREAM:
856 target_type = TARGET_SOCK_STREAM;
857 break;
858 default:
859 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
860 break;
861 }
862
863 #if defined(SOCK_CLOEXEC)
864 if (host_type & SOCK_CLOEXEC) {
865 target_type |= TARGET_SOCK_CLOEXEC;
866 }
867 #endif
868
869 #if defined(SOCK_NONBLOCK)
870 if (host_type & SOCK_NONBLOCK) {
871 target_type |= TARGET_SOCK_NONBLOCK;
872 }
873 #endif
874
875 return target_type;
876 }
877
878 static abi_ulong target_brk;
879 static abi_ulong target_original_brk;
880 static abi_ulong brk_page;
881
882 void target_set_brk(abi_ulong new_brk)
883 {
884 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
885 brk_page = HOST_PAGE_ALIGN(target_brk);
886 }
887
888 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
889 #define DEBUGF_BRK(message, args...)
890
891 /* do_brk() must return target values and target errnos. */
892 abi_long do_brk(abi_ulong new_brk)
893 {
894 abi_long mapped_addr;
895 abi_ulong new_alloc_size;
896
897 /* brk pointers are always untagged */
898
899 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
900
901 if (!new_brk) {
902 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
903 return target_brk;
904 }
905 if (new_brk < target_original_brk) {
906 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
907 target_brk);
908 return target_brk;
909 }
910
911 /* If the new brk is less than the highest page reserved to the
912 * target heap allocation, set it and we're almost done... */
913 if (new_brk <= brk_page) {
914 /* Heap contents are initialized to zero, as for anonymous
915 * mapped pages. */
916 if (new_brk > target_brk) {
917 memset(g2h_untagged(target_brk), 0, new_brk - target_brk);
918 }
919 target_brk = new_brk;
920 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
921 return target_brk;
922 }
923
924 /* We need to allocate more memory after the brk... Note that
925 * we don't use MAP_FIXED because that will map over the top of
926 * any existing mapping (like the one with the host libc or qemu
927 * itself); instead we treat "mapped but at wrong address" as
928 * a failure and unmap again.
929 */
930 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
931 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
932 PROT_READ|PROT_WRITE,
933 MAP_ANON|MAP_PRIVATE, 0, 0));
934
935 if (mapped_addr == brk_page) {
936 /* Heap contents are initialized to zero, as for anonymous
937 * mapped pages. Technically the new pages are already
938 * initialized to zero since they *are* anonymous mapped
939 * pages, however we have to take care with the contents that
940 * come from the remaining part of the previous page: it may
941 * contains garbage data due to a previous heap usage (grown
942 * then shrunken). */
943 memset(g2h_untagged(target_brk), 0, brk_page - target_brk);
944
945 target_brk = new_brk;
946 brk_page = HOST_PAGE_ALIGN(target_brk);
947 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
948 target_brk);
949 return target_brk;
950 } else if (mapped_addr != -1) {
951 /* Mapped but at wrong address, meaning there wasn't actually
952 * enough space for this brk.
953 */
954 target_munmap(mapped_addr, new_alloc_size);
955 mapped_addr = -1;
956 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
957 }
958 else {
959 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
960 }
961
962 #if defined(TARGET_ALPHA)
963 /* We (partially) emulate OSF/1 on Alpha, which requires we
964 return a proper errno, not an unchanged brk value. */
965 return -TARGET_ENOMEM;
966 #endif
967 /* For everything else, return the previous break. */
968 return target_brk;
969 }
970
971 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
972 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
973 static inline abi_long copy_from_user_fdset(fd_set *fds,
974 abi_ulong target_fds_addr,
975 int n)
976 {
977 int i, nw, j, k;
978 abi_ulong b, *target_fds;
979
980 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
981 if (!(target_fds = lock_user(VERIFY_READ,
982 target_fds_addr,
983 sizeof(abi_ulong) * nw,
984 1)))
985 return -TARGET_EFAULT;
986
987 FD_ZERO(fds);
988 k = 0;
989 for (i = 0; i < nw; i++) {
990 /* grab the abi_ulong */
991 __get_user(b, &target_fds[i]);
992 for (j = 0; j < TARGET_ABI_BITS; j++) {
993 /* check the bit inside the abi_ulong */
994 if ((b >> j) & 1)
995 FD_SET(k, fds);
996 k++;
997 }
998 }
999
1000 unlock_user(target_fds, target_fds_addr, 0);
1001
1002 return 0;
1003 }
1004
1005 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
1006 abi_ulong target_fds_addr,
1007 int n)
1008 {
1009 if (target_fds_addr) {
1010 if (copy_from_user_fdset(fds, target_fds_addr, n))
1011 return -TARGET_EFAULT;
1012 *fds_ptr = fds;
1013 } else {
1014 *fds_ptr = NULL;
1015 }
1016 return 0;
1017 }
1018
1019 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
1020 const fd_set *fds,
1021 int n)
1022 {
1023 int i, nw, j, k;
1024 abi_long v;
1025 abi_ulong *target_fds;
1026
1027 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1028 if (!(target_fds = lock_user(VERIFY_WRITE,
1029 target_fds_addr,
1030 sizeof(abi_ulong) * nw,
1031 0)))
1032 return -TARGET_EFAULT;
1033
1034 k = 0;
1035 for (i = 0; i < nw; i++) {
1036 v = 0;
1037 for (j = 0; j < TARGET_ABI_BITS; j++) {
1038 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
1039 k++;
1040 }
1041 __put_user(v, &target_fds[i]);
1042 }
1043
1044 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
1045
1046 return 0;
1047 }
1048 #endif
1049
1050 #if defined(__alpha__)
1051 #define HOST_HZ 1024
1052 #else
1053 #define HOST_HZ 100
1054 #endif
1055
1056 static inline abi_long host_to_target_clock_t(long ticks)
1057 {
1058 #if HOST_HZ == TARGET_HZ
1059 return ticks;
1060 #else
1061 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1062 #endif
1063 }
1064
1065 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1066 const struct rusage *rusage)
1067 {
1068 struct target_rusage *target_rusage;
1069
1070 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1071 return -TARGET_EFAULT;
1072 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1073 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1074 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1075 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1076 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1077 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1078 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1079 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1080 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1081 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1082 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1083 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1084 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1085 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1086 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1087 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1088 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1089 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1090 unlock_user_struct(target_rusage, target_addr, 1);
1091
1092 return 0;
1093 }
1094
1095 #ifdef TARGET_NR_setrlimit
1096 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1097 {
1098 abi_ulong target_rlim_swap;
1099 rlim_t result;
1100
1101 target_rlim_swap = tswapal(target_rlim);
1102 if (target_rlim_swap == TARGET_RLIM_INFINITY)
1103 return RLIM_INFINITY;
1104
1105 result = target_rlim_swap;
1106 if (target_rlim_swap != (rlim_t)result)
1107 return RLIM_INFINITY;
1108
1109 return result;
1110 }
1111 #endif
1112
1113 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1114 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1115 {
1116 abi_ulong target_rlim_swap;
1117 abi_ulong result;
1118
1119 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1120 target_rlim_swap = TARGET_RLIM_INFINITY;
1121 else
1122 target_rlim_swap = rlim;
1123 result = tswapal(target_rlim_swap);
1124
1125 return result;
1126 }
1127 #endif
1128
1129 static inline int target_to_host_resource(int code)
1130 {
1131 switch (code) {
1132 case TARGET_RLIMIT_AS:
1133 return RLIMIT_AS;
1134 case TARGET_RLIMIT_CORE:
1135 return RLIMIT_CORE;
1136 case TARGET_RLIMIT_CPU:
1137 return RLIMIT_CPU;
1138 case TARGET_RLIMIT_DATA:
1139 return RLIMIT_DATA;
1140 case TARGET_RLIMIT_FSIZE:
1141 return RLIMIT_FSIZE;
1142 case TARGET_RLIMIT_LOCKS:
1143 return RLIMIT_LOCKS;
1144 case TARGET_RLIMIT_MEMLOCK:
1145 return RLIMIT_MEMLOCK;
1146 case TARGET_RLIMIT_MSGQUEUE:
1147 return RLIMIT_MSGQUEUE;
1148 case TARGET_RLIMIT_NICE:
1149 return RLIMIT_NICE;
1150 case TARGET_RLIMIT_NOFILE:
1151 return RLIMIT_NOFILE;
1152 case TARGET_RLIMIT_NPROC:
1153 return RLIMIT_NPROC;
1154 case TARGET_RLIMIT_RSS:
1155 return RLIMIT_RSS;
1156 case TARGET_RLIMIT_RTPRIO:
1157 return RLIMIT_RTPRIO;
1158 case TARGET_RLIMIT_SIGPENDING:
1159 return RLIMIT_SIGPENDING;
1160 case TARGET_RLIMIT_STACK:
1161 return RLIMIT_STACK;
1162 default:
1163 return code;
1164 }
1165 }
1166
1167 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1168 abi_ulong target_tv_addr)
1169 {
1170 struct target_timeval *target_tv;
1171
1172 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1173 return -TARGET_EFAULT;
1174 }
1175
1176 __get_user(tv->tv_sec, &target_tv->tv_sec);
1177 __get_user(tv->tv_usec, &target_tv->tv_usec);
1178
1179 unlock_user_struct(target_tv, target_tv_addr, 0);
1180
1181 return 0;
1182 }
1183
1184 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1185 const struct timeval *tv)
1186 {
1187 struct target_timeval *target_tv;
1188
1189 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1190 return -TARGET_EFAULT;
1191 }
1192
1193 __put_user(tv->tv_sec, &target_tv->tv_sec);
1194 __put_user(tv->tv_usec, &target_tv->tv_usec);
1195
1196 unlock_user_struct(target_tv, target_tv_addr, 1);
1197
1198 return 0;
1199 }
1200
1201 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1202 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1203 abi_ulong target_tv_addr)
1204 {
1205 struct target__kernel_sock_timeval *target_tv;
1206
1207 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1208 return -TARGET_EFAULT;
1209 }
1210
1211 __get_user(tv->tv_sec, &target_tv->tv_sec);
1212 __get_user(tv->tv_usec, &target_tv->tv_usec);
1213
1214 unlock_user_struct(target_tv, target_tv_addr, 0);
1215
1216 return 0;
1217 }
1218 #endif
1219
1220 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1221 const struct timeval *tv)
1222 {
1223 struct target__kernel_sock_timeval *target_tv;
1224
1225 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1226 return -TARGET_EFAULT;
1227 }
1228
1229 __put_user(tv->tv_sec, &target_tv->tv_sec);
1230 __put_user(tv->tv_usec, &target_tv->tv_usec);
1231
1232 unlock_user_struct(target_tv, target_tv_addr, 1);
1233
1234 return 0;
1235 }
1236
1237 #if defined(TARGET_NR_futex) || \
1238 defined(TARGET_NR_rt_sigtimedwait) || \
1239 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1240 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1241 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1242 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1243 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1244 defined(TARGET_NR_timer_settime) || \
1245 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1246 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1247 abi_ulong target_addr)
1248 {
1249 struct target_timespec *target_ts;
1250
1251 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1252 return -TARGET_EFAULT;
1253 }
1254 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1255 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1256 unlock_user_struct(target_ts, target_addr, 0);
1257 return 0;
1258 }
1259 #endif
1260
1261 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1262 defined(TARGET_NR_timer_settime64) || \
1263 defined(TARGET_NR_mq_timedsend_time64) || \
1264 defined(TARGET_NR_mq_timedreceive_time64) || \
1265 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1266 defined(TARGET_NR_clock_nanosleep_time64) || \
1267 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1268 defined(TARGET_NR_utimensat) || \
1269 defined(TARGET_NR_utimensat_time64) || \
1270 defined(TARGET_NR_semtimedop_time64) || \
1271 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1272 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1273 abi_ulong target_addr)
1274 {
1275 struct target__kernel_timespec *target_ts;
1276
1277 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1278 return -TARGET_EFAULT;
1279 }
1280 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1281 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1282 /* in 32bit mode, this drops the padding */
1283 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1284 unlock_user_struct(target_ts, target_addr, 0);
1285 return 0;
1286 }
1287 #endif
1288
1289 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1290 struct timespec *host_ts)
1291 {
1292 struct target_timespec *target_ts;
1293
1294 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1295 return -TARGET_EFAULT;
1296 }
1297 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1298 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1299 unlock_user_struct(target_ts, target_addr, 1);
1300 return 0;
1301 }
1302
1303 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1304 struct timespec *host_ts)
1305 {
1306 struct target__kernel_timespec *target_ts;
1307
1308 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1309 return -TARGET_EFAULT;
1310 }
1311 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1312 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1313 unlock_user_struct(target_ts, target_addr, 1);
1314 return 0;
1315 }
1316
1317 #if defined(TARGET_NR_gettimeofday)
1318 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1319 struct timezone *tz)
1320 {
1321 struct target_timezone *target_tz;
1322
1323 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1324 return -TARGET_EFAULT;
1325 }
1326
1327 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1328 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1329
1330 unlock_user_struct(target_tz, target_tz_addr, 1);
1331
1332 return 0;
1333 }
1334 #endif
1335
1336 #if defined(TARGET_NR_settimeofday)
1337 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1338 abi_ulong target_tz_addr)
1339 {
1340 struct target_timezone *target_tz;
1341
1342 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1343 return -TARGET_EFAULT;
1344 }
1345
1346 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1347 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1348
1349 unlock_user_struct(target_tz, target_tz_addr, 0);
1350
1351 return 0;
1352 }
1353 #endif
1354
1355 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1356 #include <mqueue.h>
1357
1358 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1359 abi_ulong target_mq_attr_addr)
1360 {
1361 struct target_mq_attr *target_mq_attr;
1362
1363 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1364 target_mq_attr_addr, 1))
1365 return -TARGET_EFAULT;
1366
1367 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1368 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1369 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1370 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1371
1372 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1373
1374 return 0;
1375 }
1376
1377 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1378 const struct mq_attr *attr)
1379 {
1380 struct target_mq_attr *target_mq_attr;
1381
1382 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1383 target_mq_attr_addr, 0))
1384 return -TARGET_EFAULT;
1385
1386 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1387 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1388 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1389 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1390
1391 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1392
1393 return 0;
1394 }
1395 #endif
1396
1397 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1398 /* do_select() must return target values and target errnos. */
1399 static abi_long do_select(int n,
1400 abi_ulong rfd_addr, abi_ulong wfd_addr,
1401 abi_ulong efd_addr, abi_ulong target_tv_addr)
1402 {
1403 fd_set rfds, wfds, efds;
1404 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1405 struct timeval tv;
1406 struct timespec ts, *ts_ptr;
1407 abi_long ret;
1408
1409 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1410 if (ret) {
1411 return ret;
1412 }
1413 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1414 if (ret) {
1415 return ret;
1416 }
1417 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1418 if (ret) {
1419 return ret;
1420 }
1421
1422 if (target_tv_addr) {
1423 if (copy_from_user_timeval(&tv, target_tv_addr))
1424 return -TARGET_EFAULT;
1425 ts.tv_sec = tv.tv_sec;
1426 ts.tv_nsec = tv.tv_usec * 1000;
1427 ts_ptr = &ts;
1428 } else {
1429 ts_ptr = NULL;
1430 }
1431
1432 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1433 ts_ptr, NULL));
1434
1435 if (!is_error(ret)) {
1436 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1437 return -TARGET_EFAULT;
1438 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1439 return -TARGET_EFAULT;
1440 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1441 return -TARGET_EFAULT;
1442
1443 if (target_tv_addr) {
1444 tv.tv_sec = ts.tv_sec;
1445 tv.tv_usec = ts.tv_nsec / 1000;
1446 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1447 return -TARGET_EFAULT;
1448 }
1449 }
1450 }
1451
1452 return ret;
1453 }
1454
1455 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1456 static abi_long do_old_select(abi_ulong arg1)
1457 {
1458 struct target_sel_arg_struct *sel;
1459 abi_ulong inp, outp, exp, tvp;
1460 long nsel;
1461
1462 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1463 return -TARGET_EFAULT;
1464 }
1465
1466 nsel = tswapal(sel->n);
1467 inp = tswapal(sel->inp);
1468 outp = tswapal(sel->outp);
1469 exp = tswapal(sel->exp);
1470 tvp = tswapal(sel->tvp);
1471
1472 unlock_user_struct(sel, arg1, 0);
1473
1474 return do_select(nsel, inp, outp, exp, tvp);
1475 }
1476 #endif
1477 #endif
1478
1479 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1480 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1481 abi_long arg4, abi_long arg5, abi_long arg6,
1482 bool time64)
1483 {
1484 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1485 fd_set rfds, wfds, efds;
1486 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1487 struct timespec ts, *ts_ptr;
1488 abi_long ret;
1489
1490 /*
1491 * The 6th arg is actually two args smashed together,
1492 * so we cannot use the C library.
1493 */
1494 sigset_t set;
1495 struct {
1496 sigset_t *set;
1497 size_t size;
1498 } sig, *sig_ptr;
1499
1500 abi_ulong arg_sigset, arg_sigsize, *arg7;
1501 target_sigset_t *target_sigset;
1502
1503 n = arg1;
1504 rfd_addr = arg2;
1505 wfd_addr = arg3;
1506 efd_addr = arg4;
1507 ts_addr = arg5;
1508
1509 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1510 if (ret) {
1511 return ret;
1512 }
1513 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1514 if (ret) {
1515 return ret;
1516 }
1517 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1518 if (ret) {
1519 return ret;
1520 }
1521
1522 /*
1523 * This takes a timespec, and not a timeval, so we cannot
1524 * use the do_select() helper ...
1525 */
1526 if (ts_addr) {
1527 if (time64) {
1528 if (target_to_host_timespec64(&ts, ts_addr)) {
1529 return -TARGET_EFAULT;
1530 }
1531 } else {
1532 if (target_to_host_timespec(&ts, ts_addr)) {
1533 return -TARGET_EFAULT;
1534 }
1535 }
1536 ts_ptr = &ts;
1537 } else {
1538 ts_ptr = NULL;
1539 }
1540
1541 /* Extract the two packed args for the sigset */
1542 if (arg6) {
1543 sig_ptr = &sig;
1544 sig.size = SIGSET_T_SIZE;
1545
1546 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1547 if (!arg7) {
1548 return -TARGET_EFAULT;
1549 }
1550 arg_sigset = tswapal(arg7[0]);
1551 arg_sigsize = tswapal(arg7[1]);
1552 unlock_user(arg7, arg6, 0);
1553
1554 if (arg_sigset) {
1555 sig.set = &set;
1556 if (arg_sigsize != sizeof(*target_sigset)) {
1557 /* Like the kernel, we enforce correct size sigsets */
1558 return -TARGET_EINVAL;
1559 }
1560 target_sigset = lock_user(VERIFY_READ, arg_sigset,
1561 sizeof(*target_sigset), 1);
1562 if (!target_sigset) {
1563 return -TARGET_EFAULT;
1564 }
1565 target_to_host_sigset(&set, target_sigset);
1566 unlock_user(target_sigset, arg_sigset, 0);
1567 } else {
1568 sig.set = NULL;
1569 }
1570 } else {
1571 sig_ptr = NULL;
1572 }
1573
1574 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1575 ts_ptr, sig_ptr));
1576
1577 if (!is_error(ret)) {
1578 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1579 return -TARGET_EFAULT;
1580 }
1581 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1582 return -TARGET_EFAULT;
1583 }
1584 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1585 return -TARGET_EFAULT;
1586 }
1587 if (time64) {
1588 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1589 return -TARGET_EFAULT;
1590 }
1591 } else {
1592 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1593 return -TARGET_EFAULT;
1594 }
1595 }
1596 }
1597 return ret;
1598 }
1599 #endif
1600
1601 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1602 defined(TARGET_NR_ppoll_time64)
1603 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1604 abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1605 {
1606 struct target_pollfd *target_pfd;
1607 unsigned int nfds = arg2;
1608 struct pollfd *pfd;
1609 unsigned int i;
1610 abi_long ret;
1611
1612 pfd = NULL;
1613 target_pfd = NULL;
1614 if (nfds) {
1615 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1616 return -TARGET_EINVAL;
1617 }
1618 target_pfd = lock_user(VERIFY_WRITE, arg1,
1619 sizeof(struct target_pollfd) * nfds, 1);
1620 if (!target_pfd) {
1621 return -TARGET_EFAULT;
1622 }
1623
1624 pfd = alloca(sizeof(struct pollfd) * nfds);
1625 for (i = 0; i < nfds; i++) {
1626 pfd[i].fd = tswap32(target_pfd[i].fd);
1627 pfd[i].events = tswap16(target_pfd[i].events);
1628 }
1629 }
1630 if (ppoll) {
1631 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1632 target_sigset_t *target_set;
1633 sigset_t _set, *set = &_set;
1634
1635 if (arg3) {
1636 if (time64) {
1637 if (target_to_host_timespec64(timeout_ts, arg3)) {
1638 unlock_user(target_pfd, arg1, 0);
1639 return -TARGET_EFAULT;
1640 }
1641 } else {
1642 if (target_to_host_timespec(timeout_ts, arg3)) {
1643 unlock_user(target_pfd, arg1, 0);
1644 return -TARGET_EFAULT;
1645 }
1646 }
1647 } else {
1648 timeout_ts = NULL;
1649 }
1650
1651 if (arg4) {
1652 if (arg5 != sizeof(target_sigset_t)) {
1653 unlock_user(target_pfd, arg1, 0);
1654 return -TARGET_EINVAL;
1655 }
1656
1657 target_set = lock_user(VERIFY_READ, arg4,
1658 sizeof(target_sigset_t), 1);
1659 if (!target_set) {
1660 unlock_user(target_pfd, arg1, 0);
1661 return -TARGET_EFAULT;
1662 }
1663 target_to_host_sigset(set, target_set);
1664 } else {
1665 set = NULL;
1666 }
1667
1668 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1669 set, SIGSET_T_SIZE));
1670
1671 if (!is_error(ret) && arg3) {
1672 if (time64) {
1673 if (host_to_target_timespec64(arg3, timeout_ts)) {
1674 return -TARGET_EFAULT;
1675 }
1676 } else {
1677 if (host_to_target_timespec(arg3, timeout_ts)) {
1678 return -TARGET_EFAULT;
1679 }
1680 }
1681 }
1682 if (arg4) {
1683 unlock_user(target_set, arg4, 0);
1684 }
1685 } else {
1686 struct timespec ts, *pts;
1687
1688 if (arg3 >= 0) {
1689 /* Convert ms to secs, ns */
1690 ts.tv_sec = arg3 / 1000;
1691 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1692 pts = &ts;
1693 } else {
1694 /* -ve poll() timeout means "infinite" */
1695 pts = NULL;
1696 }
1697 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1698 }
1699
1700 if (!is_error(ret)) {
1701 for (i = 0; i < nfds; i++) {
1702 target_pfd[i].revents = tswap16(pfd[i].revents);
1703 }
1704 }
1705 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1706 return ret;
1707 }
1708 #endif
1709
1710 static abi_long do_pipe2(int host_pipe[], int flags)
1711 {
1712 #ifdef CONFIG_PIPE2
1713 return pipe2(host_pipe, flags);
1714 #else
1715 return -ENOSYS;
1716 #endif
1717 }
1718
1719 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1720 int flags, int is_pipe2)
1721 {
1722 int host_pipe[2];
1723 abi_long ret;
1724 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1725
1726 if (is_error(ret))
1727 return get_errno(ret);
1728
1729 /* Several targets have special calling conventions for the original
1730 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1731 if (!is_pipe2) {
1732 #if defined(TARGET_ALPHA)
1733 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1734 return host_pipe[0];
1735 #elif defined(TARGET_MIPS)
1736 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1737 return host_pipe[0];
1738 #elif defined(TARGET_SH4)
1739 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1740 return host_pipe[0];
1741 #elif defined(TARGET_SPARC)
1742 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1743 return host_pipe[0];
1744 #endif
1745 }
1746
1747 if (put_user_s32(host_pipe[0], pipedes)
1748 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1749 return -TARGET_EFAULT;
1750 return get_errno(ret);
1751 }
1752
1753 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1754 abi_ulong target_addr,
1755 socklen_t len)
1756 {
1757 struct target_ip_mreqn *target_smreqn;
1758
1759 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1760 if (!target_smreqn)
1761 return -TARGET_EFAULT;
1762 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1763 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1764 if (len == sizeof(struct target_ip_mreqn))
1765 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1766 unlock_user(target_smreqn, target_addr, 0);
1767
1768 return 0;
1769 }
1770
1771 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1772 abi_ulong target_addr,
1773 socklen_t len)
1774 {
1775 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1776 sa_family_t sa_family;
1777 struct target_sockaddr *target_saddr;
1778
1779 if (fd_trans_target_to_host_addr(fd)) {
1780 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1781 }
1782
1783 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1784 if (!target_saddr)
1785 return -TARGET_EFAULT;
1786
1787 sa_family = tswap16(target_saddr->sa_family);
1788
1789 /* Oops. The caller might send a incomplete sun_path; sun_path
1790 * must be terminated by \0 (see the manual page), but
1791 * unfortunately it is quite common to specify sockaddr_un
1792 * length as "strlen(x->sun_path)" while it should be
1793 * "strlen(...) + 1". We'll fix that here if needed.
1794 * Linux kernel has a similar feature.
1795 */
1796
1797 if (sa_family == AF_UNIX) {
1798 if (len < unix_maxlen && len > 0) {
1799 char *cp = (char*)target_saddr;
1800
1801 if ( cp[len-1] && !cp[len] )
1802 len++;
1803 }
1804 if (len > unix_maxlen)
1805 len = unix_maxlen;
1806 }
1807
1808 memcpy(addr, target_saddr, len);
1809 addr->sa_family = sa_family;
1810 if (sa_family == AF_NETLINK) {
1811 struct sockaddr_nl *nladdr;
1812
1813 nladdr = (struct sockaddr_nl *)addr;
1814 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1815 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1816 } else if (sa_family == AF_PACKET) {
1817 struct target_sockaddr_ll *lladdr;
1818
1819 lladdr = (struct target_sockaddr_ll *)addr;
1820 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1821 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1822 }
1823 unlock_user(target_saddr, target_addr, 0);
1824
1825 return 0;
1826 }
1827
1828 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1829 struct sockaddr *addr,
1830 socklen_t len)
1831 {
1832 struct target_sockaddr *target_saddr;
1833
1834 if (len == 0) {
1835 return 0;
1836 }
1837 assert(addr);
1838
1839 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1840 if (!target_saddr)
1841 return -TARGET_EFAULT;
1842 memcpy(target_saddr, addr, len);
1843 if (len >= offsetof(struct target_sockaddr, sa_family) +
1844 sizeof(target_saddr->sa_family)) {
1845 target_saddr->sa_family = tswap16(addr->sa_family);
1846 }
1847 if (addr->sa_family == AF_NETLINK &&
1848 len >= sizeof(struct target_sockaddr_nl)) {
1849 struct target_sockaddr_nl *target_nl =
1850 (struct target_sockaddr_nl *)target_saddr;
1851 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1852 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1853 } else if (addr->sa_family == AF_PACKET) {
1854 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1855 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1856 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1857 } else if (addr->sa_family == AF_INET6 &&
1858 len >= sizeof(struct target_sockaddr_in6)) {
1859 struct target_sockaddr_in6 *target_in6 =
1860 (struct target_sockaddr_in6 *)target_saddr;
1861 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1862 }
1863 unlock_user(target_saddr, target_addr, len);
1864
1865 return 0;
1866 }
1867
1868 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1869 struct target_msghdr *target_msgh)
1870 {
1871 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1872 abi_long msg_controllen;
1873 abi_ulong target_cmsg_addr;
1874 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1875 socklen_t space = 0;
1876
1877 msg_controllen = tswapal(target_msgh->msg_controllen);
1878 if (msg_controllen < sizeof (struct target_cmsghdr))
1879 goto the_end;
1880 target_cmsg_addr = tswapal(target_msgh->msg_control);
1881 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1882 target_cmsg_start = target_cmsg;
1883 if (!target_cmsg)
1884 return -TARGET_EFAULT;
1885
1886 while (cmsg && target_cmsg) {
1887 void *data = CMSG_DATA(cmsg);
1888 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1889
1890 int len = tswapal(target_cmsg->cmsg_len)
1891 - sizeof(struct target_cmsghdr);
1892
1893 space += CMSG_SPACE(len);
1894 if (space > msgh->msg_controllen) {
1895 space -= CMSG_SPACE(len);
1896 /* This is a QEMU bug, since we allocated the payload
1897 * area ourselves (unlike overflow in host-to-target
1898 * conversion, which is just the guest giving us a buffer
1899 * that's too small). It can't happen for the payload types
1900 * we currently support; if it becomes an issue in future
1901 * we would need to improve our allocation strategy to
1902 * something more intelligent than "twice the size of the
1903 * target buffer we're reading from".
1904 */
1905 qemu_log_mask(LOG_UNIMP,
1906 ("Unsupported ancillary data %d/%d: "
1907 "unhandled msg size\n"),
1908 tswap32(target_cmsg->cmsg_level),
1909 tswap32(target_cmsg->cmsg_type));
1910 break;
1911 }
1912
1913 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1914 cmsg->cmsg_level = SOL_SOCKET;
1915 } else {
1916 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1917 }
1918 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1919 cmsg->cmsg_len = CMSG_LEN(len);
1920
1921 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1922 int *fd = (int *)data;
1923 int *target_fd = (int *)target_data;
1924 int i, numfds = len / sizeof(int);
1925
1926 for (i = 0; i < numfds; i++) {
1927 __get_user(fd[i], target_fd + i);
1928 }
1929 } else if (cmsg->cmsg_level == SOL_SOCKET
1930 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1931 struct ucred *cred = (struct ucred *)data;
1932 struct target_ucred *target_cred =
1933 (struct target_ucred *)target_data;
1934
1935 __get_user(cred->pid, &target_cred->pid);
1936 __get_user(cred->uid, &target_cred->uid);
1937 __get_user(cred->gid, &target_cred->gid);
1938 } else {
1939 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1940 cmsg->cmsg_level, cmsg->cmsg_type);
1941 memcpy(data, target_data, len);
1942 }
1943
1944 cmsg = CMSG_NXTHDR(msgh, cmsg);
1945 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1946 target_cmsg_start);
1947 }
1948 unlock_user(target_cmsg, target_cmsg_addr, 0);
1949 the_end:
1950 msgh->msg_controllen = space;
1951 return 0;
1952 }
1953
1954 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1955 struct msghdr *msgh)
1956 {
1957 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1958 abi_long msg_controllen;
1959 abi_ulong target_cmsg_addr;
1960 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1961 socklen_t space = 0;
1962
1963 msg_controllen = tswapal(target_msgh->msg_controllen);
1964 if (msg_controllen < sizeof (struct target_cmsghdr))
1965 goto the_end;
1966 target_cmsg_addr = tswapal(target_msgh->msg_control);
1967 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1968 target_cmsg_start = target_cmsg;
1969 if (!target_cmsg)
1970 return -TARGET_EFAULT;
1971
1972 while (cmsg && target_cmsg) {
1973 void *data = CMSG_DATA(cmsg);
1974 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1975
1976 int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1977 int tgt_len, tgt_space;
1978
1979 /* We never copy a half-header but may copy half-data;
1980 * this is Linux's behaviour in put_cmsg(). Note that
1981 * truncation here is a guest problem (which we report
1982 * to the guest via the CTRUNC bit), unlike truncation
1983 * in target_to_host_cmsg, which is a QEMU bug.
1984 */
1985 if (msg_controllen < sizeof(struct target_cmsghdr)) {
1986 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1987 break;
1988 }
1989
1990 if (cmsg->cmsg_level == SOL_SOCKET) {
1991 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1992 } else {
1993 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1994 }
1995 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1996
1997 /* Payload types which need a different size of payload on
1998 * the target must adjust tgt_len here.
1999 */
2000 tgt_len = len;
2001 switch (cmsg->cmsg_level) {
2002 case SOL_SOCKET:
2003 switch (cmsg->cmsg_type) {
2004 case SO_TIMESTAMP:
2005 tgt_len = sizeof(struct target_timeval);
2006 break;
2007 default:
2008 break;
2009 }
2010 break;
2011 default:
2012 break;
2013 }
2014
2015 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
2016 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
2017 tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
2018 }
2019
2020 /* We must now copy-and-convert len bytes of payload
2021 * into tgt_len bytes of destination space. Bear in mind
2022 * that in both source and destination we may be dealing
2023 * with a truncated value!
2024 */
2025 switch (cmsg->cmsg_level) {
2026 case SOL_SOCKET:
2027 switch (cmsg->cmsg_type) {
2028 case SCM_RIGHTS:
2029 {
2030 int *fd = (int *)data;
2031 int *target_fd = (int *)target_data;
2032 int i, numfds = tgt_len / sizeof(int);
2033
2034 for (i = 0; i < numfds; i++) {
2035 __put_user(fd[i], target_fd + i);
2036 }
2037 break;
2038 }
2039 case SO_TIMESTAMP:
2040 {
2041 struct timeval *tv = (struct timeval *)data;
2042 struct target_timeval *target_tv =
2043 (struct target_timeval *)target_data;
2044
2045 if (len != sizeof(struct timeval) ||
2046 tgt_len != sizeof(struct target_timeval)) {
2047 goto unimplemented;
2048 }
2049
2050 /* copy struct timeval to target */
2051 __put_user(tv->tv_sec, &target_tv->tv_sec);
2052 __put_user(tv->tv_usec, &target_tv->tv_usec);
2053 break;
2054 }
2055 case SCM_CREDENTIALS:
2056 {
2057 struct ucred *cred = (struct ucred *)data;
2058 struct target_ucred *target_cred =
2059 (struct target_ucred *)target_data;
2060
2061 __put_user(cred->pid, &target_cred->pid);
2062 __put_user(cred->uid, &target_cred->uid);
2063 __put_user(cred->gid, &target_cred->gid);
2064 break;
2065 }
2066 default:
2067 goto unimplemented;
2068 }
2069 break;
2070
2071 case SOL_IP:
2072 switch (cmsg->cmsg_type) {
2073 case IP_TTL:
2074 {
2075 uint32_t *v = (uint32_t *)data;
2076 uint32_t *t_int = (uint32_t *)target_data;
2077
2078 if (len != sizeof(uint32_t) ||
2079 tgt_len != sizeof(uint32_t)) {
2080 goto unimplemented;
2081 }
2082 __put_user(*v, t_int);
2083 break;
2084 }
2085 case IP_RECVERR:
2086 {
2087 struct errhdr_t {
2088 struct sock_extended_err ee;
2089 struct sockaddr_in offender;
2090 };
2091 struct errhdr_t *errh = (struct errhdr_t *)data;
2092 struct errhdr_t *target_errh =
2093 (struct errhdr_t *)target_data;
2094
2095 if (len != sizeof(struct errhdr_t) ||
2096 tgt_len != sizeof(struct errhdr_t)) {
2097 goto unimplemented;
2098 }
2099 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2100 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2101 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
2102 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2103 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2104 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2105 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2106 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2107 (void *) &errh->offender, sizeof(errh->offender));
2108 break;
2109 }
2110 default:
2111 goto unimplemented;
2112 }
2113 break;
2114
2115 case SOL_IPV6:
2116 switch (cmsg->cmsg_type) {
2117 case IPV6_HOPLIMIT:
2118 {
2119 uint32_t *v = (uint32_t *)data;
2120 uint32_t *t_int = (uint32_t *)target_data;
2121
2122 if (len != sizeof(uint32_t) ||
2123 tgt_len != sizeof(uint32_t)) {
2124 goto unimplemented;
2125 }
2126 __put_user(*v, t_int);
2127 break;
2128 }
2129 case IPV6_RECVERR:
2130 {
2131 struct errhdr6_t {
2132 struct sock_extended_err ee;
2133 struct sockaddr_in6 offender;
2134 };
2135 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2136 struct errhdr6_t *target_errh =
2137 (struct errhdr6_t *)target_data;
2138
2139 if (len != sizeof(struct errhdr6_t) ||
2140 tgt_len != sizeof(struct errhdr6_t)) {
2141 goto unimplemented;
2142 }
2143 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2144 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2145 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
2146 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2147 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2148 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2149 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2150 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2151 (void *) &errh->offender, sizeof(errh->offender));
2152 break;
2153 }
2154 default:
2155 goto unimplemented;
2156 }
2157 break;
2158
2159 default:
2160 unimplemented:
2161 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2162 cmsg->cmsg_level, cmsg->cmsg_type);
2163 memcpy(target_data, data, MIN(len, tgt_len));
2164 if (tgt_len > len) {
2165 memset(target_data + len, 0, tgt_len - len);
2166 }
2167 }
2168
2169 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2170 tgt_space = TARGET_CMSG_SPACE(tgt_len);
2171 if (msg_controllen < tgt_space) {
2172 tgt_space = msg_controllen;
2173 }
2174 msg_controllen -= tgt_space;
2175 space += tgt_space;
2176 cmsg = CMSG_NXTHDR(msgh, cmsg);
2177 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2178 target_cmsg_start);
2179 }
2180 unlock_user(target_cmsg, target_cmsg_addr, space);
2181 the_end:
2182 target_msgh->msg_controllen = tswapal(space);
2183 return 0;
2184 }
2185
2186 /* do_setsockopt() Must return target values and target errnos. */
2187 static abi_long do_setsockopt(int sockfd, int level, int optname,
2188 abi_ulong optval_addr, socklen_t optlen)
2189 {
2190 abi_long ret;
2191 int val;
2192 struct ip_mreqn *ip_mreq;
2193 struct ip_mreq_source *ip_mreq_source;
2194
2195 switch(level) {
2196 case SOL_TCP:
2197 case SOL_UDP:
2198 /* TCP and UDP options all take an 'int' value. */
2199 if (optlen < sizeof(uint32_t))
2200 return -TARGET_EINVAL;
2201
2202 if (get_user_u32(val, optval_addr))
2203 return -TARGET_EFAULT;
2204 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2205 break;
2206 case SOL_IP:
2207 switch(optname) {
2208 case IP_TOS:
2209 case IP_TTL:
2210 case IP_HDRINCL:
2211 case IP_ROUTER_ALERT:
2212 case IP_RECVOPTS:
2213 case IP_RETOPTS:
2214 case IP_PKTINFO:
2215 case IP_MTU_DISCOVER:
2216 case IP_RECVERR:
2217 case IP_RECVTTL:
2218 case IP_RECVTOS:
2219 #ifdef IP_FREEBIND
2220 case IP_FREEBIND:
2221 #endif
2222 case IP_MULTICAST_TTL:
2223 case IP_MULTICAST_LOOP:
2224 val = 0;
2225 if (optlen >= sizeof(uint32_t)) {
2226 if (get_user_u32(val, optval_addr))
2227 return -TARGET_EFAULT;
2228 } else if (optlen >= 1) {
2229 if (get_user_u8(val, optval_addr))
2230 return -TARGET_EFAULT;
2231 }
2232 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2233 break;
2234 case IP_ADD_MEMBERSHIP:
2235 case IP_DROP_MEMBERSHIP:
2236 if (optlen < sizeof (struct target_ip_mreq) ||
2237 optlen > sizeof (struct target_ip_mreqn))
2238 return -TARGET_EINVAL;
2239
2240 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2241 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2242 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2243 break;
2244
2245 case IP_BLOCK_SOURCE:
2246 case IP_UNBLOCK_SOURCE:
2247 case IP_ADD_SOURCE_MEMBERSHIP:
2248 case IP_DROP_SOURCE_MEMBERSHIP:
2249 if (optlen != sizeof (struct target_ip_mreq_source))
2250 return -TARGET_EINVAL;
2251
2252 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2253 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2254 unlock_user (ip_mreq_source, optval_addr, 0);
2255 break;
2256
2257 default:
2258 goto unimplemented;
2259 }
2260 break;
2261 case SOL_IPV6:
2262 switch (optname) {
2263 case IPV6_MTU_DISCOVER:
2264 case IPV6_MTU:
2265 case IPV6_V6ONLY:
2266 case IPV6_RECVPKTINFO:
2267 case IPV6_UNICAST_HOPS:
2268 case IPV6_MULTICAST_HOPS:
2269 case IPV6_MULTICAST_LOOP:
2270 case IPV6_RECVERR:
2271 case IPV6_RECVHOPLIMIT:
2272 case IPV6_2292HOPLIMIT:
2273 case IPV6_CHECKSUM:
2274 case IPV6_ADDRFORM:
2275 case IPV6_2292PKTINFO:
2276 case IPV6_RECVTCLASS:
2277 case IPV6_RECVRTHDR:
2278 case IPV6_2292RTHDR:
2279 case IPV6_RECVHOPOPTS:
2280 case IPV6_2292HOPOPTS:
2281 case IPV6_RECVDSTOPTS:
2282 case IPV6_2292DSTOPTS:
2283 case IPV6_TCLASS:
2284 case IPV6_ADDR_PREFERENCES:
2285 #ifdef IPV6_RECVPATHMTU
2286 case IPV6_RECVPATHMTU:
2287 #endif
2288 #ifdef IPV6_TRANSPARENT
2289 case IPV6_TRANSPARENT:
2290 #endif
2291 #ifdef IPV6_FREEBIND
2292 case IPV6_FREEBIND:
2293 #endif
2294 #ifdef IPV6_RECVORIGDSTADDR
2295 case IPV6_RECVORIGDSTADDR:
2296 #endif
2297 val = 0;
2298 if (optlen < sizeof(uint32_t)) {
2299 return -TARGET_EINVAL;
2300 }
2301 if (get_user_u32(val, optval_addr)) {
2302 return -TARGET_EFAULT;
2303 }
2304 ret = get_errno(setsockopt(sockfd, level, optname,
2305 &val, sizeof(val)));
2306 break;
2307 case IPV6_PKTINFO:
2308 {
2309 struct in6_pktinfo pki;
2310
2311 if (optlen < sizeof(pki)) {
2312 return -TARGET_EINVAL;
2313 }
2314
2315 if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2316 return -TARGET_EFAULT;
2317 }
2318
2319 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2320
2321 ret = get_errno(setsockopt(sockfd, level, optname,
2322 &pki, sizeof(pki)));
2323 break;
2324 }
2325 case IPV6_ADD_MEMBERSHIP:
2326 case IPV6_DROP_MEMBERSHIP:
2327 {
2328 struct ipv6_mreq ipv6mreq;
2329
2330 if (optlen < sizeof(ipv6mreq)) {
2331 return -TARGET_EINVAL;
2332 }
2333
2334 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2335 return -TARGET_EFAULT;
2336 }
2337
2338 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2339
2340 ret = get_errno(setsockopt(sockfd, level, optname,
2341 &ipv6mreq, sizeof(ipv6mreq)));
2342 break;
2343 }
2344 default:
2345 goto unimplemented;
2346 }
2347 break;
2348 case SOL_ICMPV6:
2349 switch (optname) {
2350 case ICMPV6_FILTER:
2351 {
2352 struct icmp6_filter icmp6f;
2353
2354 if (optlen > sizeof(icmp6f)) {
2355 optlen = sizeof(icmp6f);
2356 }
2357
2358 if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2359 return -TARGET_EFAULT;
2360 }
2361
2362 for (val = 0; val < 8; val++) {
2363 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2364 }
2365
2366 ret = get_errno(setsockopt(sockfd, level, optname,
2367 &icmp6f, optlen));
2368 break;
2369 }
2370 default:
2371 goto unimplemented;
2372 }
2373 break;
2374 case SOL_RAW:
2375 switch (optname) {
2376 case ICMP_FILTER:
2377 case IPV6_CHECKSUM:
2378 /* those take an u32 value */
2379 if (optlen < sizeof(uint32_t)) {
2380 return -TARGET_EINVAL;
2381 }
2382
2383 if (get_user_u32(val, optval_addr)) {
2384 return -TARGET_EFAULT;
2385 }
2386 ret = get_errno(setsockopt(sockfd, level, optname,
2387 &val, sizeof(val)));
2388 break;
2389
2390 default:
2391 goto unimplemented;
2392 }
2393 break;
2394 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2395 case SOL_ALG:
2396 switch (optname) {
2397 case ALG_SET_KEY:
2398 {
2399 char *alg_key = g_malloc(optlen);
2400
2401 if (!alg_key) {
2402 return -TARGET_ENOMEM;
2403 }
2404 if (copy_from_user(alg_key, optval_addr, optlen)) {
2405 g_free(alg_key);
2406 return -TARGET_EFAULT;
2407 }
2408 ret = get_errno(setsockopt(sockfd, level, optname,
2409 alg_key, optlen));
2410 g_free(alg_key);
2411 break;
2412 }
2413 case ALG_SET_AEAD_AUTHSIZE:
2414 {
2415 ret = get_errno(setsockopt(sockfd, level, optname,
2416 NULL, optlen));
2417 break;
2418 }
2419 default:
2420 goto unimplemented;
2421 }
2422 break;
2423 #endif
2424 case TARGET_SOL_SOCKET:
2425 switch (optname) {
2426 case TARGET_SO_RCVTIMEO:
2427 {
2428 struct timeval tv;
2429
2430 optname = SO_RCVTIMEO;
2431
2432 set_timeout:
2433 if (optlen != sizeof(struct target_timeval)) {
2434 return -TARGET_EINVAL;
2435 }
2436
2437 if (copy_from_user_timeval(&tv, optval_addr)) {
2438 return -TARGET_EFAULT;
2439 }
2440
2441 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2442 &tv, sizeof(tv)));
2443 return ret;
2444 }
2445 case TARGET_SO_SNDTIMEO:
2446 optname = SO_SNDTIMEO;
2447 goto set_timeout;
2448 case TARGET_SO_ATTACH_FILTER:
2449 {
2450 struct target_sock_fprog *tfprog;
2451 struct target_sock_filter *tfilter;
2452 struct sock_fprog fprog;
2453 struct sock_filter *filter;
2454 int i;
2455
2456 if (optlen != sizeof(*tfprog)) {
2457 return -TARGET_EINVAL;
2458 }
2459 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2460 return -TARGET_EFAULT;
2461 }
2462 if (!lock_user_struct(VERIFY_READ, tfilter,
2463 tswapal(tfprog->filter), 0)) {
2464 unlock_user_struct(tfprog, optval_addr, 1);
2465 return -TARGET_EFAULT;
2466 }
2467
2468 fprog.len = tswap16(tfprog->len);
2469 filter = g_try_new(struct sock_filter, fprog.len);
2470 if (filter == NULL) {
2471 unlock_user_struct(tfilter, tfprog->filter, 1);
2472 unlock_user_struct(tfprog, optval_addr, 1);
2473 return -TARGET_ENOMEM;
2474 }
2475 for (i = 0; i < fprog.len; i++) {
2476 filter[i].code = tswap16(tfilter[i].code);
2477 filter[i].jt = tfilter[i].jt;
2478 filter[i].jf = tfilter[i].jf;
2479 filter[i].k = tswap32(tfilter[i].k);
2480 }
2481 fprog.filter = filter;
2482
2483 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2484 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2485 g_free(filter);
2486
2487 unlock_user_struct(tfilter, tfprog->filter, 1);
2488 unlock_user_struct(tfprog, optval_addr, 1);
2489 return ret;
2490 }
2491 case TARGET_SO_BINDTODEVICE:
2492 {
2493 char *dev_ifname, *addr_ifname;
2494
2495 if (optlen > IFNAMSIZ - 1) {
2496 optlen = IFNAMSIZ - 1;
2497 }
2498 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2499 if (!dev_ifname) {
2500 return -TARGET_EFAULT;
2501 }
2502 optname = SO_BINDTODEVICE;
2503 addr_ifname = alloca(IFNAMSIZ);
2504 memcpy(addr_ifname, dev_ifname, optlen);
2505 addr_ifname[optlen] = 0;
2506 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2507 addr_ifname, optlen));
2508 unlock_user (dev_ifname, optval_addr, 0);
2509 return ret;
2510 }
2511 case TARGET_SO_LINGER:
2512 {
2513 struct linger lg;
2514 struct target_linger *tlg;
2515
2516 if (optlen != sizeof(struct target_linger)) {
2517 return -TARGET_EINVAL;
2518 }
2519 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2520 return -TARGET_EFAULT;
2521 }
2522 __get_user(lg.l_onoff, &tlg->l_onoff);
2523 __get_user(lg.l_linger, &tlg->l_linger);
2524 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2525 &lg, sizeof(lg)));
2526 unlock_user_struct(tlg, optval_addr, 0);
2527 return ret;
2528 }
2529 /* Options with 'int' argument. */
2530 case TARGET_SO_DEBUG:
2531 optname = SO_DEBUG;
2532 break;
2533 case TARGET_SO_REUSEADDR:
2534 optname = SO_REUSEADDR;
2535 break;
2536 #ifdef SO_REUSEPORT
2537 case TARGET_SO_REUSEPORT:
2538 optname = SO_REUSEPORT;
2539 break;
2540 #endif
2541 case TARGET_SO_TYPE:
2542 optname = SO_TYPE;
2543 break;
2544 case TARGET_SO_ERROR:
2545 optname = SO_ERROR;
2546 break;
2547 case TARGET_SO_DONTROUTE:
2548 optname = SO_DONTROUTE;
2549 break;
2550 case TARGET_SO_BROADCAST:
2551 optname = SO_BROADCAST;
2552 break;
2553 case TARGET_SO_SNDBUF:
2554 optname = SO_SNDBUF;
2555 break;
2556 case TARGET_SO_SNDBUFFORCE:
2557 optname = SO_SNDBUFFORCE;
2558 break;
2559 case TARGET_SO_RCVBUF:
2560 optname = SO_RCVBUF;
2561 break;
2562 case TARGET_SO_RCVBUFFORCE:
2563 optname = SO_RCVBUFFORCE;
2564 break;
2565 case TARGET_SO_KEEPALIVE:
2566 optname = SO_KEEPALIVE;
2567 break;
2568 case TARGET_SO_OOBINLINE:
2569 optname = SO_OOBINLINE;
2570 break;
2571 case TARGET_SO_NO_CHECK:
2572 optname = SO_NO_CHECK;
2573 break;
2574 case TARGET_SO_PRIORITY:
2575 optname = SO_PRIORITY;
2576 break;
2577 #ifdef SO_BSDCOMPAT
2578 case TARGET_SO_BSDCOMPAT:
2579 optname = SO_BSDCOMPAT;
2580 break;
2581 #endif
2582 case TARGET_SO_PASSCRED:
2583 optname = SO_PASSCRED;
2584 break;
2585 case TARGET_SO_PASSSEC:
2586 optname = SO_PASSSEC;
2587 break;
2588 case TARGET_SO_TIMESTAMP:
2589 optname = SO_TIMESTAMP;
2590 break;
2591 case TARGET_SO_RCVLOWAT:
2592 optname = SO_RCVLOWAT;
2593 break;
2594 default:
2595 goto unimplemented;
2596 }
2597 if (optlen < sizeof(uint32_t))
2598 return -TARGET_EINVAL;
2599
2600 if (get_user_u32(val, optval_addr))
2601 return -TARGET_EFAULT;
2602 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2603 break;
2604 #ifdef SOL_NETLINK
2605 case SOL_NETLINK:
2606 switch (optname) {
2607 case NETLINK_PKTINFO:
2608 case NETLINK_ADD_MEMBERSHIP:
2609 case NETLINK_DROP_MEMBERSHIP:
2610 case NETLINK_BROADCAST_ERROR:
2611 case NETLINK_NO_ENOBUFS:
2612 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2613 case NETLINK_LISTEN_ALL_NSID:
2614 case NETLINK_CAP_ACK:
2615 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2616 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2617 case NETLINK_EXT_ACK:
2618 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2619 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2620 case NETLINK_GET_STRICT_CHK:
2621 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2622 break;
2623 default:
2624 goto unimplemented;
2625 }
2626 val = 0;
2627 if (optlen < sizeof(uint32_t)) {
2628 return -TARGET_EINVAL;
2629 }
2630 if (get_user_u32(val, optval_addr)) {
2631 return -TARGET_EFAULT;
2632 }
2633 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2634 sizeof(val)));
2635 break;
2636 #endif /* SOL_NETLINK */
2637 default:
2638 unimplemented:
2639 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2640 level, optname);
2641 ret = -TARGET_ENOPROTOOPT;
2642 }
2643 return ret;
2644 }
2645
2646 /* do_getsockopt() Must return target values and target errnos. */
2647 static abi_long do_getsockopt(int sockfd, int level, int optname,
2648 abi_ulong optval_addr, abi_ulong optlen)
2649 {
2650 abi_long ret;
2651 int len, val;
2652 socklen_t lv;
2653
2654 switch(level) {
2655 case TARGET_SOL_SOCKET:
2656 level = SOL_SOCKET;
2657 switch (optname) {
2658 /* These don't just return a single integer */
2659 case TARGET_SO_PEERNAME:
2660 goto unimplemented;
2661 case TARGET_SO_RCVTIMEO: {
2662 struct timeval tv;
2663 socklen_t tvlen;
2664
2665 optname = SO_RCVTIMEO;
2666
2667 get_timeout:
2668 if (get_user_u32(len, optlen)) {
2669 return -TARGET_EFAULT;
2670 }
2671 if (len < 0) {
2672 return -TARGET_EINVAL;
2673 }
2674
2675 tvlen = sizeof(tv);
2676 ret = get_errno(getsockopt(sockfd, level, optname,
2677 &tv, &tvlen));
2678 if (ret < 0) {
2679 return ret;
2680 }
2681 if (len > sizeof(struct target_timeval)) {
2682 len = sizeof(struct target_timeval);
2683 }
2684 if (copy_to_user_timeval(optval_addr, &tv)) {
2685 return -TARGET_EFAULT;
2686 }
2687 if (put_user_u32(len, optlen)) {
2688 return -TARGET_EFAULT;
2689 }
2690 break;
2691 }
2692 case TARGET_SO_SNDTIMEO:
2693 optname = SO_SNDTIMEO;
2694 goto get_timeout;
2695 case TARGET_SO_PEERCRED: {
2696 struct ucred cr;
2697 socklen_t crlen;
2698 struct target_ucred *tcr;
2699
2700 if (get_user_u32(len, optlen)) {
2701 return -TARGET_EFAULT;
2702 }
2703 if (len < 0) {
2704 return -TARGET_EINVAL;
2705 }
2706
2707 crlen = sizeof(cr);
2708 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2709 &cr, &crlen));
2710 if (ret < 0) {
2711 return ret;
2712 }
2713 if (len > crlen) {
2714 len = crlen;
2715 }
2716 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2717 return -TARGET_EFAULT;
2718 }
2719 __put_user(cr.pid, &tcr->pid);
2720 __put_user(cr.uid, &tcr->uid);
2721 __put_user(cr.gid, &tcr->gid);
2722 unlock_user_struct(tcr, optval_addr, 1);
2723 if (put_user_u32(len, optlen)) {
2724 return -TARGET_EFAULT;
2725 }
2726 break;
2727 }
2728 case TARGET_SO_PEERSEC: {
2729 char *name;
2730
2731 if (get_user_u32(len, optlen)) {
2732 return -TARGET_EFAULT;
2733 }
2734 if (len < 0) {
2735 return -TARGET_EINVAL;
2736 }
2737 name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2738 if (!name) {
2739 return -TARGET_EFAULT;
2740 }
2741 lv = len;
2742 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2743 name, &lv));
2744 if (put_user_u32(lv, optlen)) {
2745 ret = -TARGET_EFAULT;
2746 }
2747 unlock_user(name, optval_addr, lv);
2748 break;
2749 }
2750 case TARGET_SO_LINGER:
2751 {
2752 struct linger lg;
2753 socklen_t lglen;
2754 struct target_linger *tlg;
2755
2756 if (get_user_u32(len, optlen)) {
2757 return -TARGET_EFAULT;
2758 }
2759 if (len < 0) {
2760 return -TARGET_EINVAL;
2761 }
2762
2763 lglen = sizeof(lg);
2764 ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2765 &lg, &lglen));
2766 if (ret < 0) {
2767 return ret;
2768 }
2769 if (len > lglen) {
2770 len = lglen;
2771 }
2772 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2773 return -TARGET_EFAULT;
2774 }
2775 __put_user(lg.l_onoff, &tlg->l_onoff);
2776 __put_user(lg.l_linger, &tlg->l_linger);
2777 unlock_user_struct(tlg, optval_addr, 1);
2778 if (put_user_u32(len, optlen)) {
2779 return -TARGET_EFAULT;
2780 }
2781 break;
2782 }
2783 /* Options with 'int' argument. */
2784 case TARGET_SO_DEBUG:
2785 optname = SO_DEBUG;
2786 goto int_case;
2787 case TARGET_SO_REUSEADDR:
2788 optname = SO_REUSEADDR;
2789 goto int_case;
2790 #ifdef SO_REUSEPORT
2791 case TARGET_SO_REUSEPORT:
2792 optname = SO_REUSEPORT;
2793 goto int_case;
2794 #endif
2795 case TARGET_SO_TYPE:
2796 optname = SO_TYPE;
2797 goto int_case;
2798 case TARGET_SO_ERROR:
2799 optname = SO_ERROR;
2800 goto int_case;
2801 case TARGET_SO_DONTROUTE:
2802 optname = SO_DONTROUTE;
2803 goto int_case;
2804 case TARGET_SO_BROADCAST:
2805 optname = SO_BROADCAST;
2806 goto int_case;
2807 case TARGET_SO_SNDBUF:
2808 optname = SO_SNDBUF;
2809 goto int_case;
2810 case TARGET_SO_RCVBUF:
2811 optname = SO_RCVBUF;
2812 goto int_case;
2813 case TARGET_SO_KEEPALIVE:
2814 optname = SO_KEEPALIVE;
2815 goto int_case;
2816 case TARGET_SO_OOBINLINE:
2817 optname = SO_OOBINLINE;
2818 goto int_case;
2819 case TARGET_SO_NO_CHECK:
2820 optname = SO_NO_CHECK;
2821 goto int_case;
2822 case TARGET_SO_PRIORITY:
2823 optname = SO_PRIORITY;
2824 goto int_case;
2825 #ifdef SO_BSDCOMPAT
2826 case TARGET_SO_BSDCOMPAT:
2827 optname = SO_BSDCOMPAT;
2828 goto int_case;
2829 #endif
2830 case TARGET_SO_PASSCRED:
2831 optname = SO_PASSCRED;
2832 goto int_case;
2833 case TARGET_SO_TIMESTAMP:
2834 optname = SO_TIMESTAMP;
2835 goto int_case;
2836 case TARGET_SO_RCVLOWAT:
2837 optname = SO_RCVLOWAT;
2838 goto int_case;
2839 case TARGET_SO_ACCEPTCONN:
2840 optname = SO_ACCEPTCONN;
2841 goto int_case;
2842 case TARGET_SO_PROTOCOL:
2843 optname = SO_PROTOCOL;
2844 goto int_case;
2845 case TARGET_SO_DOMAIN:
2846 optname = SO_DOMAIN;
2847 goto int_case;
2848 default:
2849 goto int_case;
2850 }
2851 break;
2852 case SOL_TCP:
2853 case SOL_UDP:
2854 /* TCP and UDP options all take an 'int' value. */
2855 int_case:
2856 if (get_user_u32(len, optlen))
2857 return -TARGET_EFAULT;
2858 if (len < 0)
2859 return -TARGET_EINVAL;
2860 lv = sizeof(lv);
2861 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2862 if (ret < 0)
2863 return ret;
2864 if (optname == SO_TYPE) {
2865 val = host_to_target_sock_type(val);
2866 }
2867 if (len > lv)
2868 len = lv;
2869 if (len == 4) {
2870 if (put_user_u32(val, optval_addr))
2871 return -TARGET_EFAULT;
2872 } else {
2873 if (put_user_u8(val, optval_addr))
2874 return -TARGET_EFAULT;
2875 }
2876 if (put_user_u32(len, optlen))
2877 return -TARGET_EFAULT;
2878 break;
2879 case SOL_IP:
2880 switch(optname) {
2881 case IP_TOS:
2882 case IP_TTL:
2883 case IP_HDRINCL:
2884 case IP_ROUTER_ALERT:
2885 case IP_RECVOPTS:
2886 case IP_RETOPTS:
2887 case IP_PKTINFO:
2888 case IP_MTU_DISCOVER:
2889 case IP_RECVERR:
2890 case IP_RECVTOS:
2891 #ifdef IP_FREEBIND
2892 case IP_FREEBIND:
2893 #endif
2894 case IP_MULTICAST_TTL:
2895 case IP_MULTICAST_LOOP:
2896 if (get_user_u32(len, optlen))
2897 return -TARGET_EFAULT;
2898 if (len < 0)
2899 return -TARGET_EINVAL;
2900 lv = sizeof(lv);
2901 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2902 if (ret < 0)
2903 return ret;
2904 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2905 len = 1;
2906 if (put_user_u32(len, optlen)
2907 || put_user_u8(val, optval_addr))
2908 return -TARGET_EFAULT;
2909 } else {
2910 if (len > sizeof(int))
2911 len = sizeof(int);
2912 if (put_user_u32(len, optlen)
2913 || put_user_u32(val, optval_addr))
2914 return -TARGET_EFAULT;
2915 }
2916 break;
2917 default:
2918 ret = -TARGET_ENOPROTOOPT;
2919 break;
2920 }
2921 break;
2922 case SOL_IPV6:
2923 switch (optname) {
2924 case IPV6_MTU_DISCOVER:
2925 case IPV6_MTU:
2926 case IPV6_V6ONLY:
2927 case IPV6_RECVPKTINFO:
2928 case IPV6_UNICAST_HOPS:
2929 case IPV6_MULTICAST_HOPS:
2930 case IPV6_MULTICAST_LOOP:
2931 case IPV6_RECVERR:
2932 case IPV6_RECVHOPLIMIT:
2933 case IPV6_2292HOPLIMIT:
2934 case IPV6_CHECKSUM:
2935 case IPV6_ADDRFORM:
2936 case IPV6_2292PKTINFO:
2937 case IPV6_RECVTCLASS:
2938 case IPV6_RECVRTHDR:
2939 case IPV6_2292RTHDR:
2940 case IPV6_RECVHOPOPTS:
2941 case IPV6_2292HOPOPTS:
2942 case IPV6_RECVDSTOPTS:
2943 case IPV6_2292DSTOPTS:
2944 case IPV6_TCLASS:
2945 case IPV6_ADDR_PREFERENCES:
2946 #ifdef IPV6_RECVPATHMTU
2947 case IPV6_RECVPATHMTU:
2948 #endif
2949 #ifdef IPV6_TRANSPARENT
2950 case IPV6_TRANSPARENT:
2951 #endif
2952 #ifdef IPV6_FREEBIND
2953 case IPV6_FREEBIND:
2954 #endif
2955 #ifdef IPV6_RECVORIGDSTADDR
2956 case IPV6_RECVORIGDSTADDR:
2957 #endif
2958 if (get_user_u32(len, optlen))
2959 return -TARGET_EFAULT;
2960 if (len < 0)
2961 return -TARGET_EINVAL;
2962 lv = sizeof(lv);
2963 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2964 if (ret < 0)
2965 return ret;
2966 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2967 len = 1;
2968 if (put_user_u32(len, optlen)
2969 || put_user_u8(val, optval_addr))
2970 return -TARGET_EFAULT;
2971 } else {
2972 if (len > sizeof(int))
2973 len = sizeof(int);
2974 if (put_user_u32(len, optlen)
2975 || put_user_u32(val, optval_addr))
2976 return -TARGET_EFAULT;
2977 }
2978 break;
2979 default:
2980 ret = -TARGET_ENOPROTOOPT;
2981 break;
2982 }
2983 break;
2984 #ifdef SOL_NETLINK
2985 case SOL_NETLINK:
2986 switch (optname) {
2987 case NETLINK_PKTINFO:
2988 case NETLINK_BROADCAST_ERROR:
2989 case NETLINK_NO_ENOBUFS:
2990 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2991 case NETLINK_LISTEN_ALL_NSID:
2992 case NETLINK_CAP_ACK:
2993 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2994 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2995 case NETLINK_EXT_ACK:
2996 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2997 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2998 case NETLINK_GET_STRICT_CHK:
2999 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
3000 if (get_user_u32(len, optlen)) {
3001 return -TARGET_EFAULT;
3002 }
3003 if (len != sizeof(val)) {
3004 return -TARGET_EINVAL;
3005 }
3006 lv = len;
3007 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
3008 if (ret < 0) {
3009 return ret;
3010 }
3011 if (put_user_u32(lv, optlen)
3012 || put_user_u32(val, optval_addr)) {
3013 return -TARGET_EFAULT;
3014 }
3015 break;
3016 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
3017 case NETLINK_LIST_MEMBERSHIPS:
3018 {
3019 uint32_t *results;
3020 int i;
3021 if (get_user_u32(len, optlen)) {
3022 return -TARGET_EFAULT;
3023 }
3024 if (len < 0) {
3025 return -TARGET_EINVAL;
3026 }
3027 results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
3028 if (!results) {
3029 return -TARGET_EFAULT;
3030 }
3031 lv = len;
3032 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
3033 if (ret < 0) {
3034 unlock_user(results, optval_addr, 0);
3035 return ret;
3036 }
3037 /* swap host endianess to target endianess. */
3038 for (i = 0; i < (len / sizeof(uint32_t)); i++) {
3039 results[i] = tswap32(results[i]);
3040 }
3041 if (put_user_u32(lv, optlen)) {
3042 return -TARGET_EFAULT;
3043 }
3044 unlock_user(results, optval_addr, 0);
3045 break;
3046 }
3047 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
3048 default:
3049 goto unimplemented;
3050 }
3051 break;
3052 #endif /* SOL_NETLINK */
3053 default:
3054 unimplemented:
3055 qemu_log_mask(LOG_UNIMP,
3056 "getsockopt level=%d optname=%d not yet supported\n",
3057 level, optname);
3058 ret = -TARGET_EOPNOTSUPP;
3059 break;
3060 }
3061 return ret;
3062 }
3063
3064 /* Convert target low/high pair representing file offset into the host
3065 * low/high pair. This function doesn't handle offsets bigger than 64 bits
3066 * as the kernel doesn't handle them either.
3067 */
3068 static void target_to_host_low_high(abi_ulong tlow,
3069 abi_ulong thigh,
3070 unsigned long *hlow,
3071 unsigned long *hhigh)
3072 {
3073 uint64_t off = tlow |
3074 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
3075 TARGET_LONG_BITS / 2;
3076
3077 *hlow = off;
3078 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
3079 }
3080
3081 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
3082 abi_ulong count, int copy)
3083 {
3084 struct target_iovec *target_vec;
3085 struct iovec *vec;
3086 abi_ulong total_len, max_len;
3087 int i;
3088 int err = 0;
3089 bool bad_address = false;
3090
3091 if (count == 0) {
3092 errno = 0;
3093 return NULL;
3094 }
3095 if (count > IOV_MAX) {
3096 errno = EINVAL;
3097 return NULL;
3098 }
3099
3100 vec = g_try_new0(struct iovec, count);
3101 if (vec == NULL) {
3102 errno = ENOMEM;
3103 return NULL;
3104 }
3105
3106 target_vec = lock_user(VERIFY_READ, target_addr,
3107 count * sizeof(struct target_iovec), 1);
3108 if (target_vec == NULL) {
3109 err = EFAULT;
3110 goto fail2;
3111 }
3112
3113 /* ??? If host page size > target page size, this will result in a
3114 value larger than what we can actually support. */
3115 max_len = 0x7fffffff & TARGET_PAGE_MASK;
3116 total_len = 0;
3117
3118 for (i = 0; i < count; i++) {
3119 abi_ulong base = tswapal(target_vec[i].iov_base);
3120 abi_long len = tswapal(target_vec[i].iov_len);
3121
3122 if (len < 0) {
3123 err = EINVAL;
3124 goto fail;
3125 } else if (len == 0) {
3126 /* Zero length pointer is ignored. */
3127 vec[i].iov_base = 0;
3128 } else {
3129 vec[i].iov_base = lock_user(type, base, len, copy);
3130 /* If the first buffer pointer is bad, this is a fault. But
3131 * subsequent bad buffers will result in a partial write; this
3132 * is realized by filling the vector with null pointers and
3133 * zero lengths. */
3134 if (!vec[i].iov_base) {
3135 if (i == 0) {
3136 err = EFAULT;
3137 goto fail;
3138 } else {
3139 bad_address = true;
3140 }
3141 }
3142 if (bad_address) {
3143 len = 0;
3144 }
3145 if (len > max_len - total_len) {
3146 len = max_len - total_len;
3147 }
3148 }
3149 vec[i].iov_len = len;
3150 total_len += len;
3151 }
3152
3153 unlock_user(target_vec, target_addr, 0);
3154 return vec;
3155
3156 fail:
3157 while (--i >= 0) {
3158 if (tswapal(target_vec[i].iov_len) > 0) {
3159 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3160 }
3161 }
3162 unlock_user(target_vec, target_addr, 0);
3163 fail2:
3164 g_free(vec);
3165 errno = err;
3166 return NULL;
3167 }
3168
3169 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3170 abi_ulong count, int copy)
3171 {
3172 struct target_iovec *target_vec;
3173 int i;
3174
3175 target_vec = lock_user(VERIFY_READ, target_addr,
3176 count * sizeof(struct target_iovec), 1);
3177 if (target_vec) {
3178 for (i = 0; i < count; i++) {
3179 abi_ulong base = tswapal(target_vec[i].iov_base);
3180 abi_long len = tswapal(target_vec[i].iov_len);
3181 if (len < 0) {
3182 break;
3183 }
3184 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3185 }
3186 unlock_user(target_vec, target_addr, 0);
3187 }
3188
3189 g_free(vec);
3190 }
3191
3192 static inline int target_to_host_sock_type(int *type)
3193 {
3194 int host_type = 0;
3195 int target_type = *type;
3196
3197 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3198 case TARGET_SOCK_DGRAM:
3199 host_type = SOCK_DGRAM;
3200 break;
3201 case TARGET_SOCK_STREAM:
3202 host_type = SOCK_STREAM;
3203 break;
3204 default:
3205 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3206 break;
3207 }
3208 if (target_type & TARGET_SOCK_CLOEXEC) {
3209 #if defined(SOCK_CLOEXEC)
3210 host_type |= SOCK_CLOEXEC;
3211 #else
3212 return -TARGET_EINVAL;
3213 #endif
3214 }
3215 if (target_type & TARGET_SOCK_NONBLOCK) {
3216 #if defined(SOCK_NONBLOCK)
3217 host_type |= SOCK_NONBLOCK;
3218 #elif !defined(O_NONBLOCK)
3219 return -TARGET_EINVAL;
3220 #endif
3221 }
3222 *type = host_type;
3223 return 0;
3224 }
3225
3226 /* Try to emulate socket type flags after socket creation. */
3227 static int sock_flags_fixup(int fd, int target_type)
3228 {
3229 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3230 if (target_type & TARGET_SOCK_NONBLOCK) {
3231 int flags = fcntl(fd, F_GETFL);
3232 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3233 close(fd);
3234 return -TARGET_EINVAL;
3235 }
3236 }
3237 #endif
3238 return fd;
3239 }
3240
3241 /* do_socket() Must return target values and target errnos. */
3242 static abi_long do_socket(int domain, int type, int protocol)
3243 {
3244 int target_type = type;
3245 int ret;
3246
3247 ret = target_to_host_sock_type(&type);
3248 if (ret) {
3249 return ret;
3250 }
3251
3252 if (domain == PF_NETLINK && !(
3253 #ifdef CONFIG_RTNETLINK
3254 protocol == NETLINK_ROUTE ||
3255 #endif
3256 protocol == NETLINK_KOBJECT_UEVENT ||
3257 protocol == NETLINK_AUDIT)) {
3258 return -TARGET_EPROTONOSUPPORT;
3259 }
3260
3261 if (domain == AF_PACKET ||
3262 (domain == AF_INET && type == SOCK_PACKET)) {
3263 protocol = tswap16(protocol);
3264 }
3265
3266 ret = get_errno(socket(domain, type, protocol));
3267 if (ret >= 0) {
3268 ret = sock_flags_fixup(ret, target_type);
3269 if (type == SOCK_PACKET) {
3270 /* Manage an obsolete case :
3271 * if socket type is SOCK_PACKET, bind by name
3272 */
3273 fd_trans_register(ret, &target_packet_trans);
3274 } else if (domain == PF_NETLINK) {
3275 switch (protocol) {
3276 #ifdef CONFIG_RTNETLINK
3277 case NETLINK_ROUTE:
3278 fd_trans_register(ret, &target_netlink_route_trans);
3279 break;
3280 #endif
3281 case NETLINK_KOBJECT_UEVENT:
3282 /* nothing to do: messages are strings */
3283 break;
3284 case NETLINK_AUDIT:
3285 fd_trans_register(ret, &target_netlink_audit_trans);
3286 break;
3287 default:
3288 g_assert_not_reached();
3289 }
3290 }
3291 }
3292 return ret;
3293 }
3294
3295 /* do_bind() Must return target values and target errnos. */
3296 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3297 socklen_t addrlen)
3298 {
3299 void *addr;
3300 abi_long ret;
3301
3302 if ((int)addrlen < 0) {
3303 return -TARGET_EINVAL;
3304 }
3305
3306 addr = alloca(addrlen+1);
3307
3308 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3309 if (ret)
3310 return ret;
3311
3312 return get_errno(bind(sockfd, addr, addrlen));
3313 }
3314
3315 /* do_connect() Must return target values and target errnos. */
3316 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3317 socklen_t addrlen)
3318 {
3319 void *addr;
3320 abi_long ret;
3321
3322 if ((int)addrlen < 0) {
3323 return -TARGET_EINVAL;
3324 }
3325
3326 addr = alloca(addrlen+1);
3327
3328 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3329 if (ret)
3330 return ret;
3331
3332 return get_errno(safe_connect(sockfd, addr, addrlen));
3333 }
3334
3335 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3336 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3337 int flags, int send)
3338 {
3339 abi_long ret, len;
3340 struct msghdr msg;
3341 abi_ulong count;
3342 struct iovec *vec;
3343 abi_ulong target_vec;
3344
3345 if (msgp->msg_name) {
3346 msg.msg_namelen = tswap32(msgp->msg_namelen);
3347 msg.msg_name = alloca(msg.msg_namelen+1);
3348 ret = target_to_host_sockaddr(fd, msg.msg_name,
3349 tswapal(msgp->msg_name),
3350 msg.msg_namelen);
3351 if (ret == -TARGET_EFAULT) {
3352 /* For connected sockets msg_name and msg_namelen must
3353 * be ignored, so returning EFAULT immediately is wrong.
3354 * Instead, pass a bad msg_name to the host kernel, and
3355 * let it decide whether to return EFAULT or not.
3356 */
3357 msg.msg_name = (void *)-1;
3358 } else if (ret) {
3359 goto out2;
3360 }
3361 } else {
3362 msg.msg_name = NULL;
3363 msg.msg_namelen = 0;
3364 }
3365 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3366 msg.msg_control = alloca(msg.msg_controllen);
3367 memset(msg.msg_control, 0, msg.msg_controllen);
3368
3369 msg.msg_flags = tswap32(msgp->msg_flags);
3370
3371 count = tswapal(msgp->msg_iovlen);
3372 target_vec = tswapal(msgp->msg_iov);
3373
3374 if (count > IOV_MAX) {
3375 /* sendrcvmsg returns a different errno for this condition than
3376 * readv/writev, so we must catch it here before lock_iovec() does.
3377 */
3378 ret = -TARGET_EMSGSIZE;
3379 goto out2;
3380 }
3381
3382 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3383 target_vec, count, send);
3384 if (vec == NULL) {
3385 ret = -host_to_target_errno(errno);
3386 goto out2;
3387 }
3388 msg.msg_iovlen = count;
3389 msg.msg_iov = vec;
3390
3391 if (send) {
3392 if (fd_trans_target_to_host_data(fd)) {
3393 void *host_msg;
3394
3395 host_msg = g_malloc(msg.msg_iov->iov_len);
3396 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3397 ret = fd_trans_target_to_host_data(fd)(host_msg,
3398 msg.msg_iov->iov_len);
3399 if (ret >= 0) {
3400 msg.msg_iov->iov_base = host_msg;
3401 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3402 }
3403 g_free(host_msg);
3404 } else {
3405 ret = target_to_host_cmsg(&msg, msgp);
3406 if (ret == 0) {
3407 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3408 }
3409 }
3410 } else {
3411 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3412 if (!is_error(ret)) {
3413 len = ret;
3414 if (fd_trans_host_to_target_data(fd)) {
3415 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3416 MIN(msg.msg_iov->iov_len, len));
3417 } else {
3418 ret = host_to_target_cmsg(msgp, &msg);
3419 }
3420 if (!is_error(ret)) {
3421 msgp->msg_namelen = tswap32(msg.msg_namelen);
3422 msgp->msg_flags = tswap32(msg.msg_flags);
3423 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3424 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3425 msg.msg_name, msg.msg_namelen);
3426 if (ret) {
3427 goto out;
3428 }
3429 }
3430
3431 ret = len;
3432 }
3433 }
3434 }
3435
3436 out:
3437 unlock_iovec(vec, target_vec, count, !send);
3438 out2:
3439 return ret;
3440 }
3441
3442 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3443 int flags, int send)
3444 {
3445 abi_long ret;
3446 struct target_msghdr *msgp;
3447
3448 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3449 msgp,
3450 target_msg,
3451 send ? 1 : 0)) {
3452 return -TARGET_EFAULT;
3453 }
3454 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3455 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3456 return ret;
3457 }
3458
3459 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3460 * so it might not have this *mmsg-specific flag either.
3461 */
3462 #ifndef MSG_WAITFORONE
3463 #define MSG_WAITFORONE 0x10000
3464 #endif
3465
3466 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3467 unsigned int vlen, unsigned int flags,
3468 int send)
3469 {
3470 struct target_mmsghdr *mmsgp;
3471 abi_long ret = 0;
3472 int i;
3473
3474 if (vlen > UIO_MAXIOV) {
3475 vlen = UIO_MAXIOV;
3476 }
3477
3478 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3479 if (!mmsgp) {
3480 return -TARGET_EFAULT;
3481 }
3482
3483 for (i = 0; i < vlen; i++) {
3484 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3485 if (is_error(ret)) {
3486 break;
3487 }
3488 mmsgp[i].msg_len = tswap32(ret);
3489 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3490 if (flags & MSG_WAITFORONE) {
3491 flags |= MSG_DONTWAIT;
3492 }
3493 }
3494
3495 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3496
3497 /* Return number of datagrams sent if we sent any at all;
3498 * otherwise return the error.
3499 */
3500 if (i) {
3501 return i;
3502 }
3503 return ret;
3504 }
3505
3506 /* do_accept4() Must return target values and target errnos. */
3507 static abi_long do_accept4(int fd, abi_ulong target_addr,
3508 abi_ulong target_addrlen_addr, int flags)
3509 {
3510 socklen_t addrlen, ret_addrlen;
3511 void *addr;
3512 abi_long ret;
3513 int host_flags;
3514
3515 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3516
3517 if (target_addr == 0) {
3518 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3519 }
3520
3521 /* linux returns EFAULT if addrlen pointer is invalid */
3522 if (get_user_u32(addrlen, target_addrlen_addr))
3523 return -TARGET_EFAULT;
3524
3525 if ((int)addrlen < 0) {
3526 return -TARGET_EINVAL;
3527 }
3528
3529 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3530 return -TARGET_EFAULT;
3531 }
3532
3533 addr = alloca(addrlen);
3534
3535 ret_addrlen = addrlen;
3536 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3537 if (!is_error(ret)) {
3538 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3539 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3540 ret = -TARGET_EFAULT;
3541 }
3542 }
3543 return ret;
3544 }
3545
3546 /* do_getpeername() Must return target values and target errnos. */
3547 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3548 abi_ulong target_addrlen_addr)
3549 {
3550 socklen_t addrlen, ret_addrlen;
3551 void *addr;
3552 abi_long ret;
3553
3554 if (get_user_u32(addrlen, target_addrlen_addr))
3555 return -TARGET_EFAULT;
3556
3557 if ((int)addrlen < 0) {
3558 return -TARGET_EINVAL;
3559 }
3560
3561 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3562 return -TARGET_EFAULT;
3563 }
3564
3565 addr = alloca(addrlen);
3566
3567 ret_addrlen = addrlen;
3568 ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3569 if (!is_error(ret)) {
3570 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3571 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3572 ret = -TARGET_EFAULT;
3573 }
3574 }
3575 return ret;
3576 }
3577
3578 /* do_getsockname() Must return target values and target errnos. */
3579 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3580 abi_ulong target_addrlen_addr)
3581 {
3582 socklen_t addrlen, ret_addrlen;
3583 void *addr;
3584 abi_long ret;
3585
3586 if (get_user_u32(addrlen, target_addrlen_addr))
3587 return -TARGET_EFAULT;
3588
3589 if ((int)addrlen < 0) {
3590 return -TARGET_EINVAL;
3591 }
3592
3593 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3594 return -TARGET_EFAULT;
3595 }
3596
3597 addr = alloca(addrlen);
3598
3599 ret_addrlen = addrlen;
3600 ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3601 if (!is_error(ret)) {
3602 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3603 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3604 ret = -TARGET_EFAULT;
3605 }
3606 }
3607 return ret;
3608 }
3609
3610 /* do_socketpair() Must return target values and target errnos. */
3611 static abi_long do_socketpair(int domain, int type, int protocol,
3612 abi_ulong target_tab_addr)
3613 {
3614 int tab[2];
3615 abi_long ret;
3616
3617 target_to_host_sock_type(&type);
3618
3619 ret = get_errno(socketpair(domain, type, protocol, tab));
3620 if (!is_error(ret)) {
3621 if (put_user_s32(tab[0], target_tab_addr)
3622 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3623 ret = -TARGET_EFAULT;
3624 }
3625 return ret;
3626 }
3627
3628 /* do_sendto() Must return target values and target errnos. */
3629 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3630 abi_ulong target_addr, socklen_t addrlen)
3631 {
3632 void *addr;
3633 void *host_msg;
3634 void *copy_msg = NULL;
3635 abi_long ret;
3636
3637 if ((int)addrlen < 0) {
3638 return -TARGET_EINVAL;
3639 }
3640
3641 host_msg = lock_user(VERIFY_READ, msg, len, 1);
3642 if (!host_msg)
3643 return -TARGET_EFAULT;
3644 if (fd_trans_target_to_host_data(fd)) {
3645 copy_msg = host_msg;
3646 host_msg = g_malloc(len);
3647 memcpy(host_msg, copy_msg, len);
3648 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3649 if (ret < 0) {
3650 goto fail;
3651 }
3652 }
3653 if (target_addr) {
3654 addr = alloca(addrlen+1);
3655 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3656 if (ret) {
3657 goto fail;
3658 }
3659 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3660 } else {
3661 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3662 }
3663 fail:
3664 if (copy_msg) {
3665 g_free(host_msg);
3666 host_msg = copy_msg;
3667 }
3668 unlock_user(host_msg, msg, 0);
3669 return ret;
3670 }
3671
3672 /* do_recvfrom() Must return target values and target errnos. */
3673 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3674 abi_ulong target_addr,
3675 abi_ulong target_addrlen)
3676 {
3677 socklen_t addrlen, ret_addrlen;
3678 void *addr;
3679 void *host_msg;
3680 abi_long ret;
3681
3682 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3683 if (!host_msg)
3684 return -TARGET_EFAULT;
3685 if (target_addr) {
3686 if (get_user_u32(addrlen, target_addrlen)) {
3687 ret = -TARGET_EFAULT;
3688 goto fail;
3689 }
3690 if ((int)addrlen < 0) {
3691 ret = -TARGET_EINVAL;
3692 goto fail;
3693 }
3694 addr = alloca(addrlen);
3695 ret_addrlen = addrlen;
3696 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3697 addr, &ret_addrlen));
3698 } else {
3699 addr = NULL; /* To keep compiler quiet. */
3700 addrlen = 0; /* To keep compiler quiet. */
3701 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3702 }
3703 if (!is_error(ret)) {
3704 if (fd_trans_host_to_target_data(fd)) {
3705 abi_long trans;
3706 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3707 if (is_error(trans)) {
3708 ret = trans;
3709 goto fail;
3710 }
3711 }
3712 if (target_addr) {
3713 host_to_target_sockaddr(target_addr, addr,
3714 MIN(addrlen, ret_addrlen));
3715 if (put_user_u32(ret_addrlen, target_addrlen)) {
3716 ret = -TARGET_EFAULT;
3717 goto fail;
3718 }
3719 }
3720 unlock_user(host_msg, msg, len);
3721 } else {
3722 fail:
3723 unlock_user(host_msg, msg, 0);
3724 }
3725 return ret;
3726 }
3727
3728 #ifdef TARGET_NR_socketcall
3729 /* do_socketcall() must return target values and target errnos. */
3730 static abi_long do_socketcall(int num, abi_ulong vptr)
3731 {
3732 static const unsigned nargs[] = { /* number of arguments per operation */
3733 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
3734 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
3735 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
3736 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */
3737 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
3738 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3739 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */