linux-user: add open() hijack infrastructure
[qemu.git] / linux-user / syscall.c
1 /*
2 * Linux syscalls
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #define _ATFILE_SOURCE
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <stdarg.h>
23 #include <string.h>
24 #include <elf.h>
25 #include <endian.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <time.h>
30 #include <limits.h>
31 #include <sys/types.h>
32 #include <sys/ipc.h>
33 #include <sys/msg.h>
34 #include <sys/wait.h>
35 #include <sys/time.h>
36 #include <sys/stat.h>
37 #include <sys/mount.h>
38 #include <sys/prctl.h>
39 #include <sys/resource.h>
40 #include <sys/mman.h>
41 #include <sys/swap.h>
42 #include <signal.h>
43 #include <sched.h>
44 #ifdef __ia64__
45 int __clone2(int (*fn)(void *), void *child_stack_base,
46 size_t stack_size, int flags, void *arg, ...);
47 #endif
48 #include <sys/socket.h>
49 #include <sys/un.h>
50 #include <sys/uio.h>
51 #include <sys/poll.h>
52 #include <sys/times.h>
53 #include <sys/shm.h>
54 #include <sys/sem.h>
55 #include <sys/statfs.h>
56 #include <utime.h>
57 #include <sys/sysinfo.h>
58 #include <sys/utsname.h>
59 //#include <sys/user.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 #include <linux/wireless.h>
63 #include "qemu-common.h"
64 #ifdef TARGET_GPROF
65 #include <sys/gmon.h>
66 #endif
67 #ifdef CONFIG_EVENTFD
68 #include <sys/eventfd.h>
69 #endif
70 #ifdef CONFIG_EPOLL
71 #include <sys/epoll.h>
72 #endif
73 #ifdef CONFIG_ATTR
74 #include "qemu-xattr.h"
75 #endif
76
77 #define termios host_termios
78 #define winsize host_winsize
79 #define termio host_termio
80 #define sgttyb host_sgttyb /* same as target */
81 #define tchars host_tchars /* same as target */
82 #define ltchars host_ltchars /* same as target */
83
84 #include <linux/termios.h>
85 #include <linux/unistd.h>
86 #include <linux/utsname.h>
87 #include <linux/cdrom.h>
88 #include <linux/hdreg.h>
89 #include <linux/soundcard.h>
90 #include <linux/kd.h>
91 #include <linux/mtio.h>
92 #include <linux/fs.h>
93 #if defined(CONFIG_FIEMAP)
94 #include <linux/fiemap.h>
95 #endif
96 #include <linux/fb.h>
97 #include <linux/vt.h>
98 #include "linux_loop.h"
99 #include "cpu-uname.h"
100
101 #include "qemu.h"
102
103 #if defined(CONFIG_USE_NPTL)
104 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \
105 CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)
106 #else
107 /* XXX: Hardcode the above values. */
108 #define CLONE_NPTL_FLAGS2 0
109 #endif
110
111 //#define DEBUG
112
113 //#include <linux/msdos_fs.h>
114 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
115 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
116
117
118 #undef _syscall0
119 #undef _syscall1
120 #undef _syscall2
121 #undef _syscall3
122 #undef _syscall4
123 #undef _syscall5
124 #undef _syscall6
125
126 #define _syscall0(type,name) \
127 static type name (void) \
128 { \
129 return syscall(__NR_##name); \
130 }
131
132 #define _syscall1(type,name,type1,arg1) \
133 static type name (type1 arg1) \
134 { \
135 return syscall(__NR_##name, arg1); \
136 }
137
138 #define _syscall2(type,name,type1,arg1,type2,arg2) \
139 static type name (type1 arg1,type2 arg2) \
140 { \
141 return syscall(__NR_##name, arg1, arg2); \
142 }
143
144 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
145 static type name (type1 arg1,type2 arg2,type3 arg3) \
146 { \
147 return syscall(__NR_##name, arg1, arg2, arg3); \
148 }
149
150 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
151 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
152 { \
153 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
154 }
155
156 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
157 type5,arg5) \
158 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
159 { \
160 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
161 }
162
163
164 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
165 type5,arg5,type6,arg6) \
166 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
167 type6 arg6) \
168 { \
169 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
170 }
171
172
173 #define __NR_sys_uname __NR_uname
174 #define __NR_sys_faccessat __NR_faccessat
175 #define __NR_sys_fchmodat __NR_fchmodat
176 #define __NR_sys_fchownat __NR_fchownat
177 #define __NR_sys_fstatat64 __NR_fstatat64
178 #define __NR_sys_futimesat __NR_futimesat
179 #define __NR_sys_getcwd1 __NR_getcwd
180 #define __NR_sys_getdents __NR_getdents
181 #define __NR_sys_getdents64 __NR_getdents64
182 #define __NR_sys_getpriority __NR_getpriority
183 #define __NR_sys_linkat __NR_linkat
184 #define __NR_sys_mkdirat __NR_mkdirat
185 #define __NR_sys_mknodat __NR_mknodat
186 #define __NR_sys_newfstatat __NR_newfstatat
187 #define __NR_sys_openat __NR_openat
188 #define __NR_sys_readlinkat __NR_readlinkat
189 #define __NR_sys_renameat __NR_renameat
190 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
191 #define __NR_sys_symlinkat __NR_symlinkat
192 #define __NR_sys_syslog __NR_syslog
193 #define __NR_sys_tgkill __NR_tgkill
194 #define __NR_sys_tkill __NR_tkill
195 #define __NR_sys_unlinkat __NR_unlinkat
196 #define __NR_sys_utimensat __NR_utimensat
197 #define __NR_sys_futex __NR_futex
198 #define __NR_sys_inotify_init __NR_inotify_init
199 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
200 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
201
202 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \
203 defined(__s390x__)
204 #define __NR__llseek __NR_lseek
205 #endif
206
207 #ifdef __NR_gettid
208 _syscall0(int, gettid)
209 #else
210 /* This is a replacement for the host gettid() and must return a host
211 errno. */
212 static int gettid(void) {
213 return -ENOSYS;
214 }
215 #endif
216 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
217 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
218 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
219 #endif
220 _syscall2(int, sys_getpriority, int, which, int, who);
221 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
222 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
223 loff_t *, res, uint, wh);
224 #endif
225 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo)
226 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
227 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
228 _syscall3(int,sys_tgkill,int,tgid,int,pid,int,sig)
229 #endif
230 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
231 _syscall2(int,sys_tkill,int,tid,int,sig)
232 #endif
233 #ifdef __NR_exit_group
234 _syscall1(int,exit_group,int,error_code)
235 #endif
236 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
237 _syscall1(int,set_tid_address,int *,tidptr)
238 #endif
239 #if defined(CONFIG_USE_NPTL)
240 #if defined(TARGET_NR_futex) && defined(__NR_futex)
241 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
242 const struct timespec *,timeout,int *,uaddr2,int,val3)
243 #endif
244 #endif
245 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
246 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
247 unsigned long *, user_mask_ptr);
248 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
249 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
250 unsigned long *, user_mask_ptr);
251 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
252 void *, arg);
253
254 static bitmask_transtbl fcntl_flags_tbl[] = {
255 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
256 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
257 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
258 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
259 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
260 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
261 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
262 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
263 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
264 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
265 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
266 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
267 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
268 #if defined(O_DIRECT)
269 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
270 #endif
271 { 0, 0, 0, 0 }
272 };
273
274 #define COPY_UTSNAME_FIELD(dest, src) \
275 do { \
276 /* __NEW_UTS_LEN doesn't include terminating null */ \
277 (void) strncpy((dest), (src), __NEW_UTS_LEN); \
278 (dest)[__NEW_UTS_LEN] = '\0'; \
279 } while (0)
280
281 static int sys_uname(struct new_utsname *buf)
282 {
283 struct utsname uts_buf;
284
285 if (uname(&uts_buf) < 0)
286 return (-1);
287
288 /*
289 * Just in case these have some differences, we
290 * translate utsname to new_utsname (which is the
291 * struct linux kernel uses).
292 */
293
294 memset(buf, 0, sizeof(*buf));
295 COPY_UTSNAME_FIELD(buf->sysname, uts_buf.sysname);
296 COPY_UTSNAME_FIELD(buf->nodename, uts_buf.nodename);
297 COPY_UTSNAME_FIELD(buf->release, uts_buf.release);
298 COPY_UTSNAME_FIELD(buf->version, uts_buf.version);
299 COPY_UTSNAME_FIELD(buf->machine, uts_buf.machine);
300 #ifdef _GNU_SOURCE
301 COPY_UTSNAME_FIELD(buf->domainname, uts_buf.domainname);
302 #endif
303 return (0);
304
305 #undef COPY_UTSNAME_FIELD
306 }
307
308 static int sys_getcwd1(char *buf, size_t size)
309 {
310 if (getcwd(buf, size) == NULL) {
311 /* getcwd() sets errno */
312 return (-1);
313 }
314 return strlen(buf)+1;
315 }
316
317 #ifdef CONFIG_ATFILE
318 /*
319 * Host system seems to have atfile syscall stubs available. We
320 * now enable them one by one as specified by target syscall_nr.h.
321 */
322
323 #ifdef TARGET_NR_faccessat
324 static int sys_faccessat(int dirfd, const char *pathname, int mode)
325 {
326 return (faccessat(dirfd, pathname, mode, 0));
327 }
328 #endif
329 #ifdef TARGET_NR_fchmodat
330 static int sys_fchmodat(int dirfd, const char *pathname, mode_t mode)
331 {
332 return (fchmodat(dirfd, pathname, mode, 0));
333 }
334 #endif
335 #if defined(TARGET_NR_fchownat)
336 static int sys_fchownat(int dirfd, const char *pathname, uid_t owner,
337 gid_t group, int flags)
338 {
339 return (fchownat(dirfd, pathname, owner, group, flags));
340 }
341 #endif
342 #ifdef __NR_fstatat64
343 static int sys_fstatat64(int dirfd, const char *pathname, struct stat *buf,
344 int flags)
345 {
346 return (fstatat(dirfd, pathname, buf, flags));
347 }
348 #endif
349 #ifdef __NR_newfstatat
350 static int sys_newfstatat(int dirfd, const char *pathname, struct stat *buf,
351 int flags)
352 {
353 return (fstatat(dirfd, pathname, buf, flags));
354 }
355 #endif
356 #ifdef TARGET_NR_futimesat
357 static int sys_futimesat(int dirfd, const char *pathname,
358 const struct timeval times[2])
359 {
360 return (futimesat(dirfd, pathname, times));
361 }
362 #endif
363 #ifdef TARGET_NR_linkat
364 static int sys_linkat(int olddirfd, const char *oldpath,
365 int newdirfd, const char *newpath, int flags)
366 {
367 return (linkat(olddirfd, oldpath, newdirfd, newpath, flags));
368 }
369 #endif
370 #ifdef TARGET_NR_mkdirat
371 static int sys_mkdirat(int dirfd, const char *pathname, mode_t mode)
372 {
373 return (mkdirat(dirfd, pathname, mode));
374 }
375 #endif
376 #ifdef TARGET_NR_mknodat
377 static int sys_mknodat(int dirfd, const char *pathname, mode_t mode,
378 dev_t dev)
379 {
380 return (mknodat(dirfd, pathname, mode, dev));
381 }
382 #endif
383 #ifdef TARGET_NR_openat
384 static int sys_openat(int dirfd, const char *pathname, int flags, mode_t mode)
385 {
386 /*
387 * open(2) has extra parameter 'mode' when called with
388 * flag O_CREAT.
389 */
390 if ((flags & O_CREAT) != 0) {
391 return (openat(dirfd, pathname, flags, mode));
392 }
393 return (openat(dirfd, pathname, flags));
394 }
395 #endif
396 #ifdef TARGET_NR_readlinkat
397 static int sys_readlinkat(int dirfd, const char *pathname, char *buf, size_t bufsiz)
398 {
399 return (readlinkat(dirfd, pathname, buf, bufsiz));
400 }
401 #endif
402 #ifdef TARGET_NR_renameat
403 static int sys_renameat(int olddirfd, const char *oldpath,
404 int newdirfd, const char *newpath)
405 {
406 return (renameat(olddirfd, oldpath, newdirfd, newpath));
407 }
408 #endif
409 #ifdef TARGET_NR_symlinkat
410 static int sys_symlinkat(const char *oldpath, int newdirfd, const char *newpath)
411 {
412 return (symlinkat(oldpath, newdirfd, newpath));
413 }
414 #endif
415 #ifdef TARGET_NR_unlinkat
416 static int sys_unlinkat(int dirfd, const char *pathname, int flags)
417 {
418 return (unlinkat(dirfd, pathname, flags));
419 }
420 #endif
421 #else /* !CONFIG_ATFILE */
422
423 /*
424 * Try direct syscalls instead
425 */
426 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
427 _syscall3(int,sys_faccessat,int,dirfd,const char *,pathname,int,mode)
428 #endif
429 #if defined(TARGET_NR_fchmodat) && defined(__NR_fchmodat)
430 _syscall3(int,sys_fchmodat,int,dirfd,const char *,pathname, mode_t,mode)
431 #endif
432 #if defined(TARGET_NR_fchownat) && defined(__NR_fchownat)
433 _syscall5(int,sys_fchownat,int,dirfd,const char *,pathname,
434 uid_t,owner,gid_t,group,int,flags)
435 #endif
436 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) && \
437 defined(__NR_fstatat64)
438 _syscall4(int,sys_fstatat64,int,dirfd,const char *,pathname,
439 struct stat *,buf,int,flags)
440 #endif
441 #if defined(TARGET_NR_futimesat) && defined(__NR_futimesat)
442 _syscall3(int,sys_futimesat,int,dirfd,const char *,pathname,
443 const struct timeval *,times)
444 #endif
445 #if (defined(TARGET_NR_newfstatat) || defined(TARGET_NR_fstatat64) ) && \
446 defined(__NR_newfstatat)
447 _syscall4(int,sys_newfstatat,int,dirfd,const char *,pathname,
448 struct stat *,buf,int,flags)
449 #endif
450 #if defined(TARGET_NR_linkat) && defined(__NR_linkat)
451 _syscall5(int,sys_linkat,int,olddirfd,const char *,oldpath,
452 int,newdirfd,const char *,newpath,int,flags)
453 #endif
454 #if defined(TARGET_NR_mkdirat) && defined(__NR_mkdirat)
455 _syscall3(int,sys_mkdirat,int,dirfd,const char *,pathname,mode_t,mode)
456 #endif
457 #if defined(TARGET_NR_mknodat) && defined(__NR_mknodat)
458 _syscall4(int,sys_mknodat,int,dirfd,const char *,pathname,
459 mode_t,mode,dev_t,dev)
460 #endif
461 #if defined(TARGET_NR_openat) && defined(__NR_openat)
462 _syscall4(int,sys_openat,int,dirfd,const char *,pathname,int,flags,mode_t,mode)
463 #endif
464 #if defined(TARGET_NR_readlinkat) && defined(__NR_readlinkat)
465 _syscall4(int,sys_readlinkat,int,dirfd,const char *,pathname,
466 char *,buf,size_t,bufsize)
467 #endif
468 #if defined(TARGET_NR_renameat) && defined(__NR_renameat)
469 _syscall4(int,sys_renameat,int,olddirfd,const char *,oldpath,
470 int,newdirfd,const char *,newpath)
471 #endif
472 #if defined(TARGET_NR_symlinkat) && defined(__NR_symlinkat)
473 _syscall3(int,sys_symlinkat,const char *,oldpath,
474 int,newdirfd,const char *,newpath)
475 #endif
476 #if defined(TARGET_NR_unlinkat) && defined(__NR_unlinkat)
477 _syscall3(int,sys_unlinkat,int,dirfd,const char *,pathname,int,flags)
478 #endif
479
480 #endif /* CONFIG_ATFILE */
481
482 #ifdef CONFIG_UTIMENSAT
483 static int sys_utimensat(int dirfd, const char *pathname,
484 const struct timespec times[2], int flags)
485 {
486 if (pathname == NULL)
487 return futimens(dirfd, times);
488 else
489 return utimensat(dirfd, pathname, times, flags);
490 }
491 #else
492 #if defined(TARGET_NR_utimensat) && defined(__NR_utimensat)
493 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
494 const struct timespec *,tsp,int,flags)
495 #endif
496 #endif /* CONFIG_UTIMENSAT */
497
498 #ifdef CONFIG_INOTIFY
499 #include <sys/inotify.h>
500
501 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
502 static int sys_inotify_init(void)
503 {
504 return (inotify_init());
505 }
506 #endif
507 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
508 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
509 {
510 return (inotify_add_watch(fd, pathname, mask));
511 }
512 #endif
513 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
514 static int sys_inotify_rm_watch(int fd, int32_t wd)
515 {
516 return (inotify_rm_watch(fd, wd));
517 }
518 #endif
519 #ifdef CONFIG_INOTIFY1
520 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
521 static int sys_inotify_init1(int flags)
522 {
523 return (inotify_init1(flags));
524 }
525 #endif
526 #endif
527 #else
528 /* Userspace can usually survive runtime without inotify */
529 #undef TARGET_NR_inotify_init
530 #undef TARGET_NR_inotify_init1
531 #undef TARGET_NR_inotify_add_watch
532 #undef TARGET_NR_inotify_rm_watch
533 #endif /* CONFIG_INOTIFY */
534
535 #if defined(TARGET_NR_ppoll)
536 #ifndef __NR_ppoll
537 # define __NR_ppoll -1
538 #endif
539 #define __NR_sys_ppoll __NR_ppoll
540 _syscall5(int, sys_ppoll, struct pollfd *, fds, nfds_t, nfds,
541 struct timespec *, timeout, const __sigset_t *, sigmask,
542 size_t, sigsetsize)
543 #endif
544
545 #if defined(TARGET_NR_pselect6)
546 #ifndef __NR_pselect6
547 # define __NR_pselect6 -1
548 #endif
549 #define __NR_sys_pselect6 __NR_pselect6
550 _syscall6(int, sys_pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds,
551 fd_set *, exceptfds, struct timespec *, timeout, void *, sig);
552 #endif
553
554 #if defined(TARGET_NR_prlimit64)
555 #ifndef __NR_prlimit64
556 # define __NR_prlimit64 -1
557 #endif
558 #define __NR_sys_prlimit64 __NR_prlimit64
559 /* The glibc rlimit structure may not be that used by the underlying syscall */
560 struct host_rlimit64 {
561 uint64_t rlim_cur;
562 uint64_t rlim_max;
563 };
564 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
565 const struct host_rlimit64 *, new_limit,
566 struct host_rlimit64 *, old_limit)
567 #endif
568
569 extern int personality(int);
570 extern int flock(int, int);
571 extern int setfsuid(int);
572 extern int setfsgid(int);
573 extern int setgroups(int, gid_t *);
574
575 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
576 #ifdef TARGET_ARM
577 static inline int regpairs_aligned(void *cpu_env) {
578 return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
579 }
580 #elif defined(TARGET_MIPS)
581 static inline int regpairs_aligned(void *cpu_env) { return 1; }
582 #else
583 static inline int regpairs_aligned(void *cpu_env) { return 0; }
584 #endif
585
586 #define ERRNO_TABLE_SIZE 1200
587
588 /* target_to_host_errno_table[] is initialized from
589 * host_to_target_errno_table[] in syscall_init(). */
590 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
591 };
592
593 /*
594 * This list is the union of errno values overridden in asm-<arch>/errno.h
595 * minus the errnos that are not actually generic to all archs.
596 */
597 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
598 [EIDRM] = TARGET_EIDRM,
599 [ECHRNG] = TARGET_ECHRNG,
600 [EL2NSYNC] = TARGET_EL2NSYNC,
601 [EL3HLT] = TARGET_EL3HLT,
602 [EL3RST] = TARGET_EL3RST,
603 [ELNRNG] = TARGET_ELNRNG,
604 [EUNATCH] = TARGET_EUNATCH,
605 [ENOCSI] = TARGET_ENOCSI,
606 [EL2HLT] = TARGET_EL2HLT,
607 [EDEADLK] = TARGET_EDEADLK,
608 [ENOLCK] = TARGET_ENOLCK,
609 [EBADE] = TARGET_EBADE,
610 [EBADR] = TARGET_EBADR,
611 [EXFULL] = TARGET_EXFULL,
612 [ENOANO] = TARGET_ENOANO,
613 [EBADRQC] = TARGET_EBADRQC,
614 [EBADSLT] = TARGET_EBADSLT,
615 [EBFONT] = TARGET_EBFONT,
616 [ENOSTR] = TARGET_ENOSTR,
617 [ENODATA] = TARGET_ENODATA,
618 [ETIME] = TARGET_ETIME,
619 [ENOSR] = TARGET_ENOSR,
620 [ENONET] = TARGET_ENONET,
621 [ENOPKG] = TARGET_ENOPKG,
622 [EREMOTE] = TARGET_EREMOTE,
623 [ENOLINK] = TARGET_ENOLINK,
624 [EADV] = TARGET_EADV,
625 [ESRMNT] = TARGET_ESRMNT,
626 [ECOMM] = TARGET_ECOMM,
627 [EPROTO] = TARGET_EPROTO,
628 [EDOTDOT] = TARGET_EDOTDOT,
629 [EMULTIHOP] = TARGET_EMULTIHOP,
630 [EBADMSG] = TARGET_EBADMSG,
631 [ENAMETOOLONG] = TARGET_ENAMETOOLONG,
632 [EOVERFLOW] = TARGET_EOVERFLOW,
633 [ENOTUNIQ] = TARGET_ENOTUNIQ,
634 [EBADFD] = TARGET_EBADFD,
635 [EREMCHG] = TARGET_EREMCHG,
636 [ELIBACC] = TARGET_ELIBACC,
637 [ELIBBAD] = TARGET_ELIBBAD,
638 [ELIBSCN] = TARGET_ELIBSCN,
639 [ELIBMAX] = TARGET_ELIBMAX,
640 [ELIBEXEC] = TARGET_ELIBEXEC,
641 [EILSEQ] = TARGET_EILSEQ,
642 [ENOSYS] = TARGET_ENOSYS,
643 [ELOOP] = TARGET_ELOOP,
644 [ERESTART] = TARGET_ERESTART,
645 [ESTRPIPE] = TARGET_ESTRPIPE,
646 [ENOTEMPTY] = TARGET_ENOTEMPTY,
647 [EUSERS] = TARGET_EUSERS,
648 [ENOTSOCK] = TARGET_ENOTSOCK,
649 [EDESTADDRREQ] = TARGET_EDESTADDRREQ,
650 [EMSGSIZE] = TARGET_EMSGSIZE,
651 [EPROTOTYPE] = TARGET_EPROTOTYPE,
652 [ENOPROTOOPT] = TARGET_ENOPROTOOPT,
653 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT,
654 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT,
655 [EOPNOTSUPP] = TARGET_EOPNOTSUPP,
656 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT,
657 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT,
658 [EADDRINUSE] = TARGET_EADDRINUSE,
659 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL,
660 [ENETDOWN] = TARGET_ENETDOWN,
661 [ENETUNREACH] = TARGET_ENETUNREACH,
662 [ENETRESET] = TARGET_ENETRESET,
663 [ECONNABORTED] = TARGET_ECONNABORTED,
664 [ECONNRESET] = TARGET_ECONNRESET,
665 [ENOBUFS] = TARGET_ENOBUFS,
666 [EISCONN] = TARGET_EISCONN,
667 [ENOTCONN] = TARGET_ENOTCONN,
668 [EUCLEAN] = TARGET_EUCLEAN,
669 [ENOTNAM] = TARGET_ENOTNAM,
670 [ENAVAIL] = TARGET_ENAVAIL,
671 [EISNAM] = TARGET_EISNAM,
672 [EREMOTEIO] = TARGET_EREMOTEIO,
673 [ESHUTDOWN] = TARGET_ESHUTDOWN,
674 [ETOOMANYREFS] = TARGET_ETOOMANYREFS,
675 [ETIMEDOUT] = TARGET_ETIMEDOUT,
676 [ECONNREFUSED] = TARGET_ECONNREFUSED,
677 [EHOSTDOWN] = TARGET_EHOSTDOWN,
678 [EHOSTUNREACH] = TARGET_EHOSTUNREACH,
679 [EALREADY] = TARGET_EALREADY,
680 [EINPROGRESS] = TARGET_EINPROGRESS,
681 [ESTALE] = TARGET_ESTALE,
682 [ECANCELED] = TARGET_ECANCELED,
683 [ENOMEDIUM] = TARGET_ENOMEDIUM,
684 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE,
685 #ifdef ENOKEY
686 [ENOKEY] = TARGET_ENOKEY,
687 #endif
688 #ifdef EKEYEXPIRED
689 [EKEYEXPIRED] = TARGET_EKEYEXPIRED,
690 #endif
691 #ifdef EKEYREVOKED
692 [EKEYREVOKED] = TARGET_EKEYREVOKED,
693 #endif
694 #ifdef EKEYREJECTED
695 [EKEYREJECTED] = TARGET_EKEYREJECTED,
696 #endif
697 #ifdef EOWNERDEAD
698 [EOWNERDEAD] = TARGET_EOWNERDEAD,
699 #endif
700 #ifdef ENOTRECOVERABLE
701 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE,
702 #endif
703 };
704
705 static inline int host_to_target_errno(int err)
706 {
707 if(host_to_target_errno_table[err])
708 return host_to_target_errno_table[err];
709 return err;
710 }
711
712 static inline int target_to_host_errno(int err)
713 {
714 if (target_to_host_errno_table[err])
715 return target_to_host_errno_table[err];
716 return err;
717 }
718
719 static inline abi_long get_errno(abi_long ret)
720 {
721 if (ret == -1)
722 return -host_to_target_errno(errno);
723 else
724 return ret;
725 }
726
727 static inline int is_error(abi_long ret)
728 {
729 return (abi_ulong)ret >= (abi_ulong)(-4096);
730 }
731
732 char *target_strerror(int err)
733 {
734 return strerror(target_to_host_errno(err));
735 }
736
737 static abi_ulong target_brk;
738 static abi_ulong target_original_brk;
739 static abi_ulong brk_page;
740
741 void target_set_brk(abi_ulong new_brk)
742 {
743 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
744 brk_page = HOST_PAGE_ALIGN(target_brk);
745 }
746
747 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
748 #define DEBUGF_BRK(message, args...)
749
750 /* do_brk() must return target values and target errnos. */
751 abi_long do_brk(abi_ulong new_brk)
752 {
753 abi_long mapped_addr;
754 int new_alloc_size;
755
756 DEBUGF_BRK("do_brk(%#010x) -> ", new_brk);
757
758 if (!new_brk) {
759 DEBUGF_BRK("%#010x (!new_brk)\n", target_brk);
760 return target_brk;
761 }
762 if (new_brk < target_original_brk) {
763 DEBUGF_BRK("%#010x (new_brk < target_original_brk)\n", target_brk);
764 return target_brk;
765 }
766
767 /* If the new brk is less than the highest page reserved to the
768 * target heap allocation, set it and we're almost done... */
769 if (new_brk <= brk_page) {
770 /* Heap contents are initialized to zero, as for anonymous
771 * mapped pages. */
772 if (new_brk > target_brk) {
773 memset(g2h(target_brk), 0, new_brk - target_brk);
774 }
775 target_brk = new_brk;
776 DEBUGF_BRK("%#010x (new_brk <= brk_page)\n", target_brk);
777 return target_brk;
778 }
779
780 /* We need to allocate more memory after the brk... Note that
781 * we don't use MAP_FIXED because that will map over the top of
782 * any existing mapping (like the one with the host libc or qemu
783 * itself); instead we treat "mapped but at wrong address" as
784 * a failure and unmap again.
785 */
786 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
787 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
788 PROT_READ|PROT_WRITE,
789 MAP_ANON|MAP_PRIVATE, 0, 0));
790
791 if (mapped_addr == brk_page) {
792 /* Heap contents are initialized to zero, as for anonymous
793 * mapped pages. Technically the new pages are already
794 * initialized to zero since they *are* anonymous mapped
795 * pages, however we have to take care with the contents that
796 * come from the remaining part of the previous page: it may
797 * contains garbage data due to a previous heap usage (grown
798 * then shrunken). */
799 memset(g2h(target_brk), 0, brk_page - target_brk);
800
801 target_brk = new_brk;
802 brk_page = HOST_PAGE_ALIGN(target_brk);
803 DEBUGF_BRK("%#010x (mapped_addr == brk_page)\n", target_brk);
804 return target_brk;
805 } else if (mapped_addr != -1) {
806 /* Mapped but at wrong address, meaning there wasn't actually
807 * enough space for this brk.
808 */
809 target_munmap(mapped_addr, new_alloc_size);
810 mapped_addr = -1;
811 DEBUGF_BRK("%#010x (mapped_addr != -1)\n", target_brk);
812 }
813 else {
814 DEBUGF_BRK("%#010x (otherwise)\n", target_brk);
815 }
816
817 #if defined(TARGET_ALPHA)
818 /* We (partially) emulate OSF/1 on Alpha, which requires we
819 return a proper errno, not an unchanged brk value. */
820 return -TARGET_ENOMEM;
821 #endif
822 /* For everything else, return the previous break. */
823 return target_brk;
824 }
825
826 static inline abi_long copy_from_user_fdset(fd_set *fds,
827 abi_ulong target_fds_addr,
828 int n)
829 {
830 int i, nw, j, k;
831 abi_ulong b, *target_fds;
832
833 nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS;
834 if (!(target_fds = lock_user(VERIFY_READ,
835 target_fds_addr,
836 sizeof(abi_ulong) * nw,
837 1)))
838 return -TARGET_EFAULT;
839
840 FD_ZERO(fds);
841 k = 0;
842 for (i = 0; i < nw; i++) {
843 /* grab the abi_ulong */
844 __get_user(b, &target_fds[i]);
845 for (j = 0; j < TARGET_ABI_BITS; j++) {
846 /* check the bit inside the abi_ulong */
847 if ((b >> j) & 1)
848 FD_SET(k, fds);
849 k++;
850 }
851 }
852
853 unlock_user(target_fds, target_fds_addr, 0);
854
855 return 0;
856 }
857
858 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
859 abi_ulong target_fds_addr,
860 int n)
861 {
862 if (target_fds_addr) {
863 if (copy_from_user_fdset(fds, target_fds_addr, n))
864 return -TARGET_EFAULT;
865 *fds_ptr = fds;
866 } else {
867 *fds_ptr = NULL;
868 }
869 return 0;
870 }
871
872 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
873 const fd_set *fds,
874 int n)
875 {
876 int i, nw, j, k;
877 abi_long v;
878 abi_ulong *target_fds;
879
880 nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS;
881 if (!(target_fds = lock_user(VERIFY_WRITE,
882 target_fds_addr,
883 sizeof(abi_ulong) * nw,
884 0)))
885 return -TARGET_EFAULT;
886
887 k = 0;
888 for (i = 0; i < nw; i++) {
889 v = 0;
890 for (j = 0; j < TARGET_ABI_BITS; j++) {
891 v |= ((FD_ISSET(k, fds) != 0) << j);
892 k++;
893 }
894 __put_user(v, &target_fds[i]);
895 }
896
897 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
898
899 return 0;
900 }
901
902 #if defined(__alpha__)
903 #define HOST_HZ 1024
904 #else
905 #define HOST_HZ 100
906 #endif
907
908 static inline abi_long host_to_target_clock_t(long ticks)
909 {
910 #if HOST_HZ == TARGET_HZ
911 return ticks;
912 #else
913 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
914 #endif
915 }
916
917 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
918 const struct rusage *rusage)
919 {
920 struct target_rusage *target_rusage;
921
922 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
923 return -TARGET_EFAULT;
924 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
925 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
926 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
927 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
928 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
929 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
930 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
931 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
932 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
933 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
934 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
935 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
936 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
937 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
938 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
939 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
940 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
941 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
942 unlock_user_struct(target_rusage, target_addr, 1);
943
944 return 0;
945 }
946
947 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
948 {
949 abi_ulong target_rlim_swap;
950 rlim_t result;
951
952 target_rlim_swap = tswapal(target_rlim);
953 if (target_rlim_swap == TARGET_RLIM_INFINITY)
954 return RLIM_INFINITY;
955
956 result = target_rlim_swap;
957 if (target_rlim_swap != (rlim_t)result)
958 return RLIM_INFINITY;
959
960 return result;
961 }
962
963 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
964 {
965 abi_ulong target_rlim_swap;
966 abi_ulong result;
967
968 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
969 target_rlim_swap = TARGET_RLIM_INFINITY;
970 else
971 target_rlim_swap = rlim;
972 result = tswapal(target_rlim_swap);
973
974 return result;
975 }
976
977 static inline int target_to_host_resource(int code)
978 {
979 switch (code) {
980 case TARGET_RLIMIT_AS:
981 return RLIMIT_AS;
982 case TARGET_RLIMIT_CORE:
983 return RLIMIT_CORE;
984 case TARGET_RLIMIT_CPU:
985 return RLIMIT_CPU;
986 case TARGET_RLIMIT_DATA:
987 return RLIMIT_DATA;
988 case TARGET_RLIMIT_FSIZE:
989 return RLIMIT_FSIZE;
990 case TARGET_RLIMIT_LOCKS:
991 return RLIMIT_LOCKS;
992 case TARGET_RLIMIT_MEMLOCK:
993 return RLIMIT_MEMLOCK;
994 case TARGET_RLIMIT_MSGQUEUE:
995 return RLIMIT_MSGQUEUE;
996 case TARGET_RLIMIT_NICE:
997 return RLIMIT_NICE;
998 case TARGET_RLIMIT_NOFILE:
999 return RLIMIT_NOFILE;
1000 case TARGET_RLIMIT_NPROC:
1001 return RLIMIT_NPROC;
1002 case TARGET_RLIMIT_RSS:
1003 return RLIMIT_RSS;
1004 case TARGET_RLIMIT_RTPRIO:
1005 return RLIMIT_RTPRIO;
1006 case TARGET_RLIMIT_SIGPENDING:
1007 return RLIMIT_SIGPENDING;
1008 case TARGET_RLIMIT_STACK:
1009 return RLIMIT_STACK;
1010 default:
1011 return code;
1012 }
1013 }
1014
1015 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1016 abi_ulong target_tv_addr)
1017 {
1018 struct target_timeval *target_tv;
1019
1020 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1))
1021 return -TARGET_EFAULT;
1022
1023 __get_user(tv->tv_sec, &target_tv->tv_sec);
1024 __get_user(tv->tv_usec, &target_tv->tv_usec);
1025
1026 unlock_user_struct(target_tv, target_tv_addr, 0);
1027
1028 return 0;
1029 }
1030
1031 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1032 const struct timeval *tv)
1033 {
1034 struct target_timeval *target_tv;
1035
1036 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0))
1037 return -TARGET_EFAULT;
1038
1039 __put_user(tv->tv_sec, &target_tv->tv_sec);
1040 __put_user(tv->tv_usec, &target_tv->tv_usec);
1041
1042 unlock_user_struct(target_tv, target_tv_addr, 1);
1043
1044 return 0;
1045 }
1046
1047 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1048 #include <mqueue.h>
1049
1050 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1051 abi_ulong target_mq_attr_addr)
1052 {
1053 struct target_mq_attr *target_mq_attr;
1054
1055 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1056 target_mq_attr_addr, 1))
1057 return -TARGET_EFAULT;
1058
1059 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1060 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1061 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1062 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1063
1064 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1065
1066 return 0;
1067 }
1068
1069 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1070 const struct mq_attr *attr)
1071 {
1072 struct target_mq_attr *target_mq_attr;
1073
1074 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1075 target_mq_attr_addr, 0))
1076 return -TARGET_EFAULT;
1077
1078 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1079 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1080 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1081 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1082
1083 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1084
1085 return 0;
1086 }
1087 #endif
1088
1089 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1090 /* do_select() must return target values and target errnos. */
1091 static abi_long do_select(int n,
1092 abi_ulong rfd_addr, abi_ulong wfd_addr,
1093 abi_ulong efd_addr, abi_ulong target_tv_addr)
1094 {
1095 fd_set rfds, wfds, efds;
1096 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1097 struct timeval tv, *tv_ptr;
1098 abi_long ret;
1099
1100 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1101 if (ret) {
1102 return ret;
1103 }
1104 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1105 if (ret) {
1106 return ret;
1107 }
1108 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1109 if (ret) {
1110 return ret;
1111 }
1112
1113 if (target_tv_addr) {
1114 if (copy_from_user_timeval(&tv, target_tv_addr))
1115 return -TARGET_EFAULT;
1116 tv_ptr = &tv;
1117 } else {
1118 tv_ptr = NULL;
1119 }
1120
1121 ret = get_errno(select(n, rfds_ptr, wfds_ptr, efds_ptr, tv_ptr));
1122
1123 if (!is_error(ret)) {
1124 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1125 return -TARGET_EFAULT;
1126 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1127 return -TARGET_EFAULT;
1128 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1129 return -TARGET_EFAULT;
1130
1131 if (target_tv_addr && copy_to_user_timeval(target_tv_addr, &tv))
1132 return -TARGET_EFAULT;
1133 }
1134
1135 return ret;
1136 }
1137 #endif
1138
1139 static abi_long do_pipe2(int host_pipe[], int flags)
1140 {
1141 #ifdef CONFIG_PIPE2
1142 return pipe2(host_pipe, flags);
1143 #else
1144 return -ENOSYS;
1145 #endif
1146 }
1147
1148 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1149 int flags, int is_pipe2)
1150 {
1151 int host_pipe[2];
1152 abi_long ret;
1153 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1154
1155 if (is_error(ret))
1156 return get_errno(ret);
1157
1158 /* Several targets have special calling conventions for the original
1159 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1160 if (!is_pipe2) {
1161 #if defined(TARGET_ALPHA)
1162 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1163 return host_pipe[0];
1164 #elif defined(TARGET_MIPS)
1165 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1166 return host_pipe[0];
1167 #elif defined(TARGET_SH4)
1168 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1169 return host_pipe[0];
1170 #endif
1171 }
1172
1173 if (put_user_s32(host_pipe[0], pipedes)
1174 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1175 return -TARGET_EFAULT;
1176 return get_errno(ret);
1177 }
1178
1179 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1180 abi_ulong target_addr,
1181 socklen_t len)
1182 {
1183 struct target_ip_mreqn *target_smreqn;
1184
1185 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1186 if (!target_smreqn)
1187 return -TARGET_EFAULT;
1188 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1189 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1190 if (len == sizeof(struct target_ip_mreqn))
1191 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1192 unlock_user(target_smreqn, target_addr, 0);
1193
1194 return 0;
1195 }
1196
1197 static inline abi_long target_to_host_sockaddr(struct sockaddr *addr,
1198 abi_ulong target_addr,
1199 socklen_t len)
1200 {
1201 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1202 sa_family_t sa_family;
1203 struct target_sockaddr *target_saddr;
1204
1205 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1206 if (!target_saddr)
1207 return -TARGET_EFAULT;
1208
1209 sa_family = tswap16(target_saddr->sa_family);
1210
1211 /* Oops. The caller might send a incomplete sun_path; sun_path
1212 * must be terminated by \0 (see the manual page), but
1213 * unfortunately it is quite common to specify sockaddr_un
1214 * length as "strlen(x->sun_path)" while it should be
1215 * "strlen(...) + 1". We'll fix that here if needed.
1216 * Linux kernel has a similar feature.
1217 */
1218
1219 if (sa_family == AF_UNIX) {
1220 if (len < unix_maxlen && len > 0) {
1221 char *cp = (char*)target_saddr;
1222
1223 if ( cp[len-1] && !cp[len] )
1224 len++;
1225 }
1226 if (len > unix_maxlen)
1227 len = unix_maxlen;
1228 }
1229
1230 memcpy(addr, target_saddr, len);
1231 addr->sa_family = sa_family;
1232 unlock_user(target_saddr, target_addr, 0);
1233
1234 return 0;
1235 }
1236
1237 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1238 struct sockaddr *addr,
1239 socklen_t len)
1240 {
1241 struct target_sockaddr *target_saddr;
1242
1243 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1244 if (!target_saddr)
1245 return -TARGET_EFAULT;
1246 memcpy(target_saddr, addr, len);
1247 target_saddr->sa_family = tswap16(addr->sa_family);
1248 unlock_user(target_saddr, target_addr, len);
1249
1250 return 0;
1251 }
1252
1253 /* ??? Should this also swap msgh->name? */
1254 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1255 struct target_msghdr *target_msgh)
1256 {
1257 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1258 abi_long msg_controllen;
1259 abi_ulong target_cmsg_addr;
1260 struct target_cmsghdr *target_cmsg;
1261 socklen_t space = 0;
1262
1263 msg_controllen = tswapal(target_msgh->msg_controllen);
1264 if (msg_controllen < sizeof (struct target_cmsghdr))
1265 goto the_end;
1266 target_cmsg_addr = tswapal(target_msgh->msg_control);
1267 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1268 if (!target_cmsg)
1269 return -TARGET_EFAULT;
1270
1271 while (cmsg && target_cmsg) {
1272 void *data = CMSG_DATA(cmsg);
1273 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1274
1275 int len = tswapal(target_cmsg->cmsg_len)
1276 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr));
1277
1278 space += CMSG_SPACE(len);
1279 if (space > msgh->msg_controllen) {
1280 space -= CMSG_SPACE(len);
1281 gemu_log("Host cmsg overflow\n");
1282 break;
1283 }
1284
1285 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1286 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1287 cmsg->cmsg_len = CMSG_LEN(len);
1288
1289 if (cmsg->cmsg_level != TARGET_SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) {
1290 gemu_log("Unsupported ancillary data: %d/%d\n", cmsg->cmsg_level, cmsg->cmsg_type);
1291 memcpy(data, target_data, len);
1292 } else {
1293 int *fd = (int *)data;
1294 int *target_fd = (int *)target_data;
1295 int i, numfds = len / sizeof(int);
1296
1297 for (i = 0; i < numfds; i++)
1298 fd[i] = tswap32(target_fd[i]);
1299 }
1300
1301 cmsg = CMSG_NXTHDR(msgh, cmsg);
1302 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg);
1303 }
1304 unlock_user(target_cmsg, target_cmsg_addr, 0);
1305 the_end:
1306 msgh->msg_controllen = space;
1307 return 0;
1308 }
1309
1310 /* ??? Should this also swap msgh->name? */
1311 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1312 struct msghdr *msgh)
1313 {
1314 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1315 abi_long msg_controllen;
1316 abi_ulong target_cmsg_addr;
1317 struct target_cmsghdr *target_cmsg;
1318 socklen_t space = 0;
1319
1320 msg_controllen = tswapal(target_msgh->msg_controllen);
1321 if (msg_controllen < sizeof (struct target_cmsghdr))
1322 goto the_end;
1323 target_cmsg_addr = tswapal(target_msgh->msg_control);
1324 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1325 if (!target_cmsg)
1326 return -TARGET_EFAULT;
1327
1328 while (cmsg && target_cmsg) {
1329 void *data = CMSG_DATA(cmsg);
1330 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1331
1332 int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr));
1333
1334 space += TARGET_CMSG_SPACE(len);
1335 if (space > msg_controllen) {
1336 space -= TARGET_CMSG_SPACE(len);
1337 gemu_log("Target cmsg overflow\n");
1338 break;
1339 }
1340
1341 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1342 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1343 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(len));
1344
1345 if (cmsg->cmsg_level != TARGET_SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) {
1346 gemu_log("Unsupported ancillary data: %d/%d\n", cmsg->cmsg_level, cmsg->cmsg_type);
1347 memcpy(target_data, data, len);
1348 } else {
1349 int *fd = (int *)data;
1350 int *target_fd = (int *)target_data;
1351 int i, numfds = len / sizeof(int);
1352
1353 for (i = 0; i < numfds; i++)
1354 target_fd[i] = tswap32(fd[i]);
1355 }
1356
1357 cmsg = CMSG_NXTHDR(msgh, cmsg);
1358 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg);
1359 }
1360 unlock_user(target_cmsg, target_cmsg_addr, space);
1361 the_end:
1362 target_msgh->msg_controllen = tswapal(space);
1363 return 0;
1364 }
1365
1366 /* do_setsockopt() Must return target values and target errnos. */
1367 static abi_long do_setsockopt(int sockfd, int level, int optname,
1368 abi_ulong optval_addr, socklen_t optlen)
1369 {
1370 abi_long ret;
1371 int val;
1372 struct ip_mreqn *ip_mreq;
1373 struct ip_mreq_source *ip_mreq_source;
1374
1375 switch(level) {
1376 case SOL_TCP:
1377 /* TCP options all take an 'int' value. */
1378 if (optlen < sizeof(uint32_t))
1379 return -TARGET_EINVAL;
1380
1381 if (get_user_u32(val, optval_addr))
1382 return -TARGET_EFAULT;
1383 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1384 break;
1385 case SOL_IP:
1386 switch(optname) {
1387 case IP_TOS:
1388 case IP_TTL:
1389 case IP_HDRINCL:
1390 case IP_ROUTER_ALERT:
1391 case IP_RECVOPTS:
1392 case IP_RETOPTS:
1393 case IP_PKTINFO:
1394 case IP_MTU_DISCOVER:
1395 case IP_RECVERR:
1396 case IP_RECVTOS:
1397 #ifdef IP_FREEBIND
1398 case IP_FREEBIND:
1399 #endif
1400 case IP_MULTICAST_TTL:
1401 case IP_MULTICAST_LOOP:
1402 val = 0;
1403 if (optlen >= sizeof(uint32_t)) {
1404 if (get_user_u32(val, optval_addr))
1405 return -TARGET_EFAULT;
1406 } else if (optlen >= 1) {
1407 if (get_user_u8(val, optval_addr))
1408 return -TARGET_EFAULT;
1409 }
1410 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1411 break;
1412 case IP_ADD_MEMBERSHIP:
1413 case IP_DROP_MEMBERSHIP:
1414 if (optlen < sizeof (struct target_ip_mreq) ||
1415 optlen > sizeof (struct target_ip_mreqn))
1416 return -TARGET_EINVAL;
1417
1418 ip_mreq = (struct ip_mreqn *) alloca(optlen);
1419 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
1420 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
1421 break;
1422
1423 case IP_BLOCK_SOURCE:
1424 case IP_UNBLOCK_SOURCE:
1425 case IP_ADD_SOURCE_MEMBERSHIP:
1426 case IP_DROP_SOURCE_MEMBERSHIP:
1427 if (optlen != sizeof (struct target_ip_mreq_source))
1428 return -TARGET_EINVAL;
1429
1430 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
1431 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
1432 unlock_user (ip_mreq_source, optval_addr, 0);
1433 break;
1434
1435 default:
1436 goto unimplemented;
1437 }
1438 break;
1439 case TARGET_SOL_SOCKET:
1440 switch (optname) {
1441 /* Options with 'int' argument. */
1442 case TARGET_SO_DEBUG:
1443 optname = SO_DEBUG;
1444 break;
1445 case TARGET_SO_REUSEADDR:
1446 optname = SO_REUSEADDR;
1447 break;
1448 case TARGET_SO_TYPE:
1449 optname = SO_TYPE;
1450 break;
1451 case TARGET_SO_ERROR:
1452 optname = SO_ERROR;
1453 break;
1454 case TARGET_SO_DONTROUTE:
1455 optname = SO_DONTROUTE;
1456 break;
1457 case TARGET_SO_BROADCAST:
1458 optname = SO_BROADCAST;
1459 break;
1460 case TARGET_SO_SNDBUF:
1461 optname = SO_SNDBUF;
1462 break;
1463 case TARGET_SO_RCVBUF:
1464 optname = SO_RCVBUF;
1465 break;
1466 case TARGET_SO_KEEPALIVE:
1467 optname = SO_KEEPALIVE;
1468 break;
1469 case TARGET_SO_OOBINLINE:
1470 optname = SO_OOBINLINE;
1471 break;
1472 case TARGET_SO_NO_CHECK:
1473 optname = SO_NO_CHECK;
1474 break;
1475 case TARGET_SO_PRIORITY:
1476 optname = SO_PRIORITY;
1477 break;
1478 #ifdef SO_BSDCOMPAT
1479 case TARGET_SO_BSDCOMPAT:
1480 optname = SO_BSDCOMPAT;
1481 break;
1482 #endif
1483 case TARGET_SO_PASSCRED:
1484 optname = SO_PASSCRED;
1485 break;
1486 case TARGET_SO_TIMESTAMP:
1487 optname = SO_TIMESTAMP;
1488 break;
1489 case TARGET_SO_RCVLOWAT:
1490 optname = SO_RCVLOWAT;
1491 break;
1492 case TARGET_SO_RCVTIMEO:
1493 optname = SO_RCVTIMEO;
1494 break;
1495 case TARGET_SO_SNDTIMEO:
1496 optname = SO_SNDTIMEO;
1497 break;
1498 break;
1499 default:
1500 goto unimplemented;
1501 }
1502 if (optlen < sizeof(uint32_t))
1503 return -TARGET_EINVAL;
1504
1505 if (get_user_u32(val, optval_addr))
1506 return -TARGET_EFAULT;
1507 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
1508 break;
1509 default:
1510 unimplemented:
1511 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname);
1512 ret = -TARGET_ENOPROTOOPT;
1513 }
1514 return ret;
1515 }
1516
1517 /* do_getsockopt() Must return target values and target errnos. */
1518 static abi_long do_getsockopt(int sockfd, int level, int optname,
1519 abi_ulong optval_addr, abi_ulong optlen)
1520 {
1521 abi_long ret;
1522 int len, val;
1523 socklen_t lv;
1524
1525 switch(level) {
1526 case TARGET_SOL_SOCKET:
1527 level = SOL_SOCKET;
1528 switch (optname) {
1529 /* These don't just return a single integer */
1530 case TARGET_SO_LINGER:
1531 case TARGET_SO_RCVTIMEO:
1532 case TARGET_SO_SNDTIMEO:
1533 case TARGET_SO_PEERCRED:
1534 case TARGET_SO_PEERNAME:
1535 goto unimplemented;
1536 /* Options with 'int' argument. */
1537 case TARGET_SO_DEBUG:
1538 optname = SO_DEBUG;
1539 goto int_case;
1540 case TARGET_SO_REUSEADDR:
1541 optname = SO_REUSEADDR;
1542 goto int_case;
1543 case TARGET_SO_TYPE:
1544 optname = SO_TYPE;
1545 goto int_case;
1546 case TARGET_SO_ERROR:
1547 optname = SO_ERROR;
1548 goto int_case;
1549 case TARGET_SO_DONTROUTE:
1550 optname = SO_DONTROUTE;
1551 goto int_case;
1552 case TARGET_SO_BROADCAST:
1553 optname = SO_BROADCAST;
1554 goto int_case;
1555 case TARGET_SO_SNDBUF:
1556 optname = SO_SNDBUF;
1557 goto int_case;
1558 case TARGET_SO_RCVBUF:
1559 optname = SO_RCVBUF;
1560 goto int_case;
1561 case TARGET_SO_KEEPALIVE:
1562 optname = SO_KEEPALIVE;
1563 goto int_case;
1564 case TARGET_SO_OOBINLINE:
1565 optname = SO_OOBINLINE;
1566 goto int_case;
1567 case TARGET_SO_NO_CHECK:
1568 optname = SO_NO_CHECK;
1569 goto int_case;
1570 case TARGET_SO_PRIORITY:
1571 optname = SO_PRIORITY;
1572 goto int_case;
1573 #ifdef SO_BSDCOMPAT
1574 case TARGET_SO_BSDCOMPAT:
1575 optname = SO_BSDCOMPAT;
1576 goto int_case;
1577 #endif
1578 case TARGET_SO_PASSCRED:
1579 optname = SO_PASSCRED;
1580 goto int_case;
1581 case TARGET_SO_TIMESTAMP:
1582 optname = SO_TIMESTAMP;
1583 goto int_case;
1584 case TARGET_SO_RCVLOWAT:
1585 optname = SO_RCVLOWAT;
1586 goto int_case;
1587 default:
1588 goto int_case;
1589 }
1590 break;
1591 case SOL_TCP:
1592 /* TCP options all take an 'int' value. */
1593 int_case:
1594 if (get_user_u32(len, optlen))
1595 return -TARGET_EFAULT;
1596 if (len < 0)
1597 return -TARGET_EINVAL;
1598 lv = sizeof(lv);
1599 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
1600 if (ret < 0)
1601 return ret;
1602 if (len > lv)
1603 len = lv;
1604 if (len == 4) {
1605 if (put_user_u32(val, optval_addr))
1606 return -TARGET_EFAULT;
1607 } else {
1608 if (put_user_u8(val, optval_addr))
1609 return -TARGET_EFAULT;
1610 }
1611 if (put_user_u32(len, optlen))
1612 return -TARGET_EFAULT;
1613 break;
1614 case SOL_IP:
1615 switch(optname) {
1616 case IP_TOS:
1617 case IP_TTL:
1618 case IP_HDRINCL:
1619 case IP_ROUTER_ALERT:
1620 case IP_RECVOPTS:
1621 case IP_RETOPTS:
1622 case IP_PKTINFO:
1623 case IP_MTU_DISCOVER:
1624 case IP_RECVERR:
1625 case IP_RECVTOS:
1626 #ifdef IP_FREEBIND
1627 case IP_FREEBIND:
1628 #endif
1629 case IP_MULTICAST_TTL:
1630 case IP_MULTICAST_LOOP:
1631 if (get_user_u32(len, optlen))
1632 return -TARGET_EFAULT;
1633 if (len < 0)
1634 return -TARGET_EINVAL;
1635 lv = sizeof(lv);
1636 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
1637 if (ret < 0)
1638 return ret;
1639 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
1640 len = 1;
1641 if (put_user_u32(len, optlen)
1642 || put_user_u8(val, optval_addr))
1643 return -TARGET_EFAULT;
1644 } else {
1645 if (len > sizeof(int))
1646 len = sizeof(int);
1647 if (put_user_u32(len, optlen)
1648 || put_user_u32(val, optval_addr))
1649 return -TARGET_EFAULT;
1650 }
1651 break;
1652 default:
1653 ret = -TARGET_ENOPROTOOPT;
1654 break;
1655 }
1656 break;
1657 default:
1658 unimplemented:
1659 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
1660 level, optname);
1661 ret = -TARGET_EOPNOTSUPP;
1662 break;
1663 }
1664 return ret;
1665 }
1666
1667 /* FIXME
1668 * lock_iovec()/unlock_iovec() have a return code of 0 for success where
1669 * other lock functions have a return code of 0 for failure.
1670 */
1671 static abi_long lock_iovec(int type, struct iovec *vec, abi_ulong target_addr,
1672 int count, int copy)
1673 {
1674 struct target_iovec *target_vec;
1675 abi_ulong base;
1676 int i;
1677
1678 target_vec = lock_user(VERIFY_READ, target_addr, count * sizeof(struct target_iovec), 1);
1679 if (!target_vec)
1680 return -TARGET_EFAULT;
1681 for(i = 0;i < count; i++) {
1682 base = tswapal(target_vec[i].iov_base);
1683 vec[i].iov_len = tswapal(target_vec[i].iov_len);
1684 if (vec[i].iov_len != 0) {
1685 vec[i].iov_base = lock_user(type, base, vec[i].iov_len, copy);
1686 /* Don't check lock_user return value. We must call writev even
1687 if a element has invalid base address. */
1688 } else {
1689 /* zero length pointer is ignored */
1690 vec[i].iov_base = NULL;
1691 }
1692 }
1693 unlock_user (target_vec, target_addr, 0);
1694 return 0;
1695 }
1696
1697 static abi_long unlock_iovec(struct iovec *vec, abi_ulong target_addr,
1698 int count, int copy)
1699 {
1700 struct target_iovec *target_vec;
1701 abi_ulong base;
1702 int i;
1703
1704 target_vec = lock_user(VERIFY_READ, target_addr, count * sizeof(struct target_iovec), 1);
1705 if (!target_vec)
1706 return -TARGET_EFAULT;
1707 for(i = 0;i < count; i++) {
1708 if (target_vec[i].iov_base) {
1709 base = tswapal(target_vec[i].iov_base);
1710 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
1711 }
1712 }
1713 unlock_user (target_vec, target_addr, 0);
1714
1715 return 0;
1716 }
1717
1718 /* do_socket() Must return target values and target errnos. */
1719 static abi_long do_socket(int domain, int type, int protocol)
1720 {
1721 #if defined(TARGET_MIPS)
1722 switch(type) {
1723 case TARGET_SOCK_DGRAM:
1724 type = SOCK_DGRAM;
1725 break;
1726 case TARGET_SOCK_STREAM:
1727 type = SOCK_STREAM;
1728 break;
1729 case TARGET_SOCK_RAW:
1730 type = SOCK_RAW;
1731 break;
1732 case TARGET_SOCK_RDM:
1733 type = SOCK_RDM;
1734 break;
1735 case TARGET_SOCK_SEQPACKET:
1736 type = SOCK_SEQPACKET;
1737 break;
1738 case TARGET_SOCK_PACKET:
1739 type = SOCK_PACKET;
1740 break;
1741 }
1742 #endif
1743 if (domain == PF_NETLINK)
1744 return -EAFNOSUPPORT; /* do not NETLINK socket connections possible */
1745 return get_errno(socket(domain, type, protocol));
1746 }
1747
1748 /* do_bind() Must return target values and target errnos. */
1749 static abi_long do_bind(int sockfd, abi_ulong target_addr,
1750 socklen_t addrlen)
1751 {
1752 void *addr;
1753 abi_long ret;
1754
1755 if ((int)addrlen < 0) {
1756 return -TARGET_EINVAL;
1757 }
1758
1759 addr = alloca(addrlen+1);
1760
1761 ret = target_to_host_sockaddr(addr, target_addr, addrlen);
1762 if (ret)
1763 return ret;
1764
1765 return get_errno(bind(sockfd, addr, addrlen));
1766 }
1767
1768 /* do_connect() Must return target values and target errnos. */
1769 static abi_long do_connect(int sockfd, abi_ulong target_addr,
1770 socklen_t addrlen)
1771 {
1772 void *addr;
1773 abi_long ret;
1774
1775 if ((int)addrlen < 0) {
1776 return -TARGET_EINVAL;
1777 }
1778
1779 addr = alloca(addrlen);
1780
1781 ret = target_to_host_sockaddr(addr, target_addr, addrlen);
1782 if (ret)
1783 return ret;
1784
1785 return get_errno(connect(sockfd, addr, addrlen));
1786 }
1787
1788 /* do_sendrecvmsg() Must return target values and target errnos. */
1789 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
1790 int flags, int send)
1791 {
1792 abi_long ret, len;
1793 struct target_msghdr *msgp;
1794 struct msghdr msg;
1795 int count;
1796 struct iovec *vec;
1797 abi_ulong target_vec;
1798
1799 /* FIXME */
1800 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
1801 msgp,
1802 target_msg,
1803 send ? 1 : 0))
1804 return -TARGET_EFAULT;
1805 if (msgp->msg_name) {
1806 msg.msg_namelen = tswap32(msgp->msg_namelen);
1807 msg.msg_name = alloca(msg.msg_namelen);
1808 ret = target_to_host_sockaddr(msg.msg_name, tswapal(msgp->msg_name),
1809 msg.msg_namelen);
1810 if (ret) {
1811 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
1812 return ret;
1813 }
1814 } else {
1815 msg.msg_name = NULL;
1816 msg.msg_namelen = 0;
1817 }
1818 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
1819 msg.msg_control = alloca(msg.msg_controllen);
1820 msg.msg_flags = tswap32(msgp->msg_flags);
1821
1822 count = tswapal(msgp->msg_iovlen);
1823 vec = alloca(count * sizeof(struct iovec));
1824 target_vec = tswapal(msgp->msg_iov);
1825 lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, vec, target_vec, count, send);
1826 msg.msg_iovlen = count;
1827 msg.msg_iov = vec;
1828
1829 if (send) {
1830 ret = target_to_host_cmsg(&msg, msgp);
1831 if (ret == 0)
1832 ret = get_errno(sendmsg(fd, &msg, flags));
1833 } else {
1834 ret = get_errno(recvmsg(fd, &msg, flags));
1835 if (!is_error(ret)) {
1836 len = ret;
1837 ret = host_to_target_cmsg(msgp, &msg);
1838 if (!is_error(ret))
1839 ret = len;
1840 }
1841 }
1842 unlock_iovec(vec, target_vec, count, !send);
1843 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
1844 return ret;
1845 }
1846
1847 /* do_accept() Must return target values and target errnos. */
1848 static abi_long do_accept(int fd, abi_ulong target_addr,
1849 abi_ulong target_addrlen_addr)
1850 {
1851 socklen_t addrlen;
1852 void *addr;
1853 abi_long ret;
1854
1855 if (target_addr == 0)
1856 return get_errno(accept(fd, NULL, NULL));
1857
1858 /* linux returns EINVAL if addrlen pointer is invalid */
1859 if (get_user_u32(addrlen, target_addrlen_addr))
1860 return -TARGET_EINVAL;
1861
1862 if ((int)addrlen < 0) {
1863 return -TARGET_EINVAL;
1864 }
1865
1866 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
1867 return -TARGET_EINVAL;
1868
1869 addr = alloca(addrlen);
1870
1871 ret = get_errno(accept(fd, addr, &addrlen));
1872 if (!is_error(ret)) {
1873 host_to_target_sockaddr(target_addr, addr, addrlen);
1874 if (put_user_u32(addrlen, target_addrlen_addr))
1875 ret = -TARGET_EFAULT;
1876 }
1877 return ret;
1878 }
1879
1880 /* do_getpeername() Must return target values and target errnos. */
1881 static abi_long do_getpeername(int fd, abi_ulong target_addr,
1882 abi_ulong target_addrlen_addr)
1883 {
1884 socklen_t addrlen;
1885 void *addr;
1886 abi_long ret;
1887
1888 if (get_user_u32(addrlen, target_addrlen_addr))
1889 return -TARGET_EFAULT;
1890
1891 if ((int)addrlen < 0) {
1892 return -TARGET_EINVAL;
1893 }
1894
1895 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
1896 return -TARGET_EFAULT;
1897
1898 addr = alloca(addrlen);
1899
1900 ret = get_errno(getpeername(fd, addr, &addrlen));
1901 if (!is_error(ret)) {
1902 host_to_target_sockaddr(target_addr, addr, addrlen);
1903 if (put_user_u32(addrlen, target_addrlen_addr))
1904 ret = -TARGET_EFAULT;
1905 }
1906 return ret;
1907 }
1908
1909 /* do_getsockname() Must return target values and target errnos. */
1910 static abi_long do_getsockname(int fd, abi_ulong target_addr,
1911 abi_ulong target_addrlen_addr)
1912 {
1913 socklen_t addrlen;
1914 void *addr;
1915 abi_long ret;
1916
1917 if (get_user_u32(addrlen, target_addrlen_addr))
1918 return -TARGET_EFAULT;
1919
1920 if ((int)addrlen < 0) {
1921 return -TARGET_EINVAL;
1922 }
1923
1924 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
1925 return -TARGET_EFAULT;
1926
1927 addr = alloca(addrlen);
1928
1929 ret = get_errno(getsockname(fd, addr, &addrlen));
1930 if (!is_error(ret)) {
1931 host_to_target_sockaddr(target_addr, addr, addrlen);
1932 if (put_user_u32(addrlen, target_addrlen_addr))
1933 ret = -TARGET_EFAULT;
1934 }
1935 return ret;
1936 }
1937
1938 /* do_socketpair() Must return target values and target errnos. */
1939 static abi_long do_socketpair(int domain, int type, int protocol,
1940 abi_ulong target_tab_addr)
1941 {
1942 int tab[2];
1943 abi_long ret;
1944
1945 ret = get_errno(socketpair(domain, type, protocol, tab));
1946 if (!is_error(ret)) {
1947 if (put_user_s32(tab[0], target_tab_addr)
1948 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
1949 ret = -TARGET_EFAULT;
1950 }
1951 return ret;
1952 }
1953
1954 /* do_sendto() Must return target values and target errnos. */
1955 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
1956 abi_ulong target_addr, socklen_t addrlen)
1957 {
1958 void *addr;
1959 void *host_msg;
1960 abi_long ret;
1961
1962 if ((int)addrlen < 0) {
1963 return -TARGET_EINVAL;
1964 }
1965
1966 host_msg = lock_user(VERIFY_READ, msg, len, 1);
1967 if (!host_msg)
1968 return -TARGET_EFAULT;
1969 if (target_addr) {
1970 addr = alloca(addrlen);
1971 ret = target_to_host_sockaddr(addr, target_addr, addrlen);
1972 if (ret) {
1973 unlock_user(host_msg, msg, 0);
1974 return ret;
1975 }
1976 ret = get_errno(sendto(fd, host_msg, len, flags, addr, addrlen));
1977 } else {
1978 ret = get_errno(send(fd, host_msg, len, flags));
1979 }
1980 unlock_user(host_msg, msg, 0);
1981 return ret;
1982 }
1983
1984 /* do_recvfrom() Must return target values and target errnos. */
1985 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
1986 abi_ulong target_addr,
1987 abi_ulong target_addrlen)
1988 {
1989 socklen_t addrlen;
1990 void *addr;
1991 void *host_msg;
1992 abi_long ret;
1993
1994 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
1995 if (!host_msg)
1996 return -TARGET_EFAULT;
1997 if (target_addr) {
1998 if (get_user_u32(addrlen, target_addrlen)) {
1999 ret = -TARGET_EFAULT;
2000 goto fail;
2001 }
2002 if ((int)addrlen < 0) {
2003 ret = -TARGET_EINVAL;
2004 goto fail;
2005 }
2006 addr = alloca(addrlen);
2007 ret = get_errno(recvfrom(fd, host_msg, len, flags, addr, &addrlen));
2008 } else {
2009 addr = NULL; /* To keep compiler quiet. */
2010 ret = get_errno(qemu_recv(fd, host_msg, len, flags));
2011 }
2012 if (!is_error(ret)) {
2013 if (target_addr) {
2014 host_to_target_sockaddr(target_addr, addr, addrlen);
2015 if (put_user_u32(addrlen, target_addrlen)) {
2016 ret = -TARGET_EFAULT;
2017 goto fail;
2018 }
2019 }
2020 unlock_user(host_msg, msg, len);
2021 } else {
2022 fail:
2023 unlock_user(host_msg, msg, 0);
2024 }
2025 return ret;
2026 }
2027
2028 #ifdef TARGET_NR_socketcall
2029 /* do_socketcall() Must return target values and target errnos. */
2030 static abi_long do_socketcall(int num, abi_ulong vptr)
2031 {
2032 abi_long ret;
2033 const int n = sizeof(abi_ulong);
2034
2035 switch(num) {
2036 case SOCKOP_socket:
2037 {
2038 abi_ulong domain, type, protocol;
2039
2040 if (get_user_ual(domain, vptr)
2041 || get_user_ual(type, vptr + n)
2042 || get_user_ual(protocol, vptr + 2 * n))
2043 return -TARGET_EFAULT;
2044
2045 ret = do_socket(domain, type, protocol);
2046 }
2047 break;
2048 case SOCKOP_bind:
2049 {
2050 abi_ulong sockfd;
2051 abi_ulong target_addr;
2052 socklen_t addrlen;
2053
2054 if (get_user_ual(sockfd, vptr)
2055 || get_user_ual(target_addr, vptr + n)
2056 || get_user_ual(addrlen, vptr + 2 * n))
2057 return -TARGET_EFAULT;
2058
2059 ret = do_bind(sockfd, target_addr, addrlen);
2060 }
2061 break;
2062 case SOCKOP_connect:
2063 {
2064 abi_ulong sockfd;
2065 abi_ulong target_addr;
2066 socklen_t addrlen;
2067
2068 if (get_user_ual(sockfd, vptr)
2069 || get_user_ual(target_addr, vptr + n)
2070 || get_user_ual(addrlen, vptr + 2 * n))
2071 return -TARGET_EFAULT;
2072
2073 ret = do_connect(sockfd, target_addr, addrlen);
2074 }
2075 break;
2076 case SOCKOP_listen:
2077 {
2078 abi_ulong sockfd, backlog;
2079
2080 if (get_user_ual(sockfd, vptr)
2081 || get_user_ual(backlog, vptr + n))
2082 return -TARGET_EFAULT;
2083
2084 ret = get_errno(listen(sockfd, backlog));
2085 }
2086 break;
2087 case SOCKOP_accept:
2088 {
2089 abi_ulong sockfd;
2090 abi_ulong target_addr, target_addrlen;
2091
2092 if (get_user_ual(sockfd, vptr)
2093 || get_user_ual(target_addr, vptr + n)
2094 || get_user_ual(target_addrlen, vptr + 2 * n))
2095 return -TARGET_EFAULT;
2096
2097 ret = do_accept(sockfd, target_addr, target_addrlen);
2098 }
2099 break;
2100 case SOCKOP_getsockname:
2101 {
2102 abi_ulong sockfd;
2103 abi_ulong target_addr, target_addrlen;
2104
2105 if (get_user_ual(sockfd, vptr)
2106 || get_user_ual(target_addr, vptr + n)
2107 || get_user_ual(target_addrlen, vptr + 2 * n))
2108 return -TARGET_EFAULT;
2109
2110 ret = do_getsockname(sockfd, target_addr, target_addrlen);
2111 }
2112 break;
2113 case SOCKOP_getpeername:
2114 {
2115 abi_ulong sockfd;
2116 abi_ulong target_addr, target_addrlen;
2117
2118 if (get_user_ual(sockfd, vptr)
2119 || get_user_ual(target_addr, vptr + n)
2120 || get_user_ual(target_addrlen, vptr + 2 * n))
2121 return -TARGET_EFAULT;
2122
2123 ret = do_getpeername(sockfd, target_addr, target_addrlen);
2124 }
2125 break;
2126 case SOCKOP_socketpair:
2127 {
2128 abi_ulong domain, type, protocol;
2129 abi_ulong tab;
2130
2131 if (get_user_ual(domain, vptr)
2132 || get_user_ual(type, vptr + n)
2133 || get_user_ual(protocol, vptr + 2 * n)
2134 || get_user_ual(tab, vptr + 3 * n))
2135 return -TARGET_EFAULT;
2136
2137 ret = do_socketpair(domain, type, protocol, tab);
2138 }
2139 break;
2140 case SOCKOP_send:
2141 {
2142 abi_ulong sockfd;
2143 abi_ulong msg;
2144 size_t len;
2145 abi_ulong flags;
2146
2147 if (get_user_ual(sockfd, vptr)
2148 || get_user_ual(msg, vptr + n)
2149 || get_user_ual(len, vptr + 2 * n)
2150 || get_user_ual(flags, vptr + 3 * n))
2151 return -TARGET_EFAULT;
2152
2153 ret = do_sendto(sockfd, msg, len, flags, 0, 0);
2154 }
2155 break;
2156 case SOCKOP_recv:
2157 {
2158 abi_ulong sockfd;
2159 abi_ulong msg;
2160 size_t len;
2161 abi_ulong flags;
2162
2163 if (get_user_ual(sockfd, vptr)
2164 || get_user_ual(msg, vptr + n)
2165 || get_user_ual(len, vptr + 2 * n)
2166 || get_user_ual(flags, vptr + 3 * n))
2167 return -TARGET_EFAULT;
2168
2169 ret = do_recvfrom(sockfd, msg, len, flags, 0, 0);
2170 }
2171 break;
2172 case SOCKOP_sendto:
2173 {
2174 abi_ulong sockfd;
2175 abi_ulong msg;
2176 size_t len;
2177 abi_ulong flags;
2178 abi_ulong addr;
2179 socklen_t addrlen;
2180
2181 if (get_user_ual(sockfd, vptr)
2182 || get_user_ual(msg, vptr + n)
2183 || get_user_ual(len, vptr + 2 * n)
2184 || get_user_ual(flags, vptr + 3 * n)
2185 || get_user_ual(addr, vptr + 4 * n)
2186 || get_user_ual(addrlen, vptr + 5 * n))
2187 return -TARGET_EFAULT;
2188
2189 ret = do_sendto(sockfd, msg, len, flags, addr, addrlen);
2190 }
2191 break;
2192 case SOCKOP_recvfrom:
2193 {
2194 abi_ulong sockfd;
2195 abi_ulong msg;
2196 size_t len;
2197 abi_ulong flags;
2198 abi_ulong addr;
2199 socklen_t addrlen;
2200
2201 if (get_user_ual(sockfd, vptr)
2202 || get_user_ual(msg, vptr + n)
2203 || get_user_ual(len, vptr + 2 * n)
2204 || get_user_ual(flags, vptr + 3 * n)
2205 || get_user_ual(addr, vptr + 4 * n)
2206 || get_user_ual(addrlen, vptr + 5 * n))
2207 return -TARGET_EFAULT;
2208
2209 ret = do_recvfrom(sockfd, msg, len, flags, addr, addrlen);
2210 }
2211 break;
2212 case SOCKOP_shutdown:
2213 {
2214 abi_ulong sockfd, how;
2215
2216 if (get_user_ual(sockfd, vptr)
2217 || get_user_ual(how, vptr + n))
2218 return -TARGET_EFAULT;
2219
2220 ret = get_errno(shutdown(sockfd, how));
2221 }
2222 break;
2223 case SOCKOP_sendmsg:
2224 case SOCKOP_recvmsg:
2225 {
2226 abi_ulong fd;
2227 abi_ulong target_msg;
2228 abi_ulong flags;
2229
2230 if (get_user_ual(fd, vptr)
2231 || get_user_ual(target_msg, vptr + n)
2232 || get_user_ual(flags, vptr + 2 * n))
2233 return -TARGET_EFAULT;
2234
2235 ret = do_sendrecvmsg(fd, target_msg, flags,
2236 (num == SOCKOP_sendmsg));
2237 }
2238 break;
2239 case SOCKOP_setsockopt:
2240 {
2241 abi_ulong sockfd;
2242 abi_ulong level;
2243 abi_ulong optname;
2244 abi_ulong optval;
2245 socklen_t optlen;
2246
2247 if (get_user_ual(sockfd, vptr)
2248 || get_user_ual(level, vptr + n)
2249 || get_user_ual(optname, vptr + 2 * n)
2250 || get_user_ual(optval, vptr + 3 * n)
2251 || get_user_ual(optlen, vptr + 4 * n))
2252 return -TARGET_EFAULT;
2253
2254 ret = do_setsockopt(sockfd, level, optname, optval, optlen);
2255 }
2256 break;
2257 case SOCKOP_getsockopt:
2258 {
2259 abi_ulong sockfd;
2260 abi_ulong level;
2261 abi_ulong optname;
2262 abi_ulong optval;
2263 socklen_t optlen;
2264
2265 if (get_user_ual(sockfd, vptr)
2266 || get_user_ual(level, vptr + n)
2267 || get_user_ual(optname, vptr + 2 * n)
2268 || get_user_ual(optval, vptr + 3 * n)
2269 || get_user_ual(optlen, vptr + 4 * n))
2270 return -TARGET_EFAULT;
2271
2272 ret = do_getsockopt(sockfd, level, optname, optval, optlen);
2273 }
2274 break;
2275 default:
2276 gemu_log("Unsupported socketcall: %d\n", num);
2277 ret = -TARGET_ENOSYS;
2278 break;
2279 }
2280 return ret;
2281 }
2282 #endif
2283
2284 #define N_SHM_REGIONS 32
2285
2286 static struct shm_region {
2287 abi_ulong start;
2288 abi_ulong size;
2289 } shm_regions[N_SHM_REGIONS];
2290
2291 struct target_ipc_perm
2292 {
2293 abi_long __key;
2294 abi_ulong uid;
2295 abi_ulong gid;
2296 abi_ulong cuid;
2297 abi_ulong cgid;
2298 unsigned short int mode;
2299 unsigned short int __pad1;
2300 unsigned short int __seq;
2301 unsigned short int __pad2;
2302 abi_ulong __unused1;
2303 abi_ulong __unused2;
2304 };
2305
2306 struct target_semid_ds
2307 {
2308 struct target_ipc_perm sem_perm;
2309 abi_ulong sem_otime;
2310 abi_ulong __unused1;
2311 abi_ulong sem_ctime;
2312 abi_ulong __unused2;
2313 abi_ulong sem_nsems;
2314 abi_ulong __unused3;
2315 abi_ulong __unused4;
2316 };
2317
2318 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
2319 abi_ulong target_addr)
2320 {
2321 struct target_ipc_perm *target_ip;
2322 struct target_semid_ds *target_sd;
2323
2324 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
2325 return -TARGET_EFAULT;
2326 target_ip = &(target_sd->sem_perm);
2327 host_ip->__key = tswapal(target_ip->__key);
2328 host_ip->uid = tswapal(target_ip->uid);
2329 host_ip->gid = tswapal(target_ip->gid);
2330 host_ip->cuid = tswapal(target_ip->cuid);
2331 host_ip->cgid = tswapal(target_ip->cgid);
2332 host_ip->mode = tswap16(target_ip->mode);
2333 unlock_user_struct(target_sd, target_addr, 0);
2334 return 0;
2335 }
2336
2337 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
2338 struct ipc_perm *host_ip)
2339 {
2340 struct target_ipc_perm *target_ip;
2341 struct target_semid_ds *target_sd;
2342
2343 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
2344 return -TARGET_EFAULT;
2345 target_ip = &(target_sd->sem_perm);
2346 target_ip->__key = tswapal(host_ip->__key);
2347 target_ip->uid = tswapal(host_ip->uid);
2348 target_ip->gid = tswapal(host_ip->gid);
2349 target_ip->cuid = tswapal(host_ip->cuid);
2350 target_ip->cgid = tswapal(host_ip->cgid);
2351 target_ip->mode = tswap16(host_ip->mode);
2352 unlock_user_struct(target_sd, target_addr, 1);
2353 return 0;
2354 }
2355
2356 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
2357 abi_ulong target_addr)
2358 {
2359 struct target_semid_ds *target_sd;
2360
2361 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
2362 return -TARGET_EFAULT;
2363 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
2364 return -TARGET_EFAULT;
2365 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
2366 host_sd->sem_otime = tswapal(target_sd->sem_otime);
2367 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
2368 unlock_user_struct(target_sd, target_addr, 0);
2369 return 0;
2370 }
2371
2372 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
2373 struct semid_ds *host_sd)
2374 {
2375 struct target_semid_ds *target_sd;
2376
2377 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
2378 return -TARGET_EFAULT;
2379 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
2380 return -TARGET_EFAULT;
2381 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
2382 target_sd->sem_otime = tswapal(host_sd->sem_otime);
2383 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
2384 unlock_user_struct(target_sd, target_addr, 1);
2385 return 0;
2386 }
2387
2388 struct target_seminfo {
2389 int semmap;
2390 int semmni;
2391 int semmns;
2392 int semmnu;
2393 int semmsl;
2394 int semopm;
2395 int semume;
2396 int semusz;
2397 int semvmx;
2398 int semaem;
2399 };
2400
2401 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
2402 struct seminfo *host_seminfo)
2403 {
2404 struct target_seminfo *target_seminfo;
2405 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
2406 return -TARGET_EFAULT;
2407 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
2408 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
2409 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
2410 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
2411 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
2412 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
2413 __put_user(host_seminfo->semume, &target_seminfo->semume);
2414 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
2415 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
2416 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
2417 unlock_user_struct(target_seminfo, target_addr, 1);
2418 return 0;
2419 }
2420
2421 union semun {
2422 int val;
2423 struct semid_ds *buf;
2424 unsigned short *array;
2425 struct seminfo *__buf;
2426 };
2427
2428 union target_semun {
2429 int val;
2430 abi_ulong buf;
2431 abi_ulong array;
2432 abi_ulong __buf;
2433 };
2434
2435 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
2436 abi_ulong target_addr)
2437 {
2438 int nsems;
2439 unsigned short *array;
2440 union semun semun;
2441 struct semid_ds semid_ds;
2442 int i, ret;
2443
2444 semun.buf = &semid_ds;
2445
2446 ret = semctl(semid, 0, IPC_STAT, semun);
2447 if (ret == -1)
2448 return get_errno(ret);
2449
2450 nsems = semid_ds.sem_nsems;
2451
2452 *host_array = malloc(nsems*sizeof(unsigned short));
2453 array = lock_user(VERIFY_READ, target_addr,
2454 nsems*sizeof(unsigned short), 1);
2455 if (!array)
2456 return -TARGET_EFAULT;
2457
2458 for(i=0; i<nsems; i++) {
2459 __get_user((*host_array)[i], &array[i]);
2460 }
2461 unlock_user(array, target_addr, 0);
2462
2463 return 0;
2464 }
2465
2466 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
2467 unsigned short **host_array)
2468 {
2469 int nsems;
2470 unsigned short *array;
2471 union semun semun;
2472 struct semid_ds semid_ds;
2473 int i, ret;
2474
2475 semun.buf = &semid_ds;
2476
2477 ret = semctl(semid, 0, IPC_STAT, semun);
2478 if (ret == -1)
2479 return get_errno(ret);
2480
2481 nsems = semid_ds.sem_nsems;
2482
2483 array = lock_user(VERIFY_WRITE, target_addr,
2484 nsems*sizeof(unsigned short), 0);
2485 if (!array)
2486 return -TARGET_EFAULT;
2487
2488 for(i=0; i<nsems; i++) {
2489 __put_user((*host_array)[i], &array[i]);
2490 }
2491 free(*host_array);
2492 unlock_user(array, target_addr, 1);
2493
2494 return 0;
2495 }
2496
2497 static inline abi_long do_semctl(int semid, int semnum, int cmd,
2498 union target_semun target_su)
2499 {
2500 union semun arg;
2501 struct semid_ds dsarg;
2502 unsigned short *array = NULL;
2503 struct seminfo seminfo;
2504 abi_long ret = -TARGET_EINVAL;
2505 abi_long err;
2506 cmd &= 0xff;
2507
2508 switch( cmd ) {
2509 case GETVAL:
2510 case SETVAL:
2511 arg.val = tswap32(target_su.val);
2512 ret = get_errno(semctl(semid, semnum, cmd, arg));
2513 target_su.val = tswap32(arg.val);
2514 break;
2515 case GETALL:
2516 case SETALL:
2517 err = target_to_host_semarray(semid, &array, target_su.array);
2518 if (err)
2519 return err;
2520 arg.array = array;
2521 ret = get_errno(semctl(semid, semnum, cmd, arg));
2522 err = host_to_target_semarray(semid, target_su.array, &array);
2523 if (err)
2524 return err;
2525 break;
2526 case IPC_STAT:
2527 case IPC_SET:
2528 case SEM_STAT:
2529 err = target_to_host_semid_ds(&dsarg, target_su.buf);
2530 if (err)
2531 return err;
2532 arg.buf = &dsarg;
2533 ret = get_errno(semctl(semid, semnum, cmd, arg));
2534 err = host_to_target_semid_ds(target_su.buf, &dsarg);
2535 if (err)
2536 return err;
2537 break;
2538 case IPC_INFO:
2539 case SEM_INFO:
2540 arg.__buf = &seminfo;
2541 ret = get_errno(semctl(semid, semnum, cmd, arg));
2542 err = host_to_target_seminfo(target_su.__buf, &seminfo);
2543 if (err)
2544 return err;
2545 break;
2546 case IPC_RMID:
2547 case GETPID:
2548 case GETNCNT:
2549 case GETZCNT:
2550 ret = get_errno(semctl(semid, semnum, cmd, NULL));
2551 break;
2552 }
2553
2554 return ret;
2555 }
2556
2557 struct target_sembuf {
2558 unsigned short sem_num;
2559 short sem_op;
2560 short sem_flg;
2561 };
2562
2563 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
2564 abi_ulong target_addr,
2565 unsigned nsops)
2566 {
2567 struct target_sembuf *target_sembuf;
2568 int i;
2569
2570 target_sembuf = lock_user(VERIFY_READ, target_addr,
2571 nsops*sizeof(struct target_sembuf), 1);
2572 if (!target_sembuf)
2573 return -TARGET_EFAULT;
2574
2575 for(i=0; i<nsops; i++) {
2576 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
2577 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
2578 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
2579 }
2580
2581 unlock_user(target_sembuf, target_addr, 0);
2582
2583 return 0;
2584 }
2585
2586 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
2587 {
2588 struct sembuf sops[nsops];
2589
2590 if (target_to_host_sembuf(sops, ptr, nsops))
2591 return -TARGET_EFAULT;
2592
2593 return semop(semid, sops, nsops);
2594 }
2595
2596 struct target_msqid_ds
2597 {
2598 struct target_ipc_perm msg_perm;
2599 abi_ulong msg_stime;
2600 #if TARGET_ABI_BITS == 32
2601 abi_ulong __unused1;
2602 #endif
2603 abi_ulong msg_rtime;
2604 #if TARGET_ABI_BITS == 32
2605 abi_ulong __unused2;
2606 #endif
2607 abi_ulong msg_ctime;
2608 #if TARGET_ABI_BITS == 32
2609 abi_ulong __unused3;
2610 #endif
2611 abi_ulong __msg_cbytes;
2612 abi_ulong msg_qnum;
2613 abi_ulong msg_qbytes;
2614 abi_ulong msg_lspid;
2615 abi_ulong msg_lrpid;
2616 abi_ulong __unused4;
2617 abi_ulong __unused5;
2618 };
2619
2620 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
2621 abi_ulong target_addr)
2622 {
2623 struct target_msqid_ds *target_md;
2624
2625 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
2626 return -TARGET_EFAULT;
2627 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
2628 return -TARGET_EFAULT;
2629 host_md->msg_stime = tswapal(target_md->msg_stime);
2630 host_md->msg_rtime = tswapal(target_md->msg_rtime);
2631 host_md->msg_ctime = tswapal(target_md->msg_ctime);
2632 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
2633 host_md->msg_qnum = tswapal(target_md->msg_qnum);
2634 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
2635 host_md->msg_lspid = tswapal(target_md->msg_lspid);
2636 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
2637 unlock_user_struct(target_md, target_addr, 0);
2638 return 0;
2639 }
2640
2641 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
2642 struct msqid_ds *host_md)
2643 {
2644 struct target_msqid_ds *target_md;
2645
2646 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
2647 return -TARGET_EFAULT;
2648 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
2649 return -TARGET_EFAULT;
2650 target_md->msg_stime = tswapal(host_md->msg_stime);
2651 target_md->msg_rtime = tswapal(host_md->msg_rtime);
2652 target_md->msg_ctime = tswapal(host_md->msg_ctime);
2653 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
2654 target_md->msg_qnum = tswapal(host_md->msg_qnum);
2655 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
2656 target_md->msg_lspid = tswapal(host_md->msg_lspid);
2657 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
2658 unlock_user_struct(target_md, target_addr, 1);
2659 return 0;
2660 }
2661
2662 struct target_msginfo {
2663 int msgpool;
2664 int msgmap;
2665 int msgmax;
2666 int msgmnb;
2667 int msgmni;
2668 int msgssz;
2669 int msgtql;
2670 unsigned short int msgseg;
2671 };
2672
2673 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
2674 struct msginfo *host_msginfo)
2675 {
2676 struct target_msginfo *target_msginfo;
2677 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
2678 return -TARGET_EFAULT;
2679 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
2680 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
2681 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
2682 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
2683 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
2684 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
2685 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
2686 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
2687 unlock_user_struct(target_msginfo, target_addr, 1);
2688 return 0;
2689 }
2690
2691 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
2692 {
2693 struct msqid_ds dsarg;
2694 struct msginfo msginfo;
2695 abi_long ret = -TARGET_EINVAL;
2696
2697 cmd &= 0xff;
2698
2699 switch (cmd) {
2700 case IPC_STAT:
2701 case IPC_SET:
2702 case MSG_STAT:
2703 if (target_to_host_msqid_ds(&dsarg,ptr))
2704 return -TARGET_EFAULT;
2705 ret = get_errno(msgctl(msgid, cmd, &dsarg));
2706 if (host_to_target_msqid_ds(ptr,&dsarg))
2707 return -TARGET_EFAULT;
2708 break;
2709 case IPC_RMID:
2710 ret = get_errno(msgctl(msgid, cmd, NULL));
2711 break;
2712 case IPC_INFO:
2713 case MSG_INFO:
2714 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
2715 if (host_to_target_msginfo(ptr, &msginfo))
2716 return -TARGET_EFAULT;
2717 break;
2718 }
2719
2720 return ret;
2721 }
2722
2723 struct target_msgbuf {
2724 abi_long mtype;
2725 char mtext[1];
2726 };
2727
2728 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
2729 unsigned int msgsz, int msgflg)
2730 {
2731 struct target_msgbuf *target_mb;
2732 struct msgbuf *host_mb;
2733 abi_long ret = 0;
2734
2735 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
2736 return -TARGET_EFAULT;
2737 host_mb = malloc(msgsz+sizeof(long));
2738 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
2739 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
2740 ret = get_errno(msgsnd(msqid, host_mb, msgsz, msgflg));
2741 free(host_mb);
2742 unlock_user_struct(target_mb, msgp, 0);
2743
2744 return ret;
2745 }
2746
2747 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
2748 unsigned int msgsz, abi_long msgtyp,
2749 int msgflg)
2750 {
2751 struct target_msgbuf *target_mb;
2752 char *target_mtext;
2753 struct msgbuf *host_mb;
2754 abi_long ret = 0;
2755
2756 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
2757 return -TARGET_EFAULT;
2758
2759 host_mb = malloc(msgsz+sizeof(long));
2760 ret = get_errno(msgrcv(msqid, host_mb, msgsz, tswapal(msgtyp), msgflg));
2761
2762 if (ret > 0) {
2763 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
2764 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
2765 if (!target_mtext) {
2766 ret = -TARGET_EFAULT;
2767 goto end;
2768 }
2769 memcpy(target_mb->mtext, host_mb->mtext, ret);
2770 unlock_user(target_mtext, target_mtext_addr, ret);
2771 }
2772
2773 target_mb->mtype = tswapal(host_mb->mtype);
2774 free(host_mb);
2775
2776 end:
2777 if (target_mb)
2778 unlock_user_struct(target_mb, msgp, 1);
2779 return ret;
2780 }
2781
2782 struct target_shmid_ds
2783 {
2784 struct target_ipc_perm shm_perm;
2785 abi_ulong shm_segsz;
2786 abi_ulong shm_atime;
2787 #if TARGET_ABI_BITS == 32
2788 abi_ulong __unused1;
2789 #endif
2790 abi_ulong shm_dtime;
2791 #if TARGET_ABI_BITS == 32
2792 abi_ulong __unused2;
2793 #endif
2794 abi_ulong shm_ctime;
2795 #if TARGET_ABI_BITS == 32
2796 abi_ulong __unused3;
2797 #endif
2798 int shm_cpid;
2799 int shm_lpid;
2800 abi_ulong shm_nattch;
2801 unsigned long int __unused4;
2802 unsigned long int __unused5;
2803 };
2804
2805 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
2806 abi_ulong target_addr)
2807 {
2808 struct target_shmid_ds *target_sd;
2809
2810 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
2811 return -TARGET_EFAULT;
2812 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
2813 return -TARGET_EFAULT;
2814 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
2815 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
2816 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
2817 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
2818 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
2819 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
2820 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
2821 unlock_user_struct(target_sd, target_addr, 0);
2822 return 0;
2823 }
2824
2825 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
2826 struct shmid_ds *host_sd)
2827 {
2828 struct target_shmid_ds *target_sd;
2829
2830 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
2831 return -TARGET_EFAULT;
2832 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
2833 return -TARGET_EFAULT;
2834 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
2835 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
2836 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
2837 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
2838 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
2839 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
2840 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
2841 unlock_user_struct(target_sd, target_addr, 1);
2842 return 0;
2843 }
2844
2845 struct target_shminfo {
2846 abi_ulong shmmax;
2847 abi_ulong shmmin;
2848 abi_ulong shmmni;
2849 abi_ulong shmseg;
2850 abi_ulong shmall;
2851 };
2852
2853 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
2854 struct shminfo *host_shminfo)
2855 {
2856 struct target_shminfo *target_shminfo;
2857 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
2858 return -TARGET_EFAULT;
2859 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
2860 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
2861 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
2862 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
2863 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
2864 unlock_user_struct(target_shminfo, target_addr, 1);
2865 return 0;
2866 }
2867
2868 struct target_shm_info {
2869 int used_ids;
2870 abi_ulong shm_tot;
2871 abi_ulong shm_rss;
2872 abi_ulong shm_swp;
2873 abi_ulong swap_attempts;
2874 abi_ulong swap_successes;
2875 };
2876
2877 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
2878 struct shm_info *host_shm_info)
2879 {
2880 struct target_shm_info *target_shm_info;
2881 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
2882 return -TARGET_EFAULT;
2883 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
2884 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
2885 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
2886 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
2887 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
2888 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
2889 unlock_user_struct(target_shm_info, target_addr, 1);
2890 return 0;
2891 }
2892
2893 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
2894 {
2895 struct shmid_ds dsarg;
2896 struct shminfo shminfo;
2897 struct shm_info shm_info;
2898 abi_long ret = -TARGET_EINVAL;
2899
2900 cmd &= 0xff;
2901
2902 switch(cmd) {
2903 case IPC_STAT:
2904 case IPC_SET:
2905 case SHM_STAT:
2906 if (target_to_host_shmid_ds(&dsarg, buf))
2907 return -TARGET_EFAULT;
2908 ret = get_errno(shmctl(shmid, cmd, &dsarg));
2909 if (host_to_target_shmid_ds(buf, &dsarg))
2910 return -TARGET_EFAULT;
2911 break;
2912 case IPC_INFO:
2913 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
2914 if (host_to_target_shminfo(buf, &shminfo))
2915 return -TARGET_EFAULT;
2916 break;
2917 case SHM_INFO:
2918 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
2919 if (host_to_target_shm_info(buf, &shm_info))
2920 return -TARGET_EFAULT;
2921 break;
2922 case IPC_RMID:
2923 case SHM_LOCK:
2924 case SHM_UNLOCK:
2925 ret = get_errno(shmctl(shmid, cmd, NULL));
2926 break;
2927 }
2928
2929 return ret;
2930 }
2931
2932 static inline abi_ulong do_shmat(int shmid, abi_ulong shmaddr, int shmflg)
2933 {
2934 abi_long raddr;
2935 void *host_raddr;
2936 struct shmid_ds shm_info;
2937 int i,ret;
2938
2939 /* find out the length of the shared memory segment */
2940 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
2941 if (is_error(ret)) {
2942 /* can't get length, bail out */
2943 return ret;
2944 }
2945
2946 mmap_lock();
2947
2948 if (shmaddr)
2949 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
2950 else {
2951 abi_ulong mmap_start;
2952
2953 mmap_start = mmap_find_vma(0, shm_info.shm_segsz);
2954
2955 if (mmap_start == -1) {
2956 errno = ENOMEM;
2957 host_raddr = (void *)-1;
2958 } else
2959 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
2960 }
2961
2962 if (host_raddr == (void *)-1) {
2963 mmap_unlock();
2964 return get_errno((long)host_raddr);
2965 }
2966 raddr=h2g((unsigned long)host_raddr);
2967
2968 page_set_flags(raddr, raddr + shm_info.shm_segsz,
2969 PAGE_VALID | PAGE_READ |
2970 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
2971
2972 for (i = 0; i < N_SHM_REGIONS; i++) {
2973 if (shm_regions[i].start == 0) {
2974 shm_regions[i].start = raddr;
2975 shm_regions[i].size = shm_info.shm_segsz;
2976 break;
2977 }
2978 }
2979
2980 mmap_unlock();
2981 return raddr;
2982
2983 }
2984
2985 static inline abi_long do_shmdt(abi_ulong shmaddr)
2986 {
2987 int i;
2988
2989 for (i = 0; i < N_SHM_REGIONS; ++i) {
2990 if (shm_regions[i].start == shmaddr) {
2991 shm_regions[i].start = 0;
2992 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
2993 break;
2994 }
2995 }
2996
2997 return get_errno(shmdt(g2h(shmaddr)));
2998 }
2999
3000 #ifdef TARGET_NR_ipc
3001 /* ??? This only works with linear mappings. */
3002 /* do_ipc() must return target values and target errnos. */
3003 static abi_long do_ipc(unsigned int call, int first,
3004 int second, int third,
3005 abi_long ptr, abi_long fifth)
3006 {
3007 int version;
3008 abi_long ret = 0;
3009
3010 version = call >> 16;
3011 call &= 0xffff;
3012
3013 switch (call) {
3014 case IPCOP_semop:
3015 ret = do_semop(first, ptr, second);
3016 break;
3017
3018 case IPCOP_semget:
3019 ret = get_errno(semget(first, second, third));
3020 break;
3021
3022 case IPCOP_semctl:
3023 ret = do_semctl(first, second, third, (union target_semun)(abi_ulong) ptr);
3024 break;
3025
3026 case IPCOP_msgget:
3027 ret = get_errno(msgget(first, second));
3028 break;
3029
3030 case IPCOP_msgsnd:
3031 ret = do_msgsnd(first, ptr, second, third);
3032 break;
3033
3034 case IPCOP_msgctl:
3035 ret = do_msgctl(first, second, ptr);
3036 break;
3037
3038 case IPCOP_msgrcv:
3039 switch (version) {
3040 case 0:
3041 {
3042 struct target_ipc_kludge {
3043 abi_long msgp;
3044 abi_long msgtyp;
3045 } *tmp;
3046
3047 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
3048 ret = -TARGET_EFAULT;
3049 break;
3050 }
3051
3052 ret = do_msgrcv(first, tmp->msgp, second, tmp->msgtyp, third);
3053
3054 unlock_user_struct(tmp, ptr, 0);
3055 break;
3056 }
3057 default:
3058 ret = do_msgrcv(first, ptr, second, fifth, third);
3059 }
3060 break;
3061
3062 case IPCOP_shmat:
3063 switch (version) {
3064 default:
3065 {
3066 abi_ulong raddr;
3067 raddr = do_shmat(first, ptr, second);
3068 if (is_error(raddr))
3069 return get_errno(raddr);
3070 if (put_user_ual(raddr, third))
3071 return -TARGET_EFAULT;
3072 break;
3073 }
3074 case 1:
3075 ret = -TARGET_EINVAL;
3076 break;
3077 }
3078 break;
3079 case IPCOP_shmdt:
3080 ret = do_shmdt(ptr);
3081 break;
3082
3083 case IPCOP_shmget:
3084 /* IPC_* flag values are the same on all linux platforms */
3085 ret = get_errno(shmget(first, second, third));
3086 break;
3087
3088 /* IPC_* and SHM_* command values are the same on all linux platforms */
3089 case IPCOP_shmctl:
3090 ret = do_shmctl(first, second, third);
3091 break;
3092 default:
3093 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version);
3094 ret = -TARGET_ENOSYS;
3095 break;
3096 }
3097 return ret;
3098 }
3099 #endif
3100
3101 /* kernel structure types definitions */
3102
3103 #define STRUCT(name, ...) STRUCT_ ## name,
3104 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
3105 enum {
3106 #include "syscall_types.h"
3107 };
3108 #undef STRUCT
3109 #undef STRUCT_SPECIAL
3110
3111 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
3112 #define STRUCT_SPECIAL(name)
3113 #include "syscall_types.h"
3114 #undef STRUCT
3115 #undef STRUCT_SPECIAL
3116
3117 typedef struct IOCTLEntry IOCTLEntry;
3118
3119 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
3120 int fd, abi_long cmd, abi_long arg);
3121
3122 struct IOCTLEntry {
3123 unsigned int target_cmd;
3124 unsigned int host_cmd;
3125 const char *name;
3126 int access;
3127 do_ioctl_fn *do_ioctl;
3128 const argtype arg_type[5];
3129 };
3130
3131 #define IOC_R 0x0001
3132 #define IOC_W 0x0002
3133 #define IOC_RW (IOC_R | IOC_W)
3134
3135 #define MAX_STRUCT_SIZE 4096
3136
3137 #ifdef CONFIG_FIEMAP
3138 /* So fiemap access checks don't overflow on 32 bit systems.
3139 * This is very slightly smaller than the limit imposed by
3140 * the underlying kernel.
3141 */
3142 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
3143 / sizeof(struct fiemap_extent))
3144
3145 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
3146 int fd, abi_long cmd, abi_long arg)
3147 {
3148 /* The parameter for this ioctl is a struct fiemap followed
3149 * by an array of struct fiemap_extent whose size is set
3150 * in fiemap->fm_extent_count. The array is filled in by the
3151 * ioctl.
3152 */
3153 int target_size_in, target_size_out;
3154 struct fiemap *fm;
3155 const argtype *arg_type = ie->arg_type;
3156 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
3157 void *argptr, *p;
3158 abi_long ret;
3159 int i, extent_size = thunk_type_size(extent_arg_type, 0);
3160 uint32_t outbufsz;
3161 int free_fm = 0;
3162
3163 assert(arg_type[0] == TYPE_PTR);
3164 assert(ie->access == IOC_RW);
3165 arg_type++;
3166 target_size_in = thunk_type_size(arg_type, 0);
3167 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
3168 if (!argptr) {
3169 return -TARGET_EFAULT;
3170 }
3171 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3172 unlock_user(argptr, arg, 0);
3173 fm = (struct fiemap *)buf_temp;
3174 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
3175 return -TARGET_EINVAL;
3176 }
3177
3178 outbufsz = sizeof (*fm) +
3179 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
3180
3181 if (outbufsz > MAX_STRUCT_SIZE) {
3182 /* We can't fit all the extents into the fixed size buffer.
3183 * Allocate one that is large enough and use it instead.
3184 */
3185 fm = malloc(outbufsz);
3186 if (!fm) {
3187 return -TARGET_ENOMEM;
3188 }
3189 memcpy(fm, buf_temp, sizeof(struct fiemap));
3190 free_fm = 1;
3191 }
3192 ret = get_errno(ioctl(fd, ie->host_cmd, fm));
3193 if (!is_error(ret)) {
3194 target_size_out = target_size_in;
3195 /* An extent_count of 0 means we were only counting the extents
3196 * so there are no structs to copy
3197 */
3198 if (fm->fm_extent_count != 0) {
3199 target_size_out += fm->fm_mapped_extents * extent_size;
3200 }
3201 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
3202 if (!argptr) {
3203 ret = -TARGET_EFAULT;
3204 } else {
3205 /* Convert the struct fiemap */
3206 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
3207 if (fm->fm_extent_count != 0) {
3208 p = argptr + target_size_in;
3209 /* ...and then all the struct fiemap_extents */
3210 for (i = 0; i < fm->fm_mapped_extents; i++) {
3211 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
3212 THUNK_TARGET);
3213 p += extent_size;
3214 }
3215 }
3216 unlock_user(argptr, arg, target_size_out);
3217 }
3218 }
3219 if (free_fm) {
3220 free(fm);
3221 }
3222 return ret;
3223 }
3224 #endif
3225
3226 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
3227 int fd, abi_long cmd, abi_long arg)
3228 {
3229 const argtype *arg_type = ie->arg_type;
3230 int target_size;
3231 void *argptr;
3232 int ret;
3233 struct ifconf *host_ifconf;
3234 uint32_t outbufsz;
3235 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
3236 int target_ifreq_size;
3237 int nb_ifreq;
3238 int free_buf = 0;
3239 int i;
3240 int target_ifc_len;
3241 abi_long target_ifc_buf;
3242 int host_ifc_len;
3243 char *host_ifc_buf;
3244
3245 assert(arg_type[0] == TYPE_PTR);
3246 assert(ie->access == IOC_RW);
3247
3248 arg_type++;
3249 target_size = thunk_type_size(arg_type, 0);
3250
3251 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3252 if (!argptr)
3253 return -TARGET_EFAULT;
3254 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3255 unlock_user(argptr, arg, 0);
3256
3257 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
3258 target_ifc_len = host_ifconf->ifc_len;
3259 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
3260
3261 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
3262 nb_ifreq = target_ifc_len / target_ifreq_size;
3263 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
3264
3265 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
3266 if (outbufsz > MAX_STRUCT_SIZE) {
3267 /* We can't fit all the extents into the fixed size buffer.
3268 * Allocate one that is large enough and use it instead.
3269 */
3270 host_ifconf = malloc(outbufsz);
3271 if (!host_ifconf) {
3272 return -TARGET_ENOMEM;
3273 }
3274 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
3275 free_buf = 1;
3276 }
3277 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf);
3278
3279 host_ifconf->ifc_len = host_ifc_len;
3280 host_ifconf->ifc_buf = host_ifc_buf;
3281
3282 ret = get_errno(ioctl(fd, ie->host_cmd, host_ifconf));
3283 if (!is_error(ret)) {
3284 /* convert host ifc_len to target ifc_len */
3285
3286 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
3287 target_ifc_len = nb_ifreq * target_ifreq_size;
3288 host_ifconf->ifc_len = target_ifc_len;
3289
3290 /* restore target ifc_buf */
3291
3292 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
3293
3294 /* copy struct ifconf to target user */
3295
3296 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
3297 if (!argptr)
3298 return -TARGET_EFAULT;
3299 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
3300 unlock_user(argptr, arg, target_size);
3301
3302 /* copy ifreq[] to target user */
3303
3304 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
3305 for (i = 0; i < nb_ifreq ; i++) {