linux-user: Update TASK_UNMAPPED_BASE for aarch64
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "cpu.h"
19 #include "exec/memory.h"
20 #include "exec/address-spaces.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/qemu-print.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/tcg.h"
34 #include "sysemu/accel.h"
35 #include "hw/boards.h"
36 #include "migration/vmstate.h"
37
38 //#define DEBUG_UNASSIGNED
39
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 bool global_dirty_log;
44
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static GHashTable *flat_views;
52
53 typedef struct AddrRange AddrRange;
54
55 /*
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
58 */
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
62 };
63
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66 return (AddrRange) { start, size };
67 }
68
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73
74 static Int128 addrrange_end(AddrRange r)
75 {
76 return int128_add(r.start, r.size);
77 }
78
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81 int128_addto(&range.start, delta);
82 return range;
83 }
84
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
89 }
90
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
95 }
96
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
102 }
103
104 enum ListenerDirection { Forward, Reverse };
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
109 \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
115 } \
116 } \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 default: \
126 abort(); \
127 } \
128 } while (0)
129
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
133 \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
139 } \
140 } \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
146 } \
147 } \
148 break; \
149 default: \
150 abort(); \
151 } \
152 } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
161
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
172 };
173
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
176 {
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
194 }
195 }
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
200 }
201 return false;
202 }
203
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
206 {
207 return !memory_region_ioeventfd_before(a, b)
208 && !memory_region_ioeventfd_before(b, a);
209 }
210
211 /* Range of memory in the global map. Addresses are absolute. */
212 struct FlatRange {
213 MemoryRegion *mr;
214 hwaddr offset_in_region;
215 AddrRange addr;
216 uint8_t dirty_log_mask;
217 bool romd_mode;
218 bool readonly;
219 bool nonvolatile;
220 };
221
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
224
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange *fr, FlatView *fv)
227 {
228 return (MemoryRegionSection) {
229 .mr = fr->mr,
230 .fv = fv,
231 .offset_within_region = fr->offset_in_region,
232 .size = fr->addr.size,
233 .offset_within_address_space = int128_get64(fr->addr.start),
234 .readonly = fr->readonly,
235 .nonvolatile = fr->nonvolatile,
236 };
237 }
238
239 static bool flatrange_equal(FlatRange *a, FlatRange *b)
240 {
241 return a->mr == b->mr
242 && addrrange_equal(a->addr, b->addr)
243 && a->offset_in_region == b->offset_in_region
244 && a->romd_mode == b->romd_mode
245 && a->readonly == b->readonly
246 && a->nonvolatile == b->nonvolatile;
247 }
248
249 static FlatView *flatview_new(MemoryRegion *mr_root)
250 {
251 FlatView *view;
252
253 view = g_new0(FlatView, 1);
254 view->ref = 1;
255 view->root = mr_root;
256 memory_region_ref(mr_root);
257 trace_flatview_new(view, mr_root);
258
259 return view;
260 }
261
262 /* Insert a range into a given position. Caller is responsible for maintaining
263 * sorting order.
264 */
265 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
266 {
267 if (view->nr == view->nr_allocated) {
268 view->nr_allocated = MAX(2 * view->nr, 10);
269 view->ranges = g_realloc(view->ranges,
270 view->nr_allocated * sizeof(*view->ranges));
271 }
272 memmove(view->ranges + pos + 1, view->ranges + pos,
273 (view->nr - pos) * sizeof(FlatRange));
274 view->ranges[pos] = *range;
275 memory_region_ref(range->mr);
276 ++view->nr;
277 }
278
279 static void flatview_destroy(FlatView *view)
280 {
281 int i;
282
283 trace_flatview_destroy(view, view->root);
284 if (view->dispatch) {
285 address_space_dispatch_free(view->dispatch);
286 }
287 for (i = 0; i < view->nr; i++) {
288 memory_region_unref(view->ranges[i].mr);
289 }
290 g_free(view->ranges);
291 memory_region_unref(view->root);
292 g_free(view);
293 }
294
295 static bool flatview_ref(FlatView *view)
296 {
297 return atomic_fetch_inc_nonzero(&view->ref) > 0;
298 }
299
300 void flatview_unref(FlatView *view)
301 {
302 if (atomic_fetch_dec(&view->ref) == 1) {
303 trace_flatview_destroy_rcu(view, view->root);
304 assert(view->root);
305 call_rcu(view, flatview_destroy, rcu);
306 }
307 }
308
309 static bool can_merge(FlatRange *r1, FlatRange *r2)
310 {
311 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
312 && r1->mr == r2->mr
313 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
314 r1->addr.size),
315 int128_make64(r2->offset_in_region))
316 && r1->dirty_log_mask == r2->dirty_log_mask
317 && r1->romd_mode == r2->romd_mode
318 && r1->readonly == r2->readonly
319 && r1->nonvolatile == r2->nonvolatile;
320 }
321
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
324 {
325 unsigned i, j, k;
326
327 i = 0;
328 while (i < view->nr) {
329 j = i + 1;
330 while (j < view->nr
331 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333 ++j;
334 }
335 ++i;
336 for (k = i; k < j; k++) {
337 memory_region_unref(view->ranges[k].mr);
338 }
339 memmove(&view->ranges[i], &view->ranges[j],
340 (view->nr - j) * sizeof(view->ranges[j]));
341 view->nr -= j - i;
342 }
343 }
344
345 static bool memory_region_big_endian(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
349 #else
350 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
355 {
356 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
357 switch (op & MO_SIZE) {
358 case MO_8:
359 break;
360 case MO_16:
361 *data = bswap16(*data);
362 break;
363 case MO_32:
364 *data = bswap32(*data);
365 break;
366 case MO_64:
367 *data = bswap64(*data);
368 break;
369 default:
370 g_assert_not_reached();
371 }
372 }
373 }
374
375 static inline void memory_region_shift_read_access(uint64_t *value,
376 signed shift,
377 uint64_t mask,
378 uint64_t tmp)
379 {
380 if (shift >= 0) {
381 *value |= (tmp & mask) << shift;
382 } else {
383 *value |= (tmp & mask) >> -shift;
384 }
385 }
386
387 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
388 signed shift,
389 uint64_t mask)
390 {
391 uint64_t tmp;
392
393 if (shift >= 0) {
394 tmp = (*value >> shift) & mask;
395 } else {
396 tmp = (*value << -shift) & mask;
397 }
398
399 return tmp;
400 }
401
402 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
403 {
404 MemoryRegion *root;
405 hwaddr abs_addr = offset;
406
407 abs_addr += mr->addr;
408 for (root = mr; root->container; ) {
409 root = root->container;
410 abs_addr += root->addr;
411 }
412
413 return abs_addr;
414 }
415
416 static int get_cpu_index(void)
417 {
418 if (current_cpu) {
419 return current_cpu->cpu_index;
420 }
421 return -1;
422 }
423
424 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
425 hwaddr addr,
426 uint64_t *value,
427 unsigned size,
428 signed shift,
429 uint64_t mask,
430 MemTxAttrs attrs)
431 {
432 uint64_t tmp;
433
434 tmp = mr->ops->read(mr->opaque, addr, size);
435 if (mr->subpage) {
436 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
437 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
438 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
439 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
440 }
441 memory_region_shift_read_access(value, shift, mask, tmp);
442 return MEMTX_OK;
443 }
444
445 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
446 hwaddr addr,
447 uint64_t *value,
448 unsigned size,
449 signed shift,
450 uint64_t mask,
451 MemTxAttrs attrs)
452 {
453 uint64_t tmp = 0;
454 MemTxResult r;
455
456 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
457 if (mr->subpage) {
458 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
459 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
460 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
461 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
462 }
463 memory_region_shift_read_access(value, shift, mask, tmp);
464 return r;
465 }
466
467 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
468 hwaddr addr,
469 uint64_t *value,
470 unsigned size,
471 signed shift,
472 uint64_t mask,
473 MemTxAttrs attrs)
474 {
475 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
476
477 if (mr->subpage) {
478 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
479 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
480 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
481 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
482 }
483 mr->ops->write(mr->opaque, addr, tmp, size);
484 return MEMTX_OK;
485 }
486
487 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
488 hwaddr addr,
489 uint64_t *value,
490 unsigned size,
491 signed shift,
492 uint64_t mask,
493 MemTxAttrs attrs)
494 {
495 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
496
497 if (mr->subpage) {
498 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
499 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
500 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
501 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
502 }
503 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
504 }
505
506 static MemTxResult access_with_adjusted_size(hwaddr addr,
507 uint64_t *value,
508 unsigned size,
509 unsigned access_size_min,
510 unsigned access_size_max,
511 MemTxResult (*access_fn)
512 (MemoryRegion *mr,
513 hwaddr addr,
514 uint64_t *value,
515 unsigned size,
516 signed shift,
517 uint64_t mask,
518 MemTxAttrs attrs),
519 MemoryRegion *mr,
520 MemTxAttrs attrs)
521 {
522 uint64_t access_mask;
523 unsigned access_size;
524 unsigned i;
525 MemTxResult r = MEMTX_OK;
526
527 if (!access_size_min) {
528 access_size_min = 1;
529 }
530 if (!access_size_max) {
531 access_size_max = 4;
532 }
533
534 /* FIXME: support unaligned access? */
535 access_size = MAX(MIN(size, access_size_max), access_size_min);
536 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
537 if (memory_region_big_endian(mr)) {
538 for (i = 0; i < size; i += access_size) {
539 r |= access_fn(mr, addr + i, value, access_size,
540 (size - access_size - i) * 8, access_mask, attrs);
541 }
542 } else {
543 for (i = 0; i < size; i += access_size) {
544 r |= access_fn(mr, addr + i, value, access_size, i * 8,
545 access_mask, attrs);
546 }
547 }
548 return r;
549 }
550
551 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
552 {
553 AddressSpace *as;
554
555 while (mr->container) {
556 mr = mr->container;
557 }
558 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
559 if (mr == as->root) {
560 return as;
561 }
562 }
563 return NULL;
564 }
565
566 /* Render a memory region into the global view. Ranges in @view obscure
567 * ranges in @mr.
568 */
569 static void render_memory_region(FlatView *view,
570 MemoryRegion *mr,
571 Int128 base,
572 AddrRange clip,
573 bool readonly,
574 bool nonvolatile)
575 {
576 MemoryRegion *subregion;
577 unsigned i;
578 hwaddr offset_in_region;
579 Int128 remain;
580 Int128 now;
581 FlatRange fr;
582 AddrRange tmp;
583
584 if (!mr->enabled) {
585 return;
586 }
587
588 int128_addto(&base, int128_make64(mr->addr));
589 readonly |= mr->readonly;
590 nonvolatile |= mr->nonvolatile;
591
592 tmp = addrrange_make(base, mr->size);
593
594 if (!addrrange_intersects(tmp, clip)) {
595 return;
596 }
597
598 clip = addrrange_intersection(tmp, clip);
599
600 if (mr->alias) {
601 int128_subfrom(&base, int128_make64(mr->alias->addr));
602 int128_subfrom(&base, int128_make64(mr->alias_offset));
603 render_memory_region(view, mr->alias, base, clip,
604 readonly, nonvolatile);
605 return;
606 }
607
608 /* Render subregions in priority order. */
609 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
610 render_memory_region(view, subregion, base, clip,
611 readonly, nonvolatile);
612 }
613
614 if (!mr->terminates) {
615 return;
616 }
617
618 offset_in_region = int128_get64(int128_sub(clip.start, base));
619 base = clip.start;
620 remain = clip.size;
621
622 fr.mr = mr;
623 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
624 fr.romd_mode = mr->romd_mode;
625 fr.readonly = readonly;
626 fr.nonvolatile = nonvolatile;
627
628 /* Render the region itself into any gaps left by the current view. */
629 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
630 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
631 continue;
632 }
633 if (int128_lt(base, view->ranges[i].addr.start)) {
634 now = int128_min(remain,
635 int128_sub(view->ranges[i].addr.start, base));
636 fr.offset_in_region = offset_in_region;
637 fr.addr = addrrange_make(base, now);
638 flatview_insert(view, i, &fr);
639 ++i;
640 int128_addto(&base, now);
641 offset_in_region += int128_get64(now);
642 int128_subfrom(&remain, now);
643 }
644 now = int128_sub(int128_min(int128_add(base, remain),
645 addrrange_end(view->ranges[i].addr)),
646 base);
647 int128_addto(&base, now);
648 offset_in_region += int128_get64(now);
649 int128_subfrom(&remain, now);
650 }
651 if (int128_nz(remain)) {
652 fr.offset_in_region = offset_in_region;
653 fr.addr = addrrange_make(base, remain);
654 flatview_insert(view, i, &fr);
655 }
656 }
657
658 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
659 {
660 while (mr->enabled) {
661 if (mr->alias) {
662 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
663 /* The alias is included in its entirety. Use it as
664 * the "real" root, so that we can share more FlatViews.
665 */
666 mr = mr->alias;
667 continue;
668 }
669 } else if (!mr->terminates) {
670 unsigned int found = 0;
671 MemoryRegion *child, *next = NULL;
672 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
673 if (child->enabled) {
674 if (++found > 1) {
675 next = NULL;
676 break;
677 }
678 if (!child->addr && int128_ge(mr->size, child->size)) {
679 /* A child is included in its entirety. If it's the only
680 * enabled one, use it in the hope of finding an alias down the
681 * way. This will also let us share FlatViews.
682 */
683 next = child;
684 }
685 }
686 }
687 if (found == 0) {
688 return NULL;
689 }
690 if (next) {
691 mr = next;
692 continue;
693 }
694 }
695
696 return mr;
697 }
698
699 return NULL;
700 }
701
702 /* Render a memory topology into a list of disjoint absolute ranges. */
703 static FlatView *generate_memory_topology(MemoryRegion *mr)
704 {
705 int i;
706 FlatView *view;
707
708 view = flatview_new(mr);
709
710 if (mr) {
711 render_memory_region(view, mr, int128_zero(),
712 addrrange_make(int128_zero(), int128_2_64()),
713 false, false);
714 }
715 flatview_simplify(view);
716
717 view->dispatch = address_space_dispatch_new(view);
718 for (i = 0; i < view->nr; i++) {
719 MemoryRegionSection mrs =
720 section_from_flat_range(&view->ranges[i], view);
721 flatview_add_to_dispatch(view, &mrs);
722 }
723 address_space_dispatch_compact(view->dispatch);
724 g_hash_table_replace(flat_views, mr, view);
725
726 return view;
727 }
728
729 static void address_space_add_del_ioeventfds(AddressSpace *as,
730 MemoryRegionIoeventfd *fds_new,
731 unsigned fds_new_nb,
732 MemoryRegionIoeventfd *fds_old,
733 unsigned fds_old_nb)
734 {
735 unsigned iold, inew;
736 MemoryRegionIoeventfd *fd;
737 MemoryRegionSection section;
738
739 /* Generate a symmetric difference of the old and new fd sets, adding
740 * and deleting as necessary.
741 */
742
743 iold = inew = 0;
744 while (iold < fds_old_nb || inew < fds_new_nb) {
745 if (iold < fds_old_nb
746 && (inew == fds_new_nb
747 || memory_region_ioeventfd_before(&fds_old[iold],
748 &fds_new[inew]))) {
749 fd = &fds_old[iold];
750 section = (MemoryRegionSection) {
751 .fv = address_space_to_flatview(as),
752 .offset_within_address_space = int128_get64(fd->addr.start),
753 .size = fd->addr.size,
754 };
755 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
756 fd->match_data, fd->data, fd->e);
757 ++iold;
758 } else if (inew < fds_new_nb
759 && (iold == fds_old_nb
760 || memory_region_ioeventfd_before(&fds_new[inew],
761 &fds_old[iold]))) {
762 fd = &fds_new[inew];
763 section = (MemoryRegionSection) {
764 .fv = address_space_to_flatview(as),
765 .offset_within_address_space = int128_get64(fd->addr.start),
766 .size = fd->addr.size,
767 };
768 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
769 fd->match_data, fd->data, fd->e);
770 ++inew;
771 } else {
772 ++iold;
773 ++inew;
774 }
775 }
776 }
777
778 FlatView *address_space_get_flatview(AddressSpace *as)
779 {
780 FlatView *view;
781
782 RCU_READ_LOCK_GUARD();
783 do {
784 view = address_space_to_flatview(as);
785 /* If somebody has replaced as->current_map concurrently,
786 * flatview_ref returns false.
787 */
788 } while (!flatview_ref(view));
789 return view;
790 }
791
792 static void address_space_update_ioeventfds(AddressSpace *as)
793 {
794 FlatView *view;
795 FlatRange *fr;
796 unsigned ioeventfd_nb = 0;
797 unsigned ioeventfd_max;
798 MemoryRegionIoeventfd *ioeventfds;
799 AddrRange tmp;
800 unsigned i;
801
802 /*
803 * It is likely that the number of ioeventfds hasn't changed much, so use
804 * the previous size as the starting value, with some headroom to avoid
805 * gratuitous reallocations.
806 */
807 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
808 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
809
810 view = address_space_get_flatview(as);
811 FOR_EACH_FLAT_RANGE(fr, view) {
812 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
813 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
814 int128_sub(fr->addr.start,
815 int128_make64(fr->offset_in_region)));
816 if (addrrange_intersects(fr->addr, tmp)) {
817 ++ioeventfd_nb;
818 if (ioeventfd_nb > ioeventfd_max) {
819 ioeventfd_max = MAX(ioeventfd_max * 2, 4);
820 ioeventfds = g_realloc(ioeventfds,
821 ioeventfd_max * sizeof(*ioeventfds));
822 }
823 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
824 ioeventfds[ioeventfd_nb-1].addr = tmp;
825 }
826 }
827 }
828
829 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
830 as->ioeventfds, as->ioeventfd_nb);
831
832 g_free(as->ioeventfds);
833 as->ioeventfds = ioeventfds;
834 as->ioeventfd_nb = ioeventfd_nb;
835 flatview_unref(view);
836 }
837
838 /*
839 * Notify the memory listeners about the coalesced IO change events of
840 * range `cmr'. Only the part that has intersection of the specified
841 * FlatRange will be sent.
842 */
843 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
844 CoalescedMemoryRange *cmr, bool add)
845 {
846 AddrRange tmp;
847
848 tmp = addrrange_shift(cmr->addr,
849 int128_sub(fr->addr.start,
850 int128_make64(fr->offset_in_region)));
851 if (!addrrange_intersects(tmp, fr->addr)) {
852 return;
853 }
854 tmp = addrrange_intersection(tmp, fr->addr);
855
856 if (add) {
857 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
858 int128_get64(tmp.start),
859 int128_get64(tmp.size));
860 } else {
861 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
862 int128_get64(tmp.start),
863 int128_get64(tmp.size));
864 }
865 }
866
867 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
868 {
869 CoalescedMemoryRange *cmr;
870
871 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
872 flat_range_coalesced_io_notify(fr, as, cmr, false);
873 }
874 }
875
876 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
877 {
878 MemoryRegion *mr = fr->mr;
879 CoalescedMemoryRange *cmr;
880
881 if (QTAILQ_EMPTY(&mr->coalesced)) {
882 return;
883 }
884
885 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
886 flat_range_coalesced_io_notify(fr, as, cmr, true);
887 }
888 }
889
890 static void address_space_update_topology_pass(AddressSpace *as,
891 const FlatView *old_view,
892 const FlatView *new_view,
893 bool adding)
894 {
895 unsigned iold, inew;
896 FlatRange *frold, *frnew;
897
898 /* Generate a symmetric difference of the old and new memory maps.
899 * Kill ranges in the old map, and instantiate ranges in the new map.
900 */
901 iold = inew = 0;
902 while (iold < old_view->nr || inew < new_view->nr) {
903 if (iold < old_view->nr) {
904 frold = &old_view->ranges[iold];
905 } else {
906 frold = NULL;
907 }
908 if (inew < new_view->nr) {
909 frnew = &new_view->ranges[inew];
910 } else {
911 frnew = NULL;
912 }
913
914 if (frold
915 && (!frnew
916 || int128_lt(frold->addr.start, frnew->addr.start)
917 || (int128_eq(frold->addr.start, frnew->addr.start)
918 && !flatrange_equal(frold, frnew)))) {
919 /* In old but not in new, or in both but attributes changed. */
920
921 if (!adding) {
922 flat_range_coalesced_io_del(frold, as);
923 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
924 }
925
926 ++iold;
927 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
928 /* In both and unchanged (except logging may have changed) */
929
930 if (adding) {
931 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
932 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
933 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
934 frold->dirty_log_mask,
935 frnew->dirty_log_mask);
936 }
937 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
938 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
939 frold->dirty_log_mask,
940 frnew->dirty_log_mask);
941 }
942 }
943
944 ++iold;
945 ++inew;
946 } else {
947 /* In new */
948
949 if (adding) {
950 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
951 flat_range_coalesced_io_add(frnew, as);
952 }
953
954 ++inew;
955 }
956 }
957 }
958
959 static void flatviews_init(void)
960 {
961 static FlatView *empty_view;
962
963 if (flat_views) {
964 return;
965 }
966
967 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
968 (GDestroyNotify) flatview_unref);
969 if (!empty_view) {
970 empty_view = generate_memory_topology(NULL);
971 /* We keep it alive forever in the global variable. */
972 flatview_ref(empty_view);
973 } else {
974 g_hash_table_replace(flat_views, NULL, empty_view);
975 flatview_ref(empty_view);
976 }
977 }
978
979 static void flatviews_reset(void)
980 {
981 AddressSpace *as;
982
983 if (flat_views) {
984 g_hash_table_unref(flat_views);
985 flat_views = NULL;
986 }
987 flatviews_init();
988
989 /* Render unique FVs */
990 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
991 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
992
993 if (g_hash_table_lookup(flat_views, physmr)) {
994 continue;
995 }
996
997 generate_memory_topology(physmr);
998 }
999 }
1000
1001 static void address_space_set_flatview(AddressSpace *as)
1002 {
1003 FlatView *old_view = address_space_to_flatview(as);
1004 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1005 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1006
1007 assert(new_view);
1008
1009 if (old_view == new_view) {
1010 return;
1011 }
1012
1013 if (old_view) {
1014 flatview_ref(old_view);
1015 }
1016
1017 flatview_ref(new_view);
1018
1019 if (!QTAILQ_EMPTY(&as->listeners)) {
1020 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1021
1022 if (!old_view2) {
1023 old_view2 = &tmpview;
1024 }
1025 address_space_update_topology_pass(as, old_view2, new_view, false);
1026 address_space_update_topology_pass(as, old_view2, new_view, true);
1027 }
1028
1029 /* Writes are protected by the BQL. */
1030 atomic_rcu_set(&as->current_map, new_view);
1031 if (old_view) {
1032 flatview_unref(old_view);
1033 }
1034
1035 /* Note that all the old MemoryRegions are still alive up to this
1036 * point. This relieves most MemoryListeners from the need to
1037 * ref/unref the MemoryRegions they get---unless they use them
1038 * outside the iothread mutex, in which case precise reference
1039 * counting is necessary.
1040 */
1041 if (old_view) {
1042 flatview_unref(old_view);
1043 }
1044 }
1045
1046 static void address_space_update_topology(AddressSpace *as)
1047 {
1048 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1049
1050 flatviews_init();
1051 if (!g_hash_table_lookup(flat_views, physmr)) {
1052 generate_memory_topology(physmr);
1053 }
1054 address_space_set_flatview(as);
1055 }
1056
1057 void memory_region_transaction_begin(void)
1058 {
1059 qemu_flush_coalesced_mmio_buffer();
1060 ++memory_region_transaction_depth;
1061 }
1062
1063 void memory_region_transaction_commit(void)
1064 {
1065 AddressSpace *as;
1066
1067 assert(memory_region_transaction_depth);
1068 assert(qemu_mutex_iothread_locked());
1069
1070 --memory_region_transaction_depth;
1071 if (!memory_region_transaction_depth) {
1072 if (memory_region_update_pending) {
1073 flatviews_reset();
1074
1075 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1076
1077 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1078 address_space_set_flatview(as);
1079 address_space_update_ioeventfds(as);
1080 }
1081 memory_region_update_pending = false;
1082 ioeventfd_update_pending = false;
1083 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1084 } else if (ioeventfd_update_pending) {
1085 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1086 address_space_update_ioeventfds(as);
1087 }
1088 ioeventfd_update_pending = false;
1089 }
1090 }
1091 }
1092
1093 static void memory_region_destructor_none(MemoryRegion *mr)
1094 {
1095 }
1096
1097 static void memory_region_destructor_ram(MemoryRegion *mr)
1098 {
1099 qemu_ram_free(mr->ram_block);
1100 }
1101
1102 static bool memory_region_need_escape(char c)
1103 {
1104 return c == '/' || c == '[' || c == '\\' || c == ']';
1105 }
1106
1107 static char *memory_region_escape_name(const char *name)
1108 {
1109 const char *p;
1110 char *escaped, *q;
1111 uint8_t c;
1112 size_t bytes = 0;
1113
1114 for (p = name; *p; p++) {
1115 bytes += memory_region_need_escape(*p) ? 4 : 1;
1116 }
1117 if (bytes == p - name) {
1118 return g_memdup(name, bytes + 1);
1119 }
1120
1121 escaped = g_malloc(bytes + 1);
1122 for (p = name, q = escaped; *p; p++) {
1123 c = *p;
1124 if (unlikely(memory_region_need_escape(c))) {
1125 *q++ = '\\';
1126 *q++ = 'x';
1127 *q++ = "0123456789abcdef"[c >> 4];
1128 c = "0123456789abcdef"[c & 15];
1129 }
1130 *q++ = c;
1131 }
1132 *q = 0;
1133 return escaped;
1134 }
1135
1136 static void memory_region_do_init(MemoryRegion *mr,
1137 Object *owner,
1138 const char *name,
1139 uint64_t size)
1140 {
1141 mr->size = int128_make64(size);
1142 if (size == UINT64_MAX) {
1143 mr->size = int128_2_64();
1144 }
1145 mr->name = g_strdup(name);
1146 mr->owner = owner;
1147 mr->ram_block = NULL;
1148
1149 if (name) {
1150 char *escaped_name = memory_region_escape_name(name);
1151 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1152
1153 if (!owner) {
1154 owner = container_get(qdev_get_machine(), "/unattached");
1155 }
1156
1157 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1158 object_unref(OBJECT(mr));
1159 g_free(name_array);
1160 g_free(escaped_name);
1161 }
1162 }
1163
1164 void memory_region_init(MemoryRegion *mr,
1165 Object *owner,
1166 const char *name,
1167 uint64_t size)
1168 {
1169 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1170 memory_region_do_init(mr, owner, name, size);
1171 }
1172
1173 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1174 void *opaque, Error **errp)
1175 {
1176 MemoryRegion *mr = MEMORY_REGION(obj);
1177 uint64_t value = mr->addr;
1178
1179 visit_type_uint64(v, name, &value, errp);
1180 }
1181
1182 static void memory_region_get_container(Object *obj, Visitor *v,
1183 const char *name, void *opaque,
1184 Error **errp)
1185 {
1186 MemoryRegion *mr = MEMORY_REGION(obj);
1187 gchar *path = (gchar *)"";
1188
1189 if (mr->container) {
1190 path = object_get_canonical_path(OBJECT(mr->container));
1191 }
1192 visit_type_str(v, name, &path, errp);
1193 if (mr->container) {
1194 g_free(path);
1195 }
1196 }
1197
1198 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1199 const char *part)
1200 {
1201 MemoryRegion *mr = MEMORY_REGION(obj);
1202
1203 return OBJECT(mr->container);
1204 }
1205
1206 static void memory_region_get_priority(Object *obj, Visitor *v,
1207 const char *name, void *opaque,
1208 Error **errp)
1209 {
1210 MemoryRegion *mr = MEMORY_REGION(obj);
1211 int32_t value = mr->priority;
1212
1213 visit_type_int32(v, name, &value, errp);
1214 }
1215
1216 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1217 void *opaque, Error **errp)
1218 {
1219 MemoryRegion *mr = MEMORY_REGION(obj);
1220 uint64_t value = memory_region_size(mr);
1221
1222 visit_type_uint64(v, name, &value, errp);
1223 }
1224
1225 static void memory_region_initfn(Object *obj)
1226 {
1227 MemoryRegion *mr = MEMORY_REGION(obj);
1228 ObjectProperty *op;
1229
1230 mr->ops = &unassigned_mem_ops;
1231 mr->enabled = true;
1232 mr->romd_mode = true;
1233 mr->global_locking = true;
1234 mr->destructor = memory_region_destructor_none;
1235 QTAILQ_INIT(&mr->subregions);
1236 QTAILQ_INIT(&mr->coalesced);
1237
1238 op = object_property_add(OBJECT(mr), "container",
1239 "link<" TYPE_MEMORY_REGION ">",
1240 memory_region_get_container,
1241 NULL, /* memory_region_set_container */
1242 NULL, NULL, &error_abort);
1243 op->resolve = memory_region_resolve_container;
1244
1245 object_property_add(OBJECT(mr), "addr", "uint64",
1246 memory_region_get_addr,
1247 NULL, /* memory_region_set_addr */
1248 NULL, NULL, &error_abort);
1249 object_property_add(OBJECT(mr), "priority", "uint32",
1250 memory_region_get_priority,
1251 NULL, /* memory_region_set_priority */
1252 NULL, NULL, &error_abort);
1253 object_property_add(OBJECT(mr), "size", "uint64",
1254 memory_region_get_size,
1255 NULL, /* memory_region_set_size, */
1256 NULL, NULL, &error_abort);
1257 }
1258
1259 static void iommu_memory_region_initfn(Object *obj)
1260 {
1261 MemoryRegion *mr = MEMORY_REGION(obj);
1262
1263 mr->is_iommu = true;
1264 }
1265
1266 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1267 unsigned size)
1268 {
1269 #ifdef DEBUG_UNASSIGNED
1270 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1271 #endif
1272 return 0;
1273 }
1274
1275 static void unassigned_mem_write(void *opaque, hwaddr addr,
1276 uint64_t val, unsigned size)
1277 {
1278 #ifdef DEBUG_UNASSIGNED
1279 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1280 #endif
1281 }
1282
1283 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1284 unsigned size, bool is_write,
1285 MemTxAttrs attrs)
1286 {
1287 return false;
1288 }
1289
1290 const MemoryRegionOps unassigned_mem_ops = {
1291 .valid.accepts = unassigned_mem_accepts,
1292 .endianness = DEVICE_NATIVE_ENDIAN,
1293 };
1294
1295 static uint64_t memory_region_ram_device_read(void *opaque,
1296 hwaddr addr, unsigned size)
1297 {
1298 MemoryRegion *mr = opaque;
1299 uint64_t data = (uint64_t)~0;
1300
1301 switch (size) {
1302 case 1:
1303 data = *(uint8_t *)(mr->ram_block->host + addr);
1304 break;
1305 case 2:
1306 data = *(uint16_t *)(mr->ram_block->host + addr);
1307 break;
1308 case 4:
1309 data = *(uint32_t *)(mr->ram_block->host + addr);
1310 break;
1311 case 8:
1312 data = *(uint64_t *)(mr->ram_block->host + addr);
1313 break;
1314 }
1315
1316 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1317
1318 return data;
1319 }
1320
1321 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1322 uint64_t data, unsigned size)
1323 {
1324 MemoryRegion *mr = opaque;
1325
1326 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1327
1328 switch (size) {
1329 case 1:
1330 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1331 break;
1332 case 2:
1333 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1334 break;
1335 case 4:
1336 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1337 break;
1338 case 8:
1339 *(uint64_t *)(mr->ram_block->host + addr) = data;
1340 break;
1341 }
1342 }
1343
1344 static const MemoryRegionOps ram_device_mem_ops = {
1345 .read = memory_region_ram_device_read,
1346 .write = memory_region_ram_device_write,
1347 .endianness = DEVICE_HOST_ENDIAN,
1348 .valid = {
1349 .min_access_size = 1,
1350 .max_access_size = 8,
1351 .unaligned = true,
1352 },
1353 .impl = {
1354 .min_access_size = 1,
1355 .max_access_size = 8,
1356 .unaligned = true,
1357 },
1358 };
1359
1360 bool memory_region_access_valid(MemoryRegion *mr,
1361 hwaddr addr,
1362 unsigned size,
1363 bool is_write,
1364 MemTxAttrs attrs)
1365 {
1366 int access_size_min, access_size_max;
1367 int access_size, i;
1368
1369 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1370 return false;
1371 }
1372
1373 if (!mr->ops->valid.accepts) {
1374 return true;
1375 }
1376
1377 access_size_min = mr->ops->valid.min_access_size;
1378 if (!mr->ops->valid.min_access_size) {
1379 access_size_min = 1;
1380 }
1381
1382 access_size_max = mr->ops->valid.max_access_size;
1383 if (!mr->ops->valid.max_access_size) {
1384 access_size_max = 4;
1385 }
1386
1387 access_size = MAX(MIN(size, access_size_max), access_size_min);
1388 for (i = 0; i < size; i += access_size) {
1389 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1390 is_write, attrs)) {
1391 return false;
1392 }
1393 }
1394
1395 return true;
1396 }
1397
1398 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1399 hwaddr addr,
1400 uint64_t *pval,
1401 unsigned size,
1402 MemTxAttrs attrs)
1403 {
1404 *pval = 0;
1405
1406 if (mr->ops->read) {
1407 return access_with_adjusted_size(addr, pval, size,
1408 mr->ops->impl.min_access_size,
1409 mr->ops->impl.max_access_size,
1410 memory_region_read_accessor,
1411 mr, attrs);
1412 } else {
1413 return access_with_adjusted_size(addr, pval, size,
1414 mr->ops->impl.min_access_size,
1415 mr->ops->impl.max_access_size,
1416 memory_region_read_with_attrs_accessor,
1417 mr, attrs);
1418 }
1419 }
1420
1421 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1422 hwaddr addr,
1423 uint64_t *pval,
1424 MemOp op,
1425 MemTxAttrs attrs)
1426 {
1427 unsigned size = memop_size(op);
1428 MemTxResult r;
1429
1430 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1431 *pval = unassigned_mem_read(mr, addr, size);
1432 return MEMTX_DECODE_ERROR;
1433 }
1434
1435 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1436 adjust_endianness(mr, pval, op);
1437 return r;
1438 }
1439
1440 /* Return true if an eventfd was signalled */
1441 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1442 hwaddr addr,
1443 uint64_t data,
1444 unsigned size,
1445 MemTxAttrs attrs)
1446 {
1447 MemoryRegionIoeventfd ioeventfd = {
1448 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1449 .data = data,
1450 };
1451 unsigned i;
1452
1453 for (i = 0; i < mr->ioeventfd_nb; i++) {
1454 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1455 ioeventfd.e = mr->ioeventfds[i].e;
1456
1457 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1458 event_notifier_set(ioeventfd.e);
1459 return true;
1460 }
1461 }
1462
1463 return false;
1464 }
1465
1466 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1467 hwaddr addr,
1468 uint64_t data,
1469 MemOp op,
1470 MemTxAttrs attrs)
1471 {
1472 unsigned size = memop_size(op);
1473
1474 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1475 unassigned_mem_write(mr, addr, data, size);
1476 return MEMTX_DECODE_ERROR;
1477 }
1478
1479 adjust_endianness(mr, &data, op);
1480
1481 if ((!kvm_eventfds_enabled()) &&
1482 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1483 return MEMTX_OK;
1484 }
1485
1486 if (mr->ops->write) {
1487 return access_with_adjusted_size(addr, &data, size,
1488 mr->ops->impl.min_access_size,
1489 mr->ops->impl.max_access_size,
1490 memory_region_write_accessor, mr,
1491 attrs);
1492 } else {
1493 return
1494 access_with_adjusted_size(addr, &data, size,
1495 mr->ops->impl.min_access_size,
1496 mr->ops->impl.max_access_size,
1497 memory_region_write_with_attrs_accessor,
1498 mr, attrs);
1499 }
1500 }
1501
1502 void memory_region_init_io(MemoryRegion *mr,
1503 Object *owner,
1504 const MemoryRegionOps *ops,
1505 void *opaque,
1506 const char *name,
1507 uint64_t size)
1508 {
1509 memory_region_init(mr, owner, name, size);
1510 mr->ops = ops ? ops : &unassigned_mem_ops;
1511 mr->opaque = opaque;
1512 mr->terminates = true;
1513 }
1514
1515 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1516 Object *owner,
1517 const char *name,
1518 uint64_t size,
1519 Error **errp)
1520 {
1521 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1522 }
1523
1524 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1525 Object *owner,
1526 const char *name,
1527 uint64_t size,
1528 bool share,
1529 Error **errp)
1530 {
1531 Error *err = NULL;
1532 memory_region_init(mr, owner, name, size);
1533 mr->ram = true;
1534 mr->terminates = true;
1535 mr->destructor = memory_region_destructor_ram;
1536 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1537 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1538 if (err) {
1539 mr->size = int128_zero();
1540 object_unparent(OBJECT(mr));
1541 error_propagate(errp, err);
1542 }
1543 }
1544
1545 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1546 Object *owner,
1547 const char *name,
1548 uint64_t size,
1549 uint64_t max_size,
1550 void (*resized)(const char*,
1551 uint64_t length,
1552 void *host),
1553 Error **errp)
1554 {
1555 Error *err = NULL;
1556 memory_region_init(mr, owner, name, size);
1557 mr->ram = true;
1558 mr->terminates = true;
1559 mr->destructor = memory_region_destructor_ram;
1560 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1561 mr, &err);
1562 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1563 if (err) {
1564 mr->size = int128_zero();
1565 object_unparent(OBJECT(mr));
1566 error_propagate(errp, err);
1567 }
1568 }
1569
1570 #ifdef CONFIG_POSIX
1571 void memory_region_init_ram_from_file(MemoryRegion *mr,
1572 struct Object *owner,
1573 const char *name,
1574 uint64_t size,
1575 uint64_t align,
1576 uint32_t ram_flags,
1577 const char *path,
1578 Error **errp)
1579 {
1580 Error *err = NULL;
1581 memory_region_init(mr, owner, name, size);
1582 mr->ram = true;
1583 mr->terminates = true;
1584 mr->destructor = memory_region_destructor_ram;
1585 mr->align = align;
1586 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1587 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1588 if (err) {
1589 mr->size = int128_zero();
1590 object_unparent(OBJECT(mr));
1591 error_propagate(errp, err);
1592 }
1593 }
1594
1595 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1596 struct Object *owner,
1597 const char *name,
1598 uint64_t size,
1599 bool share,
1600 int fd,
1601 Error **errp)
1602 {
1603 Error *err = NULL;
1604 memory_region_init(mr, owner, name, size);
1605 mr->ram = true;
1606 mr->terminates = true;
1607 mr->destructor = memory_region_destructor_ram;
1608 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1609 share ? RAM_SHARED : 0,
1610 fd, &err);
1611 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1612 if (err) {
1613 mr->size = int128_zero();
1614 object_unparent(OBJECT(mr));
1615 error_propagate(errp, err);
1616 }
1617 }
1618 #endif
1619
1620 void memory_region_init_ram_ptr(MemoryRegion *mr,
1621 Object *owner,
1622 const char *name,
1623 uint64_t size,
1624 void *ptr)
1625 {
1626 memory_region_init(mr, owner, name, size);
1627 mr->ram = true;
1628 mr->terminates = true;
1629 mr->destructor = memory_region_destructor_ram;
1630 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1631
1632 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1633 assert(ptr != NULL);
1634 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1635 }
1636
1637 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1638 Object *owner,
1639 const char *name,
1640 uint64_t size,
1641 void *ptr)
1642 {
1643 memory_region_init(mr, owner, name, size);
1644 mr->ram = true;
1645 mr->terminates = true;
1646 mr->ram_device = true;
1647 mr->ops = &ram_device_mem_ops;
1648 mr->opaque = mr;
1649 mr->destructor = memory_region_destructor_ram;
1650 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1651 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1652 assert(ptr != NULL);
1653 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1654 }
1655
1656 void memory_region_init_alias(MemoryRegion *mr,
1657 Object *owner,
1658 const char *name,
1659 MemoryRegion *orig,
1660 hwaddr offset,
1661 uint64_t size)
1662 {
1663 memory_region_init(mr, owner, name, size);
1664 mr->alias = orig;
1665 mr->alias_offset = offset;
1666 }
1667
1668 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1669 struct Object *owner,
1670 const char *name,
1671 uint64_t size,
1672 Error **errp)
1673 {
1674 Error *err = NULL;
1675 memory_region_init(mr, owner, name, size);
1676 mr->ram = true;
1677 mr->readonly = true;
1678 mr->terminates = true;
1679 mr->destructor = memory_region_destructor_ram;
1680 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1681 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1682 if (err) {
1683 mr->size = int128_zero();
1684 object_unparent(OBJECT(mr));
1685 error_propagate(errp, err);
1686 }
1687 }
1688
1689 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1690 Object *owner,
1691 const MemoryRegionOps *ops,
1692 void *opaque,
1693 const char *name,
1694 uint64_t size,
1695 Error **errp)
1696 {
1697 Error *err = NULL;
1698 assert(ops);
1699 memory_region_init(mr, owner, name, size);
1700 mr->ops = ops;
1701 mr->opaque = opaque;
1702 mr->terminates = true;
1703 mr->rom_device = true;
1704 mr->destructor = memory_region_destructor_ram;
1705 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1706 if (err) {
1707 mr->size = int128_zero();
1708 object_unparent(OBJECT(mr));
1709 error_propagate(errp, err);
1710 }
1711 }
1712
1713 void memory_region_init_iommu(void *_iommu_mr,
1714 size_t instance_size,
1715 const char *mrtypename,
1716 Object *owner,
1717 const char *name,
1718 uint64_t size)
1719 {
1720 struct IOMMUMemoryRegion *iommu_mr;
1721 struct MemoryRegion *mr;
1722
1723 object_initialize(_iommu_mr, instance_size, mrtypename);
1724 mr = MEMORY_REGION(_iommu_mr);
1725 memory_region_do_init(mr, owner, name, size);
1726 iommu_mr = IOMMU_MEMORY_REGION(mr);
1727 mr->terminates = true; /* then re-forwards */
1728 QLIST_INIT(&iommu_mr->iommu_notify);
1729 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1730 }
1731
1732 static void memory_region_finalize(Object *obj)
1733 {
1734 MemoryRegion *mr = MEMORY_REGION(obj);
1735
1736 assert(!mr->container);
1737
1738 /* We know the region is not visible in any address space (it
1739 * does not have a container and cannot be a root either because
1740 * it has no references, so we can blindly clear mr->enabled.
1741 * memory_region_set_enabled instead could trigger a transaction
1742 * and cause an infinite loop.
1743 */
1744 mr->enabled = false;
1745 memory_region_transaction_begin();
1746 while (!QTAILQ_EMPTY(&mr->subregions)) {
1747 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1748 memory_region_del_subregion(mr, subregion);
1749 }
1750 memory_region_transaction_commit();
1751
1752 mr->destructor(mr);
1753 memory_region_clear_coalescing(mr);
1754 g_free((char *)mr->name);
1755 g_free(mr->ioeventfds);
1756 }
1757
1758 Object *memory_region_owner(MemoryRegion *mr)
1759 {
1760 Object *obj = OBJECT(mr);
1761 return obj->parent;
1762 }
1763
1764 void memory_region_ref(MemoryRegion *mr)
1765 {
1766 /* MMIO callbacks most likely will access data that belongs
1767 * to the owner, hence the need to ref/unref the owner whenever
1768 * the memory region is in use.
1769 *
1770 * The memory region is a child of its owner. As long as the
1771 * owner doesn't call unparent itself on the memory region,
1772 * ref-ing the owner will also keep the memory region alive.
1773 * Memory regions without an owner are supposed to never go away;
1774 * we do not ref/unref them because it slows down DMA sensibly.
1775 */
1776 if (mr && mr->owner) {
1777 object_ref(mr->owner);
1778 }
1779 }
1780
1781 void memory_region_unref(MemoryRegion *mr)
1782 {
1783 if (mr && mr->owner) {
1784 object_unref(mr->owner);
1785 }
1786 }
1787
1788 uint64_t memory_region_size(MemoryRegion *mr)
1789 {
1790 if (int128_eq(mr->size, int128_2_64())) {
1791 return UINT64_MAX;
1792 }
1793 return int128_get64(mr->size);
1794 }
1795
1796 const char *memory_region_name(const MemoryRegion *mr)
1797 {
1798 if (!mr->name) {
1799 ((MemoryRegion *)mr)->name =
1800 object_get_canonical_path_component(OBJECT(mr));
1801 }
1802 return mr->name;
1803 }
1804
1805 bool memory_region_is_ram_device(MemoryRegion *mr)
1806 {
1807 return mr->ram_device;
1808 }
1809
1810 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1811 {
1812 uint8_t mask = mr->dirty_log_mask;
1813 if (global_dirty_log && mr->ram_block) {
1814 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1815 }
1816 return mask;
1817 }
1818
1819 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1820 {
1821 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1822 }
1823
1824 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1825 Error **errp)
1826 {
1827 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1828 IOMMUNotifier *iommu_notifier;
1829 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1830 int ret = 0;
1831
1832 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1833 flags |= iommu_notifier->notifier_flags;
1834 }
1835
1836 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1837 ret = imrc->notify_flag_changed(iommu_mr,
1838 iommu_mr->iommu_notify_flags,
1839 flags, errp);
1840 }
1841
1842 if (!ret) {
1843 iommu_mr->iommu_notify_flags = flags;
1844 }
1845 return ret;
1846 }
1847
1848 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1849 IOMMUNotifier *n, Error **errp)
1850 {
1851 IOMMUMemoryRegion *iommu_mr;
1852 int ret;
1853
1854 if (mr->alias) {
1855 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1856 }
1857
1858 /* We need to register for at least one bitfield */
1859 iommu_mr = IOMMU_MEMORY_REGION(mr);
1860 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1861 assert(n->start <= n->end);
1862 assert(n->iommu_idx >= 0 &&
1863 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1864
1865 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1866 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1867 if (ret) {
1868 QLIST_REMOVE(n, node);
1869 }
1870 return ret;
1871 }
1872
1873 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1874 {
1875 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1876
1877 if (imrc->get_min_page_size) {
1878 return imrc->get_min_page_size(iommu_mr);
1879 }
1880 return TARGET_PAGE_SIZE;
1881 }
1882
1883 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1884 {
1885 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1886 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1887 hwaddr addr, granularity;
1888 IOMMUTLBEntry iotlb;
1889
1890 /* If the IOMMU has its own replay callback, override */
1891 if (imrc->replay) {
1892 imrc->replay(iommu_mr, n);
1893 return;
1894 }
1895
1896 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1897
1898 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1899 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1900 if (iotlb.perm != IOMMU_NONE) {
1901 n->notify(n, &iotlb);
1902 }
1903
1904 /* if (2^64 - MR size) < granularity, it's possible to get an
1905 * infinite loop here. This should catch such a wraparound */
1906 if ((addr + granularity) < addr) {
1907 break;
1908 }
1909 }
1910 }
1911
1912 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1913 IOMMUNotifier *n)
1914 {
1915 IOMMUMemoryRegion *iommu_mr;
1916
1917 if (mr->alias) {
1918 memory_region_unregister_iommu_notifier(mr->alias, n);
1919 return;
1920 }
1921 QLIST_REMOVE(n, node);
1922 iommu_mr = IOMMU_MEMORY_REGION(mr);
1923 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1924 }
1925
1926 void memory_region_notify_one(IOMMUNotifier *notifier,
1927 IOMMUTLBEntry *entry)
1928 {
1929 IOMMUNotifierFlag request_flags;
1930 hwaddr entry_end = entry->iova + entry->addr_mask;
1931
1932 /*
1933 * Skip the notification if the notification does not overlap
1934 * with registered range.
1935 */
1936 if (notifier->start > entry_end || notifier->end < entry->iova) {
1937 return;
1938 }
1939
1940 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1941
1942 if (entry->perm & IOMMU_RW) {
1943 request_flags = IOMMU_NOTIFIER_MAP;
1944 } else {
1945 request_flags = IOMMU_NOTIFIER_UNMAP;
1946 }
1947
1948 if (notifier->notifier_flags & request_flags) {
1949 notifier->notify(notifier, entry);
1950 }
1951 }
1952
1953 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1954 int iommu_idx,
1955 IOMMUTLBEntry entry)
1956 {
1957 IOMMUNotifier *iommu_notifier;
1958
1959 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1960
1961 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1962 if (iommu_notifier->iommu_idx == iommu_idx) {
1963 memory_region_notify_one(iommu_notifier, &entry);
1964 }
1965 }
1966 }
1967
1968 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1969 enum IOMMUMemoryRegionAttr attr,
1970 void *data)
1971 {
1972 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1973
1974 if (!imrc->get_attr) {
1975 return -EINVAL;
1976 }
1977
1978 return imrc->get_attr(iommu_mr, attr, data);
1979 }
1980
1981 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1982 MemTxAttrs attrs)
1983 {
1984 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1985
1986 if (!imrc->attrs_to_index) {
1987 return 0;
1988 }
1989
1990 return imrc->attrs_to_index(iommu_mr, attrs);
1991 }
1992
1993 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
1994 {
1995 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1996
1997 if (!imrc->num_indexes) {
1998 return 1;
1999 }
2000
2001 return imrc->num_indexes(iommu_mr);
2002 }
2003
2004 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2005 {
2006 uint8_t mask = 1 << client;
2007 uint8_t old_logging;
2008
2009 assert(client == DIRTY_MEMORY_VGA);
2010 old_logging = mr->vga_logging_count;
2011 mr->vga_logging_count += log ? 1 : -1;
2012 if (!!old_logging == !!mr->vga_logging_count) {
2013 return;
2014 }
2015
2016 memory_region_transaction_begin();
2017 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2018 memory_region_update_pending |= mr->enabled;
2019 memory_region_transaction_commit();
2020 }
2021
2022 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2023 hwaddr size)
2024 {
2025 assert(mr->ram_block);
2026 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2027 size,
2028 memory_region_get_dirty_log_mask(mr));
2029 }
2030
2031 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2032 {
2033 MemoryListener *listener;
2034 AddressSpace *as;
2035 FlatView *view;
2036 FlatRange *fr;
2037
2038 /* If the same address space has multiple log_sync listeners, we
2039 * visit that address space's FlatView multiple times. But because
2040 * log_sync listeners are rare, it's still cheaper than walking each
2041 * address space once.
2042 */
2043 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2044 if (!listener->log_sync) {
2045 continue;
2046 }
2047 as = listener->address_space;
2048 view = address_space_get_flatview(as);
2049 FOR_EACH_FLAT_RANGE(fr, view) {
2050 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2051 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2052 listener->log_sync(listener, &mrs);
2053 }
2054 }
2055 flatview_unref(view);
2056 }
2057 }
2058
2059 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2060 hwaddr len)
2061 {
2062 MemoryRegionSection mrs;
2063 MemoryListener *listener;
2064 AddressSpace *as;
2065 FlatView *view;
2066 FlatRange *fr;
2067 hwaddr sec_start, sec_end, sec_size;
2068
2069 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2070 if (!listener->log_clear) {
2071 continue;
2072 }
2073 as = listener->address_space;
2074 view = address_space_get_flatview(as);
2075 FOR_EACH_FLAT_RANGE(fr, view) {
2076 if (!fr->dirty_log_mask || fr->mr != mr) {
2077 /*
2078 * Clear dirty bitmap operation only applies to those
2079 * regions whose dirty logging is at least enabled
2080 */
2081 continue;
2082 }
2083
2084 mrs = section_from_flat_range(fr, view);
2085
2086 sec_start = MAX(mrs.offset_within_region, start);
2087 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2088 sec_end = MIN(sec_end, start + len);
2089
2090 if (sec_start >= sec_end) {
2091 /*
2092 * If this memory region section has no intersection
2093 * with the requested range, skip.
2094 */
2095 continue;
2096 }
2097
2098 /* Valid case; shrink the section if needed */
2099 mrs.offset_within_address_space +=
2100 sec_start - mrs.offset_within_region;
2101 mrs.offset_within_region = sec_start;
2102 sec_size = sec_end - sec_start;
2103 mrs.size = int128_make64(sec_size);
2104 listener->log_clear(listener, &mrs);
2105 }
2106 flatview_unref(view);
2107 }
2108 }
2109
2110 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2111 hwaddr addr,
2112 hwaddr size,
2113 unsigned client)
2114 {
2115 DirtyBitmapSnapshot *snapshot;
2116 assert(mr->ram_block);
2117 memory_region_sync_dirty_bitmap(mr);
2118 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2119 memory_global_after_dirty_log_sync();
2120 return snapshot;
2121 }
2122
2123 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2124 hwaddr addr, hwaddr size)
2125 {
2126 assert(mr->ram_block);
2127 return cpu_physical_memory_snapshot_get_dirty(snap,
2128 memory_region_get_ram_addr(mr) + addr, size);
2129 }
2130
2131 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2132 {
2133 if (mr->readonly != readonly) {
2134 memory_region_transaction_begin();
2135 mr->readonly = readonly;
2136 memory_region_update_pending |= mr->enabled;
2137 memory_region_transaction_commit();
2138 }
2139 }
2140
2141 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2142 {
2143 if (mr->nonvolatile != nonvolatile) {
2144 memory_region_transaction_begin();
2145 mr->nonvolatile = nonvolatile;
2146 memory_region_update_pending |= mr->enabled;
2147 memory_region_transaction_commit();
2148 }
2149 }
2150
2151 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2152 {
2153 if (mr->romd_mode != romd_mode) {
2154 memory_region_transaction_begin();
2155 mr->romd_mode = romd_mode;
2156 memory_region_update_pending |= mr->enabled;
2157 memory_region_transaction_commit();
2158 }
2159 }
2160
2161 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2162 hwaddr size, unsigned client)
2163 {
2164 assert(mr->ram_block);
2165 cpu_physical_memory_test_and_clear_dirty(
2166 memory_region_get_ram_addr(mr) + addr, size, client);
2167 }
2168
2169 int memory_region_get_fd(MemoryRegion *mr)
2170 {
2171 int fd;
2172
2173 RCU_READ_LOCK_GUARD();
2174 while (mr->alias) {
2175 mr = mr->alias;
2176 }
2177 fd = mr->ram_block->fd;
2178
2179 return fd;
2180 }
2181
2182 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2183 {
2184 void *ptr;
2185 uint64_t offset = 0;
2186
2187 RCU_READ_LOCK_GUARD();
2188 while (mr->alias) {
2189 offset += mr->alias_offset;
2190 mr = mr->alias;
2191 }
2192 assert(mr->ram_block);
2193 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2194
2195 return ptr;
2196 }
2197
2198 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2199 {
2200 RAMBlock *block;
2201
2202 block = qemu_ram_block_from_host(ptr, false, offset);
2203 if (!block) {
2204 return NULL;
2205 }
2206
2207 return block->mr;
2208 }
2209
2210 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2211 {
2212 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2213 }
2214
2215 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2216 {
2217 assert(mr->ram_block);
2218
2219 qemu_ram_resize(mr->ram_block, newsize, errp);
2220 }
2221
2222
2223 void memory_region_do_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2224 {
2225 /*
2226 * Might be extended case needed to cover
2227 * different types of memory regions
2228 */
2229 if (mr->ram_block && mr->dirty_log_mask) {
2230 qemu_ram_writeback(mr->ram_block, addr, size);
2231 }
2232 }
2233
2234 /*
2235 * Call proper memory listeners about the change on the newly
2236 * added/removed CoalescedMemoryRange.
2237 */
2238 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2239 CoalescedMemoryRange *cmr,
2240 bool add)
2241 {
2242 AddressSpace *as;
2243 FlatView *view;
2244 FlatRange *fr;
2245
2246 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2247 view = address_space_get_flatview(as);
2248 FOR_EACH_FLAT_RANGE(fr, view) {
2249 if (fr->mr == mr) {
2250 flat_range_coalesced_io_notify(fr, as, cmr, add);
2251 }
2252 }
2253 flatview_unref(view);
2254 }
2255 }
2256
2257 void memory_region_set_coalescing(MemoryRegion *mr)
2258 {
2259 memory_region_clear_coalescing(mr);
2260 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2261 }
2262
2263 void memory_region_add_coalescing(MemoryRegion *mr,
2264 hwaddr offset,
2265 uint64_t size)
2266 {
2267 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2268
2269 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2270 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2271 memory_region_update_coalesced_range(mr, cmr, true);
2272 memory_region_set_flush_coalesced(mr);
2273 }
2274
2275 void memory_region_clear_coalescing(MemoryRegion *mr)
2276 {
2277 CoalescedMemoryRange *cmr;
2278
2279 if (QTAILQ_EMPTY(&mr->coalesced)) {
2280 return;
2281 }
2282
2283 qemu_flush_coalesced_mmio_buffer();
2284 mr->flush_coalesced_mmio = false;
2285
2286 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2287 cmr = QTAILQ_FIRST(&mr->coalesced);
2288 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2289 memory_region_update_coalesced_range(mr, cmr, false);
2290 g_free(cmr);
2291 }
2292 }
2293
2294 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2295 {
2296 mr->flush_coalesced_mmio = true;
2297 }
2298
2299 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2300 {
2301 qemu_flush_coalesced_mmio_buffer();
2302 if (QTAILQ_EMPTY(&mr->coalesced)) {
2303 mr->flush_coalesced_mmio = false;
2304 }
2305 }
2306
2307 void memory_region_clear_global_locking(MemoryRegion *mr)
2308 {
2309 mr->global_locking = false;
2310 }
2311
2312 static bool userspace_eventfd_warning;
2313
2314 void memory_region_add_eventfd(MemoryRegion *mr,
2315 hwaddr addr,
2316 unsigned size,
2317 bool match_data,
2318 uint64_t data,
2319 EventNotifier *e)
2320 {
2321 MemoryRegionIoeventfd mrfd = {
2322 .addr.start = int128_make64(addr),
2323 .addr.size = int128_make64(size),
2324 .match_data = match_data,
2325 .data = data,
2326 .e = e,
2327 };
2328 unsigned i;
2329
2330 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2331 userspace_eventfd_warning))) {
2332 userspace_eventfd_warning = true;
2333 error_report("Using eventfd without MMIO binding in KVM. "
2334 "Suboptimal performance expected");
2335 }
2336
2337 if (size) {
2338 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2339 }
2340 memory_region_transaction_begin();
2341 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2342 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2343 break;
2344 }
2345 }
2346 ++mr->ioeventfd_nb;
2347 mr->ioeventfds = g_realloc(mr->ioeventfds,
2348 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2349 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2350 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2351 mr->ioeventfds[i] = mrfd;
2352 ioeventfd_update_pending |= mr->enabled;
2353 memory_region_transaction_commit();
2354 }
2355
2356 void memory_region_del_eventfd(MemoryRegion *mr,
2357 hwaddr addr,
2358 unsigned size,
2359 bool match_data,
2360 uint64_t data,
2361 EventNotifier *e)
2362 {
2363 MemoryRegionIoeventfd mrfd = {
2364 .addr.start = int128_make64(addr),
2365 .addr.size = int128_make64(size),
2366 .match_data = match_data,
2367 .data = data,
2368 .e = e,
2369 };
2370 unsigned i;
2371
2372 if (size) {
2373 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2374 }
2375 memory_region_transaction_begin();
2376 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2377 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2378 break;
2379 }
2380 }
2381 assert(i != mr->ioeventfd_nb);
2382 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2383 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2384 --mr->ioeventfd_nb;
2385 mr->ioeventfds = g_realloc(mr->ioeventfds,
2386 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2387 ioeventfd_update_pending |= mr->enabled;
2388 memory_region_transaction_commit();
2389 }
2390
2391 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2392 {
2393 MemoryRegion *mr = subregion->container;
2394 MemoryRegion *other;
2395
2396 memory_region_transaction_begin();
2397
2398 memory_region_ref(subregion);
2399 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2400 if (subregion->priority >= other->priority) {
2401 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2402 goto done;
2403 }
2404 }
2405 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2406 done:
2407 memory_region_update_pending |= mr->enabled && subregion->enabled;
2408 memory_region_transaction_commit();
2409 }
2410
2411 static void memory_region_add_subregion_common(MemoryRegion *mr,
2412 hwaddr offset,
2413 MemoryRegion *subregion)
2414 {
2415 assert(!subregion->container);
2416 subregion->container = mr;
2417 subregion->addr = offset;
2418 memory_region_update_container_subregions(subregion);
2419 }
2420
2421 void memory_region_add_subregion(MemoryRegion *mr,
2422 hwaddr offset,
2423 MemoryRegion *subregion)
2424 {
2425 subregion->priority = 0;
2426 memory_region_add_subregion_common(mr, offset, subregion);
2427 }
2428
2429 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2430 hwaddr offset,
2431 MemoryRegion *subregion,
2432 int priority)
2433 {
2434 subregion->priority = priority;
2435 memory_region_add_subregion_common(mr, offset, subregion);
2436 }
2437
2438 void memory_region_del_subregion(MemoryRegion *mr,
2439 MemoryRegion *subregion)
2440 {
2441 memory_region_transaction_begin();
2442 assert(subregion->container == mr);
2443 subregion->container = NULL;
2444 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2445 memory_region_unref(subregion);
2446 memory_region_update_pending |= mr->enabled && subregion->enabled;
2447 memory_region_transaction_commit();
2448 }
2449
2450 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2451 {
2452 if (enabled == mr->enabled) {
2453 return;
2454 }
2455 memory_region_transaction_begin();
2456 mr->enabled = enabled;
2457 memory_region_update_pending = true;
2458 memory_region_transaction_commit();
2459 }
2460
2461 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2462 {
2463 Int128 s = int128_make64(size);
2464
2465 if (size == UINT64_MAX) {
2466 s = int128_2_64();
2467 }
2468 if (int128_eq(s, mr->size)) {
2469 return;
2470 }
2471 memory_region_transaction_begin();
2472 mr->size = s;
2473 memory_region_update_pending = true;
2474 memory_region_transaction_commit();
2475 }
2476
2477 static void memory_region_readd_subregion(MemoryRegion *mr)
2478 {
2479 MemoryRegion *container = mr->container;
2480
2481 if (container) {
2482 memory_region_transaction_begin();
2483 memory_region_ref(mr);
2484 memory_region_del_subregion(container, mr);
2485 mr->container = container;
2486 memory_region_update_container_subregions(mr);
2487 memory_region_unref(mr);
2488 memory_region_transaction_commit();
2489 }
2490 }
2491
2492 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2493 {
2494 if (addr != mr->addr) {
2495 mr->addr = addr;
2496 memory_region_readd_subregion(mr);
2497 }
2498 }
2499
2500 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2501 {
2502 assert(mr->alias);
2503
2504 if (offset == mr->alias_offset) {
2505 return;
2506 }
2507
2508 memory_region_transaction_begin();
2509 mr->alias_offset = offset;
2510 memory_region_update_pending |= mr->enabled;
2511 memory_region_transaction_commit();
2512 }
2513
2514 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2515 {
2516 return mr->align;
2517 }
2518
2519 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2520 {
2521 const AddrRange *addr = addr_;
2522 const FlatRange *fr = fr_;
2523
2524 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2525 return -1;
2526 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2527 return 1;
2528 }
2529 return 0;
2530 }
2531
2532 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2533 {
2534 return bsearch(&addr, view->ranges, view->nr,
2535 sizeof(FlatRange), cmp_flatrange_addr);
2536 }
2537
2538 bool memory_region_is_mapped(MemoryRegion *mr)
2539 {
2540 return mr->container ? true : false;
2541 }
2542
2543 /* Same as memory_region_find, but it does not add a reference to the
2544 * returned region. It must be called from an RCU critical section.
2545 */
2546 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2547 hwaddr addr, uint64_t size)
2548 {
2549 MemoryRegionSection ret = { .mr = NULL };
2550 MemoryRegion *root;
2551 AddressSpace *as;
2552 AddrRange range;
2553 FlatView *view;
2554 FlatRange *fr;
2555
2556 addr += mr->addr;
2557 for (root = mr; root->container; ) {
2558 root = root->container;
2559 addr += root->addr;
2560 }
2561
2562 as = memory_region_to_address_space(root);
2563 if (!as) {
2564 return ret;
2565 }
2566 range = addrrange_make(int128_make64(addr), int128_make64(size));
2567
2568 view = address_space_to_flatview(as);
2569 fr = flatview_lookup(view, range);
2570 if (!fr) {
2571 return ret;
2572 }
2573
2574 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2575 --fr;
2576 }
2577
2578 ret.mr = fr->mr;
2579 ret.fv = view;
2580 range = addrrange_intersection(range, fr->addr);
2581 ret.offset_within_region = fr->offset_in_region;
2582 ret.offset_within_region += int128_get64(int128_sub(range.start,
2583 fr->addr.start));
2584 ret.size = range.size;
2585 ret.offset_within_address_space = int128_get64(range.start);
2586 ret.readonly = fr->readonly;
2587 ret.nonvolatile = fr->nonvolatile;
2588 return ret;
2589 }
2590
2591 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2592 hwaddr addr, uint64_t size)
2593 {
2594 MemoryRegionSection ret;
2595 RCU_READ_LOCK_GUARD();
2596 ret = memory_region_find_rcu(mr, addr, size);
2597 if (ret.mr) {
2598 memory_region_ref(ret.mr);
2599 }
2600 return ret;
2601 }
2602
2603 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2604 {
2605 MemoryRegion *mr;
2606
2607 RCU_READ_LOCK_GUARD();
2608 mr = memory_region_find_rcu(container, addr, 1).mr;
2609 return mr && mr != container;
2610 }
2611
2612 void memory_global_dirty_log_sync(void)
2613 {
2614 memory_region_sync_dirty_bitmap(NULL);
2615 }
2616
2617 void memory_global_after_dirty_log_sync(void)
2618 {
2619 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2620 }
2621
2622 static VMChangeStateEntry *vmstate_change;
2623
2624 void memory_global_dirty_log_start(void)
2625 {
2626 if (vmstate_change) {
2627 qemu_del_vm_change_state_handler(vmstate_change);
2628 vmstate_change = NULL;
2629 }
2630
2631 global_dirty_log = true;
2632
2633 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2634
2635 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2636 memory_region_transaction_begin();
2637 memory_region_update_pending = true;
2638 memory_region_transaction_commit();
2639 }
2640
2641 static void memory_global_dirty_log_do_stop(void)
2642 {
2643 global_dirty_log = false;
2644
2645 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2646 memory_region_transaction_begin();
2647 memory_region_update_pending = true;
2648 memory_region_transaction_commit();
2649
2650 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2651 }
2652
2653 static void memory_vm_change_state_handler(void *opaque, int running,
2654 RunState state)
2655 {
2656 if (running) {
2657 memory_global_dirty_log_do_stop();
2658
2659 if (vmstate_change) {
2660 qemu_del_vm_change_state_handler(vmstate_change);
2661 vmstate_change = NULL;
2662 }
2663 }
2664 }
2665
2666 void memory_global_dirty_log_stop(void)
2667 {
2668 if (!runstate_is_running()) {
2669 if (vmstate_change) {
2670 return;
2671 }
2672 vmstate_change = qemu_add_vm_change_state_handler(
2673 memory_vm_change_state_handler, NULL);
2674 return;
2675 }
2676
2677 memory_global_dirty_log_do_stop();
2678 }
2679
2680 static void listener_add_address_space(MemoryListener *listener,
2681 AddressSpace *as)
2682 {
2683 FlatView *view;
2684 FlatRange *fr;
2685
2686 if (listener->begin) {
2687 listener->begin(listener);
2688 }
2689 if (global_dirty_log) {
2690 if (listener->log_global_start) {
2691 listener->log_global_start(listener);
2692 }
2693 }
2694
2695 view = address_space_get_flatview(as);
2696 FOR_EACH_FLAT_RANGE(fr, view) {
2697 MemoryRegionSection section = section_from_flat_range(fr, view);
2698
2699 if (listener->region_add) {
2700 listener->region_add(listener, &section);
2701 }
2702 if (fr->dirty_log_mask && listener->log_start) {
2703 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2704 }
2705 }
2706 if (listener->commit) {
2707 listener->commit(listener);
2708 }
2709 flatview_unref(view);
2710 }
2711
2712 static void listener_del_address_space(MemoryListener *listener,
2713 AddressSpace *as)
2714 {
2715 FlatView *view;
2716 FlatRange *fr;
2717
2718 if (listener->begin) {
2719 listener->begin(listener);
2720 }
2721 view = address_space_get_flatview(as);
2722 FOR_EACH_FLAT_RANGE(fr, view) {
2723 MemoryRegionSection section = section_from_flat_range(fr, view);
2724
2725 if (fr->dirty_log_mask && listener->log_stop) {
2726 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2727 }
2728 if (listener->region_del) {
2729 listener->region_del(listener, &section);
2730 }
2731 }
2732 if (listener->commit) {
2733 listener->commit(listener);
2734 }
2735 flatview_unref(view);
2736 }
2737
2738 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2739 {
2740 MemoryListener *other = NULL;
2741
2742 listener->address_space = as;
2743 if (QTAILQ_EMPTY(&memory_listeners)
2744 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2745 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2746 } else {
2747 QTAILQ_FOREACH(other, &memory_listeners, link) {
2748 if (listener->priority < other->priority) {
2749 break;
2750 }
2751 }
2752 QTAILQ_INSERT_BEFORE(other, listener, link);
2753 }
2754
2755 if (QTAILQ_EMPTY(&as->listeners)
2756 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2757 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2758 } else {
2759 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2760 if (listener->priority < other->priority) {
2761 break;
2762 }
2763 }
2764 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2765 }
2766
2767 listener_add_address_space(listener, as);
2768 }
2769
2770 void memory_listener_unregister(MemoryListener *listener)
2771 {
2772 if (!listener->address_space) {
2773 return;
2774 }
2775
2776 listener_del_address_space(listener, listener->address_space);
2777 QTAILQ_REMOVE(&memory_listeners, listener, link);
2778 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2779 listener->address_space = NULL;
2780 }
2781
2782 void address_space_remove_listeners(AddressSpace *as)
2783 {
2784 while (!QTAILQ_EMPTY(&as->listeners)) {
2785 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2786 }
2787 }
2788
2789 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2790 {
2791 memory_region_ref(root);
2792 as->root = root;
2793 as->current_map = NULL;
2794 as->ioeventfd_nb = 0;
2795 as->ioeventfds = NULL;
2796 QTAILQ_INIT(&as->listeners);
2797 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2798 as->name = g_strdup(name ? name : "anonymous");
2799 address_space_update_topology(as);
2800 address_space_update_ioeventfds(as);
2801 }
2802
2803 static void do_address_space_destroy(AddressSpace *as)
2804 {
2805 assert(QTAILQ_EMPTY(&as->listeners));
2806
2807 flatview_unref(as->current_map);
2808 g_free(as->name);
2809 g_free(as->ioeventfds);
2810 memory_region_unref(as->root);
2811 }
2812
2813 void address_space_destroy(AddressSpace *as)
2814 {
2815 MemoryRegion *root = as->root;
2816
2817 /* Flush out anything from MemoryListeners listening in on this */
2818 memory_region_transaction_begin();
2819 as->root = NULL;
2820 memory_region_transaction_commit();
2821 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2822
2823 /* At this point, as->dispatch and as->current_map are dummy
2824 * entries that the guest should never use. Wait for the old
2825 * values to expire before freeing the data.
2826 */
2827 as->root = root;
2828 call_rcu(as, do_address_space_destroy, rcu);
2829 }
2830
2831 static const char *memory_region_type(MemoryRegion *mr)
2832 {
2833 if (memory_region_is_ram_device(mr)) {
2834 return "ramd";
2835 } else if (memory_region_is_romd(mr)) {
2836 return "romd";
2837 } else if (memory_region_is_rom(mr)) {
2838 return "rom";
2839 } else if (memory_region_is_ram(mr)) {
2840 return "ram";
2841 } else {
2842 return "i/o";
2843 }
2844 }
2845
2846 typedef struct MemoryRegionList MemoryRegionList;
2847
2848 struct MemoryRegionList {
2849 const MemoryRegion *mr;
2850 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2851 };
2852
2853 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2854
2855 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2856 int128_sub((size), int128_one())) : 0)
2857 #define MTREE_INDENT " "
2858
2859 static void mtree_expand_owner(const char *label, Object *obj)
2860 {
2861 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2862
2863 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2864 if (dev && dev->id) {
2865 qemu_printf(" id=%s", dev->id);
2866 } else {
2867 gchar *canonical_path = object_get_canonical_path(obj);
2868 if (canonical_path) {
2869 qemu_printf(" path=%s", canonical_path);
2870 g_free(canonical_path);
2871 } else {
2872 qemu_printf(" type=%s", object_get_typename(obj));
2873 }
2874 }
2875 qemu_printf("}");
2876 }
2877
2878 static void mtree_print_mr_owner(const MemoryRegion *mr)
2879 {
2880 Object *owner = mr->owner;
2881 Object *parent = memory_region_owner((MemoryRegion *)mr);
2882
2883 if (!owner && !parent) {
2884 qemu_printf(" orphan");
2885 return;
2886 }
2887 if (owner) {
2888 mtree_expand_owner("owner", owner);
2889 }
2890 if (parent && parent != owner) {
2891 mtree_expand_owner("parent", parent);
2892 }
2893 }
2894
2895 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2896 hwaddr base,
2897 MemoryRegionListHead *alias_print_queue,
2898 bool owner)
2899 {
2900 MemoryRegionList *new_ml, *ml, *next_ml;
2901 MemoryRegionListHead submr_print_queue;
2902 const MemoryRegion *submr;
2903 unsigned int i;
2904 hwaddr cur_start, cur_end;
2905
2906 if (!mr) {
2907 return;
2908 }
2909
2910 for (i = 0; i < level; i++) {
2911 qemu_printf(MTREE_INDENT);
2912 }
2913
2914 cur_start = base + mr->addr;
2915 cur_end = cur_start + MR_SIZE(mr->size);
2916
2917 /*
2918 * Try to detect overflow of memory region. This should never
2919 * happen normally. When it happens, we dump something to warn the
2920 * user who is observing this.
2921 */
2922 if (cur_start < base || cur_end < cur_start) {
2923 qemu_printf("[DETECTED OVERFLOW!] ");
2924 }
2925
2926 if (mr->alias) {
2927 MemoryRegionList *ml;
2928 bool found = false;
2929
2930 /* check if the alias is already in the queue */
2931 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2932 if (ml->mr == mr->alias) {
2933 found = true;
2934 }
2935 }
2936
2937 if (!found) {
2938 ml = g_new(MemoryRegionList, 1);
2939 ml->mr = mr->alias;
2940 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2941 }
2942 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2943 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2944 "-" TARGET_FMT_plx "%s",
2945 cur_start, cur_end,
2946 mr->priority,
2947 mr->nonvolatile ? "nv-" : "",
2948 memory_region_type((MemoryRegion *)mr),
2949 memory_region_name(mr),
2950 memory_region_name(mr->alias),
2951 mr->alias_offset,
2952 mr->alias_offset + MR_SIZE(mr->size),
2953 mr->enabled ? "" : " [disabled]");
2954 if (owner) {
2955 mtree_print_mr_owner(mr);
2956 }
2957 } else {
2958 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2959 " (prio %d, %s%s): %s%s",
2960 cur_start, cur_end,
2961 mr->priority,
2962 mr->nonvolatile ? "nv-" : "",
2963 memory_region_type((MemoryRegion *)mr),
2964 memory_region_name(mr),
2965 mr->enabled ? "" : " [disabled]");
2966 if (owner) {
2967 mtree_print_mr_owner(mr);
2968 }
2969 }
2970 qemu_printf("\n");
2971
2972 QTAILQ_INIT(&submr_print_queue);
2973
2974 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2975 new_ml = g_new(MemoryRegionList, 1);
2976 new_ml->mr = submr;
2977 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2978 if (new_ml->mr->addr < ml->mr->addr ||
2979 (new_ml->mr->addr == ml->mr->addr &&
2980 new_ml->mr->priority > ml->mr->priority)) {
2981 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2982 new_ml = NULL;
2983 break;
2984 }
2985 }
2986 if (new_ml) {
2987 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2988 }
2989 }
2990
2991 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2992 mtree_print_mr(ml->mr, level + 1, cur_start,
2993 alias_print_queue, owner);
2994 }
2995
2996 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2997 g_free(ml);
2998 }
2999 }
3000
3001 struct FlatViewInfo {
3002 int counter;
3003 bool dispatch_tree;
3004 bool owner;
3005 AccelClass *ac;
3006 };
3007
3008 static void mtree_print_flatview(gpointer key, gpointer value,
3009 gpointer user_data)
3010 {
3011 FlatView *view = key;
3012 GArray *fv_address_spaces = value;
3013 struct FlatViewInfo *fvi = user_data;
3014 FlatRange *range = &view->ranges[0];
3015 MemoryRegion *mr;
3016 int n = view->nr;
3017 int i;
3018 AddressSpace *as;
3019
3020 qemu_printf("FlatView #%d\n", fvi->counter);
3021 ++fvi->counter;
3022
3023 for (i = 0; i < fv_address_spaces->len; ++i) {
3024 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3025 qemu_printf(" AS \"%s\", root: %s",
3026 as->name, memory_region_name(as->root));
3027 if (as->root->alias) {
3028 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3029 }
3030 qemu_printf("\n");
3031 }
3032
3033 qemu_printf(" Root memory region: %s\n",
3034 view->root ? memory_region_name(view->root) : "(none)");
3035
3036 if (n <= 0) {
3037 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3038 return;
3039 }
3040
3041 while (n--) {
3042 mr = range->mr;
3043 if (range->offset_in_region) {
3044 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3045 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3046 int128_get64(range->addr.start),
3047 int128_get64(range->addr.start)
3048 + MR_SIZE(range->addr.size),
3049 mr->priority,
3050 range->nonvolatile ? "nv-" : "",
3051 range->readonly ? "rom" : memory_region_type(mr),
3052 memory_region_name(mr),
3053 range->offset_in_region);
3054 } else {
3055 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3056 " (prio %d, %s%s): %s",
3057 int128_get64(range->addr.start),
3058 int128_get64(range->addr.start)
3059 + MR_SIZE(range->addr.size),
3060 mr->priority,
3061 range->nonvolatile ? "nv-" : "",
3062 range->readonly ? "rom" : memory_region_type(mr),
3063 memory_region_name(mr));
3064 }
3065 if (fvi->owner) {
3066 mtree_print_mr_owner(mr);
3067 }
3068
3069 if (fvi->ac) {
3070 for (i = 0; i < fv_address_spaces->len; ++i) {
3071 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3072 if (fvi->ac->has_memory(current_machine, as,
3073 int128_get64(range->addr.start),
3074 MR_SIZE(range->addr.size) + 1)) {
3075 qemu_printf(" %s", fvi->ac->name);
3076 }
3077 }
3078 }
3079 qemu_printf("\n");
3080 range++;
3081 }
3082
3083 #if !defined(CONFIG_USER_ONLY)
3084 if (fvi->dispatch_tree && view->root) {
3085 mtree_print_dispatch(view->dispatch, view->root);
3086 }
3087 #endif
3088
3089 qemu_printf("\n");
3090 }
3091
3092 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3093 gpointer user_data)
3094 {
3095 FlatView *view = key;
3096 GArray *fv_address_spaces = value;
3097
3098 g_array_unref(fv_address_spaces);
3099 flatview_unref(view);
3100
3101 return true;
3102 }
3103
3104 void mtree_info(bool flatview, bool dispatch_tree, bool owner)
3105 {
3106 MemoryRegionListHead ml_head;
3107 MemoryRegionList *ml, *ml2;
3108 AddressSpace *as;
3109
3110 if (flatview) {
3111 FlatView *view;
3112 struct FlatViewInfo fvi = {
3113 .counter = 0,
3114 .dispatch_tree = dispatch_tree,
3115 .owner = owner,
3116 };
3117 GArray *fv_address_spaces;
3118 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3119 AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3120
3121 if (ac->has_memory) {
3122 fvi.ac = ac;
3123 }
3124
3125 /* Gather all FVs in one table */
3126 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3127 view = address_space_get_flatview(as);
3128
3129 fv_address_spaces = g_hash_table_lookup(views, view);
3130 if (!fv_address_spaces) {
3131 fv_address_spaces = g_array_new(false, false, sizeof(as));
3132 g_hash_table_insert(views, view, fv_address_spaces);
3133 }
3134
3135 g_array_append_val(fv_address_spaces, as);
3136 }
3137
3138 /* Print */
3139 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3140
3141 /* Free */
3142 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3143 g_hash_table_unref(views);
3144
3145 return;
3146 }
3147
3148 QTAILQ_INIT(&ml_head);
3149
3150 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3151 qemu_printf("address-space: %s\n", as->name);
3152 mtree_print_mr(as->root, 1, 0, &ml_head, owner);
3153 qemu_printf("\n");
3154 }
3155
3156 /* print aliased regions */
3157 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3158 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3159 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner);
3160 qemu_printf("\n");
3161 }
3162
3163 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3164 g_free(ml);
3165 }
3166 }
3167
3168 void memory_region_init_ram(MemoryRegion *mr,
3169 struct Object *owner,
3170 const char *name,
3171 uint64_t size,
3172 Error **errp)
3173 {
3174 DeviceState *owner_dev;
3175 Error *err = NULL;
3176
3177 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3178 if (err) {
3179 error_propagate(errp, err);
3180 return;
3181 }
3182 /* This will assert if owner is neither NULL nor a DeviceState.
3183 * We only want the owner here for the purposes of defining a
3184 * unique name for migration. TODO: Ideally we should implement
3185 * a naming scheme for Objects which are not DeviceStates, in
3186 * which case we can relax this restriction.
3187 */
3188 owner_dev = DEVICE(owner);
3189 vmstate_register_ram(mr, owner_dev);
3190 }
3191
3192 void memory_region_init_rom(MemoryRegion *mr,
3193 struct Object *owner,
3194 const char *name,
3195 uint64_t size,
3196 Error **errp)
3197 {
3198 DeviceState *owner_dev;
3199 Error *err = NULL;
3200
3201 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3202 if (err) {
3203 error_propagate(errp, err);
3204 return;
3205 }
3206 /* This will assert if owner is neither NULL nor a DeviceState.
3207 * We only want the owner here for the purposes of defining a
3208 * unique name for migration. TODO: Ideally we should implement
3209 * a naming scheme for Objects which are not DeviceStates, in
3210 * which case we can relax this restriction.
3211 */
3212 owner_dev = DEVICE(owner);
3213 vmstate_register_ram(mr, owner_dev);
3214 }
3215
3216 void memory_region_init_rom_device(MemoryRegion *mr,
3217 struct Object *owner,
3218 const MemoryRegionOps *ops,
3219 void *opaque,
3220 const char *name,
3221 uint64_t size,
3222 Error **errp)
3223 {
3224 DeviceState *owner_dev;
3225 Error *err = NULL;
3226
3227 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3228 name, size, &err);
3229 if (err) {
3230 error_propagate(errp, err);
3231 return;
3232 }
3233 /* This will assert if owner is neither NULL nor a DeviceState.
3234 * We only want the owner here for the purposes of defining a
3235 * unique name for migration. TODO: Ideally we should implement
3236 * a naming scheme for Objects which are not DeviceStates, in
3237 * which case we can relax this restriction.
3238 */
3239 owner_dev = DEVICE(owner);
3240 vmstate_register_ram(mr, owner_dev);
3241 }
3242
3243 static const TypeInfo memory_region_info = {
3244 .parent = TYPE_OBJECT,
3245 .name = TYPE_MEMORY_REGION,
3246 .class_size = sizeof(MemoryRegionClass),
3247 .instance_size = sizeof(MemoryRegion),
3248 .instance_init = memory_region_initfn,
3249 .instance_finalize = memory_region_finalize,
3250 };
3251
3252 static const TypeInfo iommu_memory_region_info = {
3253 .parent = TYPE_MEMORY_REGION,
3254 .name = TYPE_IOMMU_MEMORY_REGION,
3255 .class_size = sizeof(IOMMUMemoryRegionClass),
3256 .instance_size = sizeof(IOMMUMemoryRegion),
3257 .instance_init = iommu_memory_region_initfn,
3258 .abstract = true,
3259 };
3260
3261 static void memory_register_types(void)
3262 {
3263 type_register_static(&memory_region_info);
3264 type_register_static(&iommu_memory_region_info);
3265 }
3266
3267 type_init(memory_register_types)