qom/object: Use common get/set uint helpers
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "cpu.h"
19 #include "exec/memory.h"
20 #include "exec/address-spaces.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/qemu-print.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/tcg.h"
34 #include "sysemu/accel.h"
35 #include "hw/boards.h"
36 #include "migration/vmstate.h"
37
38 //#define DEBUG_UNASSIGNED
39
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 bool global_dirty_log;
44
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static GHashTable *flat_views;
52
53 typedef struct AddrRange AddrRange;
54
55 /*
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
58 */
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
62 };
63
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66 return (AddrRange) { start, size };
67 }
68
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73
74 static Int128 addrrange_end(AddrRange r)
75 {
76 return int128_add(r.start, r.size);
77 }
78
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81 int128_addto(&range.start, delta);
82 return range;
83 }
84
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
89 }
90
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
95 }
96
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
102 }
103
104 enum ListenerDirection { Forward, Reverse };
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
109 \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
115 } \
116 } \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 default: \
126 abort(); \
127 } \
128 } while (0)
129
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
133 \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
139 } \
140 } \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
146 } \
147 } \
148 break; \
149 default: \
150 abort(); \
151 } \
152 } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
161
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
172 };
173
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
176 {
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
194 }
195 }
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
200 }
201 return false;
202 }
203
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
206 {
207 return !memory_region_ioeventfd_before(a, b)
208 && !memory_region_ioeventfd_before(b, a);
209 }
210
211 /* Range of memory in the global map. Addresses are absolute. */
212 struct FlatRange {
213 MemoryRegion *mr;
214 hwaddr offset_in_region;
215 AddrRange addr;
216 uint8_t dirty_log_mask;
217 bool romd_mode;
218 bool readonly;
219 bool nonvolatile;
220 };
221
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
224
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange *fr, FlatView *fv)
227 {
228 return (MemoryRegionSection) {
229 .mr = fr->mr,
230 .fv = fv,
231 .offset_within_region = fr->offset_in_region,
232 .size = fr->addr.size,
233 .offset_within_address_space = int128_get64(fr->addr.start),
234 .readonly = fr->readonly,
235 .nonvolatile = fr->nonvolatile,
236 };
237 }
238
239 static bool flatrange_equal(FlatRange *a, FlatRange *b)
240 {
241 return a->mr == b->mr
242 && addrrange_equal(a->addr, b->addr)
243 && a->offset_in_region == b->offset_in_region
244 && a->romd_mode == b->romd_mode
245 && a->readonly == b->readonly
246 && a->nonvolatile == b->nonvolatile;
247 }
248
249 static FlatView *flatview_new(MemoryRegion *mr_root)
250 {
251 FlatView *view;
252
253 view = g_new0(FlatView, 1);
254 view->ref = 1;
255 view->root = mr_root;
256 memory_region_ref(mr_root);
257 trace_flatview_new(view, mr_root);
258
259 return view;
260 }
261
262 /* Insert a range into a given position. Caller is responsible for maintaining
263 * sorting order.
264 */
265 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
266 {
267 if (view->nr == view->nr_allocated) {
268 view->nr_allocated = MAX(2 * view->nr, 10);
269 view->ranges = g_realloc(view->ranges,
270 view->nr_allocated * sizeof(*view->ranges));
271 }
272 memmove(view->ranges + pos + 1, view->ranges + pos,
273 (view->nr - pos) * sizeof(FlatRange));
274 view->ranges[pos] = *range;
275 memory_region_ref(range->mr);
276 ++view->nr;
277 }
278
279 static void flatview_destroy(FlatView *view)
280 {
281 int i;
282
283 trace_flatview_destroy(view, view->root);
284 if (view->dispatch) {
285 address_space_dispatch_free(view->dispatch);
286 }
287 for (i = 0; i < view->nr; i++) {
288 memory_region_unref(view->ranges[i].mr);
289 }
290 g_free(view->ranges);
291 memory_region_unref(view->root);
292 g_free(view);
293 }
294
295 static bool flatview_ref(FlatView *view)
296 {
297 return atomic_fetch_inc_nonzero(&view->ref) > 0;
298 }
299
300 void flatview_unref(FlatView *view)
301 {
302 if (atomic_fetch_dec(&view->ref) == 1) {
303 trace_flatview_destroy_rcu(view, view->root);
304 assert(view->root);
305 call_rcu(view, flatview_destroy, rcu);
306 }
307 }
308
309 static bool can_merge(FlatRange *r1, FlatRange *r2)
310 {
311 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
312 && r1->mr == r2->mr
313 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
314 r1->addr.size),
315 int128_make64(r2->offset_in_region))
316 && r1->dirty_log_mask == r2->dirty_log_mask
317 && r1->romd_mode == r2->romd_mode
318 && r1->readonly == r2->readonly
319 && r1->nonvolatile == r2->nonvolatile;
320 }
321
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
324 {
325 unsigned i, j, k;
326
327 i = 0;
328 while (i < view->nr) {
329 j = i + 1;
330 while (j < view->nr
331 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333 ++j;
334 }
335 ++i;
336 for (k = i; k < j; k++) {
337 memory_region_unref(view->ranges[k].mr);
338 }
339 memmove(&view->ranges[i], &view->ranges[j],
340 (view->nr - j) * sizeof(view->ranges[j]));
341 view->nr -= j - i;
342 }
343 }
344
345 static bool memory_region_big_endian(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
349 #else
350 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
355 {
356 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
357 switch (op & MO_SIZE) {
358 case MO_8:
359 break;
360 case MO_16:
361 *data = bswap16(*data);
362 break;
363 case MO_32:
364 *data = bswap32(*data);
365 break;
366 case MO_64:
367 *data = bswap64(*data);
368 break;
369 default:
370 g_assert_not_reached();
371 }
372 }
373 }
374
375 static inline void memory_region_shift_read_access(uint64_t *value,
376 signed shift,
377 uint64_t mask,
378 uint64_t tmp)
379 {
380 if (shift >= 0) {
381 *value |= (tmp & mask) << shift;
382 } else {
383 *value |= (tmp & mask) >> -shift;
384 }
385 }
386
387 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
388 signed shift,
389 uint64_t mask)
390 {
391 uint64_t tmp;
392
393 if (shift >= 0) {
394 tmp = (*value >> shift) & mask;
395 } else {
396 tmp = (*value << -shift) & mask;
397 }
398
399 return tmp;
400 }
401
402 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
403 {
404 MemoryRegion *root;
405 hwaddr abs_addr = offset;
406
407 abs_addr += mr->addr;
408 for (root = mr; root->container; ) {
409 root = root->container;
410 abs_addr += root->addr;
411 }
412
413 return abs_addr;
414 }
415
416 static int get_cpu_index(void)
417 {
418 if (current_cpu) {
419 return current_cpu->cpu_index;
420 }
421 return -1;
422 }
423
424 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
425 hwaddr addr,
426 uint64_t *value,
427 unsigned size,
428 signed shift,
429 uint64_t mask,
430 MemTxAttrs attrs)
431 {
432 uint64_t tmp;
433
434 tmp = mr->ops->read(mr->opaque, addr, size);
435 if (mr->subpage) {
436 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
437 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
438 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
439 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
440 }
441 memory_region_shift_read_access(value, shift, mask, tmp);
442 return MEMTX_OK;
443 }
444
445 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
446 hwaddr addr,
447 uint64_t *value,
448 unsigned size,
449 signed shift,
450 uint64_t mask,
451 MemTxAttrs attrs)
452 {
453 uint64_t tmp = 0;
454 MemTxResult r;
455
456 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
457 if (mr->subpage) {
458 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
459 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
460 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
461 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
462 }
463 memory_region_shift_read_access(value, shift, mask, tmp);
464 return r;
465 }
466
467 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
468 hwaddr addr,
469 uint64_t *value,
470 unsigned size,
471 signed shift,
472 uint64_t mask,
473 MemTxAttrs attrs)
474 {
475 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
476
477 if (mr->subpage) {
478 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
479 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
480 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
481 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
482 }
483 mr->ops->write(mr->opaque, addr, tmp, size);
484 return MEMTX_OK;
485 }
486
487 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
488 hwaddr addr,
489 uint64_t *value,
490 unsigned size,
491 signed shift,
492 uint64_t mask,
493 MemTxAttrs attrs)
494 {
495 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
496
497 if (mr->subpage) {
498 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
499 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
500 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
501 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
502 }
503 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
504 }
505
506 static MemTxResult access_with_adjusted_size(hwaddr addr,
507 uint64_t *value,
508 unsigned size,
509 unsigned access_size_min,
510 unsigned access_size_max,
511 MemTxResult (*access_fn)
512 (MemoryRegion *mr,
513 hwaddr addr,
514 uint64_t *value,
515 unsigned size,
516 signed shift,
517 uint64_t mask,
518 MemTxAttrs attrs),
519 MemoryRegion *mr,
520 MemTxAttrs attrs)
521 {
522 uint64_t access_mask;
523 unsigned access_size;
524 unsigned i;
525 MemTxResult r = MEMTX_OK;
526
527 if (!access_size_min) {
528 access_size_min = 1;
529 }
530 if (!access_size_max) {
531 access_size_max = 4;
532 }
533
534 /* FIXME: support unaligned access? */
535 access_size = MAX(MIN(size, access_size_max), access_size_min);
536 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
537 if (memory_region_big_endian(mr)) {
538 for (i = 0; i < size; i += access_size) {
539 r |= access_fn(mr, addr + i, value, access_size,
540 (size - access_size - i) * 8, access_mask, attrs);
541 }
542 } else {
543 for (i = 0; i < size; i += access_size) {
544 r |= access_fn(mr, addr + i, value, access_size, i * 8,
545 access_mask, attrs);
546 }
547 }
548 return r;
549 }
550
551 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
552 {
553 AddressSpace *as;
554
555 while (mr->container) {
556 mr = mr->container;
557 }
558 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
559 if (mr == as->root) {
560 return as;
561 }
562 }
563 return NULL;
564 }
565
566 /* Render a memory region into the global view. Ranges in @view obscure
567 * ranges in @mr.
568 */
569 static void render_memory_region(FlatView *view,
570 MemoryRegion *mr,
571 Int128 base,
572 AddrRange clip,
573 bool readonly,
574 bool nonvolatile)
575 {
576 MemoryRegion *subregion;
577 unsigned i;
578 hwaddr offset_in_region;
579 Int128 remain;
580 Int128 now;
581 FlatRange fr;
582 AddrRange tmp;
583
584 if (!mr->enabled) {
585 return;
586 }
587
588 int128_addto(&base, int128_make64(mr->addr));
589 readonly |= mr->readonly;
590 nonvolatile |= mr->nonvolatile;
591
592 tmp = addrrange_make(base, mr->size);
593
594 if (!addrrange_intersects(tmp, clip)) {
595 return;
596 }
597
598 clip = addrrange_intersection(tmp, clip);
599
600 if (mr->alias) {
601 int128_subfrom(&base, int128_make64(mr->alias->addr));
602 int128_subfrom(&base, int128_make64(mr->alias_offset));
603 render_memory_region(view, mr->alias, base, clip,
604 readonly, nonvolatile);
605 return;
606 }
607
608 /* Render subregions in priority order. */
609 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
610 render_memory_region(view, subregion, base, clip,
611 readonly, nonvolatile);
612 }
613
614 if (!mr->terminates) {
615 return;
616 }
617
618 offset_in_region = int128_get64(int128_sub(clip.start, base));
619 base = clip.start;
620 remain = clip.size;
621
622 fr.mr = mr;
623 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
624 fr.romd_mode = mr->romd_mode;
625 fr.readonly = readonly;
626 fr.nonvolatile = nonvolatile;
627
628 /* Render the region itself into any gaps left by the current view. */
629 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
630 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
631 continue;
632 }
633 if (int128_lt(base, view->ranges[i].addr.start)) {
634 now = int128_min(remain,
635 int128_sub(view->ranges[i].addr.start, base));
636 fr.offset_in_region = offset_in_region;
637 fr.addr = addrrange_make(base, now);
638 flatview_insert(view, i, &fr);
639 ++i;
640 int128_addto(&base, now);
641 offset_in_region += int128_get64(now);
642 int128_subfrom(&remain, now);
643 }
644 now = int128_sub(int128_min(int128_add(base, remain),
645 addrrange_end(view->ranges[i].addr)),
646 base);
647 int128_addto(&base, now);
648 offset_in_region += int128_get64(now);
649 int128_subfrom(&remain, now);
650 }
651 if (int128_nz(remain)) {
652 fr.offset_in_region = offset_in_region;
653 fr.addr = addrrange_make(base, remain);
654 flatview_insert(view, i, &fr);
655 }
656 }
657
658 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
659 {
660 while (mr->enabled) {
661 if (mr->alias) {
662 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
663 /* The alias is included in its entirety. Use it as
664 * the "real" root, so that we can share more FlatViews.
665 */
666 mr = mr->alias;
667 continue;
668 }
669 } else if (!mr->terminates) {
670 unsigned int found = 0;
671 MemoryRegion *child, *next = NULL;
672 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
673 if (child->enabled) {
674 if (++found > 1) {
675 next = NULL;
676 break;
677 }
678 if (!child->addr && int128_ge(mr->size, child->size)) {
679 /* A child is included in its entirety. If it's the only
680 * enabled one, use it in the hope of finding an alias down the
681 * way. This will also let us share FlatViews.
682 */
683 next = child;
684 }
685 }
686 }
687 if (found == 0) {
688 return NULL;
689 }
690 if (next) {
691 mr = next;
692 continue;
693 }
694 }
695
696 return mr;
697 }
698
699 return NULL;
700 }
701
702 /* Render a memory topology into a list of disjoint absolute ranges. */
703 static FlatView *generate_memory_topology(MemoryRegion *mr)
704 {
705 int i;
706 FlatView *view;
707
708 view = flatview_new(mr);
709
710 if (mr) {
711 render_memory_region(view, mr, int128_zero(),
712 addrrange_make(int128_zero(), int128_2_64()),
713 false, false);
714 }
715 flatview_simplify(view);
716
717 view->dispatch = address_space_dispatch_new(view);
718 for (i = 0; i < view->nr; i++) {
719 MemoryRegionSection mrs =
720 section_from_flat_range(&view->ranges[i], view);
721 flatview_add_to_dispatch(view, &mrs);
722 }
723 address_space_dispatch_compact(view->dispatch);
724 g_hash_table_replace(flat_views, mr, view);
725
726 return view;
727 }
728
729 static void address_space_add_del_ioeventfds(AddressSpace *as,
730 MemoryRegionIoeventfd *fds_new,
731 unsigned fds_new_nb,
732 MemoryRegionIoeventfd *fds_old,
733 unsigned fds_old_nb)
734 {
735 unsigned iold, inew;
736 MemoryRegionIoeventfd *fd;
737 MemoryRegionSection section;
738
739 /* Generate a symmetric difference of the old and new fd sets, adding
740 * and deleting as necessary.
741 */
742
743 iold = inew = 0;
744 while (iold < fds_old_nb || inew < fds_new_nb) {
745 if (iold < fds_old_nb
746 && (inew == fds_new_nb
747 || memory_region_ioeventfd_before(&fds_old[iold],
748 &fds_new[inew]))) {
749 fd = &fds_old[iold];
750 section = (MemoryRegionSection) {
751 .fv = address_space_to_flatview(as),
752 .offset_within_address_space = int128_get64(fd->addr.start),
753 .size = fd->addr.size,
754 };
755 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
756 fd->match_data, fd->data, fd->e);
757 ++iold;
758 } else if (inew < fds_new_nb
759 && (iold == fds_old_nb
760 || memory_region_ioeventfd_before(&fds_new[inew],
761 &fds_old[iold]))) {
762 fd = &fds_new[inew];
763 section = (MemoryRegionSection) {
764 .fv = address_space_to_flatview(as),
765 .offset_within_address_space = int128_get64(fd->addr.start),
766 .size = fd->addr.size,
767 };
768 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
769 fd->match_data, fd->data, fd->e);
770 ++inew;
771 } else {
772 ++iold;
773 ++inew;
774 }
775 }
776 }
777
778 FlatView *address_space_get_flatview(AddressSpace *as)
779 {
780 FlatView *view;
781
782 RCU_READ_LOCK_GUARD();
783 do {
784 view = address_space_to_flatview(as);
785 /* If somebody has replaced as->current_map concurrently,
786 * flatview_ref returns false.
787 */
788 } while (!flatview_ref(view));
789 return view;
790 }
791
792 static void address_space_update_ioeventfds(AddressSpace *as)
793 {
794 FlatView *view;
795 FlatRange *fr;
796 unsigned ioeventfd_nb = 0;
797 unsigned ioeventfd_max;
798 MemoryRegionIoeventfd *ioeventfds;
799 AddrRange tmp;
800 unsigned i;
801
802 /*
803 * It is likely that the number of ioeventfds hasn't changed much, so use
804 * the previous size as the starting value, with some headroom to avoid
805 * gratuitous reallocations.
806 */
807 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
808 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
809
810 view = address_space_get_flatview(as);
811 FOR_EACH_FLAT_RANGE(fr, view) {
812 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
813 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
814 int128_sub(fr->addr.start,
815 int128_make64(fr->offset_in_region)));
816 if (addrrange_intersects(fr->addr, tmp)) {
817 ++ioeventfd_nb;
818 if (ioeventfd_nb > ioeventfd_max) {
819 ioeventfd_max = MAX(ioeventfd_max * 2, 4);
820 ioeventfds = g_realloc(ioeventfds,
821 ioeventfd_max * sizeof(*ioeventfds));
822 }
823 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
824 ioeventfds[ioeventfd_nb-1].addr = tmp;
825 }
826 }
827 }
828
829 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
830 as->ioeventfds, as->ioeventfd_nb);
831
832 g_free(as->ioeventfds);
833 as->ioeventfds = ioeventfds;
834 as->ioeventfd_nb = ioeventfd_nb;
835 flatview_unref(view);
836 }
837
838 /*
839 * Notify the memory listeners about the coalesced IO change events of
840 * range `cmr'. Only the part that has intersection of the specified
841 * FlatRange will be sent.
842 */
843 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
844 CoalescedMemoryRange *cmr, bool add)
845 {
846 AddrRange tmp;
847
848 tmp = addrrange_shift(cmr->addr,
849 int128_sub(fr->addr.start,
850 int128_make64(fr->offset_in_region)));
851 if (!addrrange_intersects(tmp, fr->addr)) {
852 return;
853 }
854 tmp = addrrange_intersection(tmp, fr->addr);
855
856 if (add) {
857 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
858 int128_get64(tmp.start),
859 int128_get64(tmp.size));
860 } else {
861 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
862 int128_get64(tmp.start),
863 int128_get64(tmp.size));
864 }
865 }
866
867 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
868 {
869 CoalescedMemoryRange *cmr;
870
871 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
872 flat_range_coalesced_io_notify(fr, as, cmr, false);
873 }
874 }
875
876 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
877 {
878 MemoryRegion *mr = fr->mr;
879 CoalescedMemoryRange *cmr;
880
881 if (QTAILQ_EMPTY(&mr->coalesced)) {
882 return;
883 }
884
885 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
886 flat_range_coalesced_io_notify(fr, as, cmr, true);
887 }
888 }
889
890 static void address_space_update_topology_pass(AddressSpace *as,
891 const FlatView *old_view,
892 const FlatView *new_view,
893 bool adding)
894 {
895 unsigned iold, inew;
896 FlatRange *frold, *frnew;
897
898 /* Generate a symmetric difference of the old and new memory maps.
899 * Kill ranges in the old map, and instantiate ranges in the new map.
900 */
901 iold = inew = 0;
902 while (iold < old_view->nr || inew < new_view->nr) {
903 if (iold < old_view->nr) {
904 frold = &old_view->ranges[iold];
905 } else {
906 frold = NULL;
907 }
908 if (inew < new_view->nr) {
909 frnew = &new_view->ranges[inew];
910 } else {
911 frnew = NULL;
912 }
913
914 if (frold
915 && (!frnew
916 || int128_lt(frold->addr.start, frnew->addr.start)
917 || (int128_eq(frold->addr.start, frnew->addr.start)
918 && !flatrange_equal(frold, frnew)))) {
919 /* In old but not in new, or in both but attributes changed. */
920
921 if (!adding) {
922 flat_range_coalesced_io_del(frold, as);
923 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
924 }
925
926 ++iold;
927 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
928 /* In both and unchanged (except logging may have changed) */
929
930 if (adding) {
931 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
932 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
933 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
934 frold->dirty_log_mask,
935 frnew->dirty_log_mask);
936 }
937 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
938 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
939 frold->dirty_log_mask,
940 frnew->dirty_log_mask);
941 }
942 }
943
944 ++iold;
945 ++inew;
946 } else {
947 /* In new */
948
949 if (adding) {
950 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
951 flat_range_coalesced_io_add(frnew, as);
952 }
953
954 ++inew;
955 }
956 }
957 }
958
959 static void flatviews_init(void)
960 {
961 static FlatView *empty_view;
962
963 if (flat_views) {
964 return;
965 }
966
967 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
968 (GDestroyNotify) flatview_unref);
969 if (!empty_view) {
970 empty_view = generate_memory_topology(NULL);
971 /* We keep it alive forever in the global variable. */
972 flatview_ref(empty_view);
973 } else {
974 g_hash_table_replace(flat_views, NULL, empty_view);
975 flatview_ref(empty_view);
976 }
977 }
978
979 static void flatviews_reset(void)
980 {
981 AddressSpace *as;
982
983 if (flat_views) {
984 g_hash_table_unref(flat_views);
985 flat_views = NULL;
986 }
987 flatviews_init();
988
989 /* Render unique FVs */
990 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
991 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
992
993 if (g_hash_table_lookup(flat_views, physmr)) {
994 continue;
995 }
996
997 generate_memory_topology(physmr);
998 }
999 }
1000
1001 static void address_space_set_flatview(AddressSpace *as)
1002 {
1003 FlatView *old_view = address_space_to_flatview(as);
1004 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1005 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1006
1007 assert(new_view);
1008
1009 if (old_view == new_view) {
1010 return;
1011 }
1012
1013 if (old_view) {
1014 flatview_ref(old_view);
1015 }
1016
1017 flatview_ref(new_view);
1018
1019 if (!QTAILQ_EMPTY(&as->listeners)) {
1020 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1021
1022 if (!old_view2) {
1023 old_view2 = &tmpview;
1024 }
1025 address_space_update_topology_pass(as, old_view2, new_view, false);
1026 address_space_update_topology_pass(as, old_view2, new_view, true);
1027 }
1028
1029 /* Writes are protected by the BQL. */
1030 atomic_rcu_set(&as->current_map, new_view);
1031 if (old_view) {
1032 flatview_unref(old_view);
1033 }
1034
1035 /* Note that all the old MemoryRegions are still alive up to this
1036 * point. This relieves most MemoryListeners from the need to
1037 * ref/unref the MemoryRegions they get---unless they use them
1038 * outside the iothread mutex, in which case precise reference
1039 * counting is necessary.
1040 */
1041 if (old_view) {
1042 flatview_unref(old_view);
1043 }
1044 }
1045
1046 static void address_space_update_topology(AddressSpace *as)
1047 {
1048 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1049
1050 flatviews_init();
1051 if (!g_hash_table_lookup(flat_views, physmr)) {
1052 generate_memory_topology(physmr);
1053 }
1054 address_space_set_flatview(as);
1055 }
1056
1057 void memory_region_transaction_begin(void)
1058 {
1059 qemu_flush_coalesced_mmio_buffer();
1060 ++memory_region_transaction_depth;
1061 }
1062
1063 void memory_region_transaction_commit(void)
1064 {
1065 AddressSpace *as;
1066
1067 assert(memory_region_transaction_depth);
1068 assert(qemu_mutex_iothread_locked());
1069
1070 --memory_region_transaction_depth;
1071 if (!memory_region_transaction_depth) {
1072 if (memory_region_update_pending) {
1073 flatviews_reset();
1074
1075 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1076
1077 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1078 address_space_set_flatview(as);
1079 address_space_update_ioeventfds(as);
1080 }
1081 memory_region_update_pending = false;
1082 ioeventfd_update_pending = false;
1083 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1084 } else if (ioeventfd_update_pending) {
1085 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1086 address_space_update_ioeventfds(as);
1087 }
1088 ioeventfd_update_pending = false;
1089 }
1090 }
1091 }
1092
1093 static void memory_region_destructor_none(MemoryRegion *mr)
1094 {
1095 }
1096
1097 static void memory_region_destructor_ram(MemoryRegion *mr)
1098 {
1099 qemu_ram_free(mr->ram_block);
1100 }
1101
1102 static bool memory_region_need_escape(char c)
1103 {
1104 return c == '/' || c == '[' || c == '\\' || c == ']';
1105 }
1106
1107 static char *memory_region_escape_name(const char *name)
1108 {
1109 const char *p;
1110 char *escaped, *q;
1111 uint8_t c;
1112 size_t bytes = 0;
1113
1114 for (p = name; *p; p++) {
1115 bytes += memory_region_need_escape(*p) ? 4 : 1;
1116 }
1117 if (bytes == p - name) {
1118 return g_memdup(name, bytes + 1);
1119 }
1120
1121 escaped = g_malloc(bytes + 1);
1122 for (p = name, q = escaped; *p; p++) {
1123 c = *p;
1124 if (unlikely(memory_region_need_escape(c))) {
1125 *q++ = '\\';
1126 *q++ = 'x';
1127 *q++ = "0123456789abcdef"[c >> 4];
1128 c = "0123456789abcdef"[c & 15];
1129 }
1130 *q++ = c;
1131 }
1132 *q = 0;
1133 return escaped;
1134 }
1135
1136 static void memory_region_do_init(MemoryRegion *mr,
1137 Object *owner,
1138 const char *name,
1139 uint64_t size)
1140 {
1141 mr->size = int128_make64(size);
1142 if (size == UINT64_MAX) {
1143 mr->size = int128_2_64();
1144 }
1145 mr->name = g_strdup(name);
1146 mr->owner = owner;
1147 mr->ram_block = NULL;
1148
1149 if (name) {
1150 char *escaped_name = memory_region_escape_name(name);
1151 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1152
1153 if (!owner) {
1154 owner = container_get(qdev_get_machine(), "/unattached");
1155 }
1156
1157 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1158 object_unref(OBJECT(mr));
1159 g_free(name_array);
1160 g_free(escaped_name);
1161 }
1162 }
1163
1164 void memory_region_init(MemoryRegion *mr,
1165 Object *owner,
1166 const char *name,
1167 uint64_t size)
1168 {
1169 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1170 memory_region_do_init(mr, owner, name, size);
1171 }
1172
1173 static void memory_region_get_container(Object *obj, Visitor *v,
1174 const char *name, void *opaque,
1175 Error **errp)
1176 {
1177 MemoryRegion *mr = MEMORY_REGION(obj);
1178 gchar *path = (gchar *)"";
1179
1180 if (mr->container) {
1181 path = object_get_canonical_path(OBJECT(mr->container));
1182 }
1183 visit_type_str(v, name, &path, errp);
1184 if (mr->container) {
1185 g_free(path);
1186 }
1187 }
1188
1189 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1190 const char *part)
1191 {
1192 MemoryRegion *mr = MEMORY_REGION(obj);
1193
1194 return OBJECT(mr->container);
1195 }
1196
1197 static void memory_region_get_priority(Object *obj, Visitor *v,
1198 const char *name, void *opaque,
1199 Error **errp)
1200 {
1201 MemoryRegion *mr = MEMORY_REGION(obj);
1202 int32_t value = mr->priority;
1203
1204 visit_type_int32(v, name, &value, errp);
1205 }
1206
1207 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1208 void *opaque, Error **errp)
1209 {
1210 MemoryRegion *mr = MEMORY_REGION(obj);
1211 uint64_t value = memory_region_size(mr);
1212
1213 visit_type_uint64(v, name, &value, errp);
1214 }
1215
1216 static void memory_region_initfn(Object *obj)
1217 {
1218 MemoryRegion *mr = MEMORY_REGION(obj);
1219 ObjectProperty *op;
1220
1221 mr->ops = &unassigned_mem_ops;
1222 mr->enabled = true;
1223 mr->romd_mode = true;
1224 mr->global_locking = true;
1225 mr->destructor = memory_region_destructor_none;
1226 QTAILQ_INIT(&mr->subregions);
1227 QTAILQ_INIT(&mr->coalesced);
1228
1229 op = object_property_add(OBJECT(mr), "container",
1230 "link<" TYPE_MEMORY_REGION ">",
1231 memory_region_get_container,
1232 NULL, /* memory_region_set_container */
1233 NULL, NULL, &error_abort);
1234 op->resolve = memory_region_resolve_container;
1235
1236 object_property_add_uint64_ptr(OBJECT(mr), "addr",
1237 &mr->addr, OBJ_PROP_FLAG_READ, &error_abort);
1238 object_property_add(OBJECT(mr), "priority", "uint32",
1239 memory_region_get_priority,
1240 NULL, /* memory_region_set_priority */
1241 NULL, NULL, &error_abort);
1242 object_property_add(OBJECT(mr), "size", "uint64",
1243 memory_region_get_size,
1244 NULL, /* memory_region_set_size, */
1245 NULL, NULL, &error_abort);
1246 }
1247
1248 static void iommu_memory_region_initfn(Object *obj)
1249 {
1250 MemoryRegion *mr = MEMORY_REGION(obj);
1251
1252 mr->is_iommu = true;
1253 }
1254
1255 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1256 unsigned size)
1257 {
1258 #ifdef DEBUG_UNASSIGNED
1259 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1260 #endif
1261 return 0;
1262 }
1263
1264 static void unassigned_mem_write(void *opaque, hwaddr addr,
1265 uint64_t val, unsigned size)
1266 {
1267 #ifdef DEBUG_UNASSIGNED
1268 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1269 #endif
1270 }
1271
1272 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1273 unsigned size, bool is_write,
1274 MemTxAttrs attrs)
1275 {
1276 return false;
1277 }
1278
1279 const MemoryRegionOps unassigned_mem_ops = {
1280 .valid.accepts = unassigned_mem_accepts,
1281 .endianness = DEVICE_NATIVE_ENDIAN,
1282 };
1283
1284 static uint64_t memory_region_ram_device_read(void *opaque,
1285 hwaddr addr, unsigned size)
1286 {
1287 MemoryRegion *mr = opaque;
1288 uint64_t data = (uint64_t)~0;
1289
1290 switch (size) {
1291 case 1:
1292 data = *(uint8_t *)(mr->ram_block->host + addr);
1293 break;
1294 case 2:
1295 data = *(uint16_t *)(mr->ram_block->host + addr);
1296 break;
1297 case 4:
1298 data = *(uint32_t *)(mr->ram_block->host + addr);
1299 break;
1300 case 8:
1301 data = *(uint64_t *)(mr->ram_block->host + addr);
1302 break;
1303 }
1304
1305 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1306
1307 return data;
1308 }
1309
1310 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1311 uint64_t data, unsigned size)
1312 {
1313 MemoryRegion *mr = opaque;
1314
1315 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1316
1317 switch (size) {
1318 case 1:
1319 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1320 break;
1321 case 2:
1322 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1323 break;
1324 case 4:
1325 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1326 break;
1327 case 8:
1328 *(uint64_t *)(mr->ram_block->host + addr) = data;
1329 break;
1330 }
1331 }
1332
1333 static const MemoryRegionOps ram_device_mem_ops = {
1334 .read = memory_region_ram_device_read,
1335 .write = memory_region_ram_device_write,
1336 .endianness = DEVICE_HOST_ENDIAN,
1337 .valid = {
1338 .min_access_size = 1,
1339 .max_access_size = 8,
1340 .unaligned = true,
1341 },
1342 .impl = {
1343 .min_access_size = 1,
1344 .max_access_size = 8,
1345 .unaligned = true,
1346 },
1347 };
1348
1349 bool memory_region_access_valid(MemoryRegion *mr,
1350 hwaddr addr,
1351 unsigned size,
1352 bool is_write,
1353 MemTxAttrs attrs)
1354 {
1355 int access_size_min, access_size_max;
1356 int access_size, i;
1357
1358 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1359 return false;
1360 }
1361
1362 if (!mr->ops->valid.accepts) {
1363 return true;
1364 }
1365
1366 access_size_min = mr->ops->valid.min_access_size;
1367 if (!mr->ops->valid.min_access_size) {
1368 access_size_min = 1;
1369 }
1370
1371 access_size_max = mr->ops->valid.max_access_size;
1372 if (!mr->ops->valid.max_access_size) {
1373 access_size_max = 4;
1374 }
1375
1376 access_size = MAX(MIN(size, access_size_max), access_size_min);
1377 for (i = 0; i < size; i += access_size) {
1378 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1379 is_write, attrs)) {
1380 return false;
1381 }
1382 }
1383
1384 return true;
1385 }
1386
1387 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1388 hwaddr addr,
1389 uint64_t *pval,
1390 unsigned size,
1391 MemTxAttrs attrs)
1392 {
1393 *pval = 0;
1394
1395 if (mr->ops->read) {
1396 return access_with_adjusted_size(addr, pval, size,
1397 mr->ops->impl.min_access_size,
1398 mr->ops->impl.max_access_size,
1399 memory_region_read_accessor,
1400 mr, attrs);
1401 } else {
1402 return access_with_adjusted_size(addr, pval, size,
1403 mr->ops->impl.min_access_size,
1404 mr->ops->impl.max_access_size,
1405 memory_region_read_with_attrs_accessor,
1406 mr, attrs);
1407 }
1408 }
1409
1410 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1411 hwaddr addr,
1412 uint64_t *pval,
1413 MemOp op,
1414 MemTxAttrs attrs)
1415 {
1416 unsigned size = memop_size(op);
1417 MemTxResult r;
1418
1419 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1420 *pval = unassigned_mem_read(mr, addr, size);
1421 return MEMTX_DECODE_ERROR;
1422 }
1423
1424 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1425 adjust_endianness(mr, pval, op);
1426 return r;
1427 }
1428
1429 /* Return true if an eventfd was signalled */
1430 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1431 hwaddr addr,
1432 uint64_t data,
1433 unsigned size,
1434 MemTxAttrs attrs)
1435 {
1436 MemoryRegionIoeventfd ioeventfd = {
1437 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1438 .data = data,
1439 };
1440 unsigned i;
1441
1442 for (i = 0; i < mr->ioeventfd_nb; i++) {
1443 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1444 ioeventfd.e = mr->ioeventfds[i].e;
1445
1446 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1447 event_notifier_set(ioeventfd.e);
1448 return true;
1449 }
1450 }
1451
1452 return false;
1453 }
1454
1455 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1456 hwaddr addr,
1457 uint64_t data,
1458 MemOp op,
1459 MemTxAttrs attrs)
1460 {
1461 unsigned size = memop_size(op);
1462
1463 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1464 unassigned_mem_write(mr, addr, data, size);
1465 return MEMTX_DECODE_ERROR;
1466 }
1467
1468 adjust_endianness(mr, &data, op);
1469
1470 if ((!kvm_eventfds_enabled()) &&
1471 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1472 return MEMTX_OK;
1473 }
1474
1475 if (mr->ops->write) {
1476 return access_with_adjusted_size(addr, &data, size,
1477 mr->ops->impl.min_access_size,
1478 mr->ops->impl.max_access_size,
1479 memory_region_write_accessor, mr,
1480 attrs);
1481 } else {
1482 return
1483 access_with_adjusted_size(addr, &data, size,
1484 mr->ops->impl.min_access_size,
1485 mr->ops->impl.max_access_size,
1486 memory_region_write_with_attrs_accessor,
1487 mr, attrs);
1488 }
1489 }
1490
1491 void memory_region_init_io(MemoryRegion *mr,
1492 Object *owner,
1493 const MemoryRegionOps *ops,
1494 void *opaque,
1495 const char *name,
1496 uint64_t size)
1497 {
1498 memory_region_init(mr, owner, name, size);
1499 mr->ops = ops ? ops : &unassigned_mem_ops;
1500 mr->opaque = opaque;
1501 mr->terminates = true;
1502 }
1503
1504 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1505 Object *owner,
1506 const char *name,
1507 uint64_t size,
1508 Error **errp)
1509 {
1510 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1511 }
1512
1513 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1514 Object *owner,
1515 const char *name,
1516 uint64_t size,
1517 bool share,
1518 Error **errp)
1519 {
1520 Error *err = NULL;
1521 memory_region_init(mr, owner, name, size);
1522 mr->ram = true;
1523 mr->terminates = true;
1524 mr->destructor = memory_region_destructor_ram;
1525 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1526 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1527 if (err) {
1528 mr->size = int128_zero();
1529 object_unparent(OBJECT(mr));
1530 error_propagate(errp, err);
1531 }
1532 }
1533
1534 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1535 Object *owner,
1536 const char *name,
1537 uint64_t size,
1538 uint64_t max_size,
1539 void (*resized)(const char*,
1540 uint64_t length,
1541 void *host),
1542 Error **errp)
1543 {
1544 Error *err = NULL;
1545 memory_region_init(mr, owner, name, size);
1546 mr->ram = true;
1547 mr->terminates = true;
1548 mr->destructor = memory_region_destructor_ram;
1549 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1550 mr, &err);
1551 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1552 if (err) {
1553 mr->size = int128_zero();
1554 object_unparent(OBJECT(mr));
1555 error_propagate(errp, err);
1556 }
1557 }
1558
1559 #ifdef CONFIG_POSIX
1560 void memory_region_init_ram_from_file(MemoryRegion *mr,
1561 struct Object *owner,
1562 const char *name,
1563 uint64_t size,
1564 uint64_t align,
1565 uint32_t ram_flags,
1566 const char *path,
1567 Error **errp)
1568 {
1569 Error *err = NULL;
1570 memory_region_init(mr, owner, name, size);
1571 mr->ram = true;
1572 mr->terminates = true;
1573 mr->destructor = memory_region_destructor_ram;
1574 mr->align = align;
1575 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1576 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1577 if (err) {
1578 mr->size = int128_zero();
1579 object_unparent(OBJECT(mr));
1580 error_propagate(errp, err);
1581 }
1582 }
1583
1584 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1585 struct Object *owner,
1586 const char *name,
1587 uint64_t size,
1588 bool share,
1589 int fd,
1590 Error **errp)
1591 {
1592 Error *err = NULL;
1593 memory_region_init(mr, owner, name, size);
1594 mr->ram = true;
1595 mr->terminates = true;
1596 mr->destructor = memory_region_destructor_ram;
1597 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1598 share ? RAM_SHARED : 0,
1599 fd, &err);
1600 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1601 if (err) {
1602 mr->size = int128_zero();
1603 object_unparent(OBJECT(mr));
1604 error_propagate(errp, err);
1605 }
1606 }
1607 #endif
1608
1609 void memory_region_init_ram_ptr(MemoryRegion *mr,
1610 Object *owner,
1611 const char *name,
1612 uint64_t size,
1613 void *ptr)
1614 {
1615 memory_region_init(mr, owner, name, size);
1616 mr->ram = true;
1617 mr->terminates = true;
1618 mr->destructor = memory_region_destructor_ram;
1619 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1620
1621 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1622 assert(ptr != NULL);
1623 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1624 }
1625
1626 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1627 Object *owner,
1628 const char *name,
1629 uint64_t size,
1630 void *ptr)
1631 {
1632 memory_region_init(mr, owner, name, size);
1633 mr->ram = true;
1634 mr->terminates = true;
1635 mr->ram_device = true;
1636 mr->ops = &ram_device_mem_ops;
1637 mr->opaque = mr;
1638 mr->destructor = memory_region_destructor_ram;
1639 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1640 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1641 assert(ptr != NULL);
1642 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1643 }
1644
1645 void memory_region_init_alias(MemoryRegion *mr,
1646 Object *owner,
1647 const char *name,
1648 MemoryRegion *orig,
1649 hwaddr offset,
1650 uint64_t size)
1651 {
1652 memory_region_init(mr, owner, name, size);
1653 mr->alias = orig;
1654 mr->alias_offset = offset;
1655 }
1656
1657 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1658 struct Object *owner,
1659 const char *name,
1660 uint64_t size,
1661 Error **errp)
1662 {
1663 Error *err = NULL;
1664 memory_region_init(mr, owner, name, size);
1665 mr->ram = true;
1666 mr->readonly = true;
1667 mr->terminates = true;
1668 mr->destructor = memory_region_destructor_ram;
1669 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1670 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1671 if (err) {
1672 mr->size = int128_zero();
1673 object_unparent(OBJECT(mr));
1674 error_propagate(errp, err);
1675 }
1676 }
1677
1678 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1679 Object *owner,
1680 const MemoryRegionOps *ops,
1681 void *opaque,
1682 const char *name,
1683 uint64_t size,
1684 Error **errp)
1685 {
1686 Error *err = NULL;
1687 assert(ops);
1688 memory_region_init(mr, owner, name, size);
1689 mr->ops = ops;
1690 mr->opaque = opaque;
1691 mr->terminates = true;
1692 mr->rom_device = true;
1693 mr->destructor = memory_region_destructor_ram;
1694 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1695 if (err) {
1696 mr->size = int128_zero();
1697 object_unparent(OBJECT(mr));
1698 error_propagate(errp, err);
1699 }
1700 }
1701
1702 void memory_region_init_iommu(void *_iommu_mr,
1703 size_t instance_size,
1704 const char *mrtypename,
1705 Object *owner,
1706 const char *name,
1707 uint64_t size)
1708 {
1709 struct IOMMUMemoryRegion *iommu_mr;
1710 struct MemoryRegion *mr;
1711
1712 object_initialize(_iommu_mr, instance_size, mrtypename);
1713 mr = MEMORY_REGION(_iommu_mr);
1714 memory_region_do_init(mr, owner, name, size);
1715 iommu_mr = IOMMU_MEMORY_REGION(mr);
1716 mr->terminates = true; /* then re-forwards */
1717 QLIST_INIT(&iommu_mr->iommu_notify);
1718 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1719 }
1720
1721 static void memory_region_finalize(Object *obj)
1722 {
1723 MemoryRegion *mr = MEMORY_REGION(obj);
1724
1725 assert(!mr->container);
1726
1727 /* We know the region is not visible in any address space (it
1728 * does not have a container and cannot be a root either because
1729 * it has no references, so we can blindly clear mr->enabled.
1730 * memory_region_set_enabled instead could trigger a transaction
1731 * and cause an infinite loop.
1732 */
1733 mr->enabled = false;
1734 memory_region_transaction_begin();
1735 while (!QTAILQ_EMPTY(&mr->subregions)) {
1736 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1737 memory_region_del_subregion(mr, subregion);
1738 }
1739 memory_region_transaction_commit();
1740
1741 mr->destructor(mr);
1742 memory_region_clear_coalescing(mr);
1743 g_free((char *)mr->name);
1744 g_free(mr->ioeventfds);
1745 }
1746
1747 Object *memory_region_owner(MemoryRegion *mr)
1748 {
1749 Object *obj = OBJECT(mr);
1750 return obj->parent;
1751 }
1752
1753 void memory_region_ref(MemoryRegion *mr)
1754 {
1755 /* MMIO callbacks most likely will access data that belongs
1756 * to the owner, hence the need to ref/unref the owner whenever
1757 * the memory region is in use.
1758 *
1759 * The memory region is a child of its owner. As long as the
1760 * owner doesn't call unparent itself on the memory region,
1761 * ref-ing the owner will also keep the memory region alive.
1762 * Memory regions without an owner are supposed to never go away;
1763 * we do not ref/unref them because it slows down DMA sensibly.
1764 */
1765 if (mr && mr->owner) {
1766 object_ref(mr->owner);
1767 }
1768 }
1769
1770 void memory_region_unref(MemoryRegion *mr)
1771 {
1772 if (mr && mr->owner) {
1773 object_unref(mr->owner);
1774 }
1775 }
1776
1777 uint64_t memory_region_size(MemoryRegion *mr)
1778 {
1779 if (int128_eq(mr->size, int128_2_64())) {
1780 return UINT64_MAX;
1781 }
1782 return int128_get64(mr->size);
1783 }
1784
1785 const char *memory_region_name(const MemoryRegion *mr)
1786 {
1787 if (!mr->name) {
1788 ((MemoryRegion *)mr)->name =
1789 object_get_canonical_path_component(OBJECT(mr));
1790 }
1791 return mr->name;
1792 }
1793
1794 bool memory_region_is_ram_device(MemoryRegion *mr)
1795 {
1796 return mr->ram_device;
1797 }
1798
1799 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1800 {
1801 uint8_t mask = mr->dirty_log_mask;
1802 if (global_dirty_log && mr->ram_block) {
1803 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1804 }
1805 return mask;
1806 }
1807
1808 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1809 {
1810 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1811 }
1812
1813 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1814 Error **errp)
1815 {
1816 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1817 IOMMUNotifier *iommu_notifier;
1818 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1819 int ret = 0;
1820
1821 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1822 flags |= iommu_notifier->notifier_flags;
1823 }
1824
1825 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1826 ret = imrc->notify_flag_changed(iommu_mr,
1827 iommu_mr->iommu_notify_flags,
1828 flags, errp);
1829 }
1830
1831 if (!ret) {
1832 iommu_mr->iommu_notify_flags = flags;
1833 }
1834 return ret;
1835 }
1836
1837 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1838 IOMMUNotifier *n, Error **errp)
1839 {
1840 IOMMUMemoryRegion *iommu_mr;
1841 int ret;
1842
1843 if (mr->alias) {
1844 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1845 }
1846
1847 /* We need to register for at least one bitfield */
1848 iommu_mr = IOMMU_MEMORY_REGION(mr);
1849 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1850 assert(n->start <= n->end);
1851 assert(n->iommu_idx >= 0 &&
1852 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1853
1854 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1855 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1856 if (ret) {
1857 QLIST_REMOVE(n, node);
1858 }
1859 return ret;
1860 }
1861
1862 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1863 {
1864 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1865
1866 if (imrc->get_min_page_size) {
1867 return imrc->get_min_page_size(iommu_mr);
1868 }
1869 return TARGET_PAGE_SIZE;
1870 }
1871
1872 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1873 {
1874 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1875 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1876 hwaddr addr, granularity;
1877 IOMMUTLBEntry iotlb;
1878
1879 /* If the IOMMU has its own replay callback, override */
1880 if (imrc->replay) {
1881 imrc->replay(iommu_mr, n);
1882 return;
1883 }
1884
1885 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1886
1887 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1888 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1889 if (iotlb.perm != IOMMU_NONE) {
1890 n->notify(n, &iotlb);
1891 }
1892
1893 /* if (2^64 - MR size) < granularity, it's possible to get an
1894 * infinite loop here. This should catch such a wraparound */
1895 if ((addr + granularity) < addr) {
1896 break;
1897 }
1898 }
1899 }
1900
1901 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1902 IOMMUNotifier *n)
1903 {
1904 IOMMUMemoryRegion *iommu_mr;
1905
1906 if (mr->alias) {
1907 memory_region_unregister_iommu_notifier(mr->alias, n);
1908 return;
1909 }
1910 QLIST_REMOVE(n, node);
1911 iommu_mr = IOMMU_MEMORY_REGION(mr);
1912 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1913 }
1914
1915 void memory_region_notify_one(IOMMUNotifier *notifier,
1916 IOMMUTLBEntry *entry)
1917 {
1918 IOMMUNotifierFlag request_flags;
1919 hwaddr entry_end = entry->iova + entry->addr_mask;
1920
1921 /*
1922 * Skip the notification if the notification does not overlap
1923 * with registered range.
1924 */
1925 if (notifier->start > entry_end || notifier->end < entry->iova) {
1926 return;
1927 }
1928
1929 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1930
1931 if (entry->perm & IOMMU_RW) {
1932 request_flags = IOMMU_NOTIFIER_MAP;
1933 } else {
1934 request_flags = IOMMU_NOTIFIER_UNMAP;
1935 }
1936
1937 if (notifier->notifier_flags & request_flags) {
1938 notifier->notify(notifier, entry);
1939 }
1940 }
1941
1942 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1943 int iommu_idx,
1944 IOMMUTLBEntry entry)
1945 {
1946 IOMMUNotifier *iommu_notifier;
1947
1948 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1949
1950 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1951 if (iommu_notifier->iommu_idx == iommu_idx) {
1952 memory_region_notify_one(iommu_notifier, &entry);
1953 }
1954 }
1955 }
1956
1957 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1958 enum IOMMUMemoryRegionAttr attr,
1959 void *data)
1960 {
1961 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1962
1963 if (!imrc->get_attr) {
1964 return -EINVAL;
1965 }
1966
1967 return imrc->get_attr(iommu_mr, attr, data);
1968 }
1969
1970 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1971 MemTxAttrs attrs)
1972 {
1973 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1974
1975 if (!imrc->attrs_to_index) {
1976 return 0;
1977 }
1978
1979 return imrc->attrs_to_index(iommu_mr, attrs);
1980 }
1981
1982 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
1983 {
1984 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1985
1986 if (!imrc->num_indexes) {
1987 return 1;
1988 }
1989
1990 return imrc->num_indexes(iommu_mr);
1991 }
1992
1993 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1994 {
1995 uint8_t mask = 1 << client;
1996 uint8_t old_logging;
1997
1998 assert(client == DIRTY_MEMORY_VGA);
1999 old_logging = mr->vga_logging_count;
2000 mr->vga_logging_count += log ? 1 : -1;
2001 if (!!old_logging == !!mr->vga_logging_count) {
2002 return;
2003 }
2004
2005 memory_region_transaction_begin();
2006 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2007 memory_region_update_pending |= mr->enabled;
2008 memory_region_transaction_commit();
2009 }
2010
2011 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2012 hwaddr size)
2013 {
2014 assert(mr->ram_block);
2015 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2016 size,
2017 memory_region_get_dirty_log_mask(mr));
2018 }
2019
2020 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2021 {
2022 MemoryListener *listener;
2023 AddressSpace *as;
2024 FlatView *view;
2025 FlatRange *fr;
2026
2027 /* If the same address space has multiple log_sync listeners, we
2028 * visit that address space's FlatView multiple times. But because
2029 * log_sync listeners are rare, it's still cheaper than walking each
2030 * address space once.
2031 */
2032 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2033 if (!listener->log_sync) {
2034 continue;
2035 }
2036 as = listener->address_space;
2037 view = address_space_get_flatview(as);
2038 FOR_EACH_FLAT_RANGE(fr, view) {
2039 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2040 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2041 listener->log_sync(listener, &mrs);
2042 }
2043 }
2044 flatview_unref(view);
2045 }
2046 }
2047
2048 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2049 hwaddr len)
2050 {
2051 MemoryRegionSection mrs;
2052 MemoryListener *listener;
2053 AddressSpace *as;
2054 FlatView *view;
2055 FlatRange *fr;
2056 hwaddr sec_start, sec_end, sec_size;
2057
2058 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2059 if (!listener->log_clear) {
2060 continue;
2061 }
2062 as = listener->address_space;
2063 view = address_space_get_flatview(as);
2064 FOR_EACH_FLAT_RANGE(fr, view) {
2065 if (!fr->dirty_log_mask || fr->mr != mr) {
2066 /*
2067 * Clear dirty bitmap operation only applies to those
2068 * regions whose dirty logging is at least enabled
2069 */
2070 continue;
2071 }
2072
2073 mrs = section_from_flat_range(fr, view);
2074
2075 sec_start = MAX(mrs.offset_within_region, start);
2076 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2077 sec_end = MIN(sec_end, start + len);
2078
2079 if (sec_start >= sec_end) {
2080 /*
2081 * If this memory region section has no intersection
2082 * with the requested range, skip.
2083 */
2084 continue;
2085 }
2086
2087 /* Valid case; shrink the section if needed */
2088 mrs.offset_within_address_space +=
2089 sec_start - mrs.offset_within_region;
2090 mrs.offset_within_region = sec_start;
2091 sec_size = sec_end - sec_start;
2092 mrs.size = int128_make64(sec_size);
2093 listener->log_clear(listener, &mrs);
2094 }
2095 flatview_unref(view);
2096 }
2097 }
2098
2099 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2100 hwaddr addr,
2101 hwaddr size,
2102 unsigned client)
2103 {
2104 DirtyBitmapSnapshot *snapshot;
2105 assert(mr->ram_block);
2106 memory_region_sync_dirty_bitmap(mr);
2107 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2108 memory_global_after_dirty_log_sync();
2109 return snapshot;
2110 }
2111
2112 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2113 hwaddr addr, hwaddr size)
2114 {
2115 assert(mr->ram_block);
2116 return cpu_physical_memory_snapshot_get_dirty(snap,
2117 memory_region_get_ram_addr(mr) + addr, size);
2118 }
2119
2120 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2121 {
2122 if (mr->readonly != readonly) {
2123 memory_region_transaction_begin();
2124 mr->readonly = readonly;
2125 memory_region_update_pending |= mr->enabled;
2126 memory_region_transaction_commit();
2127 }
2128 }
2129
2130 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2131 {
2132 if (mr->nonvolatile != nonvolatile) {
2133 memory_region_transaction_begin();
2134 mr->nonvolatile = nonvolatile;
2135 memory_region_update_pending |= mr->enabled;
2136 memory_region_transaction_commit();
2137 }
2138 }
2139
2140 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2141 {
2142 if (mr->romd_mode != romd_mode) {
2143 memory_region_transaction_begin();
2144 mr->romd_mode = romd_mode;
2145 memory_region_update_pending |= mr->enabled;
2146 memory_region_transaction_commit();
2147 }
2148 }
2149
2150 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2151 hwaddr size, unsigned client)
2152 {
2153 assert(mr->ram_block);
2154 cpu_physical_memory_test_and_clear_dirty(
2155 memory_region_get_ram_addr(mr) + addr, size, client);
2156 }
2157
2158 int memory_region_get_fd(MemoryRegion *mr)
2159 {
2160 int fd;
2161
2162 RCU_READ_LOCK_GUARD();
2163 while (mr->alias) {
2164 mr = mr->alias;
2165 }
2166 fd = mr->ram_block->fd;
2167
2168 return fd;
2169 }
2170
2171 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2172 {
2173 void *ptr;
2174 uint64_t offset = 0;
2175
2176 RCU_READ_LOCK_GUARD();
2177 while (mr->alias) {
2178 offset += mr->alias_offset;
2179 mr = mr->alias;
2180 }
2181 assert(mr->ram_block);
2182 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2183
2184 return ptr;
2185 }
2186
2187 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2188 {
2189 RAMBlock *block;
2190
2191 block = qemu_ram_block_from_host(ptr, false, offset);
2192 if (!block) {
2193 return NULL;
2194 }
2195
2196 return block->mr;
2197 }
2198
2199 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2200 {
2201 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2202 }
2203
2204 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2205 {
2206 assert(mr->ram_block);
2207
2208 qemu_ram_resize(mr->ram_block, newsize, errp);
2209 }
2210
2211
2212 void memory_region_do_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2213 {
2214 /*
2215 * Might be extended case needed to cover
2216 * different types of memory regions
2217 */
2218 if (mr->ram_block && mr->dirty_log_mask) {
2219 qemu_ram_writeback(mr->ram_block, addr, size);
2220 }
2221 }
2222
2223 /*
2224 * Call proper memory listeners about the change on the newly
2225 * added/removed CoalescedMemoryRange.
2226 */
2227 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2228 CoalescedMemoryRange *cmr,
2229 bool add)
2230 {
2231 AddressSpace *as;
2232 FlatView *view;
2233 FlatRange *fr;
2234
2235 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2236 view = address_space_get_flatview(as);
2237 FOR_EACH_FLAT_RANGE(fr, view) {
2238 if (fr->mr == mr) {
2239 flat_range_coalesced_io_notify(fr, as, cmr, add);
2240 }
2241 }
2242 flatview_unref(view);
2243 }
2244 }
2245
2246 void memory_region_set_coalescing(MemoryRegion *mr)
2247 {
2248 memory_region_clear_coalescing(mr);
2249 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2250 }
2251
2252 void memory_region_add_coalescing(MemoryRegion *mr,
2253 hwaddr offset,
2254 uint64_t size)
2255 {
2256 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2257
2258 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2259 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2260 memory_region_update_coalesced_range(mr, cmr, true);
2261 memory_region_set_flush_coalesced(mr);
2262 }
2263
2264 void memory_region_clear_coalescing(MemoryRegion *mr)
2265 {
2266 CoalescedMemoryRange *cmr;
2267
2268 if (QTAILQ_EMPTY(&mr->coalesced)) {
2269 return;
2270 }
2271
2272 qemu_flush_coalesced_mmio_buffer();
2273 mr->flush_coalesced_mmio = false;
2274
2275 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2276 cmr = QTAILQ_FIRST(&mr->coalesced);
2277 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2278 memory_region_update_coalesced_range(mr, cmr, false);
2279 g_free(cmr);
2280 }
2281 }
2282
2283 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2284 {
2285 mr->flush_coalesced_mmio = true;
2286 }
2287
2288 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2289 {
2290 qemu_flush_coalesced_mmio_buffer();
2291 if (QTAILQ_EMPTY(&mr->coalesced)) {
2292 mr->flush_coalesced_mmio = false;
2293 }
2294 }
2295
2296 void memory_region_clear_global_locking(MemoryRegion *mr)
2297 {
2298 mr->global_locking = false;
2299 }
2300
2301 static bool userspace_eventfd_warning;
2302
2303 void memory_region_add_eventfd(MemoryRegion *mr,
2304 hwaddr addr,
2305 unsigned size,
2306 bool match_data,
2307 uint64_t data,
2308 EventNotifier *e)
2309 {
2310 MemoryRegionIoeventfd mrfd = {
2311 .addr.start = int128_make64(addr),
2312 .addr.size = int128_make64(size),
2313 .match_data = match_data,
2314 .data = data,
2315 .e = e,
2316 };
2317 unsigned i;
2318
2319 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2320 userspace_eventfd_warning))) {
2321 userspace_eventfd_warning = true;
2322 error_report("Using eventfd without MMIO binding in KVM. "
2323 "Suboptimal performance expected");
2324 }
2325
2326 if (size) {
2327 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2328 }
2329 memory_region_transaction_begin();
2330 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2331 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2332 break;
2333 }
2334 }
2335 ++mr->ioeventfd_nb;
2336 mr->ioeventfds = g_realloc(mr->ioeventfds,
2337 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2338 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2339 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2340 mr->ioeventfds[i] = mrfd;
2341 ioeventfd_update_pending |= mr->enabled;
2342 memory_region_transaction_commit();
2343 }
2344
2345 void memory_region_del_eventfd(MemoryRegion *mr,
2346 hwaddr addr,
2347 unsigned size,
2348 bool match_data,
2349 uint64_t data,
2350 EventNotifier *e)
2351 {
2352 MemoryRegionIoeventfd mrfd = {
2353 .addr.start = int128_make64(addr),
2354 .addr.size = int128_make64(size),
2355 .match_data = match_data,
2356 .data = data,
2357 .e = e,
2358 };
2359 unsigned i;
2360
2361 if (size) {
2362 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2363 }
2364 memory_region_transaction_begin();
2365 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2366 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2367 break;
2368 }
2369 }
2370 assert(i != mr->ioeventfd_nb);
2371 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2372 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2373 --mr->ioeventfd_nb;
2374 mr->ioeventfds = g_realloc(mr->ioeventfds,
2375 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2376 ioeventfd_update_pending |= mr->enabled;
2377 memory_region_transaction_commit();
2378 }
2379
2380 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2381 {
2382 MemoryRegion *mr = subregion->container;
2383 MemoryRegion *other;
2384
2385 memory_region_transaction_begin();
2386
2387 memory_region_ref(subregion);
2388 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2389 if (subregion->priority >= other->priority) {
2390 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2391 goto done;
2392 }
2393 }
2394 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2395 done:
2396 memory_region_update_pending |= mr->enabled && subregion->enabled;
2397 memory_region_transaction_commit();
2398 }
2399
2400 static void memory_region_add_subregion_common(MemoryRegion *mr,
2401 hwaddr offset,
2402 MemoryRegion *subregion)
2403 {
2404 assert(!subregion->container);
2405 subregion->container = mr;
2406 subregion->addr = offset;
2407 memory_region_update_container_subregions(subregion);
2408 }
2409
2410 void memory_region_add_subregion(MemoryRegion *mr,
2411 hwaddr offset,
2412 MemoryRegion *subregion)
2413 {
2414 subregion->priority = 0;
2415 memory_region_add_subregion_common(mr, offset, subregion);
2416 }
2417
2418 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2419 hwaddr offset,
2420 MemoryRegion *subregion,
2421 int priority)
2422 {
2423 subregion->priority = priority;
2424 memory_region_add_subregion_common(mr, offset, subregion);
2425 }
2426
2427 void memory_region_del_subregion(MemoryRegion *mr,
2428 MemoryRegion *subregion)
2429 {
2430 memory_region_transaction_begin();
2431 assert(subregion->container == mr);
2432 subregion->container = NULL;
2433 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2434 memory_region_unref(subregion);
2435 memory_region_update_pending |= mr->enabled && subregion->enabled;
2436 memory_region_transaction_commit();
2437 }
2438
2439 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2440 {
2441 if (enabled == mr->enabled) {
2442 return;
2443 }
2444 memory_region_transaction_begin();
2445 mr->enabled = enabled;
2446 memory_region_update_pending = true;
2447 memory_region_transaction_commit();
2448 }
2449
2450 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2451 {
2452 Int128 s = int128_make64(size);
2453
2454 if (size == UINT64_MAX) {
2455 s = int128_2_64();
2456 }
2457 if (int128_eq(s, mr->size)) {
2458 return;
2459 }
2460 memory_region_transaction_begin();
2461 mr->size = s;
2462 memory_region_update_pending = true;
2463 memory_region_transaction_commit();
2464 }
2465
2466 static void memory_region_readd_subregion(MemoryRegion *mr)
2467 {
2468 MemoryRegion *container = mr->container;
2469
2470 if (container) {
2471 memory_region_transaction_begin();
2472 memory_region_ref(mr);
2473 memory_region_del_subregion(container, mr);
2474 mr->container = container;
2475 memory_region_update_container_subregions(mr);
2476 memory_region_unref(mr);
2477 memory_region_transaction_commit();
2478 }
2479 }
2480
2481 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2482 {
2483 if (addr != mr->addr) {
2484 mr->addr = addr;
2485 memory_region_readd_subregion(mr);
2486 }
2487 }
2488
2489 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2490 {
2491 assert(mr->alias);
2492
2493 if (offset == mr->alias_offset) {
2494 return;
2495 }
2496
2497 memory_region_transaction_begin();
2498 mr->alias_offset = offset;
2499 memory_region_update_pending |= mr->enabled;
2500 memory_region_transaction_commit();
2501 }
2502
2503 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2504 {
2505 return mr->align;
2506 }
2507
2508 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2509 {
2510 const AddrRange *addr = addr_;
2511 const FlatRange *fr = fr_;
2512
2513 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2514 return -1;
2515 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2516 return 1;
2517 }
2518 return 0;
2519 }
2520
2521 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2522 {
2523 return bsearch(&addr, view->ranges, view->nr,
2524 sizeof(FlatRange), cmp_flatrange_addr);
2525 }
2526
2527 bool memory_region_is_mapped(MemoryRegion *mr)
2528 {
2529 return mr->container ? true : false;
2530 }
2531
2532 /* Same as memory_region_find, but it does not add a reference to the
2533 * returned region. It must be called from an RCU critical section.
2534 */
2535 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2536 hwaddr addr, uint64_t size)
2537 {
2538 MemoryRegionSection ret = { .mr = NULL };
2539 MemoryRegion *root;
2540 AddressSpace *as;
2541 AddrRange range;
2542 FlatView *view;
2543 FlatRange *fr;
2544
2545 addr += mr->addr;
2546 for (root = mr; root->container; ) {
2547 root = root->container;
2548 addr += root->addr;
2549 }
2550
2551 as = memory_region_to_address_space(root);
2552 if (!as) {
2553 return ret;
2554 }
2555 range = addrrange_make(int128_make64(addr), int128_make64(size));
2556
2557 view = address_space_to_flatview(as);
2558 fr = flatview_lookup(view, range);
2559 if (!fr) {
2560 return ret;
2561 }
2562
2563 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2564 --fr;
2565 }
2566
2567 ret.mr = fr->mr;
2568 ret.fv = view;
2569 range = addrrange_intersection(range, fr->addr);
2570 ret.offset_within_region = fr->offset_in_region;
2571 ret.offset_within_region += int128_get64(int128_sub(range.start,
2572 fr->addr.start));
2573 ret.size = range.size;
2574 ret.offset_within_address_space = int128_get64(range.start);
2575 ret.readonly = fr->readonly;
2576 ret.nonvolatile = fr->nonvolatile;
2577 return ret;
2578 }
2579
2580 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2581 hwaddr addr, uint64_t size)
2582 {
2583 MemoryRegionSection ret;
2584 RCU_READ_LOCK_GUARD();
2585 ret = memory_region_find_rcu(mr, addr, size);
2586 if (ret.mr) {
2587 memory_region_ref(ret.mr);
2588 }
2589 return ret;
2590 }
2591
2592 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2593 {
2594 MemoryRegion *mr;
2595
2596 RCU_READ_LOCK_GUARD();
2597 mr = memory_region_find_rcu(container, addr, 1).mr;
2598 return mr && mr != container;
2599 }
2600
2601 void memory_global_dirty_log_sync(void)
2602 {
2603 memory_region_sync_dirty_bitmap(NULL);
2604 }
2605
2606 void memory_global_after_dirty_log_sync(void)
2607 {
2608 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2609 }
2610
2611 static VMChangeStateEntry *vmstate_change;
2612
2613 void memory_global_dirty_log_start(void)
2614 {
2615 if (vmstate_change) {
2616 qemu_del_vm_change_state_handler(vmstate_change);
2617 vmstate_change = NULL;
2618 }
2619
2620 global_dirty_log = true;
2621
2622 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2623
2624 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2625 memory_region_transaction_begin();
2626 memory_region_update_pending = true;
2627 memory_region_transaction_commit();
2628 }
2629
2630 static void memory_global_dirty_log_do_stop(void)
2631 {
2632 global_dirty_log = false;
2633
2634 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2635 memory_region_transaction_begin();
2636 memory_region_update_pending = true;
2637 memory_region_transaction_commit();
2638
2639 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2640 }
2641
2642 static void memory_vm_change_state_handler(void *opaque, int running,
2643 RunState state)
2644 {
2645 if (running) {
2646 memory_global_dirty_log_do_stop();
2647
2648 if (vmstate_change) {
2649 qemu_del_vm_change_state_handler(vmstate_change);
2650 vmstate_change = NULL;
2651 }
2652 }
2653 }
2654
2655 void memory_global_dirty_log_stop(void)
2656 {
2657 if (!runstate_is_running()) {
2658 if (vmstate_change) {
2659 return;
2660 }
2661 vmstate_change = qemu_add_vm_change_state_handler(
2662 memory_vm_change_state_handler, NULL);
2663 return;
2664 }
2665
2666 memory_global_dirty_log_do_stop();
2667 }
2668
2669 static void listener_add_address_space(MemoryListener *listener,
2670 AddressSpace *as)
2671 {
2672 FlatView *view;
2673 FlatRange *fr;
2674
2675 if (listener->begin) {
2676 listener->begin(listener);
2677 }
2678 if (global_dirty_log) {
2679 if (listener->log_global_start) {
2680 listener->log_global_start(listener);
2681 }
2682 }
2683
2684 view = address_space_get_flatview(as);
2685 FOR_EACH_FLAT_RANGE(fr, view) {
2686 MemoryRegionSection section = section_from_flat_range(fr, view);
2687
2688 if (listener->region_add) {
2689 listener->region_add(listener, &section);
2690 }
2691 if (fr->dirty_log_mask && listener->log_start) {
2692 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2693 }
2694 }
2695 if (listener->commit) {
2696 listener->commit(listener);
2697 }
2698 flatview_unref(view);
2699 }
2700
2701 static void listener_del_address_space(MemoryListener *listener,
2702 AddressSpace *as)
2703 {
2704 FlatView *view;
2705 FlatRange *fr;
2706
2707 if (listener->begin) {
2708 listener->begin(listener);
2709 }
2710 view = address_space_get_flatview(as);
2711 FOR_EACH_FLAT_RANGE(fr, view) {
2712 MemoryRegionSection section = section_from_flat_range(fr, view);
2713
2714 if (fr->dirty_log_mask && listener->log_stop) {
2715 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2716 }
2717 if (listener->region_del) {
2718 listener->region_del(listener, &section);
2719 }
2720 }
2721 if (listener->commit) {
2722 listener->commit(listener);
2723 }
2724 flatview_unref(view);
2725 }
2726
2727 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2728 {
2729 MemoryListener *other = NULL;
2730
2731 listener->address_space = as;
2732 if (QTAILQ_EMPTY(&memory_listeners)
2733 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2734 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2735 } else {
2736 QTAILQ_FOREACH(other, &memory_listeners, link) {
2737 if (listener->priority < other->priority) {
2738 break;
2739 }
2740 }
2741 QTAILQ_INSERT_BEFORE(other, listener, link);
2742 }
2743
2744 if (QTAILQ_EMPTY(&as->listeners)
2745 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2746 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2747 } else {
2748 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2749 if (listener->priority < other->priority) {
2750 break;
2751 }
2752 }
2753 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2754 }
2755
2756 listener_add_address_space(listener, as);
2757 }
2758
2759 void memory_listener_unregister(MemoryListener *listener)
2760 {
2761 if (!listener->address_space) {
2762 return;
2763 }
2764
2765 listener_del_address_space(listener, listener->address_space);
2766 QTAILQ_REMOVE(&memory_listeners, listener, link);
2767 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2768 listener->address_space = NULL;
2769 }
2770
2771 void address_space_remove_listeners(AddressSpace *as)
2772 {
2773 while (!QTAILQ_EMPTY(&as->listeners)) {
2774 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2775 }
2776 }
2777
2778 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2779 {
2780 memory_region_ref(root);
2781 as->root = root;
2782 as->current_map = NULL;
2783 as->ioeventfd_nb = 0;
2784 as->ioeventfds = NULL;
2785 QTAILQ_INIT(&as->listeners);
2786 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2787 as->name = g_strdup(name ? name : "anonymous");
2788 address_space_update_topology(as);
2789 address_space_update_ioeventfds(as);
2790 }
2791
2792 static void do_address_space_destroy(AddressSpace *as)
2793 {
2794 assert(QTAILQ_EMPTY(&as->listeners));
2795
2796 flatview_unref(as->current_map);
2797 g_free(as->name);
2798 g_free(as->ioeventfds);
2799 memory_region_unref(as->root);
2800 }
2801
2802 void address_space_destroy(AddressSpace *as)
2803 {
2804 MemoryRegion *root = as->root;
2805
2806 /* Flush out anything from MemoryListeners listening in on this */
2807 memory_region_transaction_begin();
2808 as->root = NULL;
2809 memory_region_transaction_commit();
2810 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2811
2812 /* At this point, as->dispatch and as->current_map are dummy
2813 * entries that the guest should never use. Wait for the old
2814 * values to expire before freeing the data.
2815 */
2816 as->root = root;
2817 call_rcu(as, do_address_space_destroy, rcu);
2818 }
2819
2820 static const char *memory_region_type(MemoryRegion *mr)
2821 {
2822 if (memory_region_is_ram_device(mr)) {
2823 return "ramd";
2824 } else if (memory_region_is_romd(mr)) {
2825 return "romd";
2826 } else if (memory_region_is_rom(mr)) {
2827 return "rom";
2828 } else if (memory_region_is_ram(mr)) {
2829 return "ram";
2830 } else {
2831 return "i/o";
2832 }
2833 }
2834
2835 typedef struct MemoryRegionList MemoryRegionList;
2836
2837 struct MemoryRegionList {
2838 const MemoryRegion *mr;
2839 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2840 };
2841
2842 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2843
2844 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2845 int128_sub((size), int128_one())) : 0)
2846 #define MTREE_INDENT " "
2847
2848 static void mtree_expand_owner(const char *label, Object *obj)
2849 {
2850 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2851
2852 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2853 if (dev && dev->id) {
2854 qemu_printf(" id=%s", dev->id);
2855 } else {
2856 gchar *canonical_path = object_get_canonical_path(obj);
2857 if (canonical_path) {
2858 qemu_printf(" path=%s", canonical_path);
2859 g_free(canonical_path);
2860 } else {
2861 qemu_printf(" type=%s", object_get_typename(obj));
2862 }
2863 }
2864 qemu_printf("}");
2865 }
2866
2867 static void mtree_print_mr_owner(const MemoryRegion *mr)
2868 {
2869 Object *owner = mr->owner;
2870 Object *parent = memory_region_owner((MemoryRegion *)mr);
2871
2872 if (!owner && !parent) {
2873 qemu_printf(" orphan");
2874 return;
2875 }
2876 if (owner) {
2877 mtree_expand_owner("owner", owner);
2878 }
2879 if (parent && parent != owner) {
2880 mtree_expand_owner("parent", parent);
2881 }
2882 }
2883
2884 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2885 hwaddr base,
2886 MemoryRegionListHead *alias_print_queue,
2887 bool owner)
2888 {
2889 MemoryRegionList *new_ml, *ml, *next_ml;
2890 MemoryRegionListHead submr_print_queue;
2891 const MemoryRegion *submr;
2892 unsigned int i;
2893 hwaddr cur_start, cur_end;
2894
2895 if (!mr) {
2896 return;
2897 }
2898
2899 for (i = 0; i < level; i++) {
2900 qemu_printf(MTREE_INDENT);
2901 }
2902
2903 cur_start = base + mr->addr;
2904 cur_end = cur_start + MR_SIZE(mr->size);
2905
2906 /*
2907 * Try to detect overflow of memory region. This should never
2908 * happen normally. When it happens, we dump something to warn the
2909 * user who is observing this.
2910 */
2911 if (cur_start < base || cur_end < cur_start) {
2912 qemu_printf("[DETECTED OVERFLOW!] ");
2913 }
2914
2915 if (mr->alias) {
2916 MemoryRegionList *ml;
2917 bool found = false;
2918
2919 /* check if the alias is already in the queue */
2920 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2921 if (ml->mr == mr->alias) {
2922 found = true;
2923 }
2924 }
2925
2926 if (!found) {
2927 ml = g_new(MemoryRegionList, 1);
2928 ml->mr = mr->alias;
2929 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2930 }
2931 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2932 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2933 "-" TARGET_FMT_plx "%s",
2934 cur_start, cur_end,
2935 mr->priority,
2936 mr->nonvolatile ? "nv-" : "",
2937 memory_region_type((MemoryRegion *)mr),
2938 memory_region_name(mr),
2939 memory_region_name(mr->alias),
2940 mr->alias_offset,
2941 mr->alias_offset + MR_SIZE(mr->size),
2942 mr->enabled ? "" : " [disabled]");
2943 if (owner) {
2944 mtree_print_mr_owner(mr);
2945 }
2946 } else {
2947 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2948 " (prio %d, %s%s): %s%s",
2949 cur_start, cur_end,
2950 mr->priority,
2951 mr->nonvolatile ? "nv-" : "",
2952 memory_region_type((MemoryRegion *)mr),
2953 memory_region_name(mr),
2954 mr->enabled ? "" : " [disabled]");
2955 if (owner) {
2956 mtree_print_mr_owner(mr);
2957 }
2958 }
2959 qemu_printf("\n");
2960
2961 QTAILQ_INIT(&submr_print_queue);
2962
2963 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2964 new_ml = g_new(MemoryRegionList, 1);
2965 new_ml->mr = submr;
2966 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2967 if (new_ml->mr->addr < ml->mr->addr ||
2968 (new_ml->mr->addr == ml->mr->addr &&
2969 new_ml->mr->priority > ml->mr->priority)) {
2970 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2971 new_ml = NULL;
2972 break;
2973 }
2974 }
2975 if (new_ml) {
2976 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2977 }
2978 }
2979
2980 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2981 mtree_print_mr(ml->mr, level + 1, cur_start,
2982 alias_print_queue, owner);
2983 }
2984
2985 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2986 g_free(ml);
2987 }
2988 }
2989
2990 struct FlatViewInfo {
2991 int counter;
2992 bool dispatch_tree;
2993 bool owner;
2994 AccelClass *ac;
2995 };
2996
2997 static void mtree_print_flatview(gpointer key, gpointer value,
2998 gpointer user_data)
2999 {
3000 FlatView *view = key;
3001 GArray *fv_address_spaces = value;
3002 struct FlatViewInfo *fvi = user_data;
3003 FlatRange *range = &view->ranges[0];
3004 MemoryRegion *mr;
3005 int n = view->nr;
3006 int i;
3007 AddressSpace *as;
3008
3009 qemu_printf("FlatView #%d\n", fvi->counter);
3010 ++fvi->counter;
3011
3012 for (i = 0; i < fv_address_spaces->len; ++i) {
3013 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3014 qemu_printf(" AS \"%s\", root: %s",
3015 as->name, memory_region_name(as->root));
3016 if (as->root->alias) {
3017 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3018 }
3019 qemu_printf("\n");
3020 }
3021
3022 qemu_printf(" Root memory region: %s\n",
3023 view->root ? memory_region_name(view->root) : "(none)");
3024
3025 if (n <= 0) {
3026 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3027 return;
3028 }
3029
3030 while (n--) {
3031 mr = range->mr;
3032 if (range->offset_in_region) {
3033 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3034 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3035 int128_get64(range->addr.start),
3036 int128_get64(range->addr.start)
3037 + MR_SIZE(range->addr.size),
3038 mr->priority,
3039 range->nonvolatile ? "nv-" : "",
3040 range->readonly ? "rom" : memory_region_type(mr),
3041 memory_region_name(mr),
3042 range->offset_in_region);
3043 } else {
3044 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3045 " (prio %d, %s%s): %s",
3046 int128_get64(range->addr.start),
3047 int128_get64(range->addr.start)
3048 + MR_SIZE(range->addr.size),
3049 mr->priority,
3050 range->nonvolatile ? "nv-" : "",
3051 range->readonly ? "rom" : memory_region_type(mr),
3052 memory_region_name(mr));
3053 }
3054 if (fvi->owner) {
3055 mtree_print_mr_owner(mr);
3056 }
3057
3058 if (fvi->ac) {
3059 for (i = 0; i < fv_address_spaces->len; ++i) {
3060 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3061 if (fvi->ac->has_memory(current_machine, as,
3062 int128_get64(range->addr.start),
3063 MR_SIZE(range->addr.size) + 1)) {
3064 qemu_printf(" %s", fvi->ac->name);
3065 }
3066 }
3067 }
3068 qemu_printf("\n");
3069 range++;
3070 }
3071
3072 #if !defined(CONFIG_USER_ONLY)
3073 if (fvi->dispatch_tree && view->root) {
3074 mtree_print_dispatch(view->dispatch, view->root);
3075 }
3076 #endif
3077
3078 qemu_printf("\n");
3079 }
3080
3081 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3082 gpointer user_data)
3083 {
3084 FlatView *view = key;
3085 GArray *fv_address_spaces = value;
3086
3087 g_array_unref(fv_address_spaces);
3088 flatview_unref(view);
3089
3090 return true;
3091 }
3092
3093 void mtree_info(bool flatview, bool dispatch_tree, bool owner)
3094 {
3095 MemoryRegionListHead ml_head;
3096 MemoryRegionList *ml, *ml2;
3097 AddressSpace *as;
3098
3099 if (flatview) {
3100 FlatView *view;
3101 struct FlatViewInfo fvi = {
3102 .counter = 0,
3103 .dispatch_tree = dispatch_tree,
3104 .owner = owner,
3105 };
3106 GArray *fv_address_spaces;
3107 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3108 AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3109
3110 if (ac->has_memory) {
3111 fvi.ac = ac;
3112 }
3113
3114 /* Gather all FVs in one table */
3115 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3116 view = address_space_get_flatview(as);
3117
3118 fv_address_spaces = g_hash_table_lookup(views, view);
3119 if (!fv_address_spaces) {
3120 fv_address_spaces = g_array_new(false, false, sizeof(as));
3121 g_hash_table_insert(views, view, fv_address_spaces);
3122 }
3123
3124 g_array_append_val(fv_address_spaces, as);
3125 }
3126
3127 /* Print */
3128 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3129
3130 /* Free */
3131 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3132 g_hash_table_unref(views);
3133
3134 return;
3135 }
3136
3137 QTAILQ_INIT(&ml_head);
3138
3139 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3140 qemu_printf("address-space: %s\n", as->name);
3141 mtree_print_mr(as->root, 1, 0, &ml_head, owner);
3142 qemu_printf("\n");
3143 }
3144
3145 /* print aliased regions */
3146 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3147 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3148 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner);
3149 qemu_printf("\n");
3150 }
3151
3152 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3153 g_free(ml);
3154 }
3155 }
3156
3157 void memory_region_init_ram(MemoryRegion *mr,
3158 struct Object *owner,
3159 const char *name,
3160 uint64_t size,
3161 Error **errp)
3162 {
3163 DeviceState *owner_dev;
3164 Error *err = NULL;
3165
3166 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3167 if (err) {
3168 error_propagate(errp, err);
3169 return;
3170 }
3171 /* This will assert if owner is neither NULL nor a DeviceState.
3172 * We only want the owner here for the purposes of defining a
3173 * unique name for migration. TODO: Ideally we should implement
3174 * a naming scheme for Objects which are not DeviceStates, in
3175 * which case we can relax this restriction.
3176 */
3177 owner_dev = DEVICE(owner);
3178 vmstate_register_ram(mr, owner_dev);
3179 }
3180
3181 void memory_region_init_rom(MemoryRegion *mr,
3182 struct Object *owner,
3183 const char *name,
3184 uint64_t size,
3185 Error **errp)
3186 {
3187 DeviceState *owner_dev;
3188 Error *err = NULL;
3189
3190 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3191 if (err) {
3192 error_propagate(errp, err);
3193 return;
3194 }
3195 /* This will assert if owner is neither NULL nor a DeviceState.
3196 * We only want the owner here for the purposes of defining a
3197 * unique name for migration. TODO: Ideally we should implement
3198 * a naming scheme for Objects which are not DeviceStates, in
3199 * which case we can relax this restriction.
3200 */
3201 owner_dev = DEVICE(owner);
3202 vmstate_register_ram(mr, owner_dev);
3203 }
3204
3205 void memory_region_init_rom_device(MemoryRegion *mr,
3206 struct Object *owner,
3207 const MemoryRegionOps *ops,
3208 void *opaque,
3209 const char *name,
3210 uint64_t size,
3211 Error **errp)
3212 {
3213 DeviceState *owner_dev;
3214 Error *err = NULL;
3215
3216 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3217 name, size, &err);
3218 if (err) {
3219 error_propagate(errp, err);
3220 return;
3221 }
3222 /* This will assert if owner is neither NULL nor a DeviceState.
3223 * We only want the owner here for the purposes of defining a
3224 * unique name for migration. TODO: Ideally we should implement
3225 * a naming scheme for Objects which are not DeviceStates, in
3226 * which case we can relax this restriction.
3227 */
3228 owner_dev = DEVICE(owner);
3229 vmstate_register_ram(mr, owner_dev);
3230 }
3231
3232 static const TypeInfo memory_region_info = {
3233 .parent = TYPE_OBJECT,
3234 .name = TYPE_MEMORY_REGION,
3235 .class_size = sizeof(MemoryRegionClass),
3236 .instance_size = sizeof(MemoryRegion),
3237 .instance_init = memory_region_initfn,
3238 .instance_finalize = memory_region_finalize,
3239 };
3240
3241 static const TypeInfo iommu_memory_region_info = {
3242 .parent = TYPE_MEMORY_REGION,
3243 .name = TYPE_IOMMU_MEMORY_REGION,
3244 .class_size = sizeof(IOMMUMemoryRegionClass),
3245 .instance_size = sizeof(IOMMUMemoryRegion),
3246 .instance_init = iommu_memory_region_initfn,
3247 .abstract = true,
3248 };
3249
3250 static void memory_register_types(void)
3251 {
3252 type_register_static(&memory_region_info);
3253 type_register_static(&iommu_memory_region_info);
3254 }
3255
3256 type_init(memory_register_types)