migration: convert unix socket protocol to use QIOChannel
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33
34 //#define DEBUG_UNASSIGNED
35
36 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
37
38 static unsigned memory_region_transaction_depth;
39 static bool memory_region_update_pending;
40 static bool ioeventfd_update_pending;
41 static bool global_dirty_log = false;
42
43 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
44 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
45
46 static QTAILQ_HEAD(, AddressSpace) address_spaces
47 = QTAILQ_HEAD_INITIALIZER(address_spaces);
48
49 typedef struct AddrRange AddrRange;
50
51 /*
52 * Note that signed integers are needed for negative offsetting in aliases
53 * (large MemoryRegion::alias_offset).
54 */
55 struct AddrRange {
56 Int128 start;
57 Int128 size;
58 };
59
60 static AddrRange addrrange_make(Int128 start, Int128 size)
61 {
62 return (AddrRange) { start, size };
63 }
64
65 static bool addrrange_equal(AddrRange r1, AddrRange r2)
66 {
67 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
68 }
69
70 static Int128 addrrange_end(AddrRange r)
71 {
72 return int128_add(r.start, r.size);
73 }
74
75 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
76 {
77 int128_addto(&range.start, delta);
78 return range;
79 }
80
81 static bool addrrange_contains(AddrRange range, Int128 addr)
82 {
83 return int128_ge(addr, range.start)
84 && int128_lt(addr, addrrange_end(range));
85 }
86
87 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
88 {
89 return addrrange_contains(r1, r2.start)
90 || addrrange_contains(r2, r1.start);
91 }
92
93 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
94 {
95 Int128 start = int128_max(r1.start, r2.start);
96 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
97 return addrrange_make(start, int128_sub(end, start));
98 }
99
100 enum ListenerDirection { Forward, Reverse };
101
102 static bool memory_listener_match(MemoryListener *listener,
103 MemoryRegionSection *section)
104 {
105 return !listener->address_space_filter
106 || listener->address_space_filter == section->address_space;
107 }
108
109 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
110 do { \
111 MemoryListener *_listener; \
112 \
113 switch (_direction) { \
114 case Forward: \
115 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
116 if (_listener->_callback) { \
117 _listener->_callback(_listener, ##_args); \
118 } \
119 } \
120 break; \
121 case Reverse: \
122 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
123 memory_listeners, link) { \
124 if (_listener->_callback) { \
125 _listener->_callback(_listener, ##_args); \
126 } \
127 } \
128 break; \
129 default: \
130 abort(); \
131 } \
132 } while (0)
133
134 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
135 do { \
136 MemoryListener *_listener; \
137 \
138 switch (_direction) { \
139 case Forward: \
140 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
141 if (_listener->_callback \
142 && memory_listener_match(_listener, _section)) { \
143 _listener->_callback(_listener, _section, ##_args); \
144 } \
145 } \
146 break; \
147 case Reverse: \
148 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
149 memory_listeners, link) { \
150 if (_listener->_callback \
151 && memory_listener_match(_listener, _section)) { \
152 _listener->_callback(_listener, _section, ##_args); \
153 } \
154 } \
155 break; \
156 default: \
157 abort(); \
158 } \
159 } while (0)
160
161 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
162 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
163 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
164 .mr = (fr)->mr, \
165 .address_space = (as), \
166 .offset_within_region = (fr)->offset_in_region, \
167 .size = (fr)->addr.size, \
168 .offset_within_address_space = int128_get64((fr)->addr.start), \
169 .readonly = (fr)->readonly, \
170 }), ##_args)
171
172 struct CoalescedMemoryRange {
173 AddrRange addr;
174 QTAILQ_ENTRY(CoalescedMemoryRange) link;
175 };
176
177 struct MemoryRegionIoeventfd {
178 AddrRange addr;
179 bool match_data;
180 uint64_t data;
181 EventNotifier *e;
182 };
183
184 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
185 MemoryRegionIoeventfd b)
186 {
187 if (int128_lt(a.addr.start, b.addr.start)) {
188 return true;
189 } else if (int128_gt(a.addr.start, b.addr.start)) {
190 return false;
191 } else if (int128_lt(a.addr.size, b.addr.size)) {
192 return true;
193 } else if (int128_gt(a.addr.size, b.addr.size)) {
194 return false;
195 } else if (a.match_data < b.match_data) {
196 return true;
197 } else if (a.match_data > b.match_data) {
198 return false;
199 } else if (a.match_data) {
200 if (a.data < b.data) {
201 return true;
202 } else if (a.data > b.data) {
203 return false;
204 }
205 }
206 if (a.e < b.e) {
207 return true;
208 } else if (a.e > b.e) {
209 return false;
210 }
211 return false;
212 }
213
214 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
215 MemoryRegionIoeventfd b)
216 {
217 return !memory_region_ioeventfd_before(a, b)
218 && !memory_region_ioeventfd_before(b, a);
219 }
220
221 typedef struct FlatRange FlatRange;
222 typedef struct FlatView FlatView;
223
224 /* Range of memory in the global map. Addresses are absolute. */
225 struct FlatRange {
226 MemoryRegion *mr;
227 hwaddr offset_in_region;
228 AddrRange addr;
229 uint8_t dirty_log_mask;
230 bool readonly;
231 };
232
233 /* Flattened global view of current active memory hierarchy. Kept in sorted
234 * order.
235 */
236 struct FlatView {
237 struct rcu_head rcu;
238 unsigned ref;
239 FlatRange *ranges;
240 unsigned nr;
241 unsigned nr_allocated;
242 };
243
244 typedef struct AddressSpaceOps AddressSpaceOps;
245
246 #define FOR_EACH_FLAT_RANGE(var, view) \
247 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
248
249 static bool flatrange_equal(FlatRange *a, FlatRange *b)
250 {
251 return a->mr == b->mr
252 && addrrange_equal(a->addr, b->addr)
253 && a->offset_in_region == b->offset_in_region
254 && a->readonly == b->readonly;
255 }
256
257 static void flatview_init(FlatView *view)
258 {
259 view->ref = 1;
260 view->ranges = NULL;
261 view->nr = 0;
262 view->nr_allocated = 0;
263 }
264
265 /* Insert a range into a given position. Caller is responsible for maintaining
266 * sorting order.
267 */
268 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
269 {
270 if (view->nr == view->nr_allocated) {
271 view->nr_allocated = MAX(2 * view->nr, 10);
272 view->ranges = g_realloc(view->ranges,
273 view->nr_allocated * sizeof(*view->ranges));
274 }
275 memmove(view->ranges + pos + 1, view->ranges + pos,
276 (view->nr - pos) * sizeof(FlatRange));
277 view->ranges[pos] = *range;
278 memory_region_ref(range->mr);
279 ++view->nr;
280 }
281
282 static void flatview_destroy(FlatView *view)
283 {
284 int i;
285
286 for (i = 0; i < view->nr; i++) {
287 memory_region_unref(view->ranges[i].mr);
288 }
289 g_free(view->ranges);
290 g_free(view);
291 }
292
293 static void flatview_ref(FlatView *view)
294 {
295 atomic_inc(&view->ref);
296 }
297
298 static void flatview_unref(FlatView *view)
299 {
300 if (atomic_fetch_dec(&view->ref) == 1) {
301 flatview_destroy(view);
302 }
303 }
304
305 static bool can_merge(FlatRange *r1, FlatRange *r2)
306 {
307 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
308 && r1->mr == r2->mr
309 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
310 r1->addr.size),
311 int128_make64(r2->offset_in_region))
312 && r1->dirty_log_mask == r2->dirty_log_mask
313 && r1->readonly == r2->readonly;
314 }
315
316 /* Attempt to simplify a view by merging adjacent ranges */
317 static void flatview_simplify(FlatView *view)
318 {
319 unsigned i, j;
320
321 i = 0;
322 while (i < view->nr) {
323 j = i + 1;
324 while (j < view->nr
325 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
326 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
327 ++j;
328 }
329 ++i;
330 memmove(&view->ranges[i], &view->ranges[j],
331 (view->nr - j) * sizeof(view->ranges[j]));
332 view->nr -= j - i;
333 }
334 }
335
336 static bool memory_region_big_endian(MemoryRegion *mr)
337 {
338 #ifdef TARGET_WORDS_BIGENDIAN
339 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
340 #else
341 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
342 #endif
343 }
344
345 static bool memory_region_wrong_endianness(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
349 #else
350 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
355 {
356 if (memory_region_wrong_endianness(mr)) {
357 switch (size) {
358 case 1:
359 break;
360 case 2:
361 *data = bswap16(*data);
362 break;
363 case 4:
364 *data = bswap32(*data);
365 break;
366 case 8:
367 *data = bswap64(*data);
368 break;
369 default:
370 abort();
371 }
372 }
373 }
374
375 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
376 {
377 MemoryRegion *root;
378 hwaddr abs_addr = offset;
379
380 abs_addr += mr->addr;
381 for (root = mr; root->container; ) {
382 root = root->container;
383 abs_addr += root->addr;
384 }
385
386 return abs_addr;
387 }
388
389 static int get_cpu_index(void)
390 {
391 if (current_cpu) {
392 return current_cpu->cpu_index;
393 }
394 return -1;
395 }
396
397 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
398 hwaddr addr,
399 uint64_t *value,
400 unsigned size,
401 unsigned shift,
402 uint64_t mask,
403 MemTxAttrs attrs)
404 {
405 uint64_t tmp;
406
407 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
408 if (mr->subpage) {
409 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
410 } else if (mr == &io_mem_notdirty) {
411 /* Accesses to code which has previously been translated into a TB show
412 * up in the MMIO path, as accesses to the io_mem_notdirty
413 * MemoryRegion. */
414 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
415 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
416 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
417 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
418 }
419 *value |= (tmp & mask) << shift;
420 return MEMTX_OK;
421 }
422
423 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
424 hwaddr addr,
425 uint64_t *value,
426 unsigned size,
427 unsigned shift,
428 uint64_t mask,
429 MemTxAttrs attrs)
430 {
431 uint64_t tmp;
432
433 tmp = mr->ops->read(mr->opaque, addr, size);
434 if (mr->subpage) {
435 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
436 } else if (mr == &io_mem_notdirty) {
437 /* Accesses to code which has previously been translated into a TB show
438 * up in the MMIO path, as accesses to the io_mem_notdirty
439 * MemoryRegion. */
440 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
441 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
442 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
443 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
444 }
445 *value |= (tmp & mask) << shift;
446 return MEMTX_OK;
447 }
448
449 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
450 hwaddr addr,
451 uint64_t *value,
452 unsigned size,
453 unsigned shift,
454 uint64_t mask,
455 MemTxAttrs attrs)
456 {
457 uint64_t tmp = 0;
458 MemTxResult r;
459
460 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
461 if (mr->subpage) {
462 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
463 } else if (mr == &io_mem_notdirty) {
464 /* Accesses to code which has previously been translated into a TB show
465 * up in the MMIO path, as accesses to the io_mem_notdirty
466 * MemoryRegion. */
467 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
468 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
469 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
470 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
471 }
472 *value |= (tmp & mask) << shift;
473 return r;
474 }
475
476 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
477 hwaddr addr,
478 uint64_t *value,
479 unsigned size,
480 unsigned shift,
481 uint64_t mask,
482 MemTxAttrs attrs)
483 {
484 uint64_t tmp;
485
486 tmp = (*value >> shift) & mask;
487 if (mr->subpage) {
488 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
489 } else if (mr == &io_mem_notdirty) {
490 /* Accesses to code which has previously been translated into a TB show
491 * up in the MMIO path, as accesses to the io_mem_notdirty
492 * MemoryRegion. */
493 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
494 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
495 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
496 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
497 }
498 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
499 return MEMTX_OK;
500 }
501
502 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
503 hwaddr addr,
504 uint64_t *value,
505 unsigned size,
506 unsigned shift,
507 uint64_t mask,
508 MemTxAttrs attrs)
509 {
510 uint64_t tmp;
511
512 tmp = (*value >> shift) & mask;
513 if (mr->subpage) {
514 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
515 } else if (mr == &io_mem_notdirty) {
516 /* Accesses to code which has previously been translated into a TB show
517 * up in the MMIO path, as accesses to the io_mem_notdirty
518 * MemoryRegion. */
519 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
520 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
521 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
522 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
523 }
524 mr->ops->write(mr->opaque, addr, tmp, size);
525 return MEMTX_OK;
526 }
527
528 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
529 hwaddr addr,
530 uint64_t *value,
531 unsigned size,
532 unsigned shift,
533 uint64_t mask,
534 MemTxAttrs attrs)
535 {
536 uint64_t tmp;
537
538 tmp = (*value >> shift) & mask;
539 if (mr->subpage) {
540 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
541 } else if (mr == &io_mem_notdirty) {
542 /* Accesses to code which has previously been translated into a TB show
543 * up in the MMIO path, as accesses to the io_mem_notdirty
544 * MemoryRegion. */
545 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
546 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
547 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
548 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
549 }
550 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
551 }
552
553 static MemTxResult access_with_adjusted_size(hwaddr addr,
554 uint64_t *value,
555 unsigned size,
556 unsigned access_size_min,
557 unsigned access_size_max,
558 MemTxResult (*access)(MemoryRegion *mr,
559 hwaddr addr,
560 uint64_t *value,
561 unsigned size,
562 unsigned shift,
563 uint64_t mask,
564 MemTxAttrs attrs),
565 MemoryRegion *mr,
566 MemTxAttrs attrs)
567 {
568 uint64_t access_mask;
569 unsigned access_size;
570 unsigned i;
571 MemTxResult r = MEMTX_OK;
572
573 if (!access_size_min) {
574 access_size_min = 1;
575 }
576 if (!access_size_max) {
577 access_size_max = 4;
578 }
579
580 /* FIXME: support unaligned access? */
581 access_size = MAX(MIN(size, access_size_max), access_size_min);
582 access_mask = -1ULL >> (64 - access_size * 8);
583 if (memory_region_big_endian(mr)) {
584 for (i = 0; i < size; i += access_size) {
585 r |= access(mr, addr + i, value, access_size,
586 (size - access_size - i) * 8, access_mask, attrs);
587 }
588 } else {
589 for (i = 0; i < size; i += access_size) {
590 r |= access(mr, addr + i, value, access_size, i * 8,
591 access_mask, attrs);
592 }
593 }
594 return r;
595 }
596
597 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
598 {
599 AddressSpace *as;
600
601 while (mr->container) {
602 mr = mr->container;
603 }
604 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
605 if (mr == as->root) {
606 return as;
607 }
608 }
609 return NULL;
610 }
611
612 /* Render a memory region into the global view. Ranges in @view obscure
613 * ranges in @mr.
614 */
615 static void render_memory_region(FlatView *view,
616 MemoryRegion *mr,
617 Int128 base,
618 AddrRange clip,
619 bool readonly)
620 {
621 MemoryRegion *subregion;
622 unsigned i;
623 hwaddr offset_in_region;
624 Int128 remain;
625 Int128 now;
626 FlatRange fr;
627 AddrRange tmp;
628
629 if (!mr->enabled) {
630 return;
631 }
632
633 int128_addto(&base, int128_make64(mr->addr));
634 readonly |= mr->readonly;
635
636 tmp = addrrange_make(base, mr->size);
637
638 if (!addrrange_intersects(tmp, clip)) {
639 return;
640 }
641
642 clip = addrrange_intersection(tmp, clip);
643
644 if (mr->alias) {
645 int128_subfrom(&base, int128_make64(mr->alias->addr));
646 int128_subfrom(&base, int128_make64(mr->alias_offset));
647 render_memory_region(view, mr->alias, base, clip, readonly);
648 return;
649 }
650
651 /* Render subregions in priority order. */
652 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
653 render_memory_region(view, subregion, base, clip, readonly);
654 }
655
656 if (!mr->terminates) {
657 return;
658 }
659
660 offset_in_region = int128_get64(int128_sub(clip.start, base));
661 base = clip.start;
662 remain = clip.size;
663
664 fr.mr = mr;
665 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
666 fr.readonly = readonly;
667
668 /* Render the region itself into any gaps left by the current view. */
669 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
670 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
671 continue;
672 }
673 if (int128_lt(base, view->ranges[i].addr.start)) {
674 now = int128_min(remain,
675 int128_sub(view->ranges[i].addr.start, base));
676 fr.offset_in_region = offset_in_region;
677 fr.addr = addrrange_make(base, now);
678 flatview_insert(view, i, &fr);
679 ++i;
680 int128_addto(&base, now);
681 offset_in_region += int128_get64(now);
682 int128_subfrom(&remain, now);
683 }
684 now = int128_sub(int128_min(int128_add(base, remain),
685 addrrange_end(view->ranges[i].addr)),
686 base);
687 int128_addto(&base, now);
688 offset_in_region += int128_get64(now);
689 int128_subfrom(&remain, now);
690 }
691 if (int128_nz(remain)) {
692 fr.offset_in_region = offset_in_region;
693 fr.addr = addrrange_make(base, remain);
694 flatview_insert(view, i, &fr);
695 }
696 }
697
698 /* Render a memory topology into a list of disjoint absolute ranges. */
699 static FlatView *generate_memory_topology(MemoryRegion *mr)
700 {
701 FlatView *view;
702
703 view = g_new(FlatView, 1);
704 flatview_init(view);
705
706 if (mr) {
707 render_memory_region(view, mr, int128_zero(),
708 addrrange_make(int128_zero(), int128_2_64()), false);
709 }
710 flatview_simplify(view);
711
712 return view;
713 }
714
715 static void address_space_add_del_ioeventfds(AddressSpace *as,
716 MemoryRegionIoeventfd *fds_new,
717 unsigned fds_new_nb,
718 MemoryRegionIoeventfd *fds_old,
719 unsigned fds_old_nb)
720 {
721 unsigned iold, inew;
722 MemoryRegionIoeventfd *fd;
723 MemoryRegionSection section;
724
725 /* Generate a symmetric difference of the old and new fd sets, adding
726 * and deleting as necessary.
727 */
728
729 iold = inew = 0;
730 while (iold < fds_old_nb || inew < fds_new_nb) {
731 if (iold < fds_old_nb
732 && (inew == fds_new_nb
733 || memory_region_ioeventfd_before(fds_old[iold],
734 fds_new[inew]))) {
735 fd = &fds_old[iold];
736 section = (MemoryRegionSection) {
737 .address_space = as,
738 .offset_within_address_space = int128_get64(fd->addr.start),
739 .size = fd->addr.size,
740 };
741 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
742 fd->match_data, fd->data, fd->e);
743 ++iold;
744 } else if (inew < fds_new_nb
745 && (iold == fds_old_nb
746 || memory_region_ioeventfd_before(fds_new[inew],
747 fds_old[iold]))) {
748 fd = &fds_new[inew];
749 section = (MemoryRegionSection) {
750 .address_space = as,
751 .offset_within_address_space = int128_get64(fd->addr.start),
752 .size = fd->addr.size,
753 };
754 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
755 fd->match_data, fd->data, fd->e);
756 ++inew;
757 } else {
758 ++iold;
759 ++inew;
760 }
761 }
762 }
763
764 static FlatView *address_space_get_flatview(AddressSpace *as)
765 {
766 FlatView *view;
767
768 rcu_read_lock();
769 view = atomic_rcu_read(&as->current_map);
770 flatview_ref(view);
771 rcu_read_unlock();
772 return view;
773 }
774
775 static void address_space_update_ioeventfds(AddressSpace *as)
776 {
777 FlatView *view;
778 FlatRange *fr;
779 unsigned ioeventfd_nb = 0;
780 MemoryRegionIoeventfd *ioeventfds = NULL;
781 AddrRange tmp;
782 unsigned i;
783
784 view = address_space_get_flatview(as);
785 FOR_EACH_FLAT_RANGE(fr, view) {
786 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
787 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
788 int128_sub(fr->addr.start,
789 int128_make64(fr->offset_in_region)));
790 if (addrrange_intersects(fr->addr, tmp)) {
791 ++ioeventfd_nb;
792 ioeventfds = g_realloc(ioeventfds,
793 ioeventfd_nb * sizeof(*ioeventfds));
794 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
795 ioeventfds[ioeventfd_nb-1].addr = tmp;
796 }
797 }
798 }
799
800 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
801 as->ioeventfds, as->ioeventfd_nb);
802
803 g_free(as->ioeventfds);
804 as->ioeventfds = ioeventfds;
805 as->ioeventfd_nb = ioeventfd_nb;
806 flatview_unref(view);
807 }
808
809 static void address_space_update_topology_pass(AddressSpace *as,
810 const FlatView *old_view,
811 const FlatView *new_view,
812 bool adding)
813 {
814 unsigned iold, inew;
815 FlatRange *frold, *frnew;
816
817 /* Generate a symmetric difference of the old and new memory maps.
818 * Kill ranges in the old map, and instantiate ranges in the new map.
819 */
820 iold = inew = 0;
821 while (iold < old_view->nr || inew < new_view->nr) {
822 if (iold < old_view->nr) {
823 frold = &old_view->ranges[iold];
824 } else {
825 frold = NULL;
826 }
827 if (inew < new_view->nr) {
828 frnew = &new_view->ranges[inew];
829 } else {
830 frnew = NULL;
831 }
832
833 if (frold
834 && (!frnew
835 || int128_lt(frold->addr.start, frnew->addr.start)
836 || (int128_eq(frold->addr.start, frnew->addr.start)
837 && !flatrange_equal(frold, frnew)))) {
838 /* In old but not in new, or in both but attributes changed. */
839
840 if (!adding) {
841 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
842 }
843
844 ++iold;
845 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
846 /* In both and unchanged (except logging may have changed) */
847
848 if (adding) {
849 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
850 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
851 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
852 frold->dirty_log_mask,
853 frnew->dirty_log_mask);
854 }
855 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
856 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
857 frold->dirty_log_mask,
858 frnew->dirty_log_mask);
859 }
860 }
861
862 ++iold;
863 ++inew;
864 } else {
865 /* In new */
866
867 if (adding) {
868 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
869 }
870
871 ++inew;
872 }
873 }
874 }
875
876
877 static void address_space_update_topology(AddressSpace *as)
878 {
879 FlatView *old_view = address_space_get_flatview(as);
880 FlatView *new_view = generate_memory_topology(as->root);
881
882 address_space_update_topology_pass(as, old_view, new_view, false);
883 address_space_update_topology_pass(as, old_view, new_view, true);
884
885 /* Writes are protected by the BQL. */
886 atomic_rcu_set(&as->current_map, new_view);
887 call_rcu(old_view, flatview_unref, rcu);
888
889 /* Note that all the old MemoryRegions are still alive up to this
890 * point. This relieves most MemoryListeners from the need to
891 * ref/unref the MemoryRegions they get---unless they use them
892 * outside the iothread mutex, in which case precise reference
893 * counting is necessary.
894 */
895 flatview_unref(old_view);
896
897 address_space_update_ioeventfds(as);
898 }
899
900 void memory_region_transaction_begin(void)
901 {
902 qemu_flush_coalesced_mmio_buffer();
903 ++memory_region_transaction_depth;
904 }
905
906 static void memory_region_clear_pending(void)
907 {
908 memory_region_update_pending = false;
909 ioeventfd_update_pending = false;
910 }
911
912 void memory_region_transaction_commit(void)
913 {
914 AddressSpace *as;
915
916 assert(memory_region_transaction_depth);
917 --memory_region_transaction_depth;
918 if (!memory_region_transaction_depth) {
919 if (memory_region_update_pending) {
920 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
921
922 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
923 address_space_update_topology(as);
924 }
925
926 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
927 } else if (ioeventfd_update_pending) {
928 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
929 address_space_update_ioeventfds(as);
930 }
931 }
932 memory_region_clear_pending();
933 }
934 }
935
936 static void memory_region_destructor_none(MemoryRegion *mr)
937 {
938 }
939
940 static void memory_region_destructor_ram(MemoryRegion *mr)
941 {
942 qemu_ram_free(mr->ram_block);
943 }
944
945 static void memory_region_destructor_rom_device(MemoryRegion *mr)
946 {
947 qemu_ram_free(mr->ram_block);
948 }
949
950 static bool memory_region_need_escape(char c)
951 {
952 return c == '/' || c == '[' || c == '\\' || c == ']';
953 }
954
955 static char *memory_region_escape_name(const char *name)
956 {
957 const char *p;
958 char *escaped, *q;
959 uint8_t c;
960 size_t bytes = 0;
961
962 for (p = name; *p; p++) {
963 bytes += memory_region_need_escape(*p) ? 4 : 1;
964 }
965 if (bytes == p - name) {
966 return g_memdup(name, bytes + 1);
967 }
968
969 escaped = g_malloc(bytes + 1);
970 for (p = name, q = escaped; *p; p++) {
971 c = *p;
972 if (unlikely(memory_region_need_escape(c))) {
973 *q++ = '\\';
974 *q++ = 'x';
975 *q++ = "0123456789abcdef"[c >> 4];
976 c = "0123456789abcdef"[c & 15];
977 }
978 *q++ = c;
979 }
980 *q = 0;
981 return escaped;
982 }
983
984 void memory_region_init(MemoryRegion *mr,
985 Object *owner,
986 const char *name,
987 uint64_t size)
988 {
989 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
990 mr->size = int128_make64(size);
991 if (size == UINT64_MAX) {
992 mr->size = int128_2_64();
993 }
994 mr->name = g_strdup(name);
995 mr->owner = owner;
996 mr->ram_block = NULL;
997
998 if (name) {
999 char *escaped_name = memory_region_escape_name(name);
1000 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1001
1002 if (!owner) {
1003 owner = container_get(qdev_get_machine(), "/unattached");
1004 }
1005
1006 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1007 object_unref(OBJECT(mr));
1008 g_free(name_array);
1009 g_free(escaped_name);
1010 }
1011 }
1012
1013 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1014 void *opaque, Error **errp)
1015 {
1016 MemoryRegion *mr = MEMORY_REGION(obj);
1017 uint64_t value = mr->addr;
1018
1019 visit_type_uint64(v, name, &value, errp);
1020 }
1021
1022 static void memory_region_get_container(Object *obj, Visitor *v,
1023 const char *name, void *opaque,
1024 Error **errp)
1025 {
1026 MemoryRegion *mr = MEMORY_REGION(obj);
1027 gchar *path = (gchar *)"";
1028
1029 if (mr->container) {
1030 path = object_get_canonical_path(OBJECT(mr->container));
1031 }
1032 visit_type_str(v, name, &path, errp);
1033 if (mr->container) {
1034 g_free(path);
1035 }
1036 }
1037
1038 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1039 const char *part)
1040 {
1041 MemoryRegion *mr = MEMORY_REGION(obj);
1042
1043 return OBJECT(mr->container);
1044 }
1045
1046 static void memory_region_get_priority(Object *obj, Visitor *v,
1047 const char *name, void *opaque,
1048 Error **errp)
1049 {
1050 MemoryRegion *mr = MEMORY_REGION(obj);
1051 int32_t value = mr->priority;
1052
1053 visit_type_int32(v, name, &value, errp);
1054 }
1055
1056 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1057 void *opaque, Error **errp)
1058 {
1059 MemoryRegion *mr = MEMORY_REGION(obj);
1060 uint64_t value = memory_region_size(mr);
1061
1062 visit_type_uint64(v, name, &value, errp);
1063 }
1064
1065 static void memory_region_initfn(Object *obj)
1066 {
1067 MemoryRegion *mr = MEMORY_REGION(obj);
1068 ObjectProperty *op;
1069
1070 mr->ops = &unassigned_mem_ops;
1071 mr->enabled = true;
1072 mr->romd_mode = true;
1073 mr->global_locking = true;
1074 mr->destructor = memory_region_destructor_none;
1075 QTAILQ_INIT(&mr->subregions);
1076 QTAILQ_INIT(&mr->coalesced);
1077
1078 op = object_property_add(OBJECT(mr), "container",
1079 "link<" TYPE_MEMORY_REGION ">",
1080 memory_region_get_container,
1081 NULL, /* memory_region_set_container */
1082 NULL, NULL, &error_abort);
1083 op->resolve = memory_region_resolve_container;
1084
1085 object_property_add(OBJECT(mr), "addr", "uint64",
1086 memory_region_get_addr,
1087 NULL, /* memory_region_set_addr */
1088 NULL, NULL, &error_abort);
1089 object_property_add(OBJECT(mr), "priority", "uint32",
1090 memory_region_get_priority,
1091 NULL, /* memory_region_set_priority */
1092 NULL, NULL, &error_abort);
1093 object_property_add(OBJECT(mr), "size", "uint64",
1094 memory_region_get_size,
1095 NULL, /* memory_region_set_size, */
1096 NULL, NULL, &error_abort);
1097 }
1098
1099 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1100 unsigned size)
1101 {
1102 #ifdef DEBUG_UNASSIGNED
1103 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1104 #endif
1105 if (current_cpu != NULL) {
1106 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1107 }
1108 return 0;
1109 }
1110
1111 static void unassigned_mem_write(void *opaque, hwaddr addr,
1112 uint64_t val, unsigned size)
1113 {
1114 #ifdef DEBUG_UNASSIGNED
1115 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1116 #endif
1117 if (current_cpu != NULL) {
1118 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1119 }
1120 }
1121
1122 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1123 unsigned size, bool is_write)
1124 {
1125 return false;
1126 }
1127
1128 const MemoryRegionOps unassigned_mem_ops = {
1129 .valid.accepts = unassigned_mem_accepts,
1130 .endianness = DEVICE_NATIVE_ENDIAN,
1131 };
1132
1133 bool memory_region_access_valid(MemoryRegion *mr,
1134 hwaddr addr,
1135 unsigned size,
1136 bool is_write)
1137 {
1138 int access_size_min, access_size_max;
1139 int access_size, i;
1140
1141 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1142 return false;
1143 }
1144
1145 if (!mr->ops->valid.accepts) {
1146 return true;
1147 }
1148
1149 access_size_min = mr->ops->valid.min_access_size;
1150 if (!mr->ops->valid.min_access_size) {
1151 access_size_min = 1;
1152 }
1153
1154 access_size_max = mr->ops->valid.max_access_size;
1155 if (!mr->ops->valid.max_access_size) {
1156 access_size_max = 4;
1157 }
1158
1159 access_size = MAX(MIN(size, access_size_max), access_size_min);
1160 for (i = 0; i < size; i += access_size) {
1161 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1162 is_write)) {
1163 return false;
1164 }
1165 }
1166
1167 return true;
1168 }
1169
1170 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1171 hwaddr addr,
1172 uint64_t *pval,
1173 unsigned size,
1174 MemTxAttrs attrs)
1175 {
1176 *pval = 0;
1177
1178 if (mr->ops->read) {
1179 return access_with_adjusted_size(addr, pval, size,
1180 mr->ops->impl.min_access_size,
1181 mr->ops->impl.max_access_size,
1182 memory_region_read_accessor,
1183 mr, attrs);
1184 } else if (mr->ops->read_with_attrs) {
1185 return access_with_adjusted_size(addr, pval, size,
1186 mr->ops->impl.min_access_size,
1187 mr->ops->impl.max_access_size,
1188 memory_region_read_with_attrs_accessor,
1189 mr, attrs);
1190 } else {
1191 return access_with_adjusted_size(addr, pval, size, 1, 4,
1192 memory_region_oldmmio_read_accessor,
1193 mr, attrs);
1194 }
1195 }
1196
1197 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1198 hwaddr addr,
1199 uint64_t *pval,
1200 unsigned size,
1201 MemTxAttrs attrs)
1202 {
1203 MemTxResult r;
1204
1205 if (!memory_region_access_valid(mr, addr, size, false)) {
1206 *pval = unassigned_mem_read(mr, addr, size);
1207 return MEMTX_DECODE_ERROR;
1208 }
1209
1210 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1211 adjust_endianness(mr, pval, size);
1212 return r;
1213 }
1214
1215 /* Return true if an eventfd was signalled */
1216 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1217 hwaddr addr,
1218 uint64_t data,
1219 unsigned size,
1220 MemTxAttrs attrs)
1221 {
1222 MemoryRegionIoeventfd ioeventfd = {
1223 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1224 .data = data,
1225 };
1226 unsigned i;
1227
1228 for (i = 0; i < mr->ioeventfd_nb; i++) {
1229 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1230 ioeventfd.e = mr->ioeventfds[i].e;
1231
1232 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1233 event_notifier_set(ioeventfd.e);
1234 return true;
1235 }
1236 }
1237
1238 return false;
1239 }
1240
1241 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1242 hwaddr addr,
1243 uint64_t data,
1244 unsigned size,
1245 MemTxAttrs attrs)
1246 {
1247 if (!memory_region_access_valid(mr, addr, size, true)) {
1248 unassigned_mem_write(mr, addr, data, size);
1249 return MEMTX_DECODE_ERROR;
1250 }
1251
1252 adjust_endianness(mr, &data, size);
1253
1254 if ((!kvm_eventfds_enabled()) &&
1255 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1256 return MEMTX_OK;
1257 }
1258
1259 if (mr->ops->write) {
1260 return access_with_adjusted_size(addr, &data, size,
1261 mr->ops->impl.min_access_size,
1262 mr->ops->impl.max_access_size,
1263 memory_region_write_accessor, mr,
1264 attrs);
1265 } else if (mr->ops->write_with_attrs) {
1266 return
1267 access_with_adjusted_size(addr, &data, size,
1268 mr->ops->impl.min_access_size,
1269 mr->ops->impl.max_access_size,
1270 memory_region_write_with_attrs_accessor,
1271 mr, attrs);
1272 } else {
1273 return access_with_adjusted_size(addr, &data, size, 1, 4,
1274 memory_region_oldmmio_write_accessor,
1275 mr, attrs);
1276 }
1277 }
1278
1279 void memory_region_init_io(MemoryRegion *mr,
1280 Object *owner,
1281 const MemoryRegionOps *ops,
1282 void *opaque,
1283 const char *name,
1284 uint64_t size)
1285 {
1286 memory_region_init(mr, owner, name, size);
1287 mr->ops = ops ? ops : &unassigned_mem_ops;
1288 mr->opaque = opaque;
1289 mr->terminates = true;
1290 }
1291
1292 void memory_region_init_ram(MemoryRegion *mr,
1293 Object *owner,
1294 const char *name,
1295 uint64_t size,
1296 Error **errp)
1297 {
1298 memory_region_init(mr, owner, name, size);
1299 mr->ram = true;
1300 mr->terminates = true;
1301 mr->destructor = memory_region_destructor_ram;
1302 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1303 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1304 }
1305
1306 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1307 Object *owner,
1308 const char *name,
1309 uint64_t size,
1310 uint64_t max_size,
1311 void (*resized)(const char*,
1312 uint64_t length,
1313 void *host),
1314 Error **errp)
1315 {
1316 memory_region_init(mr, owner, name, size);
1317 mr->ram = true;
1318 mr->terminates = true;
1319 mr->destructor = memory_region_destructor_ram;
1320 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1321 mr, errp);
1322 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1323 }
1324
1325 #ifdef __linux__
1326 void memory_region_init_ram_from_file(MemoryRegion *mr,
1327 struct Object *owner,
1328 const char *name,
1329 uint64_t size,
1330 bool share,
1331 const char *path,
1332 Error **errp)
1333 {
1334 memory_region_init(mr, owner, name, size);
1335 mr->ram = true;
1336 mr->terminates = true;
1337 mr->destructor = memory_region_destructor_ram;
1338 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1339 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1340 }
1341 #endif
1342
1343 void memory_region_init_ram_ptr(MemoryRegion *mr,
1344 Object *owner,
1345 const char *name,
1346 uint64_t size,
1347 void *ptr)
1348 {
1349 memory_region_init(mr, owner, name, size);
1350 mr->ram = true;
1351 mr->terminates = true;
1352 mr->destructor = memory_region_destructor_ram;
1353 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1354
1355 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1356 assert(ptr != NULL);
1357 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1358 }
1359
1360 void memory_region_set_skip_dump(MemoryRegion *mr)
1361 {
1362 mr->skip_dump = true;
1363 }
1364
1365 void memory_region_init_alias(MemoryRegion *mr,
1366 Object *owner,
1367 const char *name,
1368 MemoryRegion *orig,
1369 hwaddr offset,
1370 uint64_t size)
1371 {
1372 memory_region_init(mr, owner, name, size);
1373 mr->alias = orig;
1374 mr->alias_offset = offset;
1375 }
1376
1377 void memory_region_init_rom_device(MemoryRegion *mr,
1378 Object *owner,
1379 const MemoryRegionOps *ops,
1380 void *opaque,
1381 const char *name,
1382 uint64_t size,
1383 Error **errp)
1384 {
1385 memory_region_init(mr, owner, name, size);
1386 mr->ops = ops;
1387 mr->opaque = opaque;
1388 mr->terminates = true;
1389 mr->rom_device = true;
1390 mr->destructor = memory_region_destructor_rom_device;
1391 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1392 }
1393
1394 void memory_region_init_iommu(MemoryRegion *mr,
1395 Object *owner,
1396 const MemoryRegionIOMMUOps *ops,
1397 const char *name,
1398 uint64_t size)
1399 {
1400 memory_region_init(mr, owner, name, size);
1401 mr->iommu_ops = ops,
1402 mr->terminates = true; /* then re-forwards */
1403 notifier_list_init(&mr->iommu_notify);
1404 }
1405
1406 static void memory_region_finalize(Object *obj)
1407 {
1408 MemoryRegion *mr = MEMORY_REGION(obj);
1409
1410 assert(!mr->container);
1411
1412 /* We know the region is not visible in any address space (it
1413 * does not have a container and cannot be a root either because
1414 * it has no references, so we can blindly clear mr->enabled.
1415 * memory_region_set_enabled instead could trigger a transaction
1416 * and cause an infinite loop.
1417 */
1418 mr->enabled = false;
1419 memory_region_transaction_begin();
1420 while (!QTAILQ_EMPTY(&mr->subregions)) {
1421 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1422 memory_region_del_subregion(mr, subregion);
1423 }
1424 memory_region_transaction_commit();
1425
1426 mr->destructor(mr);
1427 memory_region_clear_coalescing(mr);
1428 g_free((char *)mr->name);
1429 g_free(mr->ioeventfds);
1430 }
1431
1432 Object *memory_region_owner(MemoryRegion *mr)
1433 {
1434 Object *obj = OBJECT(mr);
1435 return obj->parent;
1436 }
1437
1438 void memory_region_ref(MemoryRegion *mr)
1439 {
1440 /* MMIO callbacks most likely will access data that belongs
1441 * to the owner, hence the need to ref/unref the owner whenever
1442 * the memory region is in use.
1443 *
1444 * The memory region is a child of its owner. As long as the
1445 * owner doesn't call unparent itself on the memory region,
1446 * ref-ing the owner will also keep the memory region alive.
1447 * Memory regions without an owner are supposed to never go away;
1448 * we do not ref/unref them because it slows down DMA sensibly.
1449 */
1450 if (mr && mr->owner) {
1451 object_ref(mr->owner);
1452 }
1453 }
1454
1455 void memory_region_unref(MemoryRegion *mr)
1456 {
1457 if (mr && mr->owner) {
1458 object_unref(mr->owner);
1459 }
1460 }
1461
1462 uint64_t memory_region_size(MemoryRegion *mr)
1463 {
1464 if (int128_eq(mr->size, int128_2_64())) {
1465 return UINT64_MAX;
1466 }
1467 return int128_get64(mr->size);
1468 }
1469
1470 const char *memory_region_name(const MemoryRegion *mr)
1471 {
1472 if (!mr->name) {
1473 ((MemoryRegion *)mr)->name =
1474 object_get_canonical_path_component(OBJECT(mr));
1475 }
1476 return mr->name;
1477 }
1478
1479 bool memory_region_is_skip_dump(MemoryRegion *mr)
1480 {
1481 return mr->skip_dump;
1482 }
1483
1484 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1485 {
1486 uint8_t mask = mr->dirty_log_mask;
1487 if (global_dirty_log) {
1488 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1489 }
1490 return mask;
1491 }
1492
1493 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1494 {
1495 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1496 }
1497
1498 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1499 {
1500 notifier_list_add(&mr->iommu_notify, n);
1501 }
1502
1503 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
1504 hwaddr granularity, bool is_write)
1505 {
1506 hwaddr addr;
1507 IOMMUTLBEntry iotlb;
1508
1509 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1510 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1511 if (iotlb.perm != IOMMU_NONE) {
1512 n->notify(n, &iotlb);
1513 }
1514
1515 /* if (2^64 - MR size) < granularity, it's possible to get an
1516 * infinite loop here. This should catch such a wraparound */
1517 if ((addr + granularity) < addr) {
1518 break;
1519 }
1520 }
1521 }
1522
1523 void memory_region_unregister_iommu_notifier(Notifier *n)
1524 {
1525 notifier_remove(n);
1526 }
1527
1528 void memory_region_notify_iommu(MemoryRegion *mr,
1529 IOMMUTLBEntry entry)
1530 {
1531 assert(memory_region_is_iommu(mr));
1532 notifier_list_notify(&mr->iommu_notify, &entry);
1533 }
1534
1535 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1536 {
1537 uint8_t mask = 1 << client;
1538 uint8_t old_logging;
1539
1540 assert(client == DIRTY_MEMORY_VGA);
1541 old_logging = mr->vga_logging_count;
1542 mr->vga_logging_count += log ? 1 : -1;
1543 if (!!old_logging == !!mr->vga_logging_count) {
1544 return;
1545 }
1546
1547 memory_region_transaction_begin();
1548 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1549 memory_region_update_pending |= mr->enabled;
1550 memory_region_transaction_commit();
1551 }
1552
1553 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1554 hwaddr size, unsigned client)
1555 {
1556 assert(mr->ram_block);
1557 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1558 size, client);
1559 }
1560
1561 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1562 hwaddr size)
1563 {
1564 assert(mr->ram_block);
1565 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1566 size,
1567 memory_region_get_dirty_log_mask(mr));
1568 }
1569
1570 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1571 hwaddr size, unsigned client)
1572 {
1573 assert(mr->ram_block);
1574 return cpu_physical_memory_test_and_clear_dirty(
1575 memory_region_get_ram_addr(mr) + addr, size, client);
1576 }
1577
1578
1579 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1580 {
1581 AddressSpace *as;
1582 FlatRange *fr;
1583
1584 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1585 FlatView *view = address_space_get_flatview(as);
1586 FOR_EACH_FLAT_RANGE(fr, view) {
1587 if (fr->mr == mr) {
1588 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1589 }
1590 }
1591 flatview_unref(view);
1592 }
1593 }
1594
1595 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1596 {
1597 if (mr->readonly != readonly) {
1598 memory_region_transaction_begin();
1599 mr->readonly = readonly;
1600 memory_region_update_pending |= mr->enabled;
1601 memory_region_transaction_commit();
1602 }
1603 }
1604
1605 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1606 {
1607 if (mr->romd_mode != romd_mode) {
1608 memory_region_transaction_begin();
1609 mr->romd_mode = romd_mode;
1610 memory_region_update_pending |= mr->enabled;
1611 memory_region_transaction_commit();
1612 }
1613 }
1614
1615 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1616 hwaddr size, unsigned client)
1617 {
1618 assert(mr->ram_block);
1619 cpu_physical_memory_test_and_clear_dirty(
1620 memory_region_get_ram_addr(mr) + addr, size, client);
1621 }
1622
1623 int memory_region_get_fd(MemoryRegion *mr)
1624 {
1625 if (mr->alias) {
1626 return memory_region_get_fd(mr->alias);
1627 }
1628
1629 assert(mr->ram_block);
1630
1631 return qemu_get_ram_fd(memory_region_get_ram_addr(mr));
1632 }
1633
1634 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1635 {
1636 void *ptr;
1637 uint64_t offset = 0;
1638
1639 rcu_read_lock();
1640 while (mr->alias) {
1641 offset += mr->alias_offset;
1642 mr = mr->alias;
1643 }
1644 assert(mr->ram_block);
1645 ptr = qemu_get_ram_ptr(mr->ram_block, memory_region_get_ram_addr(mr));
1646 rcu_read_unlock();
1647
1648 return ptr + offset;
1649 }
1650
1651 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1652 {
1653 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1654 }
1655
1656 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1657 {
1658 assert(mr->ram_block);
1659
1660 qemu_ram_resize(mr->ram_block, newsize, errp);
1661 }
1662
1663 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1664 {
1665 FlatView *view;
1666 FlatRange *fr;
1667 CoalescedMemoryRange *cmr;
1668 AddrRange tmp;
1669 MemoryRegionSection section;
1670
1671 view = address_space_get_flatview(as);
1672 FOR_EACH_FLAT_RANGE(fr, view) {
1673 if (fr->mr == mr) {
1674 section = (MemoryRegionSection) {
1675 .address_space = as,
1676 .offset_within_address_space = int128_get64(fr->addr.start),
1677 .size = fr->addr.size,
1678 };
1679
1680 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1681 int128_get64(fr->addr.start),
1682 int128_get64(fr->addr.size));
1683 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1684 tmp = addrrange_shift(cmr->addr,
1685 int128_sub(fr->addr.start,
1686 int128_make64(fr->offset_in_region)));
1687 if (!addrrange_intersects(tmp, fr->addr)) {
1688 continue;
1689 }
1690 tmp = addrrange_intersection(tmp, fr->addr);
1691 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1692 int128_get64(tmp.start),
1693 int128_get64(tmp.size));
1694 }
1695 }
1696 }
1697 flatview_unref(view);
1698 }
1699
1700 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1701 {
1702 AddressSpace *as;
1703
1704 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1705 memory_region_update_coalesced_range_as(mr, as);
1706 }
1707 }
1708
1709 void memory_region_set_coalescing(MemoryRegion *mr)
1710 {
1711 memory_region_clear_coalescing(mr);
1712 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1713 }
1714
1715 void memory_region_add_coalescing(MemoryRegion *mr,
1716 hwaddr offset,
1717 uint64_t size)
1718 {
1719 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1720
1721 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1722 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1723 memory_region_update_coalesced_range(mr);
1724 memory_region_set_flush_coalesced(mr);
1725 }
1726
1727 void memory_region_clear_coalescing(MemoryRegion *mr)
1728 {
1729 CoalescedMemoryRange *cmr;
1730 bool updated = false;
1731
1732 qemu_flush_coalesced_mmio_buffer();
1733 mr->flush_coalesced_mmio = false;
1734
1735 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1736 cmr = QTAILQ_FIRST(&mr->coalesced);
1737 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1738 g_free(cmr);
1739 updated = true;
1740 }
1741
1742 if (updated) {
1743 memory_region_update_coalesced_range(mr);
1744 }
1745 }
1746
1747 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1748 {
1749 mr->flush_coalesced_mmio = true;
1750 }
1751
1752 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1753 {
1754 qemu_flush_coalesced_mmio_buffer();
1755 if (QTAILQ_EMPTY(&mr->coalesced)) {
1756 mr->flush_coalesced_mmio = false;
1757 }
1758 }
1759
1760 void memory_region_set_global_locking(MemoryRegion *mr)
1761 {
1762 mr->global_locking = true;
1763 }
1764
1765 void memory_region_clear_global_locking(MemoryRegion *mr)
1766 {
1767 mr->global_locking = false;
1768 }
1769
1770 static bool userspace_eventfd_warning;
1771
1772 void memory_region_add_eventfd(MemoryRegion *mr,
1773 hwaddr addr,
1774 unsigned size,
1775 bool match_data,
1776 uint64_t data,
1777 EventNotifier *e)
1778 {
1779 MemoryRegionIoeventfd mrfd = {
1780 .addr.start = int128_make64(addr),
1781 .addr.size = int128_make64(size),
1782 .match_data = match_data,
1783 .data = data,
1784 .e = e,
1785 };
1786 unsigned i;
1787
1788 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1789 userspace_eventfd_warning))) {
1790 userspace_eventfd_warning = true;
1791 error_report("Using eventfd without MMIO binding in KVM. "
1792 "Suboptimal performance expected");
1793 }
1794
1795 if (size) {
1796 adjust_endianness(mr, &mrfd.data, size);
1797 }
1798 memory_region_transaction_begin();
1799 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1800 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1801 break;
1802 }
1803 }
1804 ++mr->ioeventfd_nb;
1805 mr->ioeventfds = g_realloc(mr->ioeventfds,
1806 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1807 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1808 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1809 mr->ioeventfds[i] = mrfd;
1810 ioeventfd_update_pending |= mr->enabled;
1811 memory_region_transaction_commit();
1812 }
1813
1814 void memory_region_del_eventfd(MemoryRegion *mr,
1815 hwaddr addr,
1816 unsigned size,
1817 bool match_data,
1818 uint64_t data,
1819 EventNotifier *e)
1820 {
1821 MemoryRegionIoeventfd mrfd = {
1822 .addr.start = int128_make64(addr),
1823 .addr.size = int128_make64(size),
1824 .match_data = match_data,
1825 .data = data,
1826 .e = e,
1827 };
1828 unsigned i;
1829
1830 if (size) {
1831 adjust_endianness(mr, &mrfd.data, size);
1832 }
1833 memory_region_transaction_begin();
1834 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1835 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1836 break;
1837 }
1838 }
1839 assert(i != mr->ioeventfd_nb);
1840 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1841 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1842 --mr->ioeventfd_nb;
1843 mr->ioeventfds = g_realloc(mr->ioeventfds,
1844 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1845 ioeventfd_update_pending |= mr->enabled;
1846 memory_region_transaction_commit();
1847 }
1848
1849 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1850 {
1851 MemoryRegion *mr = subregion->container;
1852 MemoryRegion *other;
1853
1854 memory_region_transaction_begin();
1855
1856 memory_region_ref(subregion);
1857 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1858 if (subregion->priority >= other->priority) {
1859 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1860 goto done;
1861 }
1862 }
1863 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1864 done:
1865 memory_region_update_pending |= mr->enabled && subregion->enabled;
1866 memory_region_transaction_commit();
1867 }
1868
1869 static void memory_region_add_subregion_common(MemoryRegion *mr,
1870 hwaddr offset,
1871 MemoryRegion *subregion)
1872 {
1873 assert(!subregion->container);
1874 subregion->container = mr;
1875 subregion->addr = offset;
1876 memory_region_update_container_subregions(subregion);
1877 }
1878
1879 void memory_region_add_subregion(MemoryRegion *mr,
1880 hwaddr offset,
1881 MemoryRegion *subregion)
1882 {
1883 subregion->priority = 0;
1884 memory_region_add_subregion_common(mr, offset, subregion);
1885 }
1886
1887 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1888 hwaddr offset,
1889 MemoryRegion *subregion,
1890 int priority)
1891 {
1892 subregion->priority = priority;
1893 memory_region_add_subregion_common(mr, offset, subregion);
1894 }
1895
1896 void memory_region_del_subregion(MemoryRegion *mr,
1897 MemoryRegion *subregion)
1898 {
1899 memory_region_transaction_begin();
1900 assert(subregion->container == mr);
1901 subregion->container = NULL;
1902 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1903 memory_region_unref(subregion);
1904 memory_region_update_pending |= mr->enabled && subregion->enabled;
1905 memory_region_transaction_commit();
1906 }
1907
1908 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1909 {
1910 if (enabled == mr->enabled) {
1911 return;
1912 }
1913 memory_region_transaction_begin();
1914 mr->enabled = enabled;
1915 memory_region_update_pending = true;
1916 memory_region_transaction_commit();
1917 }
1918
1919 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1920 {
1921 Int128 s = int128_make64(size);
1922
1923 if (size == UINT64_MAX) {
1924 s = int128_2_64();
1925 }
1926 if (int128_eq(s, mr->size)) {
1927 return;
1928 }
1929 memory_region_transaction_begin();
1930 mr->size = s;
1931 memory_region_update_pending = true;
1932 memory_region_transaction_commit();
1933 }
1934
1935 static void memory_region_readd_subregion(MemoryRegion *mr)
1936 {
1937 MemoryRegion *container = mr->container;
1938
1939 if (container) {
1940 memory_region_transaction_begin();
1941 memory_region_ref(mr);
1942 memory_region_del_subregion(container, mr);
1943 mr->container = container;
1944 memory_region_update_container_subregions(mr);
1945 memory_region_unref(mr);
1946 memory_region_transaction_commit();
1947 }
1948 }
1949
1950 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1951 {
1952 if (addr != mr->addr) {
1953 mr->addr = addr;
1954 memory_region_readd_subregion(mr);
1955 }
1956 }
1957
1958 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1959 {
1960 assert(mr->alias);
1961
1962 if (offset == mr->alias_offset) {
1963 return;
1964 }
1965
1966 memory_region_transaction_begin();
1967 mr->alias_offset = offset;
1968 memory_region_update_pending |= mr->enabled;
1969 memory_region_transaction_commit();
1970 }
1971
1972 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1973 {
1974 return mr->align;
1975 }
1976
1977 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1978 {
1979 const AddrRange *addr = addr_;
1980 const FlatRange *fr = fr_;
1981
1982 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1983 return -1;
1984 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1985 return 1;
1986 }
1987 return 0;
1988 }
1989
1990 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1991 {
1992 return bsearch(&addr, view->ranges, view->nr,
1993 sizeof(FlatRange), cmp_flatrange_addr);
1994 }
1995
1996 bool memory_region_is_mapped(MemoryRegion *mr)
1997 {
1998 return mr->container ? true : false;
1999 }
2000
2001 /* Same as memory_region_find, but it does not add a reference to the
2002 * returned region. It must be called from an RCU critical section.
2003 */
2004 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2005 hwaddr addr, uint64_t size)
2006 {
2007 MemoryRegionSection ret = { .mr = NULL };
2008 MemoryRegion *root;
2009 AddressSpace *as;
2010 AddrRange range;
2011 FlatView *view;
2012 FlatRange *fr;
2013
2014 addr += mr->addr;
2015 for (root = mr; root->container; ) {
2016 root = root->container;
2017 addr += root->addr;
2018 }
2019
2020 as = memory_region_to_address_space(root);
2021 if (!as) {
2022 return ret;
2023 }
2024 range = addrrange_make(int128_make64(addr), int128_make64(size));
2025
2026 view = atomic_rcu_read(&as->current_map);
2027 fr = flatview_lookup(view, range);
2028 if (!fr) {
2029 return ret;
2030 }
2031
2032 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2033 --fr;
2034 }
2035
2036 ret.mr = fr->mr;
2037 ret.address_space = as;
2038 range = addrrange_intersection(range, fr->addr);
2039 ret.offset_within_region = fr->offset_in_region;
2040 ret.offset_within_region += int128_get64(int128_sub(range.start,
2041 fr->addr.start));
2042 ret.size = range.size;
2043 ret.offset_within_address_space = int128_get64(range.start);
2044 ret.readonly = fr->readonly;
2045 return ret;
2046 }
2047
2048 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2049 hwaddr addr, uint64_t size)
2050 {
2051 MemoryRegionSection ret;
2052 rcu_read_lock();
2053 ret = memory_region_find_rcu(mr, addr, size);
2054 if (ret.mr) {
2055 memory_region_ref(ret.mr);
2056 }
2057 rcu_read_unlock();
2058 return ret;
2059 }
2060
2061 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2062 {
2063 MemoryRegion *mr;
2064
2065 rcu_read_lock();
2066 mr = memory_region_find_rcu(container, addr, 1).mr;
2067 rcu_read_unlock();
2068 return mr && mr != container;
2069 }
2070
2071 void address_space_sync_dirty_bitmap(AddressSpace *as)
2072 {
2073 FlatView *view;
2074 FlatRange *fr;
2075
2076 view = address_space_get_flatview(as);
2077 FOR_EACH_FLAT_RANGE(fr, view) {
2078 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2079 }
2080 flatview_unref(view);
2081 }
2082
2083 void memory_global_dirty_log_start(void)
2084 {
2085 global_dirty_log = true;
2086
2087 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2088
2089 /* Refresh DIRTY_LOG_MIGRATION bit. */
2090 memory_region_transaction_begin();
2091 memory_region_update_pending = true;
2092 memory_region_transaction_commit();
2093 }
2094
2095 void memory_global_dirty_log_stop(void)
2096 {
2097 global_dirty_log = false;
2098
2099 /* Refresh DIRTY_LOG_MIGRATION bit. */
2100 memory_region_transaction_begin();
2101 memory_region_update_pending = true;
2102 memory_region_transaction_commit();
2103
2104 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2105 }
2106
2107 static void listener_add_address_space(MemoryListener *listener,
2108 AddressSpace *as)
2109 {
2110 FlatView *view;
2111 FlatRange *fr;
2112
2113 if (listener->address_space_filter
2114 && listener->address_space_filter != as) {
2115 return;
2116 }
2117
2118 if (listener->begin) {
2119 listener->begin(listener);
2120 }
2121 if (global_dirty_log) {
2122 if (listener->log_global_start) {
2123 listener->log_global_start(listener);
2124 }
2125 }
2126
2127 view = address_space_get_flatview(as);
2128 FOR_EACH_FLAT_RANGE(fr, view) {
2129 MemoryRegionSection section = {
2130 .mr = fr->mr,
2131 .address_space = as,
2132 .offset_within_region = fr->offset_in_region,
2133 .size = fr->addr.size,
2134 .offset_within_address_space = int128_get64(fr->addr.start),
2135 .readonly = fr->readonly,
2136 };
2137 if (fr->dirty_log_mask && listener->log_start) {
2138 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2139 }
2140 if (listener->region_add) {
2141 listener->region_add(listener, &section);
2142 }
2143 }
2144 if (listener->commit) {
2145 listener->commit(listener);
2146 }
2147 flatview_unref(view);
2148 }
2149
2150 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2151 {
2152 MemoryListener *other = NULL;
2153 AddressSpace *as;
2154
2155 listener->address_space_filter = filter;
2156 if (QTAILQ_EMPTY(&memory_listeners)
2157 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2158 memory_listeners)->priority) {
2159 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2160 } else {
2161 QTAILQ_FOREACH(other, &memory_listeners, link) {
2162 if (listener->priority < other->priority) {
2163 break;
2164 }
2165 }
2166 QTAILQ_INSERT_BEFORE(other, listener, link);
2167 }
2168
2169 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2170 listener_add_address_space(listener, as);
2171 }
2172 }
2173
2174 void memory_listener_unregister(MemoryListener *listener)
2175 {
2176 QTAILQ_REMOVE(&memory_listeners, listener, link);
2177 }
2178
2179 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2180 {
2181 memory_region_ref(root);
2182 memory_region_transaction_begin();
2183 as->ref_count = 1;
2184 as->root = root;
2185 as->malloced = false;
2186 as->current_map = g_new(FlatView, 1);
2187 flatview_init(as->current_map);
2188 as->ioeventfd_nb = 0;
2189 as->ioeventfds = NULL;
2190 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2191 as->name = g_strdup(name ? name : "anonymous");
2192 address_space_init_dispatch(as);
2193 memory_region_update_pending |= root->enabled;
2194 memory_region_transaction_commit();
2195 }
2196
2197 static void do_address_space_destroy(AddressSpace *as)
2198 {
2199 MemoryListener *listener;
2200 bool do_free = as->malloced;
2201
2202 address_space_destroy_dispatch(as);
2203
2204 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2205 assert(listener->address_space_filter != as);
2206 }
2207
2208 flatview_unref(as->current_map);
2209 g_free(as->name);
2210 g_free(as->ioeventfds);
2211 memory_region_unref(as->root);
2212 if (do_free) {
2213 g_free(as);
2214 }
2215 }
2216
2217 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2218 {
2219 AddressSpace *as;
2220
2221 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2222 if (root == as->root && as->malloced) {
2223 as->ref_count++;
2224 return as;
2225 }
2226 }
2227
2228 as = g_malloc0(sizeof *as);
2229 address_space_init(as, root, name);
2230 as->malloced = true;
2231 return as;
2232 }
2233
2234 void address_space_destroy(AddressSpace *as)
2235 {
2236 MemoryRegion *root = as->root;
2237
2238 as->ref_count--;
2239 if (as->ref_count) {
2240 return;
2241 }
2242 /* Flush out anything from MemoryListeners listening in on this */
2243 memory_region_transaction_begin();
2244 as->root = NULL;
2245 memory_region_transaction_commit();
2246 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2247 address_space_unregister(as);
2248
2249 /* At this point, as->dispatch and as->current_map are dummy
2250 * entries that the guest should never use. Wait for the old
2251 * values to expire before freeing the data.
2252 */
2253 as->root = root;
2254 call_rcu(as, do_address_space_destroy, rcu);
2255 }
2256
2257 typedef struct MemoryRegionList MemoryRegionList;
2258
2259 struct MemoryRegionList {
2260 const MemoryRegion *mr;
2261 QTAILQ_ENTRY(MemoryRegionList) queue;
2262 };
2263
2264 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2265
2266 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2267 const MemoryRegion *mr, unsigned int level,
2268 hwaddr base,
2269 MemoryRegionListHead *alias_print_queue)
2270 {
2271 MemoryRegionList *new_ml, *ml, *next_ml;
2272 MemoryRegionListHead submr_print_queue;
2273 const MemoryRegion *submr;
2274 unsigned int i;
2275
2276 if (!mr) {
2277 return;
2278 }
2279
2280 for (i = 0; i < level; i++) {
2281 mon_printf(f, " ");
2282 }
2283
2284 if (mr->alias) {
2285 MemoryRegionList *ml;
2286 bool found = false;
2287
2288 /* check if the alias is already in the queue */
2289 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2290 if (ml->mr == mr->alias) {
2291 found = true;
2292 }
2293 }
2294
2295 if (!found) {
2296 ml = g_new(MemoryRegionList, 1);
2297 ml->mr = mr->alias;
2298 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2299 }
2300 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2301 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2302 "-" TARGET_FMT_plx "%s\n",
2303 base + mr->addr,
2304 base + mr->addr
2305 + (int128_nz(mr->size) ?
2306 (hwaddr)int128_get64(int128_sub(mr->size,
2307 int128_one())) : 0),
2308 mr->priority,
2309 mr->romd_mode ? 'R' : '-',
2310 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2311 : '-',
2312 memory_region_name(mr),
2313 memory_region_name(mr->alias),
2314 mr->alias_offset,
2315 mr->alias_offset
2316 + (int128_nz(mr->size) ?
2317 (hwaddr)int128_get64(int128_sub(mr->size,
2318 int128_one())) : 0),
2319 mr->enabled ? "" : " [disabled]");
2320 } else {
2321 mon_printf(f,
2322 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2323 base + mr->addr,
2324 base + mr->addr
2325 + (int128_nz(mr->size) ?
2326 (hwaddr)int128_get64(int128_sub(mr->size,
2327 int128_one())) : 0),
2328 mr->priority,
2329 mr->romd_mode ? 'R' : '-',
2330 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2331 : '-',
2332 memory_region_name(mr),
2333 mr->enabled ? "" : " [disabled]");
2334 }
2335
2336 QTAILQ_INIT(&submr_print_queue);
2337
2338 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2339 new_ml = g_new(MemoryRegionList, 1);
2340 new_ml->mr = submr;
2341 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2342 if (new_ml->mr->addr < ml->mr->addr ||
2343 (new_ml->mr->addr == ml->mr->addr &&
2344 new_ml->mr->priority > ml->mr->priority)) {
2345 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2346 new_ml = NULL;
2347 break;
2348 }
2349 }
2350 if (new_ml) {
2351 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2352 }
2353 }
2354
2355 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2356 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2357 alias_print_queue);
2358 }
2359
2360 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2361 g_free(ml);
2362 }
2363 }
2364
2365 void mtree_info(fprintf_function mon_printf, void *f)
2366 {
2367 MemoryRegionListHead ml_head;
2368 MemoryRegionList *ml, *ml2;
2369 AddressSpace *as;
2370
2371 QTAILQ_INIT(&ml_head);
2372
2373 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2374 mon_printf(f, "address-space: %s\n", as->name);
2375 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2376 mon_printf(f, "\n");
2377 }
2378
2379 /* print aliased regions */
2380 QTAILQ_FOREACH(ml, &ml_head, queue) {
2381 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2382 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2383 mon_printf(f, "\n");
2384 }
2385
2386 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2387 g_free(ml);
2388 }
2389 }
2390
2391 static const TypeInfo memory_region_info = {
2392 .parent = TYPE_OBJECT,
2393 .name = TYPE_MEMORY_REGION,
2394 .instance_size = sizeof(MemoryRegion),
2395 .instance_init = memory_region_initfn,
2396 .instance_finalize = memory_region_finalize,
2397 };
2398
2399 static void memory_register_types(void)
2400 {
2401 type_register_static(&memory_region_info);
2402 }
2403
2404 type_init(memory_register_types)