vmsvga: don't process more than 1024 fifo commands at once
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33
34 //#define DEBUG_UNASSIGNED
35
36 static unsigned memory_region_transaction_depth;
37 static bool memory_region_update_pending;
38 static bool ioeventfd_update_pending;
39 static bool global_dirty_log = false;
40
41 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
42 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
43
44 static QTAILQ_HEAD(, AddressSpace) address_spaces
45 = QTAILQ_HEAD_INITIALIZER(address_spaces);
46
47 typedef struct AddrRange AddrRange;
48
49 /*
50 * Note that signed integers are needed for negative offsetting in aliases
51 * (large MemoryRegion::alias_offset).
52 */
53 struct AddrRange {
54 Int128 start;
55 Int128 size;
56 };
57
58 static AddrRange addrrange_make(Int128 start, Int128 size)
59 {
60 return (AddrRange) { start, size };
61 }
62
63 static bool addrrange_equal(AddrRange r1, AddrRange r2)
64 {
65 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
66 }
67
68 static Int128 addrrange_end(AddrRange r)
69 {
70 return int128_add(r.start, r.size);
71 }
72
73 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
74 {
75 int128_addto(&range.start, delta);
76 return range;
77 }
78
79 static bool addrrange_contains(AddrRange range, Int128 addr)
80 {
81 return int128_ge(addr, range.start)
82 && int128_lt(addr, addrrange_end(range));
83 }
84
85 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
86 {
87 return addrrange_contains(r1, r2.start)
88 || addrrange_contains(r2, r1.start);
89 }
90
91 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
92 {
93 Int128 start = int128_max(r1.start, r2.start);
94 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
95 return addrrange_make(start, int128_sub(end, start));
96 }
97
98 enum ListenerDirection { Forward, Reverse };
99
100 static bool memory_listener_match(MemoryListener *listener,
101 MemoryRegionSection *section)
102 {
103 return !listener->address_space_filter
104 || listener->address_space_filter == section->address_space;
105 }
106
107 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
108 do { \
109 MemoryListener *_listener; \
110 \
111 switch (_direction) { \
112 case Forward: \
113 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
114 if (_listener->_callback) { \
115 _listener->_callback(_listener, ##_args); \
116 } \
117 } \
118 break; \
119 case Reverse: \
120 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
121 memory_listeners, link) { \
122 if (_listener->_callback) { \
123 _listener->_callback(_listener, ##_args); \
124 } \
125 } \
126 break; \
127 default: \
128 abort(); \
129 } \
130 } while (0)
131
132 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
133 do { \
134 MemoryListener *_listener; \
135 \
136 switch (_direction) { \
137 case Forward: \
138 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
139 if (_listener->_callback \
140 && memory_listener_match(_listener, _section)) { \
141 _listener->_callback(_listener, _section, ##_args); \
142 } \
143 } \
144 break; \
145 case Reverse: \
146 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
147 memory_listeners, link) { \
148 if (_listener->_callback \
149 && memory_listener_match(_listener, _section)) { \
150 _listener->_callback(_listener, _section, ##_args); \
151 } \
152 } \
153 break; \
154 default: \
155 abort(); \
156 } \
157 } while (0)
158
159 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
160 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
161 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
162 .mr = (fr)->mr, \
163 .address_space = (as), \
164 .offset_within_region = (fr)->offset_in_region, \
165 .size = (fr)->addr.size, \
166 .offset_within_address_space = int128_get64((fr)->addr.start), \
167 .readonly = (fr)->readonly, \
168 }), ##_args)
169
170 struct CoalescedMemoryRange {
171 AddrRange addr;
172 QTAILQ_ENTRY(CoalescedMemoryRange) link;
173 };
174
175 struct MemoryRegionIoeventfd {
176 AddrRange addr;
177 bool match_data;
178 uint64_t data;
179 EventNotifier *e;
180 };
181
182 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
183 MemoryRegionIoeventfd b)
184 {
185 if (int128_lt(a.addr.start, b.addr.start)) {
186 return true;
187 } else if (int128_gt(a.addr.start, b.addr.start)) {
188 return false;
189 } else if (int128_lt(a.addr.size, b.addr.size)) {
190 return true;
191 } else if (int128_gt(a.addr.size, b.addr.size)) {
192 return false;
193 } else if (a.match_data < b.match_data) {
194 return true;
195 } else if (a.match_data > b.match_data) {
196 return false;
197 } else if (a.match_data) {
198 if (a.data < b.data) {
199 return true;
200 } else if (a.data > b.data) {
201 return false;
202 }
203 }
204 if (a.e < b.e) {
205 return true;
206 } else if (a.e > b.e) {
207 return false;
208 }
209 return false;
210 }
211
212 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
213 MemoryRegionIoeventfd b)
214 {
215 return !memory_region_ioeventfd_before(a, b)
216 && !memory_region_ioeventfd_before(b, a);
217 }
218
219 typedef struct FlatRange FlatRange;
220 typedef struct FlatView FlatView;
221
222 /* Range of memory in the global map. Addresses are absolute. */
223 struct FlatRange {
224 MemoryRegion *mr;
225 hwaddr offset_in_region;
226 AddrRange addr;
227 uint8_t dirty_log_mask;
228 bool romd_mode;
229 bool readonly;
230 };
231
232 /* Flattened global view of current active memory hierarchy. Kept in sorted
233 * order.
234 */
235 struct FlatView {
236 struct rcu_head rcu;
237 unsigned ref;
238 FlatRange *ranges;
239 unsigned nr;
240 unsigned nr_allocated;
241 };
242
243 typedef struct AddressSpaceOps AddressSpaceOps;
244
245 #define FOR_EACH_FLAT_RANGE(var, view) \
246 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
247
248 static bool flatrange_equal(FlatRange *a, FlatRange *b)
249 {
250 return a->mr == b->mr
251 && addrrange_equal(a->addr, b->addr)
252 && a->offset_in_region == b->offset_in_region
253 && a->romd_mode == b->romd_mode
254 && a->readonly == b->readonly;
255 }
256
257 static void flatview_init(FlatView *view)
258 {
259 view->ref = 1;
260 view->ranges = NULL;
261 view->nr = 0;
262 view->nr_allocated = 0;
263 }
264
265 /* Insert a range into a given position. Caller is responsible for maintaining
266 * sorting order.
267 */
268 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
269 {
270 if (view->nr == view->nr_allocated) {
271 view->nr_allocated = MAX(2 * view->nr, 10);
272 view->ranges = g_realloc(view->ranges,
273 view->nr_allocated * sizeof(*view->ranges));
274 }
275 memmove(view->ranges + pos + 1, view->ranges + pos,
276 (view->nr - pos) * sizeof(FlatRange));
277 view->ranges[pos] = *range;
278 memory_region_ref(range->mr);
279 ++view->nr;
280 }
281
282 static void flatview_destroy(FlatView *view)
283 {
284 int i;
285
286 for (i = 0; i < view->nr; i++) {
287 memory_region_unref(view->ranges[i].mr);
288 }
289 g_free(view->ranges);
290 g_free(view);
291 }
292
293 static void flatview_ref(FlatView *view)
294 {
295 atomic_inc(&view->ref);
296 }
297
298 static void flatview_unref(FlatView *view)
299 {
300 if (atomic_fetch_dec(&view->ref) == 1) {
301 flatview_destroy(view);
302 }
303 }
304
305 static bool can_merge(FlatRange *r1, FlatRange *r2)
306 {
307 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
308 && r1->mr == r2->mr
309 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
310 r1->addr.size),
311 int128_make64(r2->offset_in_region))
312 && r1->dirty_log_mask == r2->dirty_log_mask
313 && r1->romd_mode == r2->romd_mode
314 && r1->readonly == r2->readonly;
315 }
316
317 /* Attempt to simplify a view by merging adjacent ranges */
318 static void flatview_simplify(FlatView *view)
319 {
320 unsigned i, j;
321
322 i = 0;
323 while (i < view->nr) {
324 j = i + 1;
325 while (j < view->nr
326 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
327 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
328 ++j;
329 }
330 ++i;
331 memmove(&view->ranges[i], &view->ranges[j],
332 (view->nr - j) * sizeof(view->ranges[j]));
333 view->nr -= j - i;
334 }
335 }
336
337 static bool memory_region_big_endian(MemoryRegion *mr)
338 {
339 #ifdef TARGET_WORDS_BIGENDIAN
340 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
341 #else
342 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
343 #endif
344 }
345
346 static bool memory_region_wrong_endianness(MemoryRegion *mr)
347 {
348 #ifdef TARGET_WORDS_BIGENDIAN
349 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
350 #else
351 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
352 #endif
353 }
354
355 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
356 {
357 if (memory_region_wrong_endianness(mr)) {
358 switch (size) {
359 case 1:
360 break;
361 case 2:
362 *data = bswap16(*data);
363 break;
364 case 4:
365 *data = bswap32(*data);
366 break;
367 case 8:
368 *data = bswap64(*data);
369 break;
370 default:
371 abort();
372 }
373 }
374 }
375
376 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
377 {
378 MemoryRegion *root;
379 hwaddr abs_addr = offset;
380
381 abs_addr += mr->addr;
382 for (root = mr; root->container; ) {
383 root = root->container;
384 abs_addr += root->addr;
385 }
386
387 return abs_addr;
388 }
389
390 static int get_cpu_index(void)
391 {
392 if (current_cpu) {
393 return current_cpu->cpu_index;
394 }
395 return -1;
396 }
397
398 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
399 hwaddr addr,
400 uint64_t *value,
401 unsigned size,
402 unsigned shift,
403 uint64_t mask,
404 MemTxAttrs attrs)
405 {
406 uint64_t tmp;
407
408 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
409 if (mr->subpage) {
410 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
411 } else if (mr == &io_mem_notdirty) {
412 /* Accesses to code which has previously been translated into a TB show
413 * up in the MMIO path, as accesses to the io_mem_notdirty
414 * MemoryRegion. */
415 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
416 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
417 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
418 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
419 }
420 *value |= (tmp & mask) << shift;
421 return MEMTX_OK;
422 }
423
424 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
425 hwaddr addr,
426 uint64_t *value,
427 unsigned size,
428 unsigned shift,
429 uint64_t mask,
430 MemTxAttrs attrs)
431 {
432 uint64_t tmp;
433
434 tmp = mr->ops->read(mr->opaque, addr, size);
435 if (mr->subpage) {
436 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
437 } else if (mr == &io_mem_notdirty) {
438 /* Accesses to code which has previously been translated into a TB show
439 * up in the MMIO path, as accesses to the io_mem_notdirty
440 * MemoryRegion. */
441 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
442 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
443 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
444 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
445 }
446 *value |= (tmp & mask) << shift;
447 return MEMTX_OK;
448 }
449
450 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
451 hwaddr addr,
452 uint64_t *value,
453 unsigned size,
454 unsigned shift,
455 uint64_t mask,
456 MemTxAttrs attrs)
457 {
458 uint64_t tmp = 0;
459 MemTxResult r;
460
461 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
462 if (mr->subpage) {
463 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
464 } else if (mr == &io_mem_notdirty) {
465 /* Accesses to code which has previously been translated into a TB show
466 * up in the MMIO path, as accesses to the io_mem_notdirty
467 * MemoryRegion. */
468 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
469 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
470 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
471 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
472 }
473 *value |= (tmp & mask) << shift;
474 return r;
475 }
476
477 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
478 hwaddr addr,
479 uint64_t *value,
480 unsigned size,
481 unsigned shift,
482 uint64_t mask,
483 MemTxAttrs attrs)
484 {
485 uint64_t tmp;
486
487 tmp = (*value >> shift) & mask;
488 if (mr->subpage) {
489 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
490 } else if (mr == &io_mem_notdirty) {
491 /* Accesses to code which has previously been translated into a TB show
492 * up in the MMIO path, as accesses to the io_mem_notdirty
493 * MemoryRegion. */
494 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
495 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
496 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
497 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
498 }
499 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
500 return MEMTX_OK;
501 }
502
503 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
504 hwaddr addr,
505 uint64_t *value,
506 unsigned size,
507 unsigned shift,
508 uint64_t mask,
509 MemTxAttrs attrs)
510 {
511 uint64_t tmp;
512
513 tmp = (*value >> shift) & mask;
514 if (mr->subpage) {
515 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
516 } else if (mr == &io_mem_notdirty) {
517 /* Accesses to code which has previously been translated into a TB show
518 * up in the MMIO path, as accesses to the io_mem_notdirty
519 * MemoryRegion. */
520 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
521 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
522 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
523 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
524 }
525 mr->ops->write(mr->opaque, addr, tmp, size);
526 return MEMTX_OK;
527 }
528
529 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
530 hwaddr addr,
531 uint64_t *value,
532 unsigned size,
533 unsigned shift,
534 uint64_t mask,
535 MemTxAttrs attrs)
536 {
537 uint64_t tmp;
538
539 tmp = (*value >> shift) & mask;
540 if (mr->subpage) {
541 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
542 } else if (mr == &io_mem_notdirty) {
543 /* Accesses to code which has previously been translated into a TB show
544 * up in the MMIO path, as accesses to the io_mem_notdirty
545 * MemoryRegion. */
546 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
547 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
548 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
549 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
550 }
551 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
552 }
553
554 static MemTxResult access_with_adjusted_size(hwaddr addr,
555 uint64_t *value,
556 unsigned size,
557 unsigned access_size_min,
558 unsigned access_size_max,
559 MemTxResult (*access)(MemoryRegion *mr,
560 hwaddr addr,
561 uint64_t *value,
562 unsigned size,
563 unsigned shift,
564 uint64_t mask,
565 MemTxAttrs attrs),
566 MemoryRegion *mr,
567 MemTxAttrs attrs)
568 {
569 uint64_t access_mask;
570 unsigned access_size;
571 unsigned i;
572 MemTxResult r = MEMTX_OK;
573
574 if (!access_size_min) {
575 access_size_min = 1;
576 }
577 if (!access_size_max) {
578 access_size_max = 4;
579 }
580
581 /* FIXME: support unaligned access? */
582 access_size = MAX(MIN(size, access_size_max), access_size_min);
583 access_mask = -1ULL >> (64 - access_size * 8);
584 if (memory_region_big_endian(mr)) {
585 for (i = 0; i < size; i += access_size) {
586 r |= access(mr, addr + i, value, access_size,
587 (size - access_size - i) * 8, access_mask, attrs);
588 }
589 } else {
590 for (i = 0; i < size; i += access_size) {
591 r |= access(mr, addr + i, value, access_size, i * 8,
592 access_mask, attrs);
593 }
594 }
595 return r;
596 }
597
598 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
599 {
600 AddressSpace *as;
601
602 while (mr->container) {
603 mr = mr->container;
604 }
605 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
606 if (mr == as->root) {
607 return as;
608 }
609 }
610 return NULL;
611 }
612
613 /* Render a memory region into the global view. Ranges in @view obscure
614 * ranges in @mr.
615 */
616 static void render_memory_region(FlatView *view,
617 MemoryRegion *mr,
618 Int128 base,
619 AddrRange clip,
620 bool readonly)
621 {
622 MemoryRegion *subregion;
623 unsigned i;
624 hwaddr offset_in_region;
625 Int128 remain;
626 Int128 now;
627 FlatRange fr;
628 AddrRange tmp;
629
630 if (!mr->enabled) {
631 return;
632 }
633
634 int128_addto(&base, int128_make64(mr->addr));
635 readonly |= mr->readonly;
636
637 tmp = addrrange_make(base, mr->size);
638
639 if (!addrrange_intersects(tmp, clip)) {
640 return;
641 }
642
643 clip = addrrange_intersection(tmp, clip);
644
645 if (mr->alias) {
646 int128_subfrom(&base, int128_make64(mr->alias->addr));
647 int128_subfrom(&base, int128_make64(mr->alias_offset));
648 render_memory_region(view, mr->alias, base, clip, readonly);
649 return;
650 }
651
652 /* Render subregions in priority order. */
653 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
654 render_memory_region(view, subregion, base, clip, readonly);
655 }
656
657 if (!mr->terminates) {
658 return;
659 }
660
661 offset_in_region = int128_get64(int128_sub(clip.start, base));
662 base = clip.start;
663 remain = clip.size;
664
665 fr.mr = mr;
666 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
667 fr.romd_mode = mr->romd_mode;
668 fr.readonly = readonly;
669
670 /* Render the region itself into any gaps left by the current view. */
671 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
672 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
673 continue;
674 }
675 if (int128_lt(base, view->ranges[i].addr.start)) {
676 now = int128_min(remain,
677 int128_sub(view->ranges[i].addr.start, base));
678 fr.offset_in_region = offset_in_region;
679 fr.addr = addrrange_make(base, now);
680 flatview_insert(view, i, &fr);
681 ++i;
682 int128_addto(&base, now);
683 offset_in_region += int128_get64(now);
684 int128_subfrom(&remain, now);
685 }
686 now = int128_sub(int128_min(int128_add(base, remain),
687 addrrange_end(view->ranges[i].addr)),
688 base);
689 int128_addto(&base, now);
690 offset_in_region += int128_get64(now);
691 int128_subfrom(&remain, now);
692 }
693 if (int128_nz(remain)) {
694 fr.offset_in_region = offset_in_region;
695 fr.addr = addrrange_make(base, remain);
696 flatview_insert(view, i, &fr);
697 }
698 }
699
700 /* Render a memory topology into a list of disjoint absolute ranges. */
701 static FlatView *generate_memory_topology(MemoryRegion *mr)
702 {
703 FlatView *view;
704
705 view = g_new(FlatView, 1);
706 flatview_init(view);
707
708 if (mr) {
709 render_memory_region(view, mr, int128_zero(),
710 addrrange_make(int128_zero(), int128_2_64()), false);
711 }
712 flatview_simplify(view);
713
714 return view;
715 }
716
717 static void address_space_add_del_ioeventfds(AddressSpace *as,
718 MemoryRegionIoeventfd *fds_new,
719 unsigned fds_new_nb,
720 MemoryRegionIoeventfd *fds_old,
721 unsigned fds_old_nb)
722 {
723 unsigned iold, inew;
724 MemoryRegionIoeventfd *fd;
725 MemoryRegionSection section;
726
727 /* Generate a symmetric difference of the old and new fd sets, adding
728 * and deleting as necessary.
729 */
730
731 iold = inew = 0;
732 while (iold < fds_old_nb || inew < fds_new_nb) {
733 if (iold < fds_old_nb
734 && (inew == fds_new_nb
735 || memory_region_ioeventfd_before(fds_old[iold],
736 fds_new[inew]))) {
737 fd = &fds_old[iold];
738 section = (MemoryRegionSection) {
739 .address_space = as,
740 .offset_within_address_space = int128_get64(fd->addr.start),
741 .size = fd->addr.size,
742 };
743 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
744 fd->match_data, fd->data, fd->e);
745 ++iold;
746 } else if (inew < fds_new_nb
747 && (iold == fds_old_nb
748 || memory_region_ioeventfd_before(fds_new[inew],
749 fds_old[iold]))) {
750 fd = &fds_new[inew];
751 section = (MemoryRegionSection) {
752 .address_space = as,
753 .offset_within_address_space = int128_get64(fd->addr.start),
754 .size = fd->addr.size,
755 };
756 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
757 fd->match_data, fd->data, fd->e);
758 ++inew;
759 } else {
760 ++iold;
761 ++inew;
762 }
763 }
764 }
765
766 static FlatView *address_space_get_flatview(AddressSpace *as)
767 {
768 FlatView *view;
769
770 rcu_read_lock();
771 view = atomic_rcu_read(&as->current_map);
772 flatview_ref(view);
773 rcu_read_unlock();
774 return view;
775 }
776
777 static void address_space_update_ioeventfds(AddressSpace *as)
778 {
779 FlatView *view;
780 FlatRange *fr;
781 unsigned ioeventfd_nb = 0;
782 MemoryRegionIoeventfd *ioeventfds = NULL;
783 AddrRange tmp;
784 unsigned i;
785
786 view = address_space_get_flatview(as);
787 FOR_EACH_FLAT_RANGE(fr, view) {
788 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
789 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
790 int128_sub(fr->addr.start,
791 int128_make64(fr->offset_in_region)));
792 if (addrrange_intersects(fr->addr, tmp)) {
793 ++ioeventfd_nb;
794 ioeventfds = g_realloc(ioeventfds,
795 ioeventfd_nb * sizeof(*ioeventfds));
796 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
797 ioeventfds[ioeventfd_nb-1].addr = tmp;
798 }
799 }
800 }
801
802 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
803 as->ioeventfds, as->ioeventfd_nb);
804
805 g_free(as->ioeventfds);
806 as->ioeventfds = ioeventfds;
807 as->ioeventfd_nb = ioeventfd_nb;
808 flatview_unref(view);
809 }
810
811 static void address_space_update_topology_pass(AddressSpace *as,
812 const FlatView *old_view,
813 const FlatView *new_view,
814 bool adding)
815 {
816 unsigned iold, inew;
817 FlatRange *frold, *frnew;
818
819 /* Generate a symmetric difference of the old and new memory maps.
820 * Kill ranges in the old map, and instantiate ranges in the new map.
821 */
822 iold = inew = 0;
823 while (iold < old_view->nr || inew < new_view->nr) {
824 if (iold < old_view->nr) {
825 frold = &old_view->ranges[iold];
826 } else {
827 frold = NULL;
828 }
829 if (inew < new_view->nr) {
830 frnew = &new_view->ranges[inew];
831 } else {
832 frnew = NULL;
833 }
834
835 if (frold
836 && (!frnew
837 || int128_lt(frold->addr.start, frnew->addr.start)
838 || (int128_eq(frold->addr.start, frnew->addr.start)
839 && !flatrange_equal(frold, frnew)))) {
840 /* In old but not in new, or in both but attributes changed. */
841
842 if (!adding) {
843 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
844 }
845
846 ++iold;
847 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
848 /* In both and unchanged (except logging may have changed) */
849
850 if (adding) {
851 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
852 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
853 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
854 frold->dirty_log_mask,
855 frnew->dirty_log_mask);
856 }
857 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
858 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
859 frold->dirty_log_mask,
860 frnew->dirty_log_mask);
861 }
862 }
863
864 ++iold;
865 ++inew;
866 } else {
867 /* In new */
868
869 if (adding) {
870 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
871 }
872
873 ++inew;
874 }
875 }
876 }
877
878
879 static void address_space_update_topology(AddressSpace *as)
880 {
881 FlatView *old_view = address_space_get_flatview(as);
882 FlatView *new_view = generate_memory_topology(as->root);
883
884 address_space_update_topology_pass(as, old_view, new_view, false);
885 address_space_update_topology_pass(as, old_view, new_view, true);
886
887 /* Writes are protected by the BQL. */
888 atomic_rcu_set(&as->current_map, new_view);
889 call_rcu(old_view, flatview_unref, rcu);
890
891 /* Note that all the old MemoryRegions are still alive up to this
892 * point. This relieves most MemoryListeners from the need to
893 * ref/unref the MemoryRegions they get---unless they use them
894 * outside the iothread mutex, in which case precise reference
895 * counting is necessary.
896 */
897 flatview_unref(old_view);
898
899 address_space_update_ioeventfds(as);
900 }
901
902 void memory_region_transaction_begin(void)
903 {
904 qemu_flush_coalesced_mmio_buffer();
905 ++memory_region_transaction_depth;
906 }
907
908 static void memory_region_clear_pending(void)
909 {
910 memory_region_update_pending = false;
911 ioeventfd_update_pending = false;
912 }
913
914 void memory_region_transaction_commit(void)
915 {
916 AddressSpace *as;
917
918 assert(memory_region_transaction_depth);
919 --memory_region_transaction_depth;
920 if (!memory_region_transaction_depth) {
921 if (memory_region_update_pending) {
922 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
923
924 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
925 address_space_update_topology(as);
926 }
927
928 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
929 } else if (ioeventfd_update_pending) {
930 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
931 address_space_update_ioeventfds(as);
932 }
933 }
934 memory_region_clear_pending();
935 }
936 }
937
938 static void memory_region_destructor_none(MemoryRegion *mr)
939 {
940 }
941
942 static void memory_region_destructor_ram(MemoryRegion *mr)
943 {
944 qemu_ram_free(mr->ram_block);
945 }
946
947 static void memory_region_destructor_rom_device(MemoryRegion *mr)
948 {
949 qemu_ram_free(mr->ram_block);
950 }
951
952 static bool memory_region_need_escape(char c)
953 {
954 return c == '/' || c == '[' || c == '\\' || c == ']';
955 }
956
957 static char *memory_region_escape_name(const char *name)
958 {
959 const char *p;
960 char *escaped, *q;
961 uint8_t c;
962 size_t bytes = 0;
963
964 for (p = name; *p; p++) {
965 bytes += memory_region_need_escape(*p) ? 4 : 1;
966 }
967 if (bytes == p - name) {
968 return g_memdup(name, bytes + 1);
969 }
970
971 escaped = g_malloc(bytes + 1);
972 for (p = name, q = escaped; *p; p++) {
973 c = *p;
974 if (unlikely(memory_region_need_escape(c))) {
975 *q++ = '\\';
976 *q++ = 'x';
977 *q++ = "0123456789abcdef"[c >> 4];
978 c = "0123456789abcdef"[c & 15];
979 }
980 *q++ = c;
981 }
982 *q = 0;
983 return escaped;
984 }
985
986 void memory_region_init(MemoryRegion *mr,
987 Object *owner,
988 const char *name,
989 uint64_t size)
990 {
991 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
992 mr->size = int128_make64(size);
993 if (size == UINT64_MAX) {
994 mr->size = int128_2_64();
995 }
996 mr->name = g_strdup(name);
997 mr->owner = owner;
998 mr->ram_block = NULL;
999
1000 if (name) {
1001 char *escaped_name = memory_region_escape_name(name);
1002 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1003
1004 if (!owner) {
1005 owner = container_get(qdev_get_machine(), "/unattached");
1006 }
1007
1008 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1009 object_unref(OBJECT(mr));
1010 g_free(name_array);
1011 g_free(escaped_name);
1012 }
1013 }
1014
1015 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1016 void *opaque, Error **errp)
1017 {
1018 MemoryRegion *mr = MEMORY_REGION(obj);
1019 uint64_t value = mr->addr;
1020
1021 visit_type_uint64(v, name, &value, errp);
1022 }
1023
1024 static void memory_region_get_container(Object *obj, Visitor *v,
1025 const char *name, void *opaque,
1026 Error **errp)
1027 {
1028 MemoryRegion *mr = MEMORY_REGION(obj);
1029 gchar *path = (gchar *)"";
1030
1031 if (mr->container) {
1032 path = object_get_canonical_path(OBJECT(mr->container));
1033 }
1034 visit_type_str(v, name, &path, errp);
1035 if (mr->container) {
1036 g_free(path);
1037 }
1038 }
1039
1040 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1041 const char *part)
1042 {
1043 MemoryRegion *mr = MEMORY_REGION(obj);
1044
1045 return OBJECT(mr->container);
1046 }
1047
1048 static void memory_region_get_priority(Object *obj, Visitor *v,
1049 const char *name, void *opaque,
1050 Error **errp)
1051 {
1052 MemoryRegion *mr = MEMORY_REGION(obj);
1053 int32_t value = mr->priority;
1054
1055 visit_type_int32(v, name, &value, errp);
1056 }
1057
1058 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1059 void *opaque, Error **errp)
1060 {
1061 MemoryRegion *mr = MEMORY_REGION(obj);
1062 uint64_t value = memory_region_size(mr);
1063
1064 visit_type_uint64(v, name, &value, errp);
1065 }
1066
1067 static void memory_region_initfn(Object *obj)
1068 {
1069 MemoryRegion *mr = MEMORY_REGION(obj);
1070 ObjectProperty *op;
1071
1072 mr->ops = &unassigned_mem_ops;
1073 mr->enabled = true;
1074 mr->romd_mode = true;
1075 mr->global_locking = true;
1076 mr->destructor = memory_region_destructor_none;
1077 QTAILQ_INIT(&mr->subregions);
1078 QTAILQ_INIT(&mr->coalesced);
1079
1080 op = object_property_add(OBJECT(mr), "container",
1081 "link<" TYPE_MEMORY_REGION ">",
1082 memory_region_get_container,
1083 NULL, /* memory_region_set_container */
1084 NULL, NULL, &error_abort);
1085 op->resolve = memory_region_resolve_container;
1086
1087 object_property_add(OBJECT(mr), "addr", "uint64",
1088 memory_region_get_addr,
1089 NULL, /* memory_region_set_addr */
1090 NULL, NULL, &error_abort);
1091 object_property_add(OBJECT(mr), "priority", "uint32",
1092 memory_region_get_priority,
1093 NULL, /* memory_region_set_priority */
1094 NULL, NULL, &error_abort);
1095 object_property_add(OBJECT(mr), "size", "uint64",
1096 memory_region_get_size,
1097 NULL, /* memory_region_set_size, */
1098 NULL, NULL, &error_abort);
1099 }
1100
1101 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1102 unsigned size)
1103 {
1104 #ifdef DEBUG_UNASSIGNED
1105 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1106 #endif
1107 if (current_cpu != NULL) {
1108 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1109 }
1110 return 0;
1111 }
1112
1113 static void unassigned_mem_write(void *opaque, hwaddr addr,
1114 uint64_t val, unsigned size)
1115 {
1116 #ifdef DEBUG_UNASSIGNED
1117 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1118 #endif
1119 if (current_cpu != NULL) {
1120 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1121 }
1122 }
1123
1124 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1125 unsigned size, bool is_write)
1126 {
1127 return false;
1128 }
1129
1130 const MemoryRegionOps unassigned_mem_ops = {
1131 .valid.accepts = unassigned_mem_accepts,
1132 .endianness = DEVICE_NATIVE_ENDIAN,
1133 };
1134
1135 bool memory_region_access_valid(MemoryRegion *mr,
1136 hwaddr addr,
1137 unsigned size,
1138 bool is_write)
1139 {
1140 int access_size_min, access_size_max;
1141 int access_size, i;
1142
1143 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1144 return false;
1145 }
1146
1147 if (!mr->ops->valid.accepts) {
1148 return true;
1149 }
1150
1151 access_size_min = mr->ops->valid.min_access_size;
1152 if (!mr->ops->valid.min_access_size) {
1153 access_size_min = 1;
1154 }
1155
1156 access_size_max = mr->ops->valid.max_access_size;
1157 if (!mr->ops->valid.max_access_size) {
1158 access_size_max = 4;
1159 }
1160
1161 access_size = MAX(MIN(size, access_size_max), access_size_min);
1162 for (i = 0; i < size; i += access_size) {
1163 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1164 is_write)) {
1165 return false;
1166 }
1167 }
1168
1169 return true;
1170 }
1171
1172 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1173 hwaddr addr,
1174 uint64_t *pval,
1175 unsigned size,
1176 MemTxAttrs attrs)
1177 {
1178 *pval = 0;
1179
1180 if (mr->ops->read) {
1181 return access_with_adjusted_size(addr, pval, size,
1182 mr->ops->impl.min_access_size,
1183 mr->ops->impl.max_access_size,
1184 memory_region_read_accessor,
1185 mr, attrs);
1186 } else if (mr->ops->read_with_attrs) {
1187 return access_with_adjusted_size(addr, pval, size,
1188 mr->ops->impl.min_access_size,
1189 mr->ops->impl.max_access_size,
1190 memory_region_read_with_attrs_accessor,
1191 mr, attrs);
1192 } else {
1193 return access_with_adjusted_size(addr, pval, size, 1, 4,
1194 memory_region_oldmmio_read_accessor,
1195 mr, attrs);
1196 }
1197 }
1198
1199 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1200 hwaddr addr,
1201 uint64_t *pval,
1202 unsigned size,
1203 MemTxAttrs attrs)
1204 {
1205 MemTxResult r;
1206
1207 if (!memory_region_access_valid(mr, addr, size, false)) {
1208 *pval = unassigned_mem_read(mr, addr, size);
1209 return MEMTX_DECODE_ERROR;
1210 }
1211
1212 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1213 adjust_endianness(mr, pval, size);
1214 return r;
1215 }
1216
1217 /* Return true if an eventfd was signalled */
1218 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1219 hwaddr addr,
1220 uint64_t data,
1221 unsigned size,
1222 MemTxAttrs attrs)
1223 {
1224 MemoryRegionIoeventfd ioeventfd = {
1225 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1226 .data = data,
1227 };
1228 unsigned i;
1229
1230 for (i = 0; i < mr->ioeventfd_nb; i++) {
1231 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1232 ioeventfd.e = mr->ioeventfds[i].e;
1233
1234 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1235 event_notifier_set(ioeventfd.e);
1236 return true;
1237 }
1238 }
1239
1240 return false;
1241 }
1242
1243 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1244 hwaddr addr,
1245 uint64_t data,
1246 unsigned size,
1247 MemTxAttrs attrs)
1248 {
1249 if (!memory_region_access_valid(mr, addr, size, true)) {
1250 unassigned_mem_write(mr, addr, data, size);
1251 return MEMTX_DECODE_ERROR;
1252 }
1253
1254 adjust_endianness(mr, &data, size);
1255
1256 if ((!kvm_eventfds_enabled()) &&
1257 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1258 return MEMTX_OK;
1259 }
1260
1261 if (mr->ops->write) {
1262 return access_with_adjusted_size(addr, &data, size,
1263 mr->ops->impl.min_access_size,
1264 mr->ops->impl.max_access_size,
1265 memory_region_write_accessor, mr,
1266 attrs);
1267 } else if (mr->ops->write_with_attrs) {
1268 return
1269 access_with_adjusted_size(addr, &data, size,
1270 mr->ops->impl.min_access_size,
1271 mr->ops->impl.max_access_size,
1272 memory_region_write_with_attrs_accessor,
1273 mr, attrs);
1274 } else {
1275 return access_with_adjusted_size(addr, &data, size, 1, 4,
1276 memory_region_oldmmio_write_accessor,
1277 mr, attrs);
1278 }
1279 }
1280
1281 void memory_region_init_io(MemoryRegion *mr,
1282 Object *owner,
1283 const MemoryRegionOps *ops,
1284 void *opaque,
1285 const char *name,
1286 uint64_t size)
1287 {
1288 memory_region_init(mr, owner, name, size);
1289 mr->ops = ops ? ops : &unassigned_mem_ops;
1290 mr->opaque = opaque;
1291 mr->terminates = true;
1292 }
1293
1294 void memory_region_init_ram(MemoryRegion *mr,
1295 Object *owner,
1296 const char *name,
1297 uint64_t size,
1298 Error **errp)
1299 {
1300 memory_region_init(mr, owner, name, size);
1301 mr->ram = true;
1302 mr->terminates = true;
1303 mr->destructor = memory_region_destructor_ram;
1304 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1305 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1306 }
1307
1308 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1309 Object *owner,
1310 const char *name,
1311 uint64_t size,
1312 uint64_t max_size,
1313 void (*resized)(const char*,
1314 uint64_t length,
1315 void *host),
1316 Error **errp)
1317 {
1318 memory_region_init(mr, owner, name, size);
1319 mr->ram = true;
1320 mr->terminates = true;
1321 mr->destructor = memory_region_destructor_ram;
1322 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1323 mr, errp);
1324 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1325 }
1326
1327 #ifdef __linux__
1328 void memory_region_init_ram_from_file(MemoryRegion *mr,
1329 struct Object *owner,
1330 const char *name,
1331 uint64_t size,
1332 bool share,
1333 const char *path,
1334 Error **errp)
1335 {
1336 memory_region_init(mr, owner, name, size);
1337 mr->ram = true;
1338 mr->terminates = true;
1339 mr->destructor = memory_region_destructor_ram;
1340 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1341 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1342 }
1343 #endif
1344
1345 void memory_region_init_ram_ptr(MemoryRegion *mr,
1346 Object *owner,
1347 const char *name,
1348 uint64_t size,
1349 void *ptr)
1350 {
1351 memory_region_init(mr, owner, name, size);
1352 mr->ram = true;
1353 mr->terminates = true;
1354 mr->destructor = memory_region_destructor_ram;
1355 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1356
1357 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1358 assert(ptr != NULL);
1359 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1360 }
1361
1362 void memory_region_set_skip_dump(MemoryRegion *mr)
1363 {
1364 mr->skip_dump = true;
1365 }
1366
1367 void memory_region_init_alias(MemoryRegion *mr,
1368 Object *owner,
1369 const char *name,
1370 MemoryRegion *orig,
1371 hwaddr offset,
1372 uint64_t size)
1373 {
1374 memory_region_init(mr, owner, name, size);
1375 mr->alias = orig;
1376 mr->alias_offset = offset;
1377 }
1378
1379 void memory_region_init_rom_device(MemoryRegion *mr,
1380 Object *owner,
1381 const MemoryRegionOps *ops,
1382 void *opaque,
1383 const char *name,
1384 uint64_t size,
1385 Error **errp)
1386 {
1387 memory_region_init(mr, owner, name, size);
1388 mr->ops = ops;
1389 mr->opaque = opaque;
1390 mr->terminates = true;
1391 mr->rom_device = true;
1392 mr->destructor = memory_region_destructor_rom_device;
1393 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1394 }
1395
1396 void memory_region_init_iommu(MemoryRegion *mr,
1397 Object *owner,
1398 const MemoryRegionIOMMUOps *ops,
1399 const char *name,
1400 uint64_t size)
1401 {
1402 memory_region_init(mr, owner, name, size);
1403 mr->iommu_ops = ops,
1404 mr->terminates = true; /* then re-forwards */
1405 notifier_list_init(&mr->iommu_notify);
1406 }
1407
1408 static void memory_region_finalize(Object *obj)
1409 {
1410 MemoryRegion *mr = MEMORY_REGION(obj);
1411
1412 assert(!mr->container);
1413
1414 /* We know the region is not visible in any address space (it
1415 * does not have a container and cannot be a root either because
1416 * it has no references, so we can blindly clear mr->enabled.
1417 * memory_region_set_enabled instead could trigger a transaction
1418 * and cause an infinite loop.
1419 */
1420 mr->enabled = false;
1421 memory_region_transaction_begin();
1422 while (!QTAILQ_EMPTY(&mr->subregions)) {
1423 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1424 memory_region_del_subregion(mr, subregion);
1425 }
1426 memory_region_transaction_commit();
1427
1428 mr->destructor(mr);
1429 memory_region_clear_coalescing(mr);
1430 g_free((char *)mr->name);
1431 g_free(mr->ioeventfds);
1432 }
1433
1434 Object *memory_region_owner(MemoryRegion *mr)
1435 {
1436 Object *obj = OBJECT(mr);
1437 return obj->parent;
1438 }
1439
1440 void memory_region_ref(MemoryRegion *mr)
1441 {
1442 /* MMIO callbacks most likely will access data that belongs
1443 * to the owner, hence the need to ref/unref the owner whenever
1444 * the memory region is in use.
1445 *
1446 * The memory region is a child of its owner. As long as the
1447 * owner doesn't call unparent itself on the memory region,
1448 * ref-ing the owner will also keep the memory region alive.
1449 * Memory regions without an owner are supposed to never go away;
1450 * we do not ref/unref them because it slows down DMA sensibly.
1451 */
1452 if (mr && mr->owner) {
1453 object_ref(mr->owner);
1454 }
1455 }
1456
1457 void memory_region_unref(MemoryRegion *mr)
1458 {
1459 if (mr && mr->owner) {
1460 object_unref(mr->owner);
1461 }
1462 }
1463
1464 uint64_t memory_region_size(MemoryRegion *mr)
1465 {
1466 if (int128_eq(mr->size, int128_2_64())) {
1467 return UINT64_MAX;
1468 }
1469 return int128_get64(mr->size);
1470 }
1471
1472 const char *memory_region_name(const MemoryRegion *mr)
1473 {
1474 if (!mr->name) {
1475 ((MemoryRegion *)mr)->name =
1476 object_get_canonical_path_component(OBJECT(mr));
1477 }
1478 return mr->name;
1479 }
1480
1481 bool memory_region_is_skip_dump(MemoryRegion *mr)
1482 {
1483 return mr->skip_dump;
1484 }
1485
1486 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1487 {
1488 uint8_t mask = mr->dirty_log_mask;
1489 if (global_dirty_log) {
1490 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1491 }
1492 return mask;
1493 }
1494
1495 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1496 {
1497 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1498 }
1499
1500 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1501 {
1502 notifier_list_add(&mr->iommu_notify, n);
1503 }
1504
1505 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
1506 hwaddr granularity, bool is_write)
1507 {
1508 hwaddr addr;
1509 IOMMUTLBEntry iotlb;
1510
1511 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1512 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1513 if (iotlb.perm != IOMMU_NONE) {
1514 n->notify(n, &iotlb);
1515 }
1516
1517 /* if (2^64 - MR size) < granularity, it's possible to get an
1518 * infinite loop here. This should catch such a wraparound */
1519 if ((addr + granularity) < addr) {
1520 break;
1521 }
1522 }
1523 }
1524
1525 void memory_region_unregister_iommu_notifier(Notifier *n)
1526 {
1527 notifier_remove(n);
1528 }
1529
1530 void memory_region_notify_iommu(MemoryRegion *mr,
1531 IOMMUTLBEntry entry)
1532 {
1533 assert(memory_region_is_iommu(mr));
1534 notifier_list_notify(&mr->iommu_notify, &entry);
1535 }
1536
1537 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1538 {
1539 uint8_t mask = 1 << client;
1540 uint8_t old_logging;
1541
1542 assert(client == DIRTY_MEMORY_VGA);
1543 old_logging = mr->vga_logging_count;
1544 mr->vga_logging_count += log ? 1 : -1;
1545 if (!!old_logging == !!mr->vga_logging_count) {
1546 return;
1547 }
1548
1549 memory_region_transaction_begin();
1550 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1551 memory_region_update_pending |= mr->enabled;
1552 memory_region_transaction_commit();
1553 }
1554
1555 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1556 hwaddr size, unsigned client)
1557 {
1558 assert(mr->ram_block);
1559 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1560 size, client);
1561 }
1562
1563 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1564 hwaddr size)
1565 {
1566 assert(mr->ram_block);
1567 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1568 size,
1569 memory_region_get_dirty_log_mask(mr));
1570 }
1571
1572 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1573 hwaddr size, unsigned client)
1574 {
1575 assert(mr->ram_block);
1576 return cpu_physical_memory_test_and_clear_dirty(
1577 memory_region_get_ram_addr(mr) + addr, size, client);
1578 }
1579
1580
1581 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1582 {
1583 AddressSpace *as;
1584 FlatRange *fr;
1585
1586 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1587 FlatView *view = address_space_get_flatview(as);
1588 FOR_EACH_FLAT_RANGE(fr, view) {
1589 if (fr->mr == mr) {
1590 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1591 }
1592 }
1593 flatview_unref(view);
1594 }
1595 }
1596
1597 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1598 {
1599 if (mr->readonly != readonly) {
1600 memory_region_transaction_begin();
1601 mr->readonly = readonly;
1602 memory_region_update_pending |= mr->enabled;
1603 memory_region_transaction_commit();
1604 }
1605 }
1606
1607 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1608 {
1609 if (mr->romd_mode != romd_mode) {
1610 memory_region_transaction_begin();
1611 mr->romd_mode = romd_mode;
1612 memory_region_update_pending |= mr->enabled;
1613 memory_region_transaction_commit();
1614 }
1615 }
1616
1617 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1618 hwaddr size, unsigned client)
1619 {
1620 assert(mr->ram_block);
1621 cpu_physical_memory_test_and_clear_dirty(
1622 memory_region_get_ram_addr(mr) + addr, size, client);
1623 }
1624
1625 int memory_region_get_fd(MemoryRegion *mr)
1626 {
1627 int fd;
1628
1629 rcu_read_lock();
1630 while (mr->alias) {
1631 mr = mr->alias;
1632 }
1633 fd = mr->ram_block->fd;
1634 rcu_read_unlock();
1635
1636 return fd;
1637 }
1638
1639 void memory_region_set_fd(MemoryRegion *mr, int fd)
1640 {
1641 rcu_read_lock();
1642 while (mr->alias) {
1643 mr = mr->alias;
1644 }
1645 mr->ram_block->fd = fd;
1646 rcu_read_unlock();
1647 }
1648
1649 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1650 {
1651 void *ptr;
1652 uint64_t offset = 0;
1653
1654 rcu_read_lock();
1655 while (mr->alias) {
1656 offset += mr->alias_offset;
1657 mr = mr->alias;
1658 }
1659 assert(mr->ram_block);
1660 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
1661 rcu_read_unlock();
1662
1663 return ptr;
1664 }
1665
1666 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
1667 {
1668 RAMBlock *block;
1669
1670 block = qemu_ram_block_from_host(ptr, false, offset);
1671 if (!block) {
1672 return NULL;
1673 }
1674
1675 return block->mr;
1676 }
1677
1678 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1679 {
1680 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1681 }
1682
1683 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1684 {
1685 assert(mr->ram_block);
1686
1687 qemu_ram_resize(mr->ram_block, newsize, errp);
1688 }
1689
1690 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1691 {
1692 FlatView *view;
1693 FlatRange *fr;
1694 CoalescedMemoryRange *cmr;
1695 AddrRange tmp;
1696 MemoryRegionSection section;
1697
1698 view = address_space_get_flatview(as);
1699 FOR_EACH_FLAT_RANGE(fr, view) {
1700 if (fr->mr == mr) {
1701 section = (MemoryRegionSection) {
1702 .address_space = as,
1703 .offset_within_address_space = int128_get64(fr->addr.start),
1704 .size = fr->addr.size,
1705 };
1706
1707 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1708 int128_get64(fr->addr.start),
1709 int128_get64(fr->addr.size));
1710 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1711 tmp = addrrange_shift(cmr->addr,
1712 int128_sub(fr->addr.start,
1713 int128_make64(fr->offset_in_region)));
1714 if (!addrrange_intersects(tmp, fr->addr)) {
1715 continue;
1716 }
1717 tmp = addrrange_intersection(tmp, fr->addr);
1718 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1719 int128_get64(tmp.start),
1720 int128_get64(tmp.size));
1721 }
1722 }
1723 }
1724 flatview_unref(view);
1725 }
1726
1727 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1728 {
1729 AddressSpace *as;
1730
1731 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1732 memory_region_update_coalesced_range_as(mr, as);
1733 }
1734 }
1735
1736 void memory_region_set_coalescing(MemoryRegion *mr)
1737 {
1738 memory_region_clear_coalescing(mr);
1739 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1740 }
1741
1742 void memory_region_add_coalescing(MemoryRegion *mr,
1743 hwaddr offset,
1744 uint64_t size)
1745 {
1746 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1747
1748 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1749 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1750 memory_region_update_coalesced_range(mr);
1751 memory_region_set_flush_coalesced(mr);
1752 }
1753
1754 void memory_region_clear_coalescing(MemoryRegion *mr)
1755 {
1756 CoalescedMemoryRange *cmr;
1757 bool updated = false;
1758
1759 qemu_flush_coalesced_mmio_buffer();
1760 mr->flush_coalesced_mmio = false;
1761
1762 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1763 cmr = QTAILQ_FIRST(&mr->coalesced);
1764 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1765 g_free(cmr);
1766 updated = true;
1767 }
1768
1769 if (updated) {
1770 memory_region_update_coalesced_range(mr);
1771 }
1772 }
1773
1774 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1775 {
1776 mr->flush_coalesced_mmio = true;
1777 }
1778
1779 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1780 {
1781 qemu_flush_coalesced_mmio_buffer();
1782 if (QTAILQ_EMPTY(&mr->coalesced)) {
1783 mr->flush_coalesced_mmio = false;
1784 }
1785 }
1786
1787 void memory_region_set_global_locking(MemoryRegion *mr)
1788 {
1789 mr->global_locking = true;
1790 }
1791
1792 void memory_region_clear_global_locking(MemoryRegion *mr)
1793 {
1794 mr->global_locking = false;
1795 }
1796
1797 static bool userspace_eventfd_warning;
1798
1799 void memory_region_add_eventfd(MemoryRegion *mr,
1800 hwaddr addr,
1801 unsigned size,
1802 bool match_data,
1803 uint64_t data,
1804 EventNotifier *e)
1805 {
1806 MemoryRegionIoeventfd mrfd = {
1807 .addr.start = int128_make64(addr),
1808 .addr.size = int128_make64(size),
1809 .match_data = match_data,
1810 .data = data,
1811 .e = e,
1812 };
1813 unsigned i;
1814
1815 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1816 userspace_eventfd_warning))) {
1817 userspace_eventfd_warning = true;
1818 error_report("Using eventfd without MMIO binding in KVM. "
1819 "Suboptimal performance expected");
1820 }
1821
1822 if (size) {
1823 adjust_endianness(mr, &mrfd.data, size);
1824 }
1825 memory_region_transaction_begin();
1826 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1827 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1828 break;
1829 }
1830 }
1831 ++mr->ioeventfd_nb;
1832 mr->ioeventfds = g_realloc(mr->ioeventfds,
1833 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1834 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1835 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1836 mr->ioeventfds[i] = mrfd;
1837 ioeventfd_update_pending |= mr->enabled;
1838 memory_region_transaction_commit();
1839 }
1840
1841 void memory_region_del_eventfd(MemoryRegion *mr,
1842 hwaddr addr,
1843 unsigned size,
1844 bool match_data,
1845 uint64_t data,
1846 EventNotifier *e)
1847 {
1848 MemoryRegionIoeventfd mrfd = {
1849 .addr.start = int128_make64(addr),
1850 .addr.size = int128_make64(size),
1851 .match_data = match_data,
1852 .data = data,
1853 .e = e,
1854 };
1855 unsigned i;
1856
1857 if (size) {
1858 adjust_endianness(mr, &mrfd.data, size);
1859 }
1860 memory_region_transaction_begin();
1861 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1862 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1863 break;
1864 }
1865 }
1866 assert(i != mr->ioeventfd_nb);
1867 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1868 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1869 --mr->ioeventfd_nb;
1870 mr->ioeventfds = g_realloc(mr->ioeventfds,
1871 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1872 ioeventfd_update_pending |= mr->enabled;
1873 memory_region_transaction_commit();
1874 }
1875
1876 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1877 {
1878 MemoryRegion *mr = subregion->container;
1879 MemoryRegion *other;
1880
1881 memory_region_transaction_begin();
1882
1883 memory_region_ref(subregion);
1884 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1885 if (subregion->priority >= other->priority) {
1886 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1887 goto done;
1888 }
1889 }
1890 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1891 done:
1892 memory_region_update_pending |= mr->enabled && subregion->enabled;
1893 memory_region_transaction_commit();
1894 }
1895
1896 static void memory_region_add_subregion_common(MemoryRegion *mr,
1897 hwaddr offset,
1898 MemoryRegion *subregion)
1899 {
1900 assert(!subregion->container);
1901 subregion->container = mr;
1902 subregion->addr = offset;
1903 memory_region_update_container_subregions(subregion);
1904 }
1905
1906 void memory_region_add_subregion(MemoryRegion *mr,
1907 hwaddr offset,
1908 MemoryRegion *subregion)
1909 {
1910 subregion->priority = 0;
1911 memory_region_add_subregion_common(mr, offset, subregion);
1912 }
1913
1914 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1915 hwaddr offset,
1916 MemoryRegion *subregion,
1917 int priority)
1918 {
1919 subregion->priority = priority;
1920 memory_region_add_subregion_common(mr, offset, subregion);
1921 }
1922
1923 void memory_region_del_subregion(MemoryRegion *mr,
1924 MemoryRegion *subregion)
1925 {
1926 memory_region_transaction_begin();
1927 assert(subregion->container == mr);
1928 subregion->container = NULL;
1929 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1930 memory_region_unref(subregion);
1931 memory_region_update_pending |= mr->enabled && subregion->enabled;
1932 memory_region_transaction_commit();
1933 }
1934
1935 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1936 {
1937 if (enabled == mr->enabled) {
1938 return;
1939 }
1940 memory_region_transaction_begin();
1941 mr->enabled = enabled;
1942 memory_region_update_pending = true;
1943 memory_region_transaction_commit();
1944 }
1945
1946 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1947 {
1948 Int128 s = int128_make64(size);
1949
1950 if (size == UINT64_MAX) {
1951 s = int128_2_64();
1952 }
1953 if (int128_eq(s, mr->size)) {
1954 return;
1955 }
1956 memory_region_transaction_begin();
1957 mr->size = s;
1958 memory_region_update_pending = true;
1959 memory_region_transaction_commit();
1960 }
1961
1962 static void memory_region_readd_subregion(MemoryRegion *mr)
1963 {
1964 MemoryRegion *container = mr->container;
1965
1966 if (container) {
1967 memory_region_transaction_begin();
1968 memory_region_ref(mr);
1969 memory_region_del_subregion(container, mr);
1970 mr->container = container;
1971 memory_region_update_container_subregions(mr);
1972 memory_region_unref(mr);
1973 memory_region_transaction_commit();
1974 }
1975 }
1976
1977 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1978 {
1979 if (addr != mr->addr) {
1980 mr->addr = addr;
1981 memory_region_readd_subregion(mr);
1982 }
1983 }
1984
1985 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1986 {
1987 assert(mr->alias);
1988
1989 if (offset == mr->alias_offset) {
1990 return;
1991 }
1992
1993 memory_region_transaction_begin();
1994 mr->alias_offset = offset;
1995 memory_region_update_pending |= mr->enabled;
1996 memory_region_transaction_commit();
1997 }
1998
1999 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2000 {
2001 return mr->align;
2002 }
2003
2004 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2005 {
2006 const AddrRange *addr = addr_;
2007 const FlatRange *fr = fr_;
2008
2009 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2010 return -1;
2011 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2012 return 1;
2013 }
2014 return 0;
2015 }
2016
2017 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2018 {
2019 return bsearch(&addr, view->ranges, view->nr,
2020 sizeof(FlatRange), cmp_flatrange_addr);
2021 }
2022
2023 bool memory_region_is_mapped(MemoryRegion *mr)
2024 {
2025 return mr->container ? true : false;
2026 }
2027
2028 /* Same as memory_region_find, but it does not add a reference to the
2029 * returned region. It must be called from an RCU critical section.
2030 */
2031 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2032 hwaddr addr, uint64_t size)
2033 {
2034 MemoryRegionSection ret = { .mr = NULL };
2035 MemoryRegion *root;
2036 AddressSpace *as;
2037 AddrRange range;
2038 FlatView *view;
2039 FlatRange *fr;
2040
2041 addr += mr->addr;
2042 for (root = mr; root->container; ) {
2043 root = root->container;
2044 addr += root->addr;
2045 }
2046
2047 as = memory_region_to_address_space(root);
2048 if (!as) {
2049 return ret;
2050 }
2051 range = addrrange_make(int128_make64(addr), int128_make64(size));
2052
2053 view = atomic_rcu_read(&as->current_map);
2054 fr = flatview_lookup(view, range);
2055 if (!fr) {
2056 return ret;
2057 }
2058
2059 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2060 --fr;
2061 }
2062
2063 ret.mr = fr->mr;
2064 ret.address_space = as;
2065 range = addrrange_intersection(range, fr->addr);
2066 ret.offset_within_region = fr->offset_in_region;
2067 ret.offset_within_region += int128_get64(int128_sub(range.start,
2068 fr->addr.start));
2069 ret.size = range.size;
2070 ret.offset_within_address_space = int128_get64(range.start);
2071 ret.readonly = fr->readonly;
2072 return ret;
2073 }
2074
2075 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2076 hwaddr addr, uint64_t size)
2077 {
2078 MemoryRegionSection ret;
2079 rcu_read_lock();
2080 ret = memory_region_find_rcu(mr, addr, size);
2081 if (ret.mr) {
2082 memory_region_ref(ret.mr);
2083 }
2084 rcu_read_unlock();
2085 return ret;
2086 }
2087
2088 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2089 {
2090 MemoryRegion *mr;
2091
2092 rcu_read_lock();
2093 mr = memory_region_find_rcu(container, addr, 1).mr;
2094 rcu_read_unlock();
2095 return mr && mr != container;
2096 }
2097
2098 void address_space_sync_dirty_bitmap(AddressSpace *as)
2099 {
2100 FlatView *view;
2101 FlatRange *fr;
2102
2103 view = address_space_get_flatview(as);
2104 FOR_EACH_FLAT_RANGE(fr, view) {
2105 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2106 }
2107 flatview_unref(view);
2108 }
2109
2110 void memory_global_dirty_log_start(void)
2111 {
2112 global_dirty_log = true;
2113
2114 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2115
2116 /* Refresh DIRTY_LOG_MIGRATION bit. */
2117 memory_region_transaction_begin();
2118 memory_region_update_pending = true;
2119 memory_region_transaction_commit();
2120 }
2121
2122 void memory_global_dirty_log_stop(void)
2123 {
2124 global_dirty_log = false;
2125
2126 /* Refresh DIRTY_LOG_MIGRATION bit. */
2127 memory_region_transaction_begin();
2128 memory_region_update_pending = true;
2129 memory_region_transaction_commit();
2130
2131 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2132 }
2133
2134 static void listener_add_address_space(MemoryListener *listener,
2135 AddressSpace *as)
2136 {
2137 FlatView *view;
2138 FlatRange *fr;
2139
2140 if (listener->address_space_filter
2141 && listener->address_space_filter != as) {
2142 return;
2143 }
2144
2145 if (listener->begin) {
2146 listener->begin(listener);
2147 }
2148 if (global_dirty_log) {
2149 if (listener->log_global_start) {
2150 listener->log_global_start(listener);
2151 }
2152 }
2153
2154 view = address_space_get_flatview(as);
2155 FOR_EACH_FLAT_RANGE(fr, view) {
2156 MemoryRegionSection section = {
2157 .mr = fr->mr,
2158 .address_space = as,
2159 .offset_within_region = fr->offset_in_region,
2160 .size = fr->addr.size,
2161 .offset_within_address_space = int128_get64(fr->addr.start),
2162 .readonly = fr->readonly,
2163 };
2164 if (fr->dirty_log_mask && listener->log_start) {
2165 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2166 }
2167 if (listener->region_add) {
2168 listener->region_add(listener, &section);
2169 }
2170 }
2171 if (listener->commit) {
2172 listener->commit(listener);
2173 }
2174 flatview_unref(view);
2175 }
2176
2177 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2178 {
2179 MemoryListener *other = NULL;
2180 AddressSpace *as;
2181
2182 listener->address_space_filter = filter;
2183 if (QTAILQ_EMPTY(&memory_listeners)
2184 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2185 memory_listeners)->priority) {
2186 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2187 } else {
2188 QTAILQ_FOREACH(other, &memory_listeners, link) {
2189 if (listener->priority < other->priority) {
2190 break;
2191 }
2192 }
2193 QTAILQ_INSERT_BEFORE(other, listener, link);
2194 }
2195
2196 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2197 listener_add_address_space(listener, as);
2198 }
2199 }
2200
2201 void memory_listener_unregister(MemoryListener *listener)
2202 {
2203 QTAILQ_REMOVE(&memory_listeners, listener, link);
2204 }
2205
2206 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2207 {
2208 memory_region_ref(root);
2209 memory_region_transaction_begin();
2210 as->ref_count = 1;
2211 as->root = root;
2212 as->malloced = false;
2213 as->current_map = g_new(FlatView, 1);
2214 flatview_init(as->current_map);
2215 as->ioeventfd_nb = 0;
2216 as->ioeventfds = NULL;
2217 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2218 as->name = g_strdup(name ? name : "anonymous");
2219 address_space_init_dispatch(as);
2220 memory_region_update_pending |= root->enabled;
2221 memory_region_transaction_commit();
2222 }
2223
2224 static void do_address_space_destroy(AddressSpace *as)
2225 {
2226 MemoryListener *listener;
2227 bool do_free = as->malloced;
2228
2229 address_space_destroy_dispatch(as);
2230
2231 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2232 assert(listener->address_space_filter != as);
2233 }
2234
2235 flatview_unref(as->current_map);
2236 g_free(as->name);
2237 g_free(as->ioeventfds);
2238 memory_region_unref(as->root);
2239 if (do_free) {
2240 g_free(as);
2241 }
2242 }
2243
2244 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2245 {
2246 AddressSpace *as;
2247
2248 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2249 if (root == as->root && as->malloced) {
2250 as->ref_count++;
2251 return as;
2252 }
2253 }
2254
2255 as = g_malloc0(sizeof *as);
2256 address_space_init(as, root, name);
2257 as->malloced = true;
2258 return as;
2259 }
2260
2261 void address_space_destroy(AddressSpace *as)
2262 {
2263 MemoryRegion *root = as->root;
2264
2265 as->ref_count--;
2266 if (as->ref_count) {
2267 return;
2268 }
2269 /* Flush out anything from MemoryListeners listening in on this */
2270 memory_region_transaction_begin();
2271 as->root = NULL;
2272 memory_region_transaction_commit();
2273 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2274 address_space_unregister(as);
2275
2276 /* At this point, as->dispatch and as->current_map are dummy
2277 * entries that the guest should never use. Wait for the old
2278 * values to expire before freeing the data.
2279 */
2280 as->root = root;
2281 call_rcu(as, do_address_space_destroy, rcu);
2282 }
2283
2284 typedef struct MemoryRegionList MemoryRegionList;
2285
2286 struct MemoryRegionList {
2287 const MemoryRegion *mr;
2288 QTAILQ_ENTRY(MemoryRegionList) queue;
2289 };
2290
2291 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2292
2293 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2294 const MemoryRegion *mr, unsigned int level,
2295 hwaddr base,
2296 MemoryRegionListHead *alias_print_queue)
2297 {
2298 MemoryRegionList *new_ml, *ml, *next_ml;
2299 MemoryRegionListHead submr_print_queue;
2300 const MemoryRegion *submr;
2301 unsigned int i;
2302
2303 if (!mr) {
2304 return;
2305 }
2306
2307 for (i = 0; i < level; i++) {
2308 mon_printf(f, " ");
2309 }
2310
2311 if (mr->alias) {
2312 MemoryRegionList *ml;
2313 bool found = false;
2314
2315 /* check if the alias is already in the queue */
2316 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2317 if (ml->mr == mr->alias) {
2318 found = true;
2319 }
2320 }
2321
2322 if (!found) {
2323 ml = g_new(MemoryRegionList, 1);
2324 ml->mr = mr->alias;
2325 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2326 }
2327 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2328 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2329 "-" TARGET_FMT_plx "%s\n",
2330 base + mr->addr,
2331 base + mr->addr
2332 + (int128_nz(mr->size) ?
2333 (hwaddr)int128_get64(int128_sub(mr->size,
2334 int128_one())) : 0),
2335 mr->priority,
2336 mr->romd_mode ? 'R' : '-',
2337 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2338 : '-',
2339 memory_region_name(mr),
2340 memory_region_name(mr->alias),
2341 mr->alias_offset,
2342 mr->alias_offset
2343 + (int128_nz(mr->size) ?
2344 (hwaddr)int128_get64(int128_sub(mr->size,
2345 int128_one())) : 0),
2346 mr->enabled ? "" : " [disabled]");
2347 } else {
2348 mon_printf(f,
2349 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2350 base + mr->addr,
2351 base + mr->addr
2352 + (int128_nz(mr->size) ?
2353 (hwaddr)int128_get64(int128_sub(mr->size,
2354 int128_one())) : 0),
2355 mr->priority,
2356 mr->romd_mode ? 'R' : '-',
2357 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2358 : '-',
2359 memory_region_name(mr),
2360 mr->enabled ? "" : " [disabled]");
2361 }
2362
2363 QTAILQ_INIT(&submr_print_queue);
2364
2365 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2366 new_ml = g_new(MemoryRegionList, 1);
2367 new_ml->mr = submr;
2368 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2369 if (new_ml->mr->addr < ml->mr->addr ||
2370 (new_ml->mr->addr == ml->mr->addr &&
2371 new_ml->mr->priority > ml->mr->priority)) {
2372 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2373 new_ml = NULL;
2374 break;
2375 }
2376 }
2377 if (new_ml) {
2378 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2379 }
2380 }
2381
2382 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2383 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2384 alias_print_queue);
2385 }
2386
2387 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2388 g_free(ml);
2389 }
2390 }
2391
2392 void mtree_info(fprintf_function mon_printf, void *f)
2393 {
2394 MemoryRegionListHead ml_head;
2395 MemoryRegionList *ml, *ml2;
2396 AddressSpace *as;
2397
2398 QTAILQ_INIT(&ml_head);
2399
2400 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2401 mon_printf(f, "address-space: %s\n", as->name);
2402 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2403 mon_printf(f, "\n");
2404 }
2405
2406 /* print aliased regions */
2407 QTAILQ_FOREACH(ml, &ml_head, queue) {
2408 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2409 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2410 mon_printf(f, "\n");
2411 }
2412
2413 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2414 g_free(ml);
2415 }
2416 }
2417
2418 static const TypeInfo memory_region_info = {
2419 .parent = TYPE_OBJECT,
2420 .name = TYPE_MEMORY_REGION,
2421 .instance_size = sizeof(MemoryRegion),
2422 .instance_init = memory_region_initfn,
2423 .instance_finalize = memory_region_finalize,
2424 };
2425
2426 static void memory_register_types(void)
2427 {
2428 type_register_static(&memory_region_info);
2429 }
2430
2431 type_init(memory_register_types)