qapi event: convert BALLOON_CHANGE
[qemu.git] / monitor.c
1 /*
2 * QEMU monitor
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <dirent.h>
25 #include "hw/hw.h"
26 #include "monitor/qdev.h"
27 #include "hw/usb.h"
28 #include "hw/pcmcia.h"
29 #include "hw/i386/pc.h"
30 #include "hw/pci/pci.h"
31 #include "sysemu/watchdog.h"
32 #include "hw/loader.h"
33 #include "exec/gdbstub.h"
34 #include "net/net.h"
35 #include "net/slirp.h"
36 #include "sysemu/char.h"
37 #include "ui/qemu-spice.h"
38 #include "sysemu/sysemu.h"
39 #include "monitor/monitor.h"
40 #include "qemu/readline.h"
41 #include "ui/console.h"
42 #include "ui/input.h"
43 #include "sysemu/blockdev.h"
44 #include "audio/audio.h"
45 #include "disas/disas.h"
46 #include "sysemu/balloon.h"
47 #include "qemu/timer.h"
48 #include "migration/migration.h"
49 #include "sysemu/kvm.h"
50 #include "qemu/acl.h"
51 #include "sysemu/tpm.h"
52 #include "qapi/qmp/qint.h"
53 #include "qapi/qmp/qfloat.h"
54 #include "qapi/qmp/qlist.h"
55 #include "qapi/qmp/qbool.h"
56 #include "qapi/qmp/qstring.h"
57 #include "qapi/qmp/qjson.h"
58 #include "qapi/qmp/json-streamer.h"
59 #include "qapi/qmp/json-parser.h"
60 #include <qom/object_interfaces.h>
61 #include "qemu/osdep.h"
62 #include "cpu.h"
63 #include "trace.h"
64 #include "trace/control.h"
65 #ifdef CONFIG_TRACE_SIMPLE
66 #include "trace/simple.h"
67 #endif
68 #include "exec/memory.h"
69 #include "exec/cpu_ldst.h"
70 #include "qmp-commands.h"
71 #include "hmp.h"
72 #include "qemu/thread.h"
73 #include "block/qapi.h"
74 #include "qapi/qmp-event.h"
75 #include "qapi-event.h"
76
77 /* for pic/irq_info */
78 #if defined(TARGET_SPARC)
79 #include "hw/sparc/sun4m.h"
80 #endif
81 #include "hw/lm32/lm32_pic.h"
82
83 //#define DEBUG
84 //#define DEBUG_COMPLETION
85
86 /*
87 * Supported types:
88 *
89 * 'F' filename
90 * 'B' block device name
91 * 's' string (accept optional quote)
92 * 'S' it just appends the rest of the string (accept optional quote)
93 * 'O' option string of the form NAME=VALUE,...
94 * parsed according to QemuOptsList given by its name
95 * Example: 'device:O' uses qemu_device_opts.
96 * Restriction: only lists with empty desc are supported
97 * TODO lift the restriction
98 * 'i' 32 bit integer
99 * 'l' target long (32 or 64 bit)
100 * 'M' Non-negative target long (32 or 64 bit), in user mode the
101 * value is multiplied by 2^20 (think Mebibyte)
102 * 'o' octets (aka bytes)
103 * user mode accepts an optional E, e, P, p, T, t, G, g, M, m,
104 * K, k suffix, which multiplies the value by 2^60 for suffixes E
105 * and e, 2^50 for suffixes P and p, 2^40 for suffixes T and t,
106 * 2^30 for suffixes G and g, 2^20 for M and m, 2^10 for K and k
107 * 'T' double
108 * user mode accepts an optional ms, us, ns suffix,
109 * which divides the value by 1e3, 1e6, 1e9, respectively
110 * '/' optional gdb-like print format (like "/10x")
111 *
112 * '?' optional type (for all types, except '/')
113 * '.' other form of optional type (for 'i' and 'l')
114 * 'b' boolean
115 * user mode accepts "on" or "off"
116 * '-' optional parameter (eg. '-f')
117 *
118 */
119
120 typedef struct MonitorCompletionData MonitorCompletionData;
121 struct MonitorCompletionData {
122 Monitor *mon;
123 void (*user_print)(Monitor *mon, const QObject *data);
124 };
125
126 typedef struct mon_cmd_t {
127 const char *name;
128 const char *args_type;
129 const char *params;
130 const char *help;
131 void (*user_print)(Monitor *mon, const QObject *data);
132 union {
133 void (*cmd)(Monitor *mon, const QDict *qdict);
134 int (*cmd_new)(Monitor *mon, const QDict *params, QObject **ret_data);
135 int (*cmd_async)(Monitor *mon, const QDict *params,
136 MonitorCompletion *cb, void *opaque);
137 } mhandler;
138 int flags;
139 /* @sub_table is a list of 2nd level of commands. If it do not exist,
140 * mhandler should be used. If it exist, sub_table[?].mhandler should be
141 * used, and mhandler of 1st level plays the role of help function.
142 */
143 struct mon_cmd_t *sub_table;
144 void (*command_completion)(ReadLineState *rs, int nb_args, const char *str);
145 } mon_cmd_t;
146
147 /* file descriptors passed via SCM_RIGHTS */
148 typedef struct mon_fd_t mon_fd_t;
149 struct mon_fd_t {
150 char *name;
151 int fd;
152 QLIST_ENTRY(mon_fd_t) next;
153 };
154
155 /* file descriptor associated with a file descriptor set */
156 typedef struct MonFdsetFd MonFdsetFd;
157 struct MonFdsetFd {
158 int fd;
159 bool removed;
160 char *opaque;
161 QLIST_ENTRY(MonFdsetFd) next;
162 };
163
164 /* file descriptor set containing fds passed via SCM_RIGHTS */
165 typedef struct MonFdset MonFdset;
166 struct MonFdset {
167 int64_t id;
168 QLIST_HEAD(, MonFdsetFd) fds;
169 QLIST_HEAD(, MonFdsetFd) dup_fds;
170 QLIST_ENTRY(MonFdset) next;
171 };
172
173 typedef struct MonitorControl {
174 QObject *id;
175 JSONMessageParser parser;
176 int command_mode;
177 } MonitorControl;
178
179 /*
180 * To prevent flooding clients, events can be throttled. The
181 * throttling is calculated globally, rather than per-Monitor
182 * instance.
183 */
184 typedef struct MonitorEventState {
185 MonitorEvent event; /* Event being tracked */
186 int64_t rate; /* Period over which to throttle. 0 to disable */
187 int64_t last; /* Time at which event was last emitted */
188 QEMUTimer *timer; /* Timer for handling delayed events */
189 QObject *data; /* Event pending delayed dispatch */
190 } MonitorEventState;
191
192 typedef struct MonitorQAPIEventState {
193 QAPIEvent event; /* Event being tracked */
194 int64_t rate; /* Minimum time (in ns) between two events */
195 int64_t last; /* QEMU_CLOCK_REALTIME value at last emission */
196 QEMUTimer *timer; /* Timer for handling delayed events */
197 QObject *data; /* Event pending delayed dispatch */
198 } MonitorQAPIEventState;
199
200 struct Monitor {
201 CharDriverState *chr;
202 int mux_out;
203 int reset_seen;
204 int flags;
205 int suspend_cnt;
206 bool skip_flush;
207 QString *outbuf;
208 guint watch;
209 ReadLineState *rs;
210 MonitorControl *mc;
211 CPUState *mon_cpu;
212 BlockDriverCompletionFunc *password_completion_cb;
213 void *password_opaque;
214 mon_cmd_t *cmd_table;
215 QError *error;
216 QLIST_HEAD(,mon_fd_t) fds;
217 QLIST_ENTRY(Monitor) entry;
218 };
219
220 /* QMP checker flags */
221 #define QMP_ACCEPT_UNKNOWNS 1
222
223 static QLIST_HEAD(mon_list, Monitor) mon_list;
224 static QLIST_HEAD(mon_fdsets, MonFdset) mon_fdsets;
225 static int mon_refcount;
226
227 static mon_cmd_t mon_cmds[];
228 static mon_cmd_t info_cmds[];
229
230 static const mon_cmd_t qmp_cmds[];
231
232 Monitor *cur_mon;
233 Monitor *default_mon;
234
235 static void monitor_command_cb(void *opaque, const char *cmdline,
236 void *readline_opaque);
237
238 static inline int qmp_cmd_mode(const Monitor *mon)
239 {
240 return (mon->mc ? mon->mc->command_mode : 0);
241 }
242
243 /* Return true if in control mode, false otherwise */
244 static inline int monitor_ctrl_mode(const Monitor *mon)
245 {
246 return (mon->flags & MONITOR_USE_CONTROL);
247 }
248
249 /* Return non-zero iff we have a current monitor, and it is in QMP mode. */
250 int monitor_cur_is_qmp(void)
251 {
252 return cur_mon && monitor_ctrl_mode(cur_mon);
253 }
254
255 void monitor_read_command(Monitor *mon, int show_prompt)
256 {
257 if (!mon->rs)
258 return;
259
260 readline_start(mon->rs, "(qemu) ", 0, monitor_command_cb, NULL);
261 if (show_prompt)
262 readline_show_prompt(mon->rs);
263 }
264
265 int monitor_read_password(Monitor *mon, ReadLineFunc *readline_func,
266 void *opaque)
267 {
268 if (monitor_ctrl_mode(mon)) {
269 qerror_report(QERR_MISSING_PARAMETER, "password");
270 return -EINVAL;
271 } else if (mon->rs) {
272 readline_start(mon->rs, "Password: ", 1, readline_func, opaque);
273 /* prompt is printed on return from the command handler */
274 return 0;
275 } else {
276 monitor_printf(mon, "terminal does not support password prompting\n");
277 return -ENOTTY;
278 }
279 }
280
281 static gboolean monitor_unblocked(GIOChannel *chan, GIOCondition cond,
282 void *opaque)
283 {
284 Monitor *mon = opaque;
285
286 mon->watch = 0;
287 monitor_flush(mon);
288 return FALSE;
289 }
290
291 void monitor_flush(Monitor *mon)
292 {
293 int rc;
294 size_t len;
295 const char *buf;
296
297 if (mon->skip_flush) {
298 return;
299 }
300
301 buf = qstring_get_str(mon->outbuf);
302 len = qstring_get_length(mon->outbuf);
303
304 if (len && !mon->mux_out) {
305 rc = qemu_chr_fe_write(mon->chr, (const uint8_t *) buf, len);
306 if ((rc < 0 && errno != EAGAIN) || (rc == len)) {
307 /* all flushed or error */
308 QDECREF(mon->outbuf);
309 mon->outbuf = qstring_new();
310 return;
311 }
312 if (rc > 0) {
313 /* partinal write */
314 QString *tmp = qstring_from_str(buf + rc);
315 QDECREF(mon->outbuf);
316 mon->outbuf = tmp;
317 }
318 if (mon->watch == 0) {
319 mon->watch = qemu_chr_fe_add_watch(mon->chr, G_IO_OUT,
320 monitor_unblocked, mon);
321 }
322 }
323 }
324
325 /* flush at every end of line */
326 static void monitor_puts(Monitor *mon, const char *str)
327 {
328 char c;
329
330 for(;;) {
331 c = *str++;
332 if (c == '\0')
333 break;
334 if (c == '\n') {
335 qstring_append_chr(mon->outbuf, '\r');
336 }
337 qstring_append_chr(mon->outbuf, c);
338 if (c == '\n') {
339 monitor_flush(mon);
340 }
341 }
342 }
343
344 void monitor_vprintf(Monitor *mon, const char *fmt, va_list ap)
345 {
346 char *buf;
347
348 if (!mon)
349 return;
350
351 if (monitor_ctrl_mode(mon)) {
352 return;
353 }
354
355 buf = g_strdup_vprintf(fmt, ap);
356 monitor_puts(mon, buf);
357 g_free(buf);
358 }
359
360 void monitor_printf(Monitor *mon, const char *fmt, ...)
361 {
362 va_list ap;
363 va_start(ap, fmt);
364 monitor_vprintf(mon, fmt, ap);
365 va_end(ap);
366 }
367
368 static int GCC_FMT_ATTR(2, 3) monitor_fprintf(FILE *stream,
369 const char *fmt, ...)
370 {
371 va_list ap;
372 va_start(ap, fmt);
373 monitor_vprintf((Monitor *)stream, fmt, ap);
374 va_end(ap);
375 return 0;
376 }
377
378 static void monitor_user_noop(Monitor *mon, const QObject *data) { }
379
380 static inline int handler_is_qobject(const mon_cmd_t *cmd)
381 {
382 return cmd->user_print != NULL;
383 }
384
385 static inline bool handler_is_async(const mon_cmd_t *cmd)
386 {
387 return cmd->flags & MONITOR_CMD_ASYNC;
388 }
389
390 static inline int monitor_has_error(const Monitor *mon)
391 {
392 return mon->error != NULL;
393 }
394
395 static void monitor_json_emitter(Monitor *mon, const QObject *data)
396 {
397 QString *json;
398
399 json = mon->flags & MONITOR_USE_PRETTY ? qobject_to_json_pretty(data) :
400 qobject_to_json(data);
401 assert(json != NULL);
402
403 qstring_append_chr(json, '\n');
404 monitor_puts(mon, qstring_get_str(json));
405
406 QDECREF(json);
407 }
408
409 static QDict *build_qmp_error_dict(const QError *err)
410 {
411 QObject *obj;
412
413 obj = qobject_from_jsonf("{ 'error': { 'class': %s, 'desc': %p } }",
414 ErrorClass_lookup[err->err_class],
415 qerror_human(err));
416
417 return qobject_to_qdict(obj);
418 }
419
420 static void monitor_protocol_emitter(Monitor *mon, QObject *data)
421 {
422 QDict *qmp;
423
424 trace_monitor_protocol_emitter(mon);
425
426 if (!monitor_has_error(mon)) {
427 /* success response */
428 qmp = qdict_new();
429 if (data) {
430 qobject_incref(data);
431 qdict_put_obj(qmp, "return", data);
432 } else {
433 /* return an empty QDict by default */
434 qdict_put(qmp, "return", qdict_new());
435 }
436 } else {
437 /* error response */
438 qmp = build_qmp_error_dict(mon->error);
439 QDECREF(mon->error);
440 mon->error = NULL;
441 }
442
443 if (mon->mc->id) {
444 qdict_put_obj(qmp, "id", mon->mc->id);
445 mon->mc->id = NULL;
446 }
447
448 monitor_json_emitter(mon, QOBJECT(qmp));
449 QDECREF(qmp);
450 }
451
452 static void timestamp_put(QDict *qdict)
453 {
454 int err;
455 QObject *obj;
456 qemu_timeval tv;
457
458 err = qemu_gettimeofday(&tv);
459 if (err < 0)
460 return;
461
462 obj = qobject_from_jsonf("{ 'seconds': %" PRId64 ", "
463 "'microseconds': %" PRId64 " }",
464 (int64_t) tv.tv_sec, (int64_t) tv.tv_usec);
465 qdict_put_obj(qdict, "timestamp", obj);
466 }
467
468
469 static const char *monitor_event_names[] = {
470 [QEVENT_SHUTDOWN] = "SHUTDOWN",
471 [QEVENT_RESET] = "RESET",
472 [QEVENT_POWERDOWN] = "POWERDOWN",
473 [QEVENT_STOP] = "STOP",
474 [QEVENT_RESUME] = "RESUME",
475 [QEVENT_VNC_CONNECTED] = "VNC_CONNECTED",
476 [QEVENT_VNC_INITIALIZED] = "VNC_INITIALIZED",
477 [QEVENT_VNC_DISCONNECTED] = "VNC_DISCONNECTED",
478 [QEVENT_BLOCK_IO_ERROR] = "BLOCK_IO_ERROR",
479 [QEVENT_RTC_CHANGE] = "RTC_CHANGE",
480 [QEVENT_WATCHDOG] = "WATCHDOG",
481 [QEVENT_SPICE_CONNECTED] = "SPICE_CONNECTED",
482 [QEVENT_SPICE_INITIALIZED] = "SPICE_INITIALIZED",
483 [QEVENT_SPICE_DISCONNECTED] = "SPICE_DISCONNECTED",
484 [QEVENT_BLOCK_JOB_COMPLETED] = "BLOCK_JOB_COMPLETED",
485 [QEVENT_BLOCK_JOB_CANCELLED] = "BLOCK_JOB_CANCELLED",
486 [QEVENT_BLOCK_JOB_ERROR] = "BLOCK_JOB_ERROR",
487 [QEVENT_BLOCK_JOB_READY] = "BLOCK_JOB_READY",
488 [QEVENT_DEVICE_DELETED] = "DEVICE_DELETED",
489 [QEVENT_DEVICE_TRAY_MOVED] = "DEVICE_TRAY_MOVED",
490 [QEVENT_NIC_RX_FILTER_CHANGED] = "NIC_RX_FILTER_CHANGED",
491 [QEVENT_SUSPEND] = "SUSPEND",
492 [QEVENT_SUSPEND_DISK] = "SUSPEND_DISK",
493 [QEVENT_WAKEUP] = "WAKEUP",
494 [QEVENT_BALLOON_CHANGE] = "BALLOON_CHANGE",
495 [QEVENT_SPICE_MIGRATE_COMPLETED] = "SPICE_MIGRATE_COMPLETED",
496 [QEVENT_GUEST_PANICKED] = "GUEST_PANICKED",
497 [QEVENT_BLOCK_IMAGE_CORRUPTED] = "BLOCK_IMAGE_CORRUPTED",
498 [QEVENT_QUORUM_FAILURE] = "QUORUM_FAILURE",
499 [QEVENT_QUORUM_REPORT_BAD] = "QUORUM_REPORT_BAD",
500 };
501 QEMU_BUILD_BUG_ON(ARRAY_SIZE(monitor_event_names) != QEVENT_MAX)
502
503 static MonitorEventState monitor_event_state[QEVENT_MAX];
504 static MonitorQAPIEventState monitor_qapi_event_state[QAPI_EVENT_MAX];
505
506 /*
507 * Emits the event to every monitor instance, @event is only used for trace
508 */
509 static void monitor_qapi_event_emit(QAPIEvent event, QObject *data)
510 {
511 Monitor *mon;
512
513 trace_monitor_protocol_event_emit(event, data);
514 QLIST_FOREACH(mon, &mon_list, entry) {
515 if (monitor_ctrl_mode(mon) && qmp_cmd_mode(mon)) {
516 monitor_json_emitter(mon, data);
517 }
518 }
519 }
520
521 /*
522 * Queue a new event for emission to Monitor instances,
523 * applying any rate limiting if required.
524 */
525 static void
526 monitor_qapi_event_queue(QAPIEvent event, QDict *data, Error **errp)
527 {
528 MonitorQAPIEventState *evstate;
529 assert(event < QAPI_EVENT_MAX);
530 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
531
532 evstate = &(monitor_qapi_event_state[event]);
533 trace_monitor_protocol_event_queue(event,
534 data,
535 evstate->rate,
536 evstate->last,
537 now);
538
539 /* Rate limit of 0 indicates no throttling */
540 if (!evstate->rate) {
541 monitor_qapi_event_emit(event, QOBJECT(data));
542 evstate->last = now;
543 } else {
544 int64_t delta = now - evstate->last;
545 if (evstate->data ||
546 delta < evstate->rate) {
547 /* If there's an existing event pending, replace
548 * it with the new event, otherwise schedule a
549 * timer for delayed emission
550 */
551 if (evstate->data) {
552 qobject_decref(evstate->data);
553 } else {
554 int64_t then = evstate->last + evstate->rate;
555 timer_mod_ns(evstate->timer, then);
556 }
557 evstate->data = QOBJECT(data);
558 qobject_incref(evstate->data);
559 } else {
560 monitor_qapi_event_emit(event, QOBJECT(data));
561 evstate->last = now;
562 }
563 }
564 }
565
566 /*
567 * The callback invoked by QemuTimer when a delayed
568 * event is ready to be emitted
569 */
570 static void monitor_qapi_event_handler(void *opaque)
571 {
572 MonitorQAPIEventState *evstate = opaque;
573 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
574
575 trace_monitor_protocol_event_handler(evstate->event,
576 evstate->data,
577 evstate->last,
578 now);
579 if (evstate->data) {
580 monitor_qapi_event_emit(evstate->event, evstate->data);
581 qobject_decref(evstate->data);
582 evstate->data = NULL;
583 }
584 evstate->last = now;
585 }
586
587 /*
588 * @event: the event ID to be limited
589 * @rate: the rate limit in milliseconds
590 *
591 * Sets a rate limit on a particular event, so no
592 * more than 1 event will be emitted within @rate
593 * milliseconds
594 */
595 static void __attribute__((__unused__))
596 monitor_qapi_event_throttle(QAPIEvent event, int64_t rate)
597 {
598 MonitorQAPIEventState *evstate;
599 assert(event < QAPI_EVENT_MAX);
600
601 evstate = &(monitor_qapi_event_state[event]);
602
603 trace_monitor_protocol_event_throttle(event, rate);
604 evstate->event = event;
605 evstate->rate = rate * SCALE_MS;
606 evstate->last = 0;
607 evstate->data = NULL;
608 evstate->timer = timer_new(QEMU_CLOCK_REALTIME,
609 SCALE_MS,
610 monitor_qapi_event_handler,
611 evstate);
612 }
613
614 static void monitor_qapi_event_init(void)
615 {
616 /* Limit guest-triggerable events to 1 per second */
617 monitor_qapi_event_throttle(QAPI_EVENT_RTC_CHANGE, 1000);
618 monitor_qapi_event_throttle(QAPI_EVENT_WATCHDOG, 1000);
619 monitor_qapi_event_throttle(QAPI_EVENT_BALLOON_CHANGE, 1000);
620
621 qmp_event_set_func_emit(monitor_qapi_event_queue);
622 }
623
624
625 /*
626 * Emits the event to every monitor instance
627 */
628 static void
629 monitor_protocol_event_emit(MonitorEvent event,
630 QObject *data)
631 {
632 Monitor *mon;
633
634 trace_monitor_protocol_event_emit(event, data);
635 QLIST_FOREACH(mon, &mon_list, entry) {
636 if (monitor_ctrl_mode(mon) && qmp_cmd_mode(mon)) {
637 monitor_json_emitter(mon, data);
638 }
639 }
640 }
641
642
643 /*
644 * Queue a new event for emission to Monitor instances,
645 * applying any rate limiting if required.
646 */
647 static void
648 monitor_protocol_event_queue(MonitorEvent event,
649 QObject *data)
650 {
651 MonitorEventState *evstate;
652 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
653 assert(event < QEVENT_MAX);
654
655 evstate = &(monitor_event_state[event]);
656 trace_monitor_protocol_event_queue(event,
657 data,
658 evstate->rate,
659 evstate->last,
660 now);
661
662 /* Rate limit of 0 indicates no throttling */
663 if (!evstate->rate) {
664 monitor_protocol_event_emit(event, data);
665 evstate->last = now;
666 } else {
667 int64_t delta = now - evstate->last;
668 if (evstate->data ||
669 delta < evstate->rate) {
670 /* If there's an existing event pending, replace
671 * it with the new event, otherwise schedule a
672 * timer for delayed emission
673 */
674 if (evstate->data) {
675 qobject_decref(evstate->data);
676 } else {
677 int64_t then = evstate->last + evstate->rate;
678 timer_mod_ns(evstate->timer, then);
679 }
680 evstate->data = data;
681 qobject_incref(evstate->data);
682 } else {
683 monitor_protocol_event_emit(event, data);
684 evstate->last = now;
685 }
686 }
687 }
688
689
690 /*
691 * The callback invoked by QemuTimer when a delayed
692 * event is ready to be emitted
693 */
694 static void monitor_protocol_event_handler(void *opaque)
695 {
696 MonitorEventState *evstate = opaque;
697 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
698
699
700 trace_monitor_protocol_event_handler(evstate->event,
701 evstate->data,
702 evstate->last,
703 now);
704 if (evstate->data) {
705 monitor_protocol_event_emit(evstate->event, evstate->data);
706 qobject_decref(evstate->data);
707 evstate->data = NULL;
708 }
709 evstate->last = now;
710 }
711
712
713 /*
714 * @event: the event ID to be limited
715 * @rate: the rate limit in milliseconds
716 *
717 * Sets a rate limit on a particular event, so no
718 * more than 1 event will be emitted within @rate
719 * milliseconds
720 */
721 static void __attribute__((__unused__))
722 monitor_protocol_event_throttle(MonitorEvent event,
723 int64_t rate)
724 {
725 MonitorEventState *evstate;
726 assert(event < QEVENT_MAX);
727
728 evstate = &(monitor_event_state[event]);
729
730 trace_monitor_protocol_event_throttle(event, rate);
731 evstate->event = event;
732 evstate->rate = rate * SCALE_MS;
733 evstate->timer = timer_new(QEMU_CLOCK_REALTIME,
734 SCALE_MS,
735 monitor_protocol_event_handler,
736 evstate);
737 evstate->last = 0;
738 evstate->data = NULL;
739 }
740
741
742 /* Global, one-time initializer to configure the rate limiting
743 * and initialize state */
744 static void monitor_protocol_event_init(void)
745 {
746 /* limit the rate of quorum events to avoid hammering the management */
747 monitor_protocol_event_throttle(QEVENT_QUORUM_REPORT_BAD, 1000);
748 monitor_protocol_event_throttle(QEVENT_QUORUM_FAILURE, 1000);
749 }
750
751 /**
752 * monitor_protocol_event(): Generate a Monitor event
753 *
754 * Event-specific data can be emitted through the (optional) 'data' parameter.
755 */
756 void monitor_protocol_event(MonitorEvent event, QObject *data)
757 {
758 QDict *qmp;
759 const char *event_name;
760
761 assert(event < QEVENT_MAX);
762
763 event_name = monitor_event_names[event];
764 assert(event_name != NULL);
765
766 qmp = qdict_new();
767 timestamp_put(qmp);
768 qdict_put(qmp, "event", qstring_from_str(event_name));
769 if (data) {
770 qobject_incref(data);
771 qdict_put_obj(qmp, "data", data);
772 }
773
774 trace_monitor_protocol_event(event, event_name, qmp);
775 monitor_protocol_event_queue(event, QOBJECT(qmp));
776 QDECREF(qmp);
777 }
778
779 static int do_qmp_capabilities(Monitor *mon, const QDict *params,
780 QObject **ret_data)
781 {
782 /* Will setup QMP capabilities in the future */
783 if (monitor_ctrl_mode(mon)) {
784 mon->mc->command_mode = 1;
785 }
786
787 return 0;
788 }
789
790 static void handle_user_command(Monitor *mon, const char *cmdline);
791
792 static void monitor_data_init(Monitor *mon)
793 {
794 memset(mon, 0, sizeof(Monitor));
795 mon->outbuf = qstring_new();
796 /* Use *mon_cmds by default. */
797 mon->cmd_table = mon_cmds;
798 }
799
800 static void monitor_data_destroy(Monitor *mon)
801 {
802 QDECREF(mon->outbuf);
803 }
804
805 char *qmp_human_monitor_command(const char *command_line, bool has_cpu_index,
806 int64_t cpu_index, Error **errp)
807 {
808 char *output = NULL;
809 Monitor *old_mon, hmp;
810
811 monitor_data_init(&hmp);
812 hmp.skip_flush = true;
813
814 old_mon = cur_mon;
815 cur_mon = &hmp;
816
817 if (has_cpu_index) {
818 int ret = monitor_set_cpu(cpu_index);
819 if (ret < 0) {
820 cur_mon = old_mon;
821 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
822 "a CPU number");
823 goto out;
824 }
825 }
826
827 handle_user_command(&hmp, command_line);
828 cur_mon = old_mon;
829
830 if (qstring_get_length(hmp.outbuf) > 0) {
831 output = g_strdup(qstring_get_str(hmp.outbuf));
832 } else {
833 output = g_strdup("");
834 }
835
836 out:
837 monitor_data_destroy(&hmp);
838 return output;
839 }
840
841 static int compare_cmd(const char *name, const char *list)
842 {
843 const char *p, *pstart;
844 int len;
845 len = strlen(name);
846 p = list;
847 for(;;) {
848 pstart = p;
849 p = strchr(p, '|');
850 if (!p)
851 p = pstart + strlen(pstart);
852 if ((p - pstart) == len && !memcmp(pstart, name, len))
853 return 1;
854 if (*p == '\0')
855 break;
856 p++;
857 }
858 return 0;
859 }
860
861 static int get_str(char *buf, int buf_size, const char **pp)
862 {
863 const char *p;
864 char *q;
865 int c;
866
867 q = buf;
868 p = *pp;
869 while (qemu_isspace(*p)) {
870 p++;
871 }
872 if (*p == '\0') {
873 fail:
874 *q = '\0';
875 *pp = p;
876 return -1;
877 }
878 if (*p == '\"') {
879 p++;
880 while (*p != '\0' && *p != '\"') {
881 if (*p == '\\') {
882 p++;
883 c = *p++;
884 switch (c) {
885 case 'n':
886 c = '\n';
887 break;
888 case 'r':
889 c = '\r';
890 break;
891 case '\\':
892 case '\'':
893 case '\"':
894 break;
895 default:
896 qemu_printf("unsupported escape code: '\\%c'\n", c);
897 goto fail;
898 }
899 if ((q - buf) < buf_size - 1) {
900 *q++ = c;
901 }
902 } else {
903 if ((q - buf) < buf_size - 1) {
904 *q++ = *p;
905 }
906 p++;
907 }
908 }
909 if (*p != '\"') {
910 qemu_printf("unterminated string\n");
911 goto fail;
912 }
913 p++;
914 } else {
915 while (*p != '\0' && !qemu_isspace(*p)) {
916 if ((q - buf) < buf_size - 1) {
917 *q++ = *p;
918 }
919 p++;
920 }
921 }
922 *q = '\0';
923 *pp = p;
924 return 0;
925 }
926
927 #define MAX_ARGS 16
928
929 static void free_cmdline_args(char **args, int nb_args)
930 {
931 int i;
932
933 assert(nb_args <= MAX_ARGS);
934
935 for (i = 0; i < nb_args; i++) {
936 g_free(args[i]);
937 }
938
939 }
940
941 /*
942 * Parse the command line to get valid args.
943 * @cmdline: command line to be parsed.
944 * @pnb_args: location to store the number of args, must NOT be NULL.
945 * @args: location to store the args, which should be freed by caller, must
946 * NOT be NULL.
947 *
948 * Returns 0 on success, negative on failure.
949 *
950 * NOTE: this parser is an approximate form of the real command parser. Number
951 * of args have a limit of MAX_ARGS. If cmdline contains more, it will
952 * return with failure.
953 */
954 static int parse_cmdline(const char *cmdline,
955 int *pnb_args, char **args)
956 {
957 const char *p;
958 int nb_args, ret;
959 char buf[1024];
960
961 p = cmdline;
962 nb_args = 0;
963 for (;;) {
964 while (qemu_isspace(*p)) {
965 p++;
966 }
967 if (*p == '\0') {
968 break;
969 }
970 if (nb_args >= MAX_ARGS) {
971 goto fail;
972 }
973 ret = get_str(buf, sizeof(buf), &p);
974 if (ret < 0) {
975 goto fail;
976 }
977 args[nb_args] = g_strdup(buf);
978 nb_args++;
979 }
980 *pnb_args = nb_args;
981 return 0;
982
983 fail:
984 free_cmdline_args(args, nb_args);
985 return -1;
986 }
987
988 static void help_cmd_dump_one(Monitor *mon,
989 const mon_cmd_t *cmd,
990 char **prefix_args,
991 int prefix_args_nb)
992 {
993 int i;
994
995 for (i = 0; i < prefix_args_nb; i++) {
996 monitor_printf(mon, "%s ", prefix_args[i]);
997 }
998 monitor_printf(mon, "%s %s -- %s\n", cmd->name, cmd->params, cmd->help);
999 }
1000
1001 /* @args[@arg_index] is the valid command need to find in @cmds */
1002 static void help_cmd_dump(Monitor *mon, const mon_cmd_t *cmds,
1003 char **args, int nb_args, int arg_index)
1004 {
1005 const mon_cmd_t *cmd;
1006
1007 /* No valid arg need to compare with, dump all in *cmds */
1008 if (arg_index >= nb_args) {
1009 for (cmd = cmds; cmd->name != NULL; cmd++) {
1010 help_cmd_dump_one(mon, cmd, args, arg_index);
1011 }
1012 return;
1013 }
1014
1015 /* Find one entry to dump */
1016 for (cmd = cmds; cmd->name != NULL; cmd++) {
1017 if (compare_cmd(args[arg_index], cmd->name)) {
1018 if (cmd->sub_table) {
1019 /* continue with next arg */
1020 help_cmd_dump(mon, cmd->sub_table,
1021 args, nb_args, arg_index + 1);
1022 } else {
1023 help_cmd_dump_one(mon, cmd, args, arg_index);
1024 }
1025 break;
1026 }
1027 }
1028 }
1029
1030 static void help_cmd(Monitor *mon, const char *name)
1031 {
1032 char *args[MAX_ARGS];
1033 int nb_args = 0;
1034
1035 /* 1. parse user input */
1036 if (name) {
1037 /* special case for log, directly dump and return */
1038 if (!strcmp(name, "log")) {
1039 const QEMULogItem *item;
1040 monitor_printf(mon, "Log items (comma separated):\n");
1041 monitor_printf(mon, "%-10s %s\n", "none", "remove all logs");
1042 for (item = qemu_log_items; item->mask != 0; item++) {
1043 monitor_printf(mon, "%-10s %s\n", item->name, item->help);
1044 }
1045 return;
1046 }
1047
1048 if (parse_cmdline(name, &nb_args, args) < 0) {
1049 return;
1050 }
1051 }
1052
1053 /* 2. dump the contents according to parsed args */
1054 help_cmd_dump(mon, mon->cmd_table, args, nb_args, 0);
1055
1056 free_cmdline_args(args, nb_args);
1057 }
1058
1059 static void do_help_cmd(Monitor *mon, const QDict *qdict)
1060 {
1061 help_cmd(mon, qdict_get_try_str(qdict, "name"));
1062 }
1063
1064 static void do_trace_event_set_state(Monitor *mon, const QDict *qdict)
1065 {
1066 const char *tp_name = qdict_get_str(qdict, "name");
1067 bool new_state = qdict_get_bool(qdict, "option");
1068
1069 bool found = false;
1070 TraceEvent *ev = NULL;
1071 while ((ev = trace_event_pattern(tp_name, ev)) != NULL) {
1072 found = true;
1073 if (!trace_event_get_state_static(ev)) {
1074 monitor_printf(mon, "event \"%s\" is not traceable\n", tp_name);
1075 } else {
1076 trace_event_set_state_dynamic(ev, new_state);
1077 }
1078 }
1079 if (!trace_event_is_pattern(tp_name) && !found) {
1080 monitor_printf(mon, "unknown event name \"%s\"\n", tp_name);
1081 }
1082 }
1083
1084 #ifdef CONFIG_TRACE_SIMPLE
1085 static void do_trace_file(Monitor *mon, const QDict *qdict)
1086 {
1087 const char *op = qdict_get_try_str(qdict, "op");
1088 const char *arg = qdict_get_try_str(qdict, "arg");
1089
1090 if (!op) {
1091 st_print_trace_file_status((FILE *)mon, &monitor_fprintf);
1092 } else if (!strcmp(op, "on")) {
1093 st_set_trace_file_enabled(true);
1094 } else if (!strcmp(op, "off")) {
1095 st_set_trace_file_enabled(false);
1096 } else if (!strcmp(op, "flush")) {
1097 st_flush_trace_buffer();
1098 } else if (!strcmp(op, "set")) {
1099 if (arg) {
1100 st_set_trace_file(arg);
1101 }
1102 } else {
1103 monitor_printf(mon, "unexpected argument \"%s\"\n", op);
1104 help_cmd(mon, "trace-file");
1105 }
1106 }
1107 #endif
1108
1109 static void user_monitor_complete(void *opaque, QObject *ret_data)
1110 {
1111 MonitorCompletionData *data = (MonitorCompletionData *)opaque;
1112
1113 if (ret_data) {
1114 data->user_print(data->mon, ret_data);
1115 }
1116 monitor_resume(data->mon);
1117 g_free(data);
1118 }
1119
1120 static void qmp_monitor_complete(void *opaque, QObject *ret_data)
1121 {
1122 monitor_protocol_emitter(opaque, ret_data);
1123 }
1124
1125 static int qmp_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd,
1126 const QDict *params)
1127 {
1128 return cmd->mhandler.cmd_async(mon, params, qmp_monitor_complete, mon);
1129 }
1130
1131 static void user_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd,
1132 const QDict *params)
1133 {
1134 int ret;
1135
1136 MonitorCompletionData *cb_data = g_malloc(sizeof(*cb_data));
1137 cb_data->mon = mon;
1138 cb_data->user_print = cmd->user_print;
1139 monitor_suspend(mon);
1140 ret = cmd->mhandler.cmd_async(mon, params,
1141 user_monitor_complete, cb_data);
1142 if (ret < 0) {
1143 monitor_resume(mon);
1144 g_free(cb_data);
1145 }
1146 }
1147
1148 static void do_info_help(Monitor *mon, const QDict *qdict)
1149 {
1150 help_cmd(mon, "info");
1151 }
1152
1153 CommandInfoList *qmp_query_commands(Error **errp)
1154 {
1155 CommandInfoList *info, *cmd_list = NULL;
1156 const mon_cmd_t *cmd;
1157
1158 for (cmd = qmp_cmds; cmd->name != NULL; cmd++) {
1159 info = g_malloc0(sizeof(*info));
1160 info->value = g_malloc0(sizeof(*info->value));
1161 info->value->name = g_strdup(cmd->name);
1162
1163 info->next = cmd_list;
1164 cmd_list = info;
1165 }
1166
1167 return cmd_list;
1168 }
1169
1170 EventInfoList *qmp_query_events(Error **errp)
1171 {
1172 EventInfoList *info, *ev_list = NULL;
1173 MonitorEvent e;
1174
1175 for (e = 0 ; e < QEVENT_MAX ; e++) {
1176 const char *event_name = monitor_event_names[e];
1177 assert(event_name != NULL);
1178 info = g_malloc0(sizeof(*info));
1179 info->value = g_malloc0(sizeof(*info->value));
1180 info->value->name = g_strdup(event_name);
1181
1182 info->next = ev_list;
1183 ev_list = info;
1184 }
1185
1186 return ev_list;
1187 }
1188
1189 /* set the current CPU defined by the user */
1190 int monitor_set_cpu(int cpu_index)
1191 {
1192 CPUState *cpu;
1193
1194 cpu = qemu_get_cpu(cpu_index);
1195 if (cpu == NULL) {
1196 return -1;
1197 }
1198 cur_mon->mon_cpu = cpu;
1199 return 0;
1200 }
1201
1202 static CPUArchState *mon_get_cpu(void)
1203 {
1204 if (!cur_mon->mon_cpu) {
1205 monitor_set_cpu(0);
1206 }
1207 cpu_synchronize_state(cur_mon->mon_cpu);
1208 return cur_mon->mon_cpu->env_ptr;
1209 }
1210
1211 int monitor_get_cpu_index(void)
1212 {
1213 CPUState *cpu = ENV_GET_CPU(mon_get_cpu());
1214 return cpu->cpu_index;
1215 }
1216
1217 static void do_info_registers(Monitor *mon, const QDict *qdict)
1218 {
1219 CPUState *cpu;
1220 CPUArchState *env;
1221 env = mon_get_cpu();
1222 cpu = ENV_GET_CPU(env);
1223 cpu_dump_state(cpu, (FILE *)mon, monitor_fprintf, CPU_DUMP_FPU);
1224 }
1225
1226 static void do_info_jit(Monitor *mon, const QDict *qdict)
1227 {
1228 dump_exec_info((FILE *)mon, monitor_fprintf);
1229 }
1230
1231 static void do_info_history(Monitor *mon, const QDict *qdict)
1232 {
1233 int i;
1234 const char *str;
1235
1236 if (!mon->rs)
1237 return;
1238 i = 0;
1239 for(;;) {
1240 str = readline_get_history(mon->rs, i);
1241 if (!str)
1242 break;
1243 monitor_printf(mon, "%d: '%s'\n", i, str);
1244 i++;
1245 }
1246 }
1247
1248 static void do_info_cpu_stats(Monitor *mon, const QDict *qdict)
1249 {
1250 CPUState *cpu;
1251 CPUArchState *env;
1252
1253 env = mon_get_cpu();
1254 cpu = ENV_GET_CPU(env);
1255 cpu_dump_statistics(cpu, (FILE *)mon, &monitor_fprintf, 0);
1256 }
1257
1258 static void do_trace_print_events(Monitor *mon, const QDict *qdict)
1259 {
1260 trace_print_events((FILE *)mon, &monitor_fprintf);
1261 }
1262
1263 static int client_migrate_info(Monitor *mon, const QDict *qdict,
1264 MonitorCompletion cb, void *opaque)
1265 {
1266 const char *protocol = qdict_get_str(qdict, "protocol");
1267 const char *hostname = qdict_get_str(qdict, "hostname");
1268 const char *subject = qdict_get_try_str(qdict, "cert-subject");
1269 int port = qdict_get_try_int(qdict, "port", -1);
1270 int tls_port = qdict_get_try_int(qdict, "tls-port", -1);
1271 int ret;
1272
1273 if (strcmp(protocol, "spice") == 0) {
1274 if (!using_spice) {
1275 qerror_report(QERR_DEVICE_NOT_ACTIVE, "spice");
1276 return -1;
1277 }
1278
1279 if (port == -1 && tls_port == -1) {
1280 qerror_report(QERR_MISSING_PARAMETER, "port/tls-port");
1281 return -1;
1282 }
1283
1284 ret = qemu_spice_migrate_info(hostname, port, tls_port, subject,
1285 cb, opaque);
1286 if (ret != 0) {
1287 qerror_report(QERR_UNDEFINED_ERROR);
1288 return -1;
1289 }
1290 return 0;
1291 }
1292
1293 qerror_report(QERR_INVALID_PARAMETER, "protocol");
1294 return -1;
1295 }
1296
1297 static void do_logfile(Monitor *mon, const QDict *qdict)
1298 {
1299 qemu_set_log_filename(qdict_get_str(qdict, "filename"));
1300 }
1301
1302 static void do_log(Monitor *mon, const QDict *qdict)
1303 {
1304 int mask;
1305 const char *items = qdict_get_str(qdict, "items");
1306
1307 if (!strcmp(items, "none")) {
1308 mask = 0;
1309 } else {
1310 mask = qemu_str_to_log_mask(items);
1311 if (!mask) {
1312 help_cmd(mon, "log");
1313 return;
1314 }
1315 }
1316 qemu_set_log(mask);
1317 }
1318
1319 static void do_singlestep(Monitor *mon, const QDict *qdict)
1320 {
1321 const char *option = qdict_get_try_str(qdict, "option");
1322 if (!option || !strcmp(option, "on")) {
1323 singlestep = 1;
1324 } else if (!strcmp(option, "off")) {
1325 singlestep = 0;
1326 } else {
1327 monitor_printf(mon, "unexpected option %s\n", option);
1328 }
1329 }
1330
1331 static void do_gdbserver(Monitor *mon, const QDict *qdict)
1332 {
1333 const char *device = qdict_get_try_str(qdict, "device");
1334 if (!device)
1335 device = "tcp::" DEFAULT_GDBSTUB_PORT;
1336 if (gdbserver_start(device) < 0) {
1337 monitor_printf(mon, "Could not open gdbserver on device '%s'\n",
1338 device);
1339 } else if (strcmp(device, "none") == 0) {
1340 monitor_printf(mon, "Disabled gdbserver\n");
1341 } else {
1342 monitor_printf(mon, "Waiting for gdb connection on device '%s'\n",
1343 device);
1344 }
1345 }
1346
1347 static void do_watchdog_action(Monitor *mon, const QDict *qdict)
1348 {
1349 const char *action = qdict_get_str(qdict, "action");
1350 if (select_watchdog_action(action) == -1) {
1351 monitor_printf(mon, "Unknown watchdog action '%s'\n", action);
1352 }
1353 }
1354
1355 static void monitor_printc(Monitor *mon, int c)
1356 {
1357 monitor_printf(mon, "'");
1358 switch(c) {
1359 case '\'':
1360 monitor_printf(mon, "\\'");
1361 break;
1362 case '\\':
1363 monitor_printf(mon, "\\\\");
1364 break;
1365 case '\n':
1366 monitor_printf(mon, "\\n");
1367 break;
1368 case '\r':
1369 monitor_printf(mon, "\\r");
1370 break;
1371 default:
1372 if (c >= 32 && c <= 126) {
1373 monitor_printf(mon, "%c", c);
1374 } else {
1375 monitor_printf(mon, "\\x%02x", c);
1376 }
1377 break;
1378 }
1379 monitor_printf(mon, "'");
1380 }
1381
1382 static void memory_dump(Monitor *mon, int count, int format, int wsize,
1383 hwaddr addr, int is_physical)
1384 {
1385 CPUArchState *env;
1386 int l, line_size, i, max_digits, len;
1387 uint8_t buf[16];
1388 uint64_t v;
1389
1390 if (format == 'i') {
1391 int flags;
1392 flags = 0;
1393 env = mon_get_cpu();
1394 #ifdef TARGET_I386
1395 if (wsize == 2) {
1396 flags = 1;
1397 } else if (wsize == 4) {
1398 flags = 0;
1399 } else {
1400 /* as default we use the current CS size */
1401 flags = 0;
1402 if (env) {
1403 #ifdef TARGET_X86_64
1404 if ((env->efer & MSR_EFER_LMA) &&
1405 (env->segs[R_CS].flags & DESC_L_MASK))
1406 flags = 2;
1407 else
1408 #endif
1409 if (!(env->segs[R_CS].flags & DESC_B_MASK))
1410 flags = 1;
1411 }
1412 }
1413 #endif
1414 #ifdef TARGET_PPC
1415 flags = msr_le << 16;
1416 flags |= env->bfd_mach;
1417 #endif
1418 monitor_disas(mon, env, addr, count, is_physical, flags);
1419 return;
1420 }
1421
1422 len = wsize * count;
1423 if (wsize == 1)
1424 line_size = 8;
1425 else
1426 line_size = 16;
1427 max_digits = 0;
1428
1429 switch(format) {
1430 case 'o':
1431 max_digits = (wsize * 8 + 2) / 3;
1432 break;
1433 default:
1434 case 'x':
1435 max_digits = (wsize * 8) / 4;
1436 break;
1437 case 'u':
1438 case 'd':
1439 max_digits = (wsize * 8 * 10 + 32) / 33;
1440 break;
1441 case 'c':
1442 wsize = 1;
1443 break;
1444 }
1445
1446 while (len > 0) {
1447 if (is_physical)
1448 monitor_printf(mon, TARGET_FMT_plx ":", addr);
1449 else
1450 monitor_printf(mon, TARGET_FMT_lx ":", (target_ulong)addr);
1451 l = len;
1452 if (l > line_size)
1453 l = line_size;
1454 if (is_physical) {
1455 cpu_physical_memory_read(addr, buf, l);
1456 } else {
1457 env = mon_get_cpu();
1458 if (cpu_memory_rw_debug(ENV_GET_CPU(env), addr, buf, l, 0) < 0) {
1459 monitor_printf(mon, " Cannot access memory\n");
1460 break;
1461 }
1462 }
1463 i = 0;
1464 while (i < l) {
1465 switch(wsize) {
1466 default:
1467 case 1:
1468 v = ldub_raw(buf + i);
1469 break;
1470 case 2:
1471 v = lduw_raw(buf + i);
1472 break;
1473 case 4:
1474 v = (uint32_t)ldl_raw(buf + i);
1475 break;
1476 case 8:
1477 v = ldq_raw(buf + i);
1478 break;
1479 }
1480 monitor_printf(mon, " ");
1481 switch(format) {
1482 case 'o':
1483 monitor_printf(mon, "%#*" PRIo64, max_digits, v);
1484 break;
1485 case 'x':
1486 monitor_printf(mon, "0x%0*" PRIx64, max_digits, v);
1487 break;
1488 case 'u':
1489 monitor_printf(mon, "%*" PRIu64, max_digits, v);
1490 break;
1491 case 'd':
1492 monitor_printf(mon, "%*" PRId64, max_digits, v);
1493 break;
1494 case 'c':
1495 monitor_printc(mon, v);
1496 break;
1497 }
1498 i += wsize;
1499 }
1500 monitor_printf(mon, "\n");
1501 addr += l;
1502 len -= l;
1503 }
1504 }
1505
1506 static void do_memory_dump(Monitor *mon, const QDict *qdict)
1507 {
1508 int count = qdict_get_int(qdict, "count");
1509 int format = qdict_get_int(qdict, "format");
1510 int size = qdict_get_int(qdict, "size");
1511 target_long addr = qdict_get_int(qdict, "addr");
1512
1513 memory_dump(mon, count, format, size, addr, 0);
1514 }
1515
1516 static void do_physical_memory_dump(Monitor *mon, const QDict *qdict)
1517 {
1518 int count = qdict_get_int(qdict, "count");
1519 int format = qdict_get_int(qdict, "format");
1520 int size = qdict_get_int(qdict, "size");
1521 hwaddr addr = qdict_get_int(qdict, "addr");
1522
1523 memory_dump(mon, count, format, size, addr, 1);
1524 }
1525
1526 static void do_print(Monitor *mon, const QDict *qdict)
1527 {
1528 int format = qdict_get_int(qdict, "format");
1529 hwaddr val = qdict_get_int(qdict, "val");
1530
1531 switch(format) {
1532 case 'o':
1533 monitor_printf(mon, "%#" HWADDR_PRIo, val);
1534 break;
1535 case 'x':
1536 monitor_printf(mon, "%#" HWADDR_PRIx, val);
1537 break;
1538 case 'u':
1539 monitor_printf(mon, "%" HWADDR_PRIu, val);
1540 break;
1541 default:
1542 case 'd':
1543 monitor_printf(mon, "%" HWADDR_PRId, val);
1544 break;
1545 case 'c':
1546 monitor_printc(mon, val);
1547 break;
1548 }
1549 monitor_printf(mon, "\n");
1550 }
1551
1552 static void do_sum(Monitor *mon, const QDict *qdict)
1553 {
1554 uint32_t addr;
1555 uint16_t sum;
1556 uint32_t start = qdict_get_int(qdict, "start");
1557 uint32_t size = qdict_get_int(qdict, "size");
1558
1559 sum = 0;
1560 for(addr = start; addr < (start + size); addr++) {
1561 uint8_t val = ldub_phys(&address_space_memory, addr);
1562 /* BSD sum algorithm ('sum' Unix command) */
1563 sum = (sum >> 1) | (sum << 15);
1564 sum += val;
1565 }
1566 monitor_printf(mon, "%05d\n", sum);
1567 }
1568
1569 static int mouse_button_state;
1570
1571 static void do_mouse_move(Monitor *mon, const QDict *qdict)
1572 {
1573 int dx, dy, dz, button;
1574 const char *dx_str = qdict_get_str(qdict, "dx_str");
1575 const char *dy_str = qdict_get_str(qdict, "dy_str");
1576 const char *dz_str = qdict_get_try_str(qdict, "dz_str");
1577
1578 dx = strtol(dx_str, NULL, 0);
1579 dy = strtol(dy_str, NULL, 0);
1580 qemu_input_queue_rel(NULL, INPUT_AXIS_X, dx);
1581 qemu_input_queue_rel(NULL, INPUT_AXIS_Y, dy);
1582
1583 if (dz_str) {
1584 dz = strtol(dz_str, NULL, 0);
1585 if (dz != 0) {
1586 button = (dz > 0) ? INPUT_BUTTON_WHEEL_UP : INPUT_BUTTON_WHEEL_DOWN;
1587 qemu_input_queue_btn(NULL, button, true);
1588 qemu_input_event_sync();
1589 qemu_input_queue_btn(NULL, button, false);
1590 }
1591 }
1592 qemu_input_event_sync();
1593 }
1594
1595 static void do_mouse_button(Monitor *mon, const QDict *qdict)
1596 {
1597 static uint32_t bmap[INPUT_BUTTON_MAX] = {
1598 [INPUT_BUTTON_LEFT] = MOUSE_EVENT_LBUTTON,
1599 [INPUT_BUTTON_MIDDLE] = MOUSE_EVENT_MBUTTON,
1600 [INPUT_BUTTON_RIGHT] = MOUSE_EVENT_RBUTTON,
1601 };
1602 int button_state = qdict_get_int(qdict, "button_state");
1603
1604 if (mouse_button_state == button_state) {
1605 return;
1606 }
1607 qemu_input_update_buttons(NULL, bmap, mouse_button_state, button_state);
1608 qemu_input_event_sync();
1609 mouse_button_state = button_state;
1610 }
1611
1612 static void do_ioport_read(Monitor *mon, const QDict *qdict)
1613 {
1614 int size = qdict_get_int(qdict, "size");
1615 int addr = qdict_get_int(qdict, "addr");
1616 int has_index = qdict_haskey(qdict, "index");
1617 uint32_t val;
1618 int suffix;
1619
1620 if (has_index) {
1621 int index = qdict_get_int(qdict, "index");
1622 cpu_outb(addr & IOPORTS_MASK, index & 0xff);
1623 addr++;
1624 }
1625 addr &= 0xffff;
1626
1627 switch(size) {
1628 default:
1629 case 1:
1630 val = cpu_inb(addr);
1631 suffix = 'b';
1632 break;
1633 case 2:
1634 val = cpu_inw(addr);
1635 suffix = 'w';
1636 break;
1637 case 4:
1638 val = cpu_inl(addr);
1639 suffix = 'l';
1640 break;
1641 }
1642 monitor_printf(mon, "port%c[0x%04x] = %#0*x\n",
1643 suffix, addr, size * 2, val);
1644 }
1645
1646 static void do_ioport_write(Monitor *mon, const QDict *qdict)
1647 {
1648 int size = qdict_get_int(qdict, "size");
1649 int addr = qdict_get_int(qdict, "addr");
1650 int val = qdict_get_int(qdict, "val");
1651
1652 addr &= IOPORTS_MASK;
1653
1654 switch (size) {
1655 default:
1656 case 1:
1657 cpu_outb(addr, val);
1658 break;
1659 case 2:
1660 cpu_outw(addr, val);
1661 break;
1662 case 4:
1663 cpu_outl(addr, val);
1664 break;
1665 }
1666 }
1667
1668 static void do_boot_set(Monitor *mon, const QDict *qdict)
1669 {
1670 int res;
1671 const char *bootdevice = qdict_get_str(qdict, "bootdevice");
1672
1673 res = qemu_boot_set(bootdevice);
1674 if (res == 0) {
1675 monitor_printf(mon, "boot device list now set to %s\n", bootdevice);
1676 } else if (res > 0) {
1677 monitor_printf(mon, "setting boot device list failed\n");
1678 } else {
1679 monitor_printf(mon, "no function defined to set boot device list for "
1680 "this architecture\n");
1681 }
1682 }
1683
1684 #if defined(TARGET_I386)
1685 static void print_pte(Monitor *mon, hwaddr addr,
1686 hwaddr pte,
1687 hwaddr mask)
1688 {
1689 #ifdef TARGET_X86_64
1690 if (addr & (1ULL << 47)) {
1691 addr |= -1LL << 48;
1692 }
1693 #endif
1694 monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx
1695 " %c%c%c%c%c%c%c%c%c\n",
1696 addr,
1697 pte & mask,
1698 pte & PG_NX_MASK ? 'X' : '-',
1699 pte & PG_GLOBAL_MASK ? 'G' : '-',
1700 pte & PG_PSE_MASK ? 'P' : '-',
1701 pte & PG_DIRTY_MASK ? 'D' : '-',
1702 pte & PG_ACCESSED_MASK ? 'A' : '-',
1703 pte & PG_PCD_MASK ? 'C' : '-',
1704 pte & PG_PWT_MASK ? 'T' : '-',
1705 pte & PG_USER_MASK ? 'U' : '-',
1706 pte & PG_RW_MASK ? 'W' : '-');
1707 }
1708
1709 static void tlb_info_32(Monitor *mon, CPUArchState *env)
1710 {
1711 unsigned int l1, l2;
1712 uint32_t pgd, pde, pte;
1713
1714 pgd = env->cr[3] & ~0xfff;
1715 for(l1 = 0; l1 < 1024; l1++) {
1716 cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
1717 pde = le32_to_cpu(pde);
1718 if (pde & PG_PRESENT_MASK) {
1719 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
1720 /* 4M pages */
1721 print_pte(mon, (l1 << 22), pde, ~((1 << 21) - 1));
1722 } else {
1723 for(l2 = 0; l2 < 1024; l2++) {
1724 cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
1725 pte = le32_to_cpu(pte);
1726 if (pte & PG_PRESENT_MASK) {
1727 print_pte(mon, (l1 << 22) + (l2 << 12),
1728 pte & ~PG_PSE_MASK,
1729 ~0xfff);
1730 }
1731 }
1732 }
1733 }
1734 }
1735 }
1736
1737 static void tlb_info_pae32(Monitor *mon, CPUArchState *env)
1738 {
1739 unsigned int l1, l2, l3;
1740 uint64_t pdpe, pde, pte;
1741 uint64_t pdp_addr, pd_addr, pt_addr;
1742
1743 pdp_addr = env->cr[3] & ~0x1f;
1744 for (l1 = 0; l1 < 4; l1++) {
1745 cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
1746 pdpe = le64_to_cpu(pdpe);
1747 if (pdpe & PG_PRESENT_MASK) {
1748 pd_addr = pdpe & 0x3fffffffff000ULL;
1749 for (l2 = 0; l2 < 512; l2++) {
1750 cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
1751 pde = le64_to_cpu(pde);
1752 if (pde & PG_PRESENT_MASK) {
1753 if (pde & PG_PSE_MASK) {
1754 /* 2M pages with PAE, CR4.PSE is ignored */
1755 print_pte(mon, (l1 << 30 ) + (l2 << 21), pde,
1756 ~((hwaddr)(1 << 20) - 1));
1757 } else {
1758 pt_addr = pde & 0x3fffffffff000ULL;
1759 for (l3 = 0; l3 < 512; l3++) {
1760 cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
1761 pte = le64_to_cpu(pte);
1762 if (pte & PG_PRESENT_MASK) {
1763 print_pte(mon, (l1 << 30 ) + (l2 << 21)
1764 + (l3 << 12),
1765 pte & ~PG_PSE_MASK,
1766 ~(hwaddr)0xfff);
1767 }
1768 }
1769 }
1770 }
1771 }
1772 }
1773 }
1774 }
1775
1776 #ifdef TARGET_X86_64
1777 static void tlb_info_64(Monitor *mon, CPUArchState *env)
1778 {
1779 uint64_t l1, l2, l3, l4;
1780 uint64_t pml4e, pdpe, pde, pte;
1781 uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr;
1782
1783 pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
1784 for (l1 = 0; l1 < 512; l1++) {
1785 cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
1786 pml4e = le64_to_cpu(pml4e);
1787 if (pml4e & PG_PRESENT_MASK) {
1788 pdp_addr = pml4e & 0x3fffffffff000ULL;
1789 for (l2 = 0; l2 < 512; l2++) {
1790 cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
1791 pdpe = le64_to_cpu(pdpe);
1792 if (pdpe & PG_PRESENT_MASK) {
1793 if (pdpe & PG_PSE_MASK) {
1794 /* 1G pages, CR4.PSE is ignored */
1795 print_pte(mon, (l1 << 39) + (l2 << 30), pdpe,
1796 0x3ffffc0000000ULL);
1797 } else {
1798 pd_addr = pdpe & 0x3fffffffff000ULL;
1799 for (l3 = 0; l3 < 512; l3++) {
1800 cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
1801 pde = le64_to_cpu(pde);
1802 if (pde & PG_PRESENT_MASK) {
1803 if (pde & PG_PSE_MASK) {
1804 /* 2M pages, CR4.PSE is ignored */
1805 print_pte(mon, (l1 << 39) + (l2 << 30) +
1806 (l3 << 21), pde,
1807 0x3ffffffe00000ULL);
1808 } else {
1809 pt_addr = pde & 0x3fffffffff000ULL;
1810 for (l4 = 0; l4 < 512; l4++) {
1811 cpu_physical_memory_read(pt_addr
1812 + l4 * 8,
1813 &pte, 8);
1814 pte = le64_to_cpu(pte);
1815 if (pte & PG_PRESENT_MASK) {
1816 print_pte(mon, (l1 << 39) +
1817 (l2 << 30) +
1818 (l3 << 21) + (l4 << 12),
1819 pte & ~PG_PSE_MASK,
1820 0x3fffffffff000ULL);
1821 }
1822 }
1823 }
1824 }
1825 }
1826 }
1827 }
1828 }
1829 }
1830 }
1831 }
1832 #endif
1833
1834 static void tlb_info(Monitor *mon, const QDict *qdict)
1835 {
1836 CPUArchState *env;
1837
1838 env = mon_get_cpu();
1839
1840 if (!(env->cr[0] & CR0_PG_MASK)) {
1841 monitor_printf(mon, "PG disabled\n");
1842 return;
1843 }
1844 if (env->cr[4] & CR4_PAE_MASK) {
1845 #ifdef TARGET_X86_64
1846 if (env->hflags & HF_LMA_MASK) {
1847 tlb_info_64(mon, env);
1848 } else
1849 #endif
1850 {
1851 tlb_info_pae32(mon, env);
1852 }
1853 } else {
1854 tlb_info_32(mon, env);
1855 }
1856 }
1857
1858 static void mem_print(Monitor *mon, hwaddr *pstart,
1859 int *plast_prot,
1860 hwaddr end, int prot)
1861 {
1862 int prot1;
1863 prot1 = *plast_prot;
1864 if (prot != prot1) {
1865 if (*pstart != -1) {
1866 monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " "
1867 TARGET_FMT_plx " %c%c%c\n",
1868 *pstart, end, end - *pstart,
1869 prot1 & PG_USER_MASK ? 'u' : '-',
1870 'r',
1871 prot1 & PG_RW_MASK ? 'w' : '-');
1872 }
1873 if (prot != 0)
1874 *pstart = end;
1875 else
1876 *pstart = -1;
1877 *plast_prot = prot;
1878 }
1879 }
1880
1881 static void mem_info_32(Monitor *mon, CPUArchState *env)
1882 {
1883 unsigned int l1, l2;
1884 int prot, last_prot;
1885 uint32_t pgd, pde, pte;
1886 hwaddr start, end;
1887
1888 pgd = env->cr[3] & ~0xfff;
1889 last_prot = 0;
1890 start = -1;
1891 for(l1 = 0; l1 < 1024; l1++) {
1892 cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
1893 pde = le32_to_cpu(pde);
1894 end = l1 << 22;
1895 if (pde & PG_PRESENT_MASK) {
1896 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
1897 prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
1898 mem_print(mon, &start, &last_prot, end, prot);
1899 } else {
1900 for(l2 = 0; l2 < 1024; l2++) {
1901 cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
1902 pte = le32_to_cpu(pte);
1903 end = (l1 << 22) + (l2 << 12);
1904 if (pte & PG_PRESENT_MASK) {
1905 prot = pte & pde &
1906 (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
1907 } else {
1908 prot = 0;
1909 }
1910 mem_print(mon, &start, &last_prot, end, prot);
1911 }
1912 }
1913 } else {
1914 prot = 0;
1915 mem_print(mon, &start, &last_prot, end, prot);
1916 }
1917 }
1918 /* Flush last range */
1919 mem_print(mon, &start, &last_prot, (hwaddr)1 << 32, 0);
1920 }
1921
1922 static void mem_info_pae32(Monitor *mon, CPUArchState *env)
1923 {
1924 unsigned int l1, l2, l3;
1925 int prot, last_prot;
1926 uint64_t pdpe, pde, pte;
1927 uint64_t pdp_addr, pd_addr, pt_addr;
1928 hwaddr start, end;
1929
1930 pdp_addr = env->cr[3] & ~0x1f;
1931 last_prot = 0;
1932 start = -1;
1933 for (l1 = 0; l1 < 4; l1++) {
1934 cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
1935 pdpe = le64_to_cpu(pdpe);
1936 end = l1 << 30;
1937 if (pdpe & PG_PRESENT_MASK) {
1938 pd_addr = pdpe & 0x3fffffffff000ULL;
1939 for (l2 = 0; l2 < 512; l2++) {
1940 cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
1941 pde = le64_to_cpu(pde);
1942 end = (l1 << 30) + (l2 << 21);
1943 if (pde & PG_PRESENT_MASK) {
1944 if (pde & PG_PSE_MASK) {
1945 prot = pde & (PG_USER_MASK | PG_RW_MASK |
1946 PG_PRESENT_MASK);
1947 mem_print(mon, &start, &last_prot, end, prot);
1948 } else {
1949 pt_addr = pde & 0x3fffffffff000ULL;
1950 for (l3 = 0; l3 < 512; l3++) {
1951 cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
1952 pte = le64_to_cpu(pte);
1953 end = (l1 << 30) + (l2 << 21) + (l3 << 12);
1954 if (pte & PG_PRESENT_MASK) {
1955 prot = pte & pde & (PG_USER_MASK | PG_RW_MASK |
1956 PG_PRESENT_MASK);
1957 } else {
1958 prot = 0;
1959 }
1960 mem_print(mon, &start, &last_prot, end, prot);
1961 }
1962 }
1963 } else {
1964 prot = 0;
1965 mem_print(mon, &start, &last_prot, end, prot);
1966 }
1967 }
1968 } else {
1969 prot = 0;
1970 mem_print(mon, &start, &last_prot, end, prot);
1971 }
1972 }
1973 /* Flush last range */
1974 mem_print(mon, &start, &last_prot, (hwaddr)1 << 32, 0);
1975 }
1976
1977
1978 #ifdef TARGET_X86_64
1979 static void mem_info_64(Monitor *mon, CPUArchState *env)
1980 {
1981 int prot, last_prot;
1982 uint64_t l1, l2, l3, l4;
1983 uint64_t pml4e, pdpe, pde, pte;
1984 uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
1985
1986 pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
1987 last_prot = 0;
1988 start = -1;
1989 for (l1 = 0; l1 < 512; l1++) {
1990 cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
1991 pml4e = le64_to_cpu(pml4e);
1992 end = l1 << 39;
1993 if (pml4e & PG_PRESENT_MASK) {
1994 pdp_addr = pml4e & 0x3fffffffff000ULL;
1995 for (l2 = 0; l2 < 512; l2++) {
1996 cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
1997 pdpe = le64_to_cpu(pdpe);
1998 end = (l1 << 39) + (l2 << 30);
1999 if (pdpe & PG_PRESENT_MASK) {
2000 if (pdpe & PG_PSE_MASK) {
2001 prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
2002 PG_PRESENT_MASK);
2003 prot &= pml4e;
2004 mem_print(mon, &start, &last_prot, end, prot);
2005 } else {
2006 pd_addr = pdpe & 0x3fffffffff000ULL;
2007 for (l3 = 0; l3 < 512; l3++) {
2008 cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
2009 pde = le64_to_cpu(pde);
2010 end = (l1 << 39) + (l2 << 30) + (l3 << 21);
2011 if (pde & PG_PRESENT_MASK) {
2012 if (pde & PG_PSE_MASK) {
2013 prot = pde & (PG_USER_MASK | PG_RW_MASK |
2014 PG_PRESENT_MASK);
2015 prot &= pml4e & pdpe;
2016 mem_print(mon, &start, &last_prot, end, prot);
2017 } else {
2018 pt_addr = pde & 0x3fffffffff000ULL;
2019 for (l4 = 0; l4 < 512; l4++) {
2020 cpu_physical_memory_read(pt_addr
2021 + l4 * 8,
2022 &pte, 8);
2023 pte = le64_to_cpu(pte);
2024 end = (l1 << 39) + (l2 << 30) +
2025 (l3 << 21) + (l4 << 12);
2026 if (pte & PG_PRESENT_MASK) {
2027 prot = pte & (PG_USER_MASK | PG_RW_MASK |
2028 PG_PRESENT_MASK);
2029 prot &= pml4e & pdpe & pde;
2030 } else {
2031 prot = 0;
2032 }
2033 mem_print(mon, &start, &last_prot, end, prot);
2034 }
2035 }
2036 } else {
2037 prot = 0;
2038 mem_print(mon, &start, &last_prot, end, prot);
2039 }
2040 }
2041 }
2042 } else {
2043 prot = 0;
2044 mem_print(mon, &start, &last_prot, end, prot);
2045 }
2046 }
2047 } else {
2048 prot = 0;
2049 mem_print(mon, &start, &last_prot, end, prot);
2050 }
2051 }
2052 /* Flush last range */
2053 mem_print(mon, &start, &last_prot, (hwaddr)1 << 48, 0);
2054 }
2055 #endif
2056
2057 static void mem_info(Monitor *mon, const QDict *qdict)
2058 {
2059 CPUArchState *env;
2060
2061 env = mon_get_cpu();
2062
2063 if (!(env->cr[0] & CR0_PG_MASK)) {
2064 monitor_printf(mon, "PG disabled\n");
2065 return;
2066 }
2067 if (env->cr[4] & CR4_PAE_MASK) {
2068 #ifdef TARGET_X86_64
2069 if (env->hflags & HF_LMA_MASK) {
2070 mem_info_64(mon, env);
2071 } else
2072 #endif
2073 {
2074 mem_info_pae32(mon, env);
2075 }
2076 } else {
2077 mem_info_32(mon, env);
2078 }
2079 }
2080 #endif
2081
2082 #if defined(TARGET_SH4)
2083
2084 static void print_tlb(Monitor *mon, int idx, tlb_t *tlb)
2085 {
2086 monitor_printf(mon, " tlb%i:\t"
2087 "asid=%hhu vpn=%x\tppn=%x\tsz=%hhu size=%u\t"
2088 "v=%hhu shared=%hhu cached=%hhu prot=%hhu "
2089 "dirty=%hhu writethrough=%hhu\n",
2090 idx,
2091 tlb->asid, tlb->vpn, tlb->ppn, tlb->sz, tlb->size,
2092 tlb->v, tlb->sh, tlb->c, tlb->pr,
2093 tlb->d, tlb->wt);
2094 }
2095
2096 static void tlb_info(Monitor *mon, const QDict *qdict)
2097 {
2098 CPUArchState *env = mon_get_cpu();
2099 int i;
2100
2101 monitor_printf (mon, "ITLB:\n");
2102 for (i = 0 ; i < ITLB_SIZE ; i++)
2103 print_tlb (mon, i, &env->itlb[i]);
2104 monitor_printf (mon, "UTLB:\n");
2105 for (i = 0 ; i < UTLB_SIZE ; i++)
2106 print_tlb (mon, i, &env->utlb[i]);
2107 }
2108
2109 #endif
2110
2111 #if defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_XTENSA)
2112 static void tlb_info(Monitor *mon, const QDict *qdict)
2113 {
2114 CPUArchState *env1 = mon_get_cpu();
2115
2116 dump_mmu((FILE*)mon, (fprintf_function)monitor_printf, env1);
2117 }
2118 #endif
2119
2120 static void do_info_mtree(Monitor *mon, const QDict *qdict)
2121 {
2122 mtree_info((fprintf_function)monitor_printf, mon);
2123 }
2124
2125 static void do_info_numa(Monitor *mon, const QDict *qdict)
2126 {
2127 int i;
2128 CPUState *cpu;
2129
2130 monitor_printf(mon, "%d nodes\n", nb_numa_nodes);
2131 for (i = 0; i < nb_numa_nodes; i++) {
2132 monitor_printf(mon, "node %d cpus:", i);
2133 CPU_FOREACH(cpu) {
2134 if (cpu->numa_node == i) {
2135 monitor_printf(mon, " %d", cpu->cpu_index);
2136 }
2137 }
2138 monitor_printf(mon, "\n");
2139 monitor_printf(mon, "node %d size: %" PRId64 " MB\n", i,
2140 numa_info[i].node_mem >> 20);
2141 }
2142 }
2143
2144 #ifdef CONFIG_PROFILER
2145
2146 int64_t qemu_time;
2147 int64_t dev_time;
2148
2149 static void do_info_profile(Monitor *mon, const QDict *qdict)
2150 {
2151 monitor_printf(mon, "async time %" PRId64 " (%0.3f)\n",
2152 dev_time, dev_time / (double)get_ticks_per_sec());
2153 monitor_printf(mon, "qemu time %" PRId64 " (%0.3f)\n",
2154 qemu_time, qemu_time / (double)get_ticks_per_sec());
2155 qemu_time = 0;
2156 dev_time = 0;
2157 }
2158 #else
2159 static void do_info_profile(Monitor *mon, const QDict *qdict)
2160 {
2161 monitor_printf(mon, "Internal profiler not compiled\n");
2162 }
2163 #endif
2164
2165 /* Capture support */
2166 static QLIST_HEAD (capture_list_head, CaptureState) capture_head;
2167
2168 static void do_info_capture(Monitor *mon, const QDict *qdict)
2169 {
2170 int i;
2171 CaptureState *s;
2172
2173 for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
2174 monitor_printf(mon, "[%d]: ", i);
2175 s->ops.info (s->opaque);
2176 }
2177 }
2178
2179 static void do_stop_capture(Monitor *mon, const QDict *qdict)
2180 {
2181 int i;
2182 int n = qdict_get_int(qdict, "n");
2183 CaptureState *s;
2184
2185 for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
2186 if (i == n) {
2187 s->ops.destroy (s->opaque);
2188 QLIST_REMOVE (s, entries);
2189 g_free (s);
2190 return;
2191 }
2192 }
2193 }
2194
2195 static void do_wav_capture(Monitor *mon, const QDict *qdict)
2196 {
2197 const char *path = qdict_get_str(qdict, "path");
2198 int has_freq = qdict_haskey(qdict, "freq");
2199 int freq = qdict_get_try_int(qdict, "freq", -1);
2200 int has_bits = qdict_haskey(qdict, "bits");
2201 int bits = qdict_get_try_int(qdict, "bits", -1);
2202 int has_channels = qdict_haskey(qdict, "nchannels");
2203 int nchannels = qdict_get_try_int(qdict, "nchannels", -1);
2204 CaptureState *s;
2205
2206 s = g_malloc0 (sizeof (*s));
2207
2208 freq = has_freq ? freq : 44100;
2209 bits = has_bits ? bits : 16;
2210 nchannels = has_channels ? nchannels : 2;
2211
2212 if (wav_start_capture (s, path, freq, bits, nchannels)) {
2213 monitor_printf(mon, "Failed to add wave capture\n");
2214 g_free (s);
2215 return;
2216 }
2217 QLIST_INSERT_HEAD (&capture_head, s, entries);
2218 }
2219
2220 static qemu_acl *find_acl(Monitor *mon, const char *name)
2221 {
2222 qemu_acl *acl = qemu_acl_find(name);
2223
2224 if (!acl) {
2225 monitor_printf(mon, "acl: unknown list '%s'\n", name);
2226 }
2227 return acl;
2228 }
2229
2230 static void do_acl_show(Monitor *mon, const QDict *qdict)
2231 {
2232 const char *aclname = qdict_get_str(qdict, "aclname");
2233 qemu_acl *acl = find_acl(mon, aclname);
2234 qemu_acl_entry *entry;
2235 int i = 0;
2236
2237 if (acl) {
2238 monitor_printf(mon, "policy: %s\n",
2239 acl->defaultDeny ? "deny" : "allow");
2240 QTAILQ_FOREACH(entry, &acl->entries, next) {
2241 i++;
2242 monitor_printf(mon, "%d: %s %s\n", i,
2243 entry->deny ? "deny" : "allow", entry->match);
2244 }
2245 }
2246 }
2247
2248 static void do_acl_reset(Monitor *mon, const QDict *qdict)
2249 {
2250 const char *aclname = qdict_get_str(qdict, "aclname");
2251 qemu_acl *acl = find_acl(mon, aclname);
2252
2253 if (acl) {
2254 qemu_acl_reset(acl);
2255 monitor_printf(mon, "acl: removed all rules\n");
2256 }
2257 }
2258
2259 static void do_acl_policy(Monitor *mon, const QDict *qdict)
2260 {
2261 const char *aclname = qdict_get_str(qdict, "aclname");
2262 const char *policy = qdict_get_str(qdict, "policy");
2263 qemu_acl *acl = find_acl(mon, aclname);
2264
2265 if (acl) {
2266 if (strcmp(policy, "allow") == 0) {
2267 acl->defaultDeny = 0;
2268 monitor_printf(mon, "acl: policy set to 'allow'\n");
2269 } else if (strcmp(policy, "deny") == 0) {
2270 acl->defaultDeny = 1;
2271 monitor_printf(mon, "acl: policy set to 'deny'\n");
2272 } else {
2273 monitor_printf(mon, "acl: unknown policy '%s', "
2274 "expected 'deny' or 'allow'\n", policy);
2275 }
2276 }
2277 }
2278
2279 static void do_acl_add(Monitor *mon, const QDict *qdict)
2280 {
2281 const char *aclname = qdict_get_str(qdict, "aclname");
2282 const char *match = qdict_get_str(qdict, "match");
2283 const char *policy = qdict_get_str(qdict, "policy");
2284 int has_index = qdict_haskey(qdict, "index");
2285 int index = qdict_get_try_int(qdict, "index", -1);
2286 qemu_acl *acl = find_acl(mon, aclname);
2287 int deny, ret;
2288
2289 if (acl) {
2290 if (strcmp(policy, "allow") == 0) {
2291 deny = 0;
2292 } else if (strcmp(policy, "deny") == 0) {
2293 deny = 1;
2294 } else {
2295 monitor_printf(mon, "acl: unknown policy '%s', "
2296 "expected 'deny' or 'allow'\n", policy);
2297 return;
2298 }
2299 if (has_index)
2300 ret = qemu_acl_insert(acl, deny, match, index);
2301 else
2302 ret = qemu_acl_append(acl, deny, match);
2303 if (ret < 0)
2304 monitor_printf(mon, "acl: unable to add acl entry\n");
2305 else
2306 monitor_printf(mon, "acl: added rule at position %d\n", ret);
2307 }
2308 }
2309
2310 static void do_acl_remove(Monitor *mon, const QDict *qdict)
2311 {
2312 const char *aclname = qdict_get_str(qdict, "aclname");
2313 const char *match = qdict_get_str(qdict, "match");
2314 qemu_acl *acl = find_acl(mon, aclname);
2315 int ret;
2316
2317 if (acl) {
2318 ret = qemu_acl_remove(acl, match);
2319 if (ret < 0)
2320 monitor_printf(mon, "acl: no matching acl entry\n");
2321 else
2322 monitor_printf(mon, "acl: removed rule at position %d\n", ret);
2323 }
2324 }
2325
2326 #if defined(TARGET_I386)
2327 static void do_inject_mce(Monitor *mon, const QDict *qdict)
2328 {
2329 X86CPU *cpu;
2330 CPUState *cs;
2331 int cpu_index = qdict_get_int(qdict, "cpu_index");
2332 int bank = qdict_get_int(qdict, "bank");
2333 uint64_t status = qdict_get_int(qdict, "status");
2334 uint64_t mcg_status = qdict_get_int(qdict, "mcg_status");
2335 uint64_t addr = qdict_get_int(qdict, "addr");
2336 uint64_t misc = qdict_get_int(qdict, "misc");
2337 int flags = MCE_INJECT_UNCOND_AO;
2338
2339 if (qdict_get_try_bool(qdict, "broadcast", 0)) {
2340 flags |= MCE_INJECT_BROADCAST;
2341 }
2342 cs = qemu_get_cpu(cpu_index);
2343 if (cs != NULL) {
2344 cpu = X86_CPU(cs);
2345 cpu_x86_inject_mce(mon, cpu, bank, status, mcg_status, addr, misc,
2346 flags);
2347 }
2348 }
2349 #endif
2350
2351 void qmp_getfd(const char *fdname, Error **errp)
2352 {
2353 mon_fd_t *monfd;
2354 int fd;
2355
2356 fd = qemu_chr_fe_get_msgfd(cur_mon->chr);
2357 if (fd == -1) {
2358 error_set(errp, QERR_FD_NOT_SUPPLIED);
2359 return;
2360 }
2361
2362 if (qemu_isdigit(fdname[0])) {
2363 close(fd);
2364 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "fdname",
2365 "a name not starting with a digit");
2366 return;
2367 }
2368
2369 QLIST_FOREACH(monfd, &cur_mon->fds, next) {
2370 if (strcmp(monfd->name, fdname) != 0) {
2371 continue;
2372 }
2373
2374 close(monfd->fd);
2375 monfd->fd = fd;
2376 return;
2377 }
2378
2379 monfd = g_malloc0(sizeof(mon_fd_t));
2380 monfd->name = g_strdup(fdname);
2381 monfd->fd = fd;
2382
2383 QLIST_INSERT_HEAD(&cur_mon->fds, monfd, next);
2384 }
2385
2386 void qmp_closefd(const char *fdname, Error **errp)
2387 {
2388 mon_fd_t *monfd;
2389
2390 QLIST_FOREACH(monfd, &cur_mon->fds, next) {
2391 if (strcmp(monfd->name, fdname) != 0) {
2392 continue;
2393 }
2394
2395 QLIST_REMOVE(monfd, next);
2396 close(monfd->fd);
2397 g_free(monfd->name);
2398 g_free(monfd);
2399 return;
2400 }
2401
2402 error_set(errp, QERR_FD_NOT_FOUND, fdname);
2403 }
2404
2405 static void do_loadvm(Monitor *mon, const QDict *qdict)
2406 {
2407 int saved_vm_running = runstate_is_running();
2408 const char *name = qdict_get_str(qdict, "name");
2409
2410 vm_stop(RUN_STATE_RESTORE_VM);
2411
2412 if (load_vmstate(name) == 0 && saved_vm_running) {
2413 vm_start();
2414 }
2415 }
2416
2417 int monitor_get_fd(Monitor *mon, const char *fdname, Error **errp)
2418 {
2419 mon_fd_t *monfd;
2420
2421 QLIST_FOREACH(monfd, &mon->fds, next) {
2422 int fd;
2423
2424 if (strcmp(monfd->name, fdname) != 0) {
2425 continue;
2426 }
2427
2428 fd = monfd->fd;
2429
2430 /* caller takes ownership of fd */
2431 QLIST_REMOVE(monfd, next);
2432 g_free(monfd->name);
2433 g_free(monfd);
2434
2435 return fd;
2436 }
2437
2438 error_setg(errp, "File descriptor named '%s' has not been found", fdname);
2439 return -1;
2440 }
2441
2442 static void monitor_fdset_cleanup(MonFdset *mon_fdset)
2443 {
2444 MonFdsetFd *mon_fdset_fd;
2445 MonFdsetFd *mon_fdset_fd_next;
2446
2447 QLIST_FOREACH_SAFE(mon_fdset_fd, &mon_fdset->fds, next, mon_fdset_fd_next) {
2448 if ((mon_fdset_fd->removed ||
2449 (QLIST_EMPTY(&mon_fdset->dup_fds) && mon_refcount == 0)) &&
2450 runstate_is_running()) {
2451 close(mon_fdset_fd->fd);
2452 g_free(mon_fdset_fd->opaque);
2453 QLIST_REMOVE(mon_fdset_fd, next);
2454 g_free(mon_fdset_fd);
2455 }
2456 }
2457
2458 if (QLIST_EMPTY(&mon_fdset->fds) && QLIST_EMPTY(&mon_fdset->dup_fds)) {
2459 QLIST_REMOVE(mon_fdset, next);
2460 g_free(mon_fdset);
2461 }
2462 }
2463
2464 static void monitor_fdsets_cleanup(void)
2465 {
2466 MonFdset *mon_fdset;
2467 MonFdset *mon_fdset_next;
2468
2469 QLIST_FOREACH_SAFE(mon_fdset, &mon_fdsets, next, mon_fdset_next) {
2470 monitor_fdset_cleanup(mon_fdset);
2471 }
2472 }
2473
2474 AddfdInfo *qmp_add_fd(bool has_fdset_id, int64_t fdset_id, bool has_opaque,
2475 const char *opaque, Error **errp)
2476 {
2477 int fd;
2478 Monitor *mon = cur_mon;
2479 AddfdInfo *fdinfo;
2480
2481 fd = qemu_chr_fe_get_msgfd(mon->chr);
2482 if (fd == -1) {
2483 error_set(errp, QERR_FD_NOT_SUPPLIED);
2484 goto error;
2485 }
2486
2487 fdinfo = monitor_fdset_add_fd(fd, has_fdset_id, fdset_id,
2488 has_opaque, opaque, errp);
2489 if (fdinfo) {
2490 return fdinfo;
2491 }
2492
2493 error:
2494 if (fd != -1) {
2495 close(fd);
2496 }
2497 return NULL;
2498 }
2499
2500 void qmp_remove_fd(int64_t fdset_id, bool has_fd, int64_t fd, Error **errp)
2501 {
2502 MonFdset *mon_fdset;
2503 MonFdsetFd *mon_fdset_fd;
2504 char fd_str[60];
2505
2506 QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
2507 if (mon_fdset->id != fdset_id) {
2508 continue;
2509 }
2510 QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) {
2511 if (has_fd) {
2512 if (mon_fdset_fd->fd != fd) {
2513 continue;
2514 }
2515 mon_fdset_fd->removed = true;
2516 break;
2517 } else {
2518 mon_fdset_fd->removed = true;
2519 }
2520 }
2521 if (has_fd && !mon_fdset_fd) {
2522 goto error;
2523 }
2524 monitor_fdset_cleanup(mon_fdset);
2525 return;
2526 }
2527
2528 error:
2529 if (has_fd) {
2530 snprintf(fd_str, sizeof(fd_str), "fdset-id:%" PRId64 ", fd:%" PRId64,
2531 fdset_id, fd);
2532 } else {
2533 snprintf(fd_str, sizeof(fd_str), "fdset-id:%" PRId64, fdset_id);
2534 }
2535 error_set(errp, QERR_FD_NOT_FOUND, fd_str);
2536 }
2537
2538 FdsetInfoList *qmp_query_fdsets(Error **errp)
2539 {
2540 MonFdset *mon_fdset;
2541 MonFdsetFd *mon_fdset_fd;
2542 FdsetInfoList *fdset_list = NULL;
2543
2544 QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
2545 FdsetInfoList *fdset_info = g_malloc0(sizeof(*fdset_info));
2546 FdsetFdInfoList *fdsetfd_list = NULL;
2547
2548 fdset_info->value = g_malloc0(sizeof(*fdset_info->value));
2549 fdset_info->value->fdset_id = mon_fdset->id;
2550
2551 QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) {
2552 FdsetFdInfoList *fdsetfd_info;
2553
2554 fdsetfd_info = g_malloc0(sizeof(*fdsetfd_info));
2555 fdsetfd_info->value = g_malloc0(sizeof(*fdsetfd_info->value));
2556 fdsetfd_info->value->fd = mon_fdset_fd->fd;
2557 if (mon_fdset_fd->opaque) {
2558 fdsetfd_info->value->has_opaque = true;
2559 fdsetfd_info->value->opaque = g_strdup(mon_fdset_fd->opaque);
2560 } else {
2561 fdsetfd_info->value->has_opaque = false;
2562 }
2563
2564 fdsetfd_info->next = fdsetfd_list;
2565 fdsetfd_list = fdsetfd_info;
2566 }
2567
2568 fdset_info->value->fds = fdsetfd_list;
2569
2570 fdset_info->next = fdset_list;
2571 fdset_list = fdset_info;
2572 }
2573
2574 return fdset_list;
2575 }
2576
2577 AddfdInfo *monitor_fdset_add_fd(int fd, bool has_fdset_id, int64_t fdset_id,
2578 bool has_opaque, const char *opaque,
2579 Error **errp)
2580 {
2581 MonFdset *mon_fdset = NULL;
2582 MonFdsetFd *mon_fdset_fd;
2583 AddfdInfo *fdinfo;
2584
2585 if (has_fdset_id) {
2586 QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
2587 /* Break if match found or match impossible due to ordering by ID */
2588 if (fdset_id <= mon_fdset->id) {
2589 if (fdset_id < mon_fdset->id) {
2590 mon_fdset = NULL;
2591 }
2592 break;
2593 }
2594 }
2595 }
2596
2597 if (mon_fdset == NULL) {
2598 int64_t fdset_id_prev = -1;
2599 MonFdset *mon_fdset_cur = QLIST_FIRST(&mon_fdsets);
2600
2601 if (has_fdset_id) {
2602 if (fdset_id < 0) {
2603 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "fdset-id",
2604 "a non-negative value");
2605 return NULL;
2606 }
2607 /* Use specified fdset ID */
2608 QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
2609 mon_fdset_cur = mon_fdset;
2610 if (fdset_id < mon_fdset_cur->id) {
2611 break;
2612 }
2613 }
2614 } else {
2615 /* Use first available fdset ID */
2616 QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
2617 mon_fdset_cur = mon_fdset;
2618 if (fdset_id_prev == mon_fdset_cur->id - 1) {
2619 fdset_id_prev = mon_fdset_cur->id;
2620 continue;
2621 }
2622 break;
2623 }
2624 }
2625
2626 mon_fdset = g_malloc0(sizeof(*mon_fdset));
2627 if (has_fdset_id) {
2628 mon_fdset->id = fdset_id;
2629 } else {
2630 mon_fdset->id = fdset_id_prev + 1;
2631 }
2632
2633 /* The fdset list is ordered by fdset ID */
2634 if (!mon_fdset_cur) {
2635 QLIST_INSERT_HEAD(&mon_fdsets, mon_fdset, next);
2636 } else if (mon_fdset->id < mon_fdset_cur->id) {
2637 QLIST_INSERT_BEFORE(mon_fdset_cur, mon_fdset, next);
2638 } else {
2639 QLIST_INSERT_AFTER(mon_fdset_cur, mon_fdset, next);
2640 }
2641 }
2642
2643 mon_fdset_fd = g_malloc0(sizeof(*mon_fdset_fd));
2644 mon_fdset_fd->fd = fd;
2645 mon_fdset_fd->removed = false;
2646 if (has_opaque) {
2647 mon_fdset_fd->opaque = g_strdup(opaque);
2648 }
2649 QLIST_INSERT_HEAD(&mon_fdset->fds, mon_fdset_fd, next);
2650
2651 fdinfo = g_malloc0(sizeof(*fdinfo));
2652 fdinfo->fdset_id = mon_fdset->id;
2653 fdinfo->fd = mon_fdset_fd->fd;
2654
2655 return fdinfo;
2656 }
2657
2658 int monitor_fdset_get_fd(int64_t fdset_id, int flags)
2659 {
2660 #ifndef _WIN32
2661 MonFdset *mon_fdset;
2662 MonFdsetFd *mon_fdset_fd;
2663 int mon_fd_flags;
2664
2665 QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
2666 if (mon_fdset->id != fdset_id) {
2667 continue;
2668 }
2669 QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) {
2670 mon_fd_flags = fcntl(mon_fdset_fd->fd, F_GETFL);
2671 if (mon_fd_flags == -1) {
2672 return -1;
2673 }
2674
2675 if ((flags & O_ACCMODE) == (mon_fd_flags & O_ACCMODE)) {
2676 return mon_fdset_fd->fd;
2677 }
2678 }
2679 errno = EACCES;
2680 return -1;
2681 }
2682 #endif
2683
2684 errno = ENOENT;
2685 return -1;
2686 }
2687
2688 int monitor_fdset_dup_fd_add(int64_t fdset_id, int dup_fd)
2689 {
2690 MonFdset *mon_fdset;
2691 MonFdsetFd *mon_fdset_fd_dup;
2692
2693 QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
2694 if (mon_fdset->id != fdset_id) {
2695 continue;
2696 }
2697 QLIST_FOREACH(mon_fdset_fd_dup, &mon_fdset->dup_fds, next) {
2698 if (mon_fdset_fd_dup->fd == dup_fd) {
2699 return -1;
2700 }
2701 }
2702 mon_fdset_fd_dup = g_malloc0(sizeof(*mon_fdset_fd_dup));
2703 mon_fdset_fd_dup->fd = dup_fd;
2704 QLIST_INSERT_HEAD(&mon_fdset->dup_fds, mon_fdset_fd_dup, next);
2705 return 0;
2706 }
2707 return -1;
2708 }
2709
2710 static int monitor_fdset_dup_fd_find_remove(int dup_fd, bool remove)
2711 {
2712 MonFdset *mon_fdset;
2713 MonFdsetFd *mon_fdset_fd_dup;
2714
2715 QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
2716 QLIST_FOREACH(mon_fdset_fd_dup, &mon_fdset->dup_fds, next) {
2717 if (mon_fdset_fd_dup->fd == dup_fd) {
2718 if (remove) {
2719 QLIST_REMOVE(mon_fdset_fd_dup, next);
2720 if (QLIST_EMPTY(&mon_fdset->dup_fds)) {
2721 monitor_fdset_cleanup(mon_fdset);
2722 }
2723 }
2724 return mon_fdset->id;
2725 }
2726 }
2727 }
2728 return -1;
2729 }
2730
2731 int monitor_fdset_dup_fd_find(int dup_fd)
2732 {
2733 return monitor_fdset_dup_fd_find_remove(dup_fd, false);
2734 }
2735
2736 int monitor_fdset_dup_fd_remove(int dup_fd)
2737 {
2738 return monitor_fdset_dup_fd_find_remove(dup_fd, true);
2739 }
2740
2741 int monitor_handle_fd_param(Monitor *mon, const char *fdname)
2742 {
2743 int fd;
2744 Error *local_err = NULL;
2745
2746 fd = monitor_handle_fd_param2(mon, fdname, &local_err);
2747 if (local_err) {
2748 qerror_report_err(local_err);
2749 error_free(local_err);
2750 }
2751 return fd;
2752 }
2753
2754 int monitor_handle_fd_param2(Monitor *mon, const char *fdname, Error **errp)
2755 {
2756 int fd;
2757 Error *local_err = NULL;
2758
2759 if (!qemu_isdigit(fdname[0]) && mon) {
2760 fd = monitor_get_fd(mon, fdname, &local_err);
2761 } else {
2762 fd = qemu_parse_fd(fdname);
2763 if (fd == -1) {
2764 error_setg(&local_err, "Invalid file descriptor number '%s'",
2765 fdname);
2766 }
2767 }
2768 if (local_err) {
2769 error_propagate(errp, local_err);
2770 assert(fd == -1);
2771 } else {
2772 assert(fd != -1);
2773 }
2774
2775 return fd;
2776 }
2777
2778 /* Please update hmp-commands.hx when adding or changing commands */
2779 static mon_cmd_t info_cmds[] = {
2780 {
2781 .name = "version",
2782 .args_type = "",
2783 .params = "",
2784 .help = "show the version of QEMU",
2785 .mhandler.cmd = hmp_info_version,
2786 },
2787 {
2788 .name = "network",
2789 .args_type = "",
2790 .params = "",
2791 .help = "show the network state",
2792 .mhandler.cmd = do_info_network,
2793 },
2794 {
2795 .name = "chardev",
2796 .args_type = "",
2797 .params = "",
2798 .help = "show the character devices",
2799 .mhandler.cmd = hmp_info_chardev,
2800 },
2801 {
2802 .name = "block",
2803 .args_type = "verbose:-v,device:B?",
2804 .params = "[-v] [device]",
2805 .help = "show info of one block device or all block devices "
2806 "(and details of images with -v option)",
2807 .mhandler.cmd = hmp_info_block,
2808 },
2809 {
2810 .name = "blockstats",
2811 .args_type = "",
2812 .params = "",
2813 .help = "show block device statistics",
2814 .mhandler.cmd = hmp_info_blockstats,
2815 },
2816 {
2817 .name = "block-jobs",
2818 .args_type = "",
2819 .params = "",
2820 .help = "show progress of ongoing block device operations",
2821 .mhandler.cmd = hmp_info_block_jobs,
2822 },
2823 {
2824 .name = "registers",
2825 .args_type = "",
2826 .params = "",
2827 .help = "show the cpu registers",
2828 .mhandler.cmd = do_info_registers,
2829 },
2830 {
2831 .name = "cpus",
2832 .args_type = "",
2833 .params = "",
2834 .help = "show infos for each CPU",
2835 .mhandler.cmd = hmp_info_cpus,
2836 },
2837 {
2838 .name = "history",
2839 .args_type = "",
2840 .params = "",
2841 .help = "show the command line history",
2842 .mhandler.cmd = do_info_history,
2843 },
2844 #if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_MIPS) || \
2845 defined(TARGET_LM32) || (defined(TARGET_SPARC) && !defined(TARGET_SPARC64))
2846 {
2847 .name = "irq",
2848 .args_type = "",
2849 .params = "",
2850 .help = "show the interrupts statistics (if available)",
2851 #ifdef TARGET_SPARC
2852 .mhandler.cmd = sun4m_irq_info,
2853 #elif defined(TARGET_LM32)
2854 .mhandler.cmd = lm32_irq_info,
2855 #else
2856 .mhandler.cmd = irq_info,
2857 #endif
2858 },
2859 {
2860 .name = "pic",
2861 .args_type = "",
2862 .params = "",
2863 .help = "show i8259 (PIC) state",
2864 #ifdef TARGET_SPARC
2865 .mhandler.cmd = sun4m_pic_info,
2866 #elif defined(TARGET_LM32)
2867 .mhandler.cmd = lm32_do_pic_info,
2868 #else
2869 .mhandler.cmd = pic_info,
2870 #endif
2871 },
2872 #endif
2873 {
2874 .name = "pci",
2875 .args_type = "",
2876 .params = "",
2877 .help = "show PCI info",
2878 .mhandler.cmd = hmp_info_pci,
2879 },
2880 #if defined(TARGET_I386) || defined(TARGET_SH4) || defined(TARGET_SPARC) || \
2881 defined(TARGET_PPC) || defined(TARGET_XTENSA)
2882 {
2883 .name = "tlb",
2884 .args_type = "",
2885 .params = "",
2886 .help = "show virtual to physical memory mappings",
2887 .mhandler.cmd = tlb_info,
2888 },
2889 #endif
2890 #if defined(TARGET_I386)
2891 {
2892 .name = "mem",
2893 .args_type = "",
2894 .params = "",
2895 .help = "show the active virtual memory mappings",
2896 .mhandler.cmd = mem_info,
2897 },
2898 #endif
2899 {
2900 .name = "mtree",
2901 .args_type = "",
2902 .params = "",
2903 .help = "show memory tree",
2904 .mhandler.cmd = do_info_mtree,
2905 },
2906 {
2907 .name = "jit",
2908 .args_type = "",
2909 .params = "",
2910 .help = "show dynamic compiler info",
2911 .mhandler.cmd = do_info_jit,
2912 },
2913 {
2914 .name = "kvm",
2915 .args_type = "",
2916 .params = "",
2917 .help = "show KVM information",
2918 .mhandler.cmd = hmp_info_kvm,
2919 },
2920 {
2921 .name = "numa",
2922 .args_type = "",
2923 .params = "",
2924 .help = "show NUMA information",
2925 .mhandler.cmd = do_info_numa,
2926 },
2927 {
2928 .name = "usb",
2929 .args_type = "",
2930 .params = "",
2931 .help = "show guest USB devices",
2932 .mhandler.cmd = usb_info,
2933 },
2934 {
2935 .name = "usbhost",
2936 .args_type = "",
2937 .params = "",
2938 .help = "show host USB devices",
2939 .mhandler.cmd = usb_host_info,
2940 },
2941 {
2942 .name = "profile",
2943 .args_type = "",
2944 .params = "",
2945 .help = "show profiling information",
2946 .mhandler.cmd = do_info_profile,
2947 },
2948 {
2949 .name = "capture",
2950 .args_type = "",
2951 .params = "",
2952 .help = "show capture information",
2953 .mhandler.cmd = do_info_capture,
2954 },
2955 {
2956 .name = "snapshots",
2957 .args_type = "",
2958 .params = "",
2959 .help = "show the currently saved VM snapshots",
2960 .mhandler.cmd = do_info_snapshots,
2961 },
2962 {
2963 .name = "status",
2964 .args_type = "",
2965 .params = "",
2966 .help = "show the current VM status (running|paused)",
2967 .mhandler.cmd = hmp_info_status,
2968 },
2969 {
2970 .name = "pcmcia",
2971 .args_type = "",
2972 .params = "",
2973 .help = "show guest PCMCIA status",
2974 .mhandler.cmd = pcmcia_info,
2975 },
2976 {
2977 .name = "mice",
2978 .args_type = "",
2979 .params = "",
2980 .help = "show which guest mouse is receiving events",
2981 .mhandler.cmd = hmp_info_mice,
2982 },
2983 {
2984 .name = "vnc",
2985 .args_type = "",
2986 .params = "",
2987 .help = "show the vnc server status",
2988 .mhandler.cmd = hmp_info_vnc,
2989 },
2990 #if defined(CONFIG_SPICE)
2991 {
2992 .name = "spice",
2993 .args_type = "",
2994 .params = "",
2995 .help = "show the spice server status",
2996 .mhandler.cmd = hmp_info_spice,
2997 },
2998 #endif
2999 {
3000 .name = "name",
3001 .args_type = "",
3002 .params = "",
3003 .help = "show the current VM name",
3004 .mhandler.cmd = hmp_info_name,
3005 },
3006 {
3007 .name = "uuid",
3008 .args_type = "",
3009 .params = "",
3010 .help = "show the current VM UUID",
3011 .mhandler.cmd = hmp_info_uuid,
3012 },
3013 {
3014 .name = "cpustats",
3015 .args_type = "",
3016 .params = "",
3017 .help = "show CPU statistics",
3018 .mhandler.cmd = do_info_cpu_stats,
3019 },
3020 #if defined(CONFIG_SLIRP)
3021 {
3022 .name = "usernet",
3023 .args_type = "",
3024 .params = "",
3025 .help = "show user network stack connection states",
3026 .mhandler.cmd = do_info_usernet,
3027 },
3028 #endif
3029 {
3030 .name = "migrate",
3031 .args_type = "",
3032 .params = "",
3033 .help = "show migration status",
3034 .mhandler.cmd = hmp_info_migrate,
3035 },
3036 {
3037 .name = "migrate_capabilities",
3038 .args_type = "",
3039 .params = "",
3040 .help = "show current migration capabilities",
3041 .mhandler.cmd = hmp_info_migrate_capabilities,
3042 },
3043 {
3044 .name = "migrate_cache_size",
3045 .args_type = "",
3046 .params = "",
3047 .help = "show current migration xbzrle cache size",
3048 .mhandler.cmd = hmp_info_migrate_cache_size,
3049 },
3050 {
3051 .name = "balloon",
3052 .args_type = "",
3053 .params = "",
3054 .help = "show balloon information",
3055 .mhandler.cmd = hmp_info_balloon,
3056 },
3057 {
3058 .name = "qtree",
3059 .args_type = "",
3060 .params = "",
3061 .help = "show device tree",
3062 .mhandler.cmd = do_info_qtree,
3063 },
3064 {
3065 .name = "qdm",
3066 .args_type = "",
3067 .params = "",
3068 .help = "show qdev device model list",
3069 .mhandler.cmd = do_info_qdm,
3070 },
3071 {
3072 .name = "roms",
3073 .args_type = "",
3074 .params = "",
3075 .help = "show roms",
3076 .mhandler.cmd = do_info_roms,
3077 },
3078 {
3079 .name = "trace-events",
3080 .args_type = "",
3081 .params = "",
3082 .help = "show available trace-events & their state",
3083 .mhandler.cmd = do_trace_print_events,
3084 },
3085 {
3086 .name = "tpm",
3087 .args_type = "",
3088 .params = "",
3089 .help = "show the TPM device",
3090 .mhandler.cmd = hmp_info_tpm,
3091 },
3092 {
3093 .name = "memdev",
3094 .args_type = "",
3095 .params = "",
3096 .help = "show the memory device",
3097 .mhandler.cmd = hmp_info_memdev,
3098 },
3099 {
3100 .name = NULL,
3101 },
3102 };
3103
3104 /* mon_cmds and info_cmds would be sorted at runtime */
3105 static mon_cmd_t mon_cmds[] = {
3106 #include "hmp-commands.h"
3107 { NULL, NULL, },
3108 };
3109
3110 static const mon_cmd_t qmp_cmds[] = {
3111 #include "qmp-commands-old.h"
3112 { /* NULL */ },
3113 };
3114
3115 /*******************************************************************/
3116
3117 static const char *pch;
3118 static sigjmp_buf expr_env;
3119
3120 #define MD_TLONG 0
3121 #define MD_I32 1
3122
3123 typedef struct MonitorDef {
3124 const char *name;
3125 int offset;
3126 target_long (*get_value)(const struct MonitorDef *md, int val);
3127 int type;
3128 } MonitorDef;
3129
3130 #if defined(TARGET_I386)
3131 static target_long monitor_get_pc (const struct MonitorDef *md, int val)
3132 {
3133 CPUArchState *env = mon_get_cpu();
3134 return env->eip + env->segs[R_CS].base;
3135 }
3136 #endif
3137
3138 #if defined(TARGET_PPC)
3139 static target_long monitor_get_ccr (const struct MonitorDef *md, int val)
3140 {
3141 CPUArchState *env = mon_get_cpu();
3142 unsigned int u;
3143 int i;
3144
3145 u = 0;
3146 for (i = 0; i < 8; i++)
3147 u |= env->crf[i] << (32 - (4 * i));
3148
3149 return u;
3150 }
3151
3152 static target_long monitor_get_msr (const struct MonitorDef *md, int val)
3153 {
3154 CPUArchState *env = mon_get_cpu();
3155 return env->msr;
3156 }
3157
3158 static target_long monitor_get_xer (const struct MonitorDef *md, int val)
3159 {
3160 CPUArchState *env = mon_get_cpu();
3161 return env->xer;
3162 }
3163
3164 static target_long monitor_get_decr (const struct MonitorDef *md, int val)
3165 {
3166 CPUArchState *env = mon_get_cpu();
3167 return cpu_ppc_load_decr(env);
3168 }
3169
3170 static target_long monitor_get_tbu (const struct MonitorDef *md, int val)
3171 {
3172 CPUArchState *env = mon_get_cpu();
3173 return cpu_ppc_load_tbu(env);
3174 }
3175
3176 static target_long monitor_get_tbl (const struct MonitorDef *md, int val)
3177 {
3178 CPUArchState *env = mon_get_cpu();
3179 return cpu_ppc_load_tbl(env);
3180 }
3181 #endif
3182
3183 #if defined(TARGET_SPARC)
3184 #ifndef TARGET_SPARC64
3185 static target_long monitor_get_psr (const struct MonitorDef *md, int val)
3186 {
3187 CPUArchState *env = mon_get_cpu();
3188
3189 return cpu_get_psr(env);
3190 }
3191 #endif
3192
3193 static target_long monitor_get_reg(const struct MonitorDef *md, int val)
3194 {
3195 CPUArchState *env = mon_get_cpu();
3196 return env->regwptr[val];
3197 }
3198 #endif
3199
3200 static const MonitorDef monitor_defs[] = {
3201 #ifdef TARGET_I386
3202
3203 #define SEG(name, seg) \
3204 { name, offsetof(CPUX86State, segs[seg].selector), NULL, MD_I32 },\
3205 { name ".base", offsetof(CPUX86State, segs[seg].base) },\
3206 { name ".limit", offsetof(CPUX86State, segs[seg].limit), NULL, MD_I32 },
3207
3208 { "eax", offsetof(CPUX86State, regs[0]) },
3209 { "ecx", offsetof(CPUX86State, regs[1]) },
3210 { "edx", offsetof(CPUX86State, regs[2]) },
3211 { "ebx", offsetof(CPUX86State, regs[3]) },
3212 { "esp|sp", offsetof(CPUX86State, regs[4]) },
3213 { "ebp|fp", offsetof(CPUX86State, regs[5]) },
3214 { "esi", offsetof(CPUX86State, regs[6]) },
3215 { "edi", offsetof(CPUX86State, regs[7]) },
3216 #ifdef TARGET_X86_64
3217 { "r8", offsetof(CPUX86State, regs[8]) },
3218 { "r9", offsetof(CPUX86State, regs[9]) },
3219 { "r10", offsetof(CPUX86State, regs[10]) },
3220 { "r11", offsetof(CPUX86State, regs[11]) },
3221 { "r12", offsetof(CPUX86State, regs[12]) },
3222 { "r13", offsetof(CPUX86State, regs[13]) },
3223 { "r14", offsetof(CPUX86State, regs[14]) },
3224 { "r15", offsetof(CPUX86State, regs[15]) },
3225 #endif
3226 { "eflags", offsetof(CPUX86State, eflags) },
3227 { "eip", offsetof(CPUX86State, eip) },
3228 SEG("cs", R_CS)
3229 SEG("ds", R_DS)
3230 SEG("es", R_ES)
3231 SEG("ss", R_SS)
3232 SEG("fs", R_FS)
3233 SEG("gs", R_GS)
3234 { "pc", 0, monitor_get_pc, },
3235 #elif defined(TARGET_PPC)
3236 /* General purpose registers */
3237 { "r0", offsetof(CPUPPCState, gpr[0]) },
3238 { "r1", offsetof(CPUPPCState, gpr[1]) },
3239 { "r2", offsetof(CPUPPCState, gpr[2]) },
3240 { "r3", offsetof(CPUPPCState, gpr[3]) },
3241 { "r4", offsetof(CPUPPCState, gpr[4]) },
3242 { "r5", offsetof(CPUPPCState, gpr[5]) },
3243 { "r6", offsetof(CPUPPCState, gpr[6]) },
3244 { "r7", offsetof(CPUPPCState, gpr[7]) },
3245 { "r8", offsetof(CPUPPCState, gpr[8]) },
3246 { "r9", offsetof(CPUPPCState, gpr[9]) },
3247 { "r10", offsetof(CPUPPCState, gpr[10]) },
3248 { "r11", offsetof(CPUPPCState, gpr[11]) },
3249 { "r12", offsetof(CPUPPCState, gpr[12]) },
3250 { "r13", offsetof(CPUPPCState, gpr[13]) },
3251 { "r14", offsetof(CPUPPCState, gpr[14]) },
3252 { "r15", offsetof(CPUPPCState, gpr[15]) },
3253 { "r16", offsetof(CPUPPCState, gpr[16]) },
3254 { "r17", offsetof(CPUPPCState, gpr[17]) },
3255 { "r18", offsetof(CPUPPCState, gpr[18]) },
3256 { "r19", offsetof(CPUPPCState, gpr[19]) },
3257 { "r20", offsetof(CPUPPCState, gpr[20]) },
3258 { "r21", offsetof(CPUPPCState, gpr[21]) },
3259 { "r22", offsetof(CPUPPCState, gpr[22]) },
3260 { "r23", offsetof(CPUPPCState, gpr[23]) },
3261 { "r24", offsetof(CPUPPCState, gpr[24]) },
3262 { "r25", offsetof(CPUPPCState, gpr[25]) },
3263 { "r26", offsetof(CPUPPCState, gpr[26]) },
3264 { "r27", offsetof(CPUPPCState, gpr[27]) },
3265 { "r28", offsetof(CPUPPCState, gpr[28]) },
3266 { "r29", offsetof(CPUPPCState, gpr[29]) },
3267 { "r30", offsetof(CPUPPCState, gpr[30]) },
3268 { "r31", offsetof(CPUPPCState, gpr[31]) },
3269 /* Floating point registers */
3270 { "f0", offsetof(CPUPPCState, fpr[0]) },
3271 { "f1", offsetof(CPUPPCState, fpr[1]) },
3272 { "f2", offsetof(CPUPPCState, fpr[2]) },
3273 { "f3", offsetof(CPUPPCState, fpr[3]) },
3274 { "f4", offsetof(CPUPPCState, fpr[4]) },
3275 { "f5", offsetof(CPUPPCState, fpr[5]) },
3276 { "f6", offsetof(CPUPPCState, fpr[6]) },
3277 { "f7", offsetof(CPUPPCState, fpr[7]) },
3278 { "f8", offsetof(CPUPPCState, fpr[8]) },
3279 { "f9", offsetof(CPUPPCState, fpr[9]) },
3280 { "f10", offsetof(CPUPPCState, fpr[10]) },
3281 { "f11", offsetof(CPUPPCState, fpr[11]) },
3282 { "f12", offsetof(CPUPPCState, fpr[12]) },
3283 { "f13", offsetof(CPUPPCState, fpr[13]) },
3284 { "f14", offsetof(CPUPPCState, fpr[14]) },
3285 { "f15", offsetof(CPUPPCState, fpr[15]) },
3286 { "f16", offsetof(CPUPPCState, fpr[16]) },
3287 { "f17", offsetof(CPUPPCState, fpr[17]) },
3288 { "f18", offsetof(CPUPPCState, fpr[18]) },
3289 { "f19", offsetof(CPUPPCState, fpr[19]) },
3290 { "f20", offsetof(CPUPPCState, fpr[20]) },
3291 { "f21", offsetof(CPUPPCState, fpr[21]) },
3292 { "f22", offsetof(CPUPPCState, fpr[22]) },
3293 { "f23", offsetof(CPUPPCState, fpr[23]) },
3294 { "f24", offsetof(CPUPPCState, fpr[24]) },
3295 { "f25", offsetof(CPUPPCState, fpr[25]) },
3296 { "f26", offsetof(CPUPPCState, fpr[26]) },
3297 { "f27", offsetof(CPUPPCState, fpr[27]) },
3298 { "f28", offsetof(CPUPPCState, fpr[28]) },
3299 { "f29", offsetof(CPUPPCState, fpr[29]) },
3300 { "f30", offsetof(CPUPPCState, fpr[30]) },
3301 { "f31", offsetof(CPUPPCState, fpr[31]) },
3302 { "fpscr", offsetof(CPUPPCState, fpscr) },
3303 /* Next instruction pointer */
3304 { "nip|pc", offsetof(CPUPPCState, nip) },
3305 { "lr", offsetof(CPUPPCState, lr) },
3306 { "ctr", offsetof(CPUPPCState, ctr) },
3307 { "decr", 0, &monitor_get_decr, },
3308 { "ccr", 0, &monitor_get_ccr, },
3309 /* Machine state register */
3310 { "msr", 0, &monitor_get_msr, },
3311 { "xer", 0, &monitor_get_xer, },
3312 { "tbu", 0, &monitor_get_tbu, },
3313 { "tbl", 0, &monitor_get_tbl, },
3314 /* Segment registers */
3315 { "sdr1", offsetof(CPUPPCState, spr[SPR_SDR1]) },
3316 { "sr0", offsetof(CPUPPCState, sr[0]) },
3317 { "sr1", offsetof(CPUPPCState, sr[1]) },
3318 { "sr2", offsetof(CPUPPCState, sr[2]) },
3319 { "sr3", offsetof(CPUPPCState, sr[