linux-user: add SO_PEERCRED support for getsockopt
[qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4
5 @documentlanguage en
6 @documentencoding UTF-8
7
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
12
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
18
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
28
29 @ifnottex
30 @node Top
31 @top
32
33 @menu
34 * Introduction::
35 * Installation::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU User space emulator::
39 * compilation:: Compilation from the sources
40 * License::
41 * Index::
42 @end menu
43 @end ifnottex
44
45 @contents
46
47 @node Introduction
48 @chapter Introduction
49
50 @menu
51 * intro_features:: Features
52 @end menu
53
54 @node intro_features
55 @section Features
56
57 QEMU is a FAST! processor emulator using dynamic translation to
58 achieve good emulation speed.
59
60 QEMU has two operating modes:
61
62 @itemize
63 @cindex operating modes
64
65 @item
66 @cindex system emulation
67 Full system emulation. In this mode, QEMU emulates a full system (for
68 example a PC), including one or several processors and various
69 peripherals. It can be used to launch different Operating Systems
70 without rebooting the PC or to debug system code.
71
72 @item
73 @cindex user mode emulation
74 User mode emulation. In this mode, QEMU can launch
75 processes compiled for one CPU on another CPU. It can be used to
76 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 to ease cross-compilation and cross-debugging.
78
79 @end itemize
80
81 QEMU can run without an host kernel driver and yet gives acceptable
82 performance.
83
84 For system emulation, the following hardware targets are supported:
85 @itemize
86 @cindex emulated target systems
87 @cindex supported target systems
88 @item PC (x86 or x86_64 processor)
89 @item ISA PC (old style PC without PCI bus)
90 @item PREP (PowerPC processor)
91 @item G3 Beige PowerMac (PowerPC processor)
92 @item Mac99 PowerMac (PowerPC processor, in progress)
93 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 @item Malta board (32-bit and 64-bit MIPS processors)
96 @item MIPS Magnum (64-bit MIPS processor)
97 @item ARM Integrator/CP (ARM)
98 @item ARM Versatile baseboard (ARM)
99 @item ARM RealView Emulation/Platform baseboard (ARM)
100 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 @item Freescale MCF5208EVB (ColdFire V2).
104 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 @item Palm Tungsten|E PDA (OMAP310 processor)
106 @item N800 and N810 tablets (OMAP2420 processor)
107 @item MusicPal (MV88W8618 ARM processor)
108 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 @item Siemens SX1 smartphone (OMAP310 processor)
110 @item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111 @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112 @item Avnet LX60/LX110/LX200 boards (Xtensa)
113 @end itemize
114
115 @cindex supported user mode targets
116 For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120 @node Installation
121 @chapter Installation
122
123 If you want to compile QEMU yourself, see @ref{compilation}.
124
125 @menu
126 * install_linux::   Linux
127 * install_windows:: Windows
128 * install_mac::     Macintosh
129 @end menu
130
131 @node install_linux
132 @section Linux
133 @cindex installation (Linux)
134
135 If a precompiled package is available for your distribution - you just
136 have to install it. Otherwise, see @ref{compilation}.
137
138 @node install_windows
139 @section Windows
140 @cindex installation (Windows)
141
142 Download the experimental binary installer at
143 @url{http://www.free.oszoo.org/@/download.html}.
144 TODO (no longer available)
145
146 @node install_mac
147 @section Mac OS X
148
149 Download the experimental binary installer at
150 @url{http://www.free.oszoo.org/@/download.html}.
151 TODO (no longer available)
152
153 @node QEMU PC System emulator
154 @chapter QEMU PC System emulator
155 @cindex system emulation (PC)
156
157 @menu
158 * pcsys_introduction:: Introduction
159 * pcsys_quickstart::   Quick Start
160 * sec_invocation::     Invocation
161 * pcsys_keys::         Keys
162 * pcsys_monitor::      QEMU Monitor
163 * disk_images::        Disk Images
164 * pcsys_network::      Network emulation
165 * pcsys_other_devs::   Other Devices
166 * direct_linux_boot::  Direct Linux Boot
167 * pcsys_usb::          USB emulation
168 * vnc_security::       VNC security
169 * gdb_usage::          GDB usage
170 * pcsys_os_specific::  Target OS specific information
171 @end menu
172
173 @node pcsys_introduction
174 @section Introduction
175
176 @c man begin DESCRIPTION
177
178 The QEMU PC System emulator simulates the
179 following peripherals:
180
181 @itemize @minus
182 @item
183 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184 @item
185 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186 extensions (hardware level, including all non standard modes).
187 @item
188 PS/2 mouse and keyboard
189 @item
190 2 PCI IDE interfaces with hard disk and CD-ROM support
191 @item
192 Floppy disk
193 @item
194 PCI and ISA network adapters
195 @item
196 Serial ports
197 @item
198 Creative SoundBlaster 16 sound card
199 @item
200 ENSONIQ AudioPCI ES1370 sound card
201 @item
202 Intel 82801AA AC97 Audio compatible sound card
203 @item
204 Intel HD Audio Controller and HDA codec
205 @item
206 Adlib (OPL2) - Yamaha YM3812 compatible chip
207 @item
208 Gravis Ultrasound GF1 sound card
209 @item
210 CS4231A compatible sound card
211 @item
212 PCI UHCI USB controller and a virtual USB hub.
213 @end itemize
214
215 SMP is supported with up to 255 CPUs.
216
217 Note that adlib, gus and cs4231a are only available when QEMU was
218 configured with --audio-card-list option containing the name(s) of
219 required card(s).
220
221 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222 VGA BIOS.
223
224 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
226 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227 by Tibor "TS" Schütz.
228
229 Note that, by default, GUS shares IRQ(7) with parallel ports and so
230 qemu must be told to not have parallel ports to have working GUS
231
232 @example
233 qemu dos.img -soundhw gus -parallel none
234 @end example
235
236 Alternatively:
237 @example
238 qemu dos.img -device gus,irq=5
239 @end example
240
241 Or some other unclaimed IRQ.
242
243 CS4231A is the chip used in Windows Sound System and GUSMAX products
244
245 @c man end
246
247 @node pcsys_quickstart
248 @section Quick Start
249 @cindex quick start
250
251 Download and uncompress the linux image (@file{linux.img}) and type:
252
253 @example
254 qemu linux.img
255 @end example
256
257 Linux should boot and give you a prompt.
258
259 @node sec_invocation
260 @section Invocation
261
262 @example
263 @c man begin SYNOPSIS
264 usage: qemu [options] [@var{disk_image}]
265 @c man end
266 @end example
267
268 @c man begin OPTIONS
269 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270 targets do not need a disk image.
271
272 @include qemu-options.texi
273
274 @c man end
275
276 @node pcsys_keys
277 @section Keys
278
279 @c man begin OPTIONS
280
281 During the graphical emulation, you can use special key combinations to change
282 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
286 @table @key
287 @item Ctrl-Alt-f
288 @kindex Ctrl-Alt-f
289 Toggle full screen
290
291 @item Ctrl-Alt-+
292 @kindex Ctrl-Alt-+
293 Enlarge the screen
294
295 @item Ctrl-Alt--
296 @kindex Ctrl-Alt--
297 Shrink the screen
298
299 @item Ctrl-Alt-u
300 @kindex Ctrl-Alt-u
301 Restore the screen's un-scaled dimensions
302
303 @item Ctrl-Alt-n
304 @kindex Ctrl-Alt-n
305 Switch to virtual console 'n'. Standard console mappings are:
306 @table @emph
307 @item 1
308 Target system display
309 @item 2
310 Monitor
311 @item 3
312 Serial port
313 @end table
314
315 @item Ctrl-Alt
316 @kindex Ctrl-Alt
317 Toggle mouse and keyboard grab.
318 @end table
319
320 @kindex Ctrl-Up
321 @kindex Ctrl-Down
322 @kindex Ctrl-PageUp
323 @kindex Ctrl-PageDown
324 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
327 @kindex Ctrl-a h
328 During emulation, if you are using the @option{-nographic} option, use
329 @key{Ctrl-a h} to get terminal commands:
330
331 @table @key
332 @item Ctrl-a h
333 @kindex Ctrl-a h
334 @item Ctrl-a ?
335 @kindex Ctrl-a ?
336 Print this help
337 @item Ctrl-a x
338 @kindex Ctrl-a x
339 Exit emulator
340 @item Ctrl-a s
341 @kindex Ctrl-a s
342 Save disk data back to file (if -snapshot)
343 @item Ctrl-a t
344 @kindex Ctrl-a t
345 Toggle console timestamps
346 @item Ctrl-a b
347 @kindex Ctrl-a b
348 Send break (magic sysrq in Linux)
349 @item Ctrl-a c
350 @kindex Ctrl-a c
351 Switch between console and monitor
352 @item Ctrl-a Ctrl-a
353 @kindex Ctrl-a a
354 Send Ctrl-a
355 @end table
356 @c man end
357
358 @ignore
359
360 @c man begin SEEALSO
361 The HTML documentation of QEMU for more precise information and Linux
362 user mode emulator invocation.
363 @c man end
364
365 @c man begin AUTHOR
366 Fabrice Bellard
367 @c man end
368
369 @end ignore
370
371 @node pcsys_monitor
372 @section QEMU Monitor
373 @cindex QEMU monitor
374
375 The QEMU monitor is used to give complex commands to the QEMU
376 emulator. You can use it to:
377
378 @itemize @minus
379
380 @item
381 Remove or insert removable media images
382 (such as CD-ROM or floppies).
383
384 @item
385 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386 from a disk file.
387
388 @item Inspect the VM state without an external debugger.
389
390 @end itemize
391
392 @subsection Commands
393
394 The following commands are available:
395
396 @include qemu-monitor.texi
397
398 @subsection Integer expressions
399
400 The monitor understands integers expressions for every integer
401 argument. You can use register names to get the value of specifics
402 CPU registers by prefixing them with @emph{$}.
403
404 @node disk_images
405 @section Disk Images
406
407 Since version 0.6.1, QEMU supports many disk image formats, including
408 growable disk images (their size increase as non empty sectors are
409 written), compressed and encrypted disk images. Version 0.8.3 added
410 the new qcow2 disk image format which is essential to support VM
411 snapshots.
412
413 @menu
414 * disk_images_quickstart::    Quick start for disk image creation
415 * disk_images_snapshot_mode:: Snapshot mode
416 * vm_snapshots::              VM snapshots
417 * qemu_img_invocation::       qemu-img Invocation
418 * qemu_nbd_invocation::       qemu-nbd Invocation
419 * host_drives::               Using host drives
420 * disk_images_fat_images::    Virtual FAT disk images
421 * disk_images_nbd::           NBD access
422 * disk_images_sheepdog::      Sheepdog disk images
423 * disk_images_iscsi::         iSCSI LUNs
424 @end menu
425
426 @node disk_images_quickstart
427 @subsection Quick start for disk image creation
428
429 You can create a disk image with the command:
430 @example
431 qemu-img create myimage.img mysize
432 @end example
433 where @var{myimage.img} is the disk image filename and @var{mysize} is its
434 size in kilobytes. You can add an @code{M} suffix to give the size in
435 megabytes and a @code{G} suffix for gigabytes.
436
437 See @ref{qemu_img_invocation} for more information.
438
439 @node disk_images_snapshot_mode
440 @subsection Snapshot mode
441
442 If you use the option @option{-snapshot}, all disk images are
443 considered as read only. When sectors in written, they are written in
444 a temporary file created in @file{/tmp}. You can however force the
445 write back to the raw disk images by using the @code{commit} monitor
446 command (or @key{C-a s} in the serial console).
447
448 @node vm_snapshots
449 @subsection VM snapshots
450
451 VM snapshots are snapshots of the complete virtual machine including
452 CPU state, RAM, device state and the content of all the writable
453 disks. In order to use VM snapshots, you must have at least one non
454 removable and writable block device using the @code{qcow2} disk image
455 format. Normally this device is the first virtual hard drive.
456
457 Use the monitor command @code{savevm} to create a new VM snapshot or
458 replace an existing one. A human readable name can be assigned to each
459 snapshot in addition to its numerical ID.
460
461 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462 a VM snapshot. @code{info snapshots} lists the available snapshots
463 with their associated information:
464
465 @example
466 (qemu) info snapshots
467 Snapshot devices: hda
468 Snapshot list (from hda):
469 ID        TAG                 VM SIZE                DATE       VM CLOCK
470 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
471 2                                 40M 2006-08-06 12:43:29   00:00:18.633
472 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
473 @end example
474
475 A VM snapshot is made of a VM state info (its size is shown in
476 @code{info snapshots}) and a snapshot of every writable disk image.
477 The VM state info is stored in the first @code{qcow2} non removable
478 and writable block device. The disk image snapshots are stored in
479 every disk image. The size of a snapshot in a disk image is difficult
480 to evaluate and is not shown by @code{info snapshots} because the
481 associated disk sectors are shared among all the snapshots to save
482 disk space (otherwise each snapshot would need a full copy of all the
483 disk images).
484
485 When using the (unrelated) @code{-snapshot} option
486 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487 but they are deleted as soon as you exit QEMU.
488
489 VM snapshots currently have the following known limitations:
490 @itemize
491 @item
492 They cannot cope with removable devices if they are removed or
493 inserted after a snapshot is done.
494 @item
495 A few device drivers still have incomplete snapshot support so their
496 state is not saved or restored properly (in particular USB).
497 @end itemize
498
499 @node qemu_img_invocation
500 @subsection @code{qemu-img} Invocation
501
502 @include qemu-img.texi
503
504 @node qemu_nbd_invocation
505 @subsection @code{qemu-nbd} Invocation
506
507 @include qemu-nbd.texi
508
509 @node host_drives
510 @subsection Using host drives
511
512 In addition to disk image files, QEMU can directly access host
513 devices. We describe here the usage for QEMU version >= 0.8.3.
514
515 @subsubsection Linux
516
517 On Linux, you can directly use the host device filename instead of a
518 disk image filename provided you have enough privileges to access
519 it. For example, use @file{/dev/cdrom} to access to the CDROM or
520 @file{/dev/fd0} for the floppy.
521
522 @table @code
523 @item CD
524 You can specify a CDROM device even if no CDROM is loaded. QEMU has
525 specific code to detect CDROM insertion or removal. CDROM ejection by
526 the guest OS is supported. Currently only data CDs are supported.
527 @item Floppy
528 You can specify a floppy device even if no floppy is loaded. Floppy
529 removal is currently not detected accurately (if you change floppy
530 without doing floppy access while the floppy is not loaded, the guest
531 OS will think that the same floppy is loaded).
532 @item Hard disks
533 Hard disks can be used. Normally you must specify the whole disk
534 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535 see it as a partitioned disk. WARNING: unless you know what you do, it
536 is better to only make READ-ONLY accesses to the hard disk otherwise
537 you may corrupt your host data (use the @option{-snapshot} command
538 line option or modify the device permissions accordingly).
539 @end table
540
541 @subsubsection Windows
542
543 @table @code
544 @item CD
545 The preferred syntax is the drive letter (e.g. @file{d:}). The
546 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547 supported as an alias to the first CDROM drive.
548
549 Currently there is no specific code to handle removable media, so it
550 is better to use the @code{change} or @code{eject} monitor commands to
551 change or eject media.
552 @item Hard disks
553 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
554 where @var{N} is the drive number (0 is the first hard disk).
555
556 WARNING: unless you know what you do, it is better to only make
557 READ-ONLY accesses to the hard disk otherwise you may corrupt your
558 host data (use the @option{-snapshot} command line so that the
559 modifications are written in a temporary file).
560 @end table
561
562
563 @subsubsection Mac OS X
564
565 @file{/dev/cdrom} is an alias to the first CDROM.
566
567 Currently there is no specific code to handle removable media, so it
568 is better to use the @code{change} or @code{eject} monitor commands to
569 change or eject media.
570
571 @node disk_images_fat_images
572 @subsection Virtual FAT disk images
573
574 QEMU can automatically create a virtual FAT disk image from a
575 directory tree. In order to use it, just type:
576
577 @example
578 qemu linux.img -hdb fat:/my_directory
579 @end example
580
581 Then you access access to all the files in the @file{/my_directory}
582 directory without having to copy them in a disk image or to export
583 them via SAMBA or NFS. The default access is @emph{read-only}.
584
585 Floppies can be emulated with the @code{:floppy:} option:
586
587 @example
588 qemu linux.img -fda fat:floppy:/my_directory
589 @end example
590
591 A read/write support is available for testing (beta stage) with the
592 @code{:rw:} option:
593
594 @example
595 qemu linux.img -fda fat:floppy:rw:/my_directory
596 @end example
597
598 What you should @emph{never} do:
599 @itemize
600 @item use non-ASCII filenames ;
601 @item use "-snapshot" together with ":rw:" ;
602 @item expect it to work when loadvm'ing ;
603 @item write to the FAT directory on the host system while accessing it with the guest system.
604 @end itemize
605
606 @node disk_images_nbd
607 @subsection NBD access
608
609 QEMU can access directly to block device exported using the Network Block Device
610 protocol.
611
612 @example
613 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
614 @end example
615
616 If the NBD server is located on the same host, you can use an unix socket instead
617 of an inet socket:
618
619 @example
620 qemu linux.img -hdb nbd:unix:/tmp/my_socket
621 @end example
622
623 In this case, the block device must be exported using qemu-nbd:
624
625 @example
626 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627 @end example
628
629 The use of qemu-nbd allows to share a disk between several guests:
630 @example
631 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632 @end example
633
634 and then you can use it with two guests:
635 @example
636 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
637 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
638 @end example
639
640 If the nbd-server uses named exports (since NBD 2.9.18), you must use the
641 "exportname" option:
642 @example
643 qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
644 qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
645 @end example
646
647 @node disk_images_sheepdog
648 @subsection Sheepdog disk images
649
650 Sheepdog is a distributed storage system for QEMU.  It provides highly
651 available block level storage volumes that can be attached to
652 QEMU-based virtual machines.
653
654 You can create a Sheepdog disk image with the command:
655 @example
656 qemu-img create sheepdog:@var{image} @var{size}
657 @end example
658 where @var{image} is the Sheepdog image name and @var{size} is its
659 size.
660
661 To import the existing @var{filename} to Sheepdog, you can use a
662 convert command.
663 @example
664 qemu-img convert @var{filename} sheepdog:@var{image}
665 @end example
666
667 You can boot from the Sheepdog disk image with the command:
668 @example
669 qemu sheepdog:@var{image}
670 @end example
671
672 You can also create a snapshot of the Sheepdog image like qcow2.
673 @example
674 qemu-img snapshot -c @var{tag} sheepdog:@var{image}
675 @end example
676 where @var{tag} is a tag name of the newly created snapshot.
677
678 To boot from the Sheepdog snapshot, specify the tag name of the
679 snapshot.
680 @example
681 qemu sheepdog:@var{image}:@var{tag}
682 @end example
683
684 You can create a cloned image from the existing snapshot.
685 @example
686 qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
687 @end example
688 where @var{base} is a image name of the source snapshot and @var{tag}
689 is its tag name.
690
691 If the Sheepdog daemon doesn't run on the local host, you need to
692 specify one of the Sheepdog servers to connect to.
693 @example
694 qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
695 qemu sheepdog:@var{hostname}:@var{port}:@var{image}
696 @end example
697
698 @node disk_images_iscsi
699 @subsection iSCSI LUNs
700
701 iSCSI is a popular protocol used to access SCSI devices across a computer
702 network.
703
704 There are two different ways iSCSI devices can be used by QEMU.
705
706 The first method is to mount the iSCSI LUN on the host, and make it appear as
707 any other ordinary SCSI device on the host and then to access this device as a
708 /dev/sd device from QEMU. How to do this differs between host OSes.
709
710 The second method involves using the iSCSI initiator that is built into
711 QEMU. This provides a mechanism that works the same way regardless of which
712 host OS you are running QEMU on. This section will describe this second method
713 of using iSCSI together with QEMU.
714
715 In QEMU, iSCSI devices are described using special iSCSI URLs
716
717 @example
718 URL syntax:
719 iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
720 @end example
721
722 Username and password are optional and only used if your target is set up
723 using CHAP authentication for access control.
724 Alternatively the username and password can also be set via environment
725 variables to have these not show up in the process list
726
727 @example
728 export LIBISCSI_CHAP_USERNAME=<username>
729 export LIBISCSI_CHAP_PASSWORD=<password>
730 iscsi://<host>/<target-iqn-name>/<lun>
731 @end example
732
733 Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
734 @example
735 This example shows how to set up an iSCSI target with one CDROM and one DISK
736 using the Linux STGT software target. This target is available on Red Hat based
737 systems as the package 'scsi-target-utils'.
738
739 tgtd --iscsi portal=127.0.0.1:3260
740 tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
741 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
742     -b /IMAGES/disk.img --device-type=disk
743 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
744     -b /IMAGES/cd.iso --device-type=cd
745 tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
746
747 qemu-system-i386 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
748     -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
749 @end example
750
751
752
753 @node pcsys_network
754 @section Network emulation
755
756 QEMU can simulate several network cards (PCI or ISA cards on the PC
757 target) and can connect them to an arbitrary number of Virtual Local
758 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
759 VLAN. VLAN can be connected between separate instances of QEMU to
760 simulate large networks. For simpler usage, a non privileged user mode
761 network stack can replace the TAP device to have a basic network
762 connection.
763
764 @subsection VLANs
765
766 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
767 connection between several network devices. These devices can be for
768 example QEMU virtual Ethernet cards or virtual Host ethernet devices
769 (TAP devices).
770
771 @subsection Using TAP network interfaces
772
773 This is the standard way to connect QEMU to a real network. QEMU adds
774 a virtual network device on your host (called @code{tapN}), and you
775 can then configure it as if it was a real ethernet card.
776
777 @subsubsection Linux host
778
779 As an example, you can download the @file{linux-test-xxx.tar.gz}
780 archive and copy the script @file{qemu-ifup} in @file{/etc} and
781 configure properly @code{sudo} so that the command @code{ifconfig}
782 contained in @file{qemu-ifup} can be executed as root. You must verify
783 that your host kernel supports the TAP network interfaces: the
784 device @file{/dev/net/tun} must be present.
785
786 See @ref{sec_invocation} to have examples of command lines using the
787 TAP network interfaces.
788
789 @subsubsection Windows host
790
791 There is a virtual ethernet driver for Windows 2000/XP systems, called
792 TAP-Win32. But it is not included in standard QEMU for Windows,
793 so you will need to get it separately. It is part of OpenVPN package,
794 so download OpenVPN from : @url{http://openvpn.net/}.
795
796 @subsection Using the user mode network stack
797
798 By using the option @option{-net user} (default configuration if no
799 @option{-net} option is specified), QEMU uses a completely user mode
800 network stack (you don't need root privilege to use the virtual
801 network). The virtual network configuration is the following:
802
803 @example
804
805          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
806                            |          (10.0.2.2)
807                            |
808                            ---->  DNS server (10.0.2.3)
809                            |
810                            ---->  SMB server (10.0.2.4)
811 @end example
812
813 The QEMU VM behaves as if it was behind a firewall which blocks all
814 incoming connections. You can use a DHCP client to automatically
815 configure the network in the QEMU VM. The DHCP server assign addresses
816 to the hosts starting from 10.0.2.15.
817
818 In order to check that the user mode network is working, you can ping
819 the address 10.0.2.2 and verify that you got an address in the range
820 10.0.2.x from the QEMU virtual DHCP server.
821
822 Note that @code{ping} is not supported reliably to the internet as it
823 would require root privileges. It means you can only ping the local
824 router (10.0.2.2).
825
826 When using the built-in TFTP server, the router is also the TFTP
827 server.
828
829 When using the @option{-redir} option, TCP or UDP connections can be
830 redirected from the host to the guest. It allows for example to
831 redirect X11, telnet or SSH connections.
832
833 @subsection Connecting VLANs between QEMU instances
834
835 Using the @option{-net socket} option, it is possible to make VLANs
836 that span several QEMU instances. See @ref{sec_invocation} to have a
837 basic example.
838
839 @node pcsys_other_devs
840 @section Other Devices
841
842 @subsection Inter-VM Shared Memory device
843
844 With KVM enabled on a Linux host, a shared memory device is available.  Guests
845 map a POSIX shared memory region into the guest as a PCI device that enables
846 zero-copy communication to the application level of the guests.  The basic
847 syntax is:
848
849 @example
850 qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
851 @end example
852
853 If desired, interrupts can be sent between guest VMs accessing the same shared
854 memory region.  Interrupt support requires using a shared memory server and
855 using a chardev socket to connect to it.  The code for the shared memory server
856 is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
857 memory server is:
858
859 @example
860 qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
861                         [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
862 qemu -chardev socket,path=<path>,id=<id>
863 @end example
864
865 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
866 using the same server to communicate via interrupts.  Guests can read their
867 VM ID from a device register (see example code).  Since receiving the shared
868 memory region from the server is asynchronous, there is a (small) chance the
869 guest may boot before the shared memory is attached.  To allow an application
870 to ensure shared memory is attached, the VM ID register will return -1 (an
871 invalid VM ID) until the memory is attached.  Once the shared memory is
872 attached, the VM ID will return the guest's valid VM ID.  With these semantics,
873 the guest application can check to ensure the shared memory is attached to the
874 guest before proceeding.
875
876 The @option{role} argument can be set to either master or peer and will affect
877 how the shared memory is migrated.  With @option{role=master}, the guest will
878 copy the shared memory on migration to the destination host.  With
879 @option{role=peer}, the guest will not be able to migrate with the device attached.
880 With the @option{peer} case, the device should be detached and then reattached
881 after migration using the PCI hotplug support.
882
883 @node direct_linux_boot
884 @section Direct Linux Boot
885
886 This section explains how to launch a Linux kernel inside QEMU without
887 having to make a full bootable image. It is very useful for fast Linux
888 kernel testing.
889
890 The syntax is:
891 @example
892 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
893 @end example
894
895 Use @option{-kernel} to provide the Linux kernel image and
896 @option{-append} to give the kernel command line arguments. The
897 @option{-initrd} option can be used to provide an INITRD image.
898
899 When using the direct Linux boot, a disk image for the first hard disk
900 @file{hda} is required because its boot sector is used to launch the
901 Linux kernel.
902
903 If you do not need graphical output, you can disable it and redirect
904 the virtual serial port and the QEMU monitor to the console with the
905 @option{-nographic} option. The typical command line is:
906 @example
907 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
908      -append "root=/dev/hda console=ttyS0" -nographic
909 @end example
910
911 Use @key{Ctrl-a c} to switch between the serial console and the
912 monitor (@pxref{pcsys_keys}).
913
914 @node pcsys_usb
915 @section USB emulation
916
917 QEMU emulates a PCI UHCI USB controller. You can virtually plug
918 virtual USB devices or real host USB devices (experimental, works only
919 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
920 as necessary to connect multiple USB devices.
921
922 @menu
923 * usb_devices::
924 * host_usb_devices::
925 @end menu
926 @node usb_devices
927 @subsection Connecting USB devices
928
929 USB devices can be connected with the @option{-usbdevice} commandline option
930 or the @code{usb_add} monitor command.  Available devices are:
931
932 @table @code
933 @item mouse
934 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
935 @item tablet
936 Pointer device that uses absolute coordinates (like a touchscreen).
937 This means qemu is able to report the mouse position without having
938 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
939 @item disk:@var{file}
940 Mass storage device based on @var{file} (@pxref{disk_images})
941 @item host:@var{bus.addr}
942 Pass through the host device identified by @var{bus.addr}
943 (Linux only)
944 @item host:@var{vendor_id:product_id}
945 Pass through the host device identified by @var{vendor_id:product_id}
946 (Linux only)
947 @item wacom-tablet
948 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
949 above but it can be used with the tslib library because in addition to touch
950 coordinates it reports touch pressure.
951 @item keyboard
952 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
953 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
954 Serial converter. This emulates an FTDI FT232BM chip connected to host character
955 device @var{dev}. The available character devices are the same as for the
956 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
957 used to override the default 0403:6001. For instance,
958 @example
959 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
960 @end example
961 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
962 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
963 @item braille
964 Braille device.  This will use BrlAPI to display the braille output on a real
965 or fake device.
966 @item net:@var{options}
967 Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
968 specifies NIC options as with @code{-net nic,}@var{options} (see description).
969 For instance, user-mode networking can be used with
970 @example
971 qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
972 @end example
973 Currently this cannot be used in machines that support PCI NICs.
974 @item bt[:@var{hci-type}]
975 Bluetooth dongle whose type is specified in the same format as with
976 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
977 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
978 This USB device implements the USB Transport Layer of HCI.  Example
979 usage:
980 @example
981 qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
982 @end example
983 @end table
984
985 @node host_usb_devices
986 @subsection Using host USB devices on a Linux host
987
988 WARNING: this is an experimental feature. QEMU will slow down when
989 using it. USB devices requiring real time streaming (i.e. USB Video
990 Cameras) are not supported yet.
991
992 @enumerate
993 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
994 is actually using the USB device. A simple way to do that is simply to
995 disable the corresponding kernel module by renaming it from @file{mydriver.o}
996 to @file{mydriver.o.disabled}.
997
998 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
999 @example
1000 ls /proc/bus/usb
1001 001  devices  drivers
1002 @end example
1003
1004 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1005 @example
1006 chown -R myuid /proc/bus/usb
1007 @end example
1008
1009 @item Launch QEMU and do in the monitor:
1010 @example
1011 info usbhost
1012   Device 1.2, speed 480 Mb/s
1013     Class 00: USB device 1234:5678, USB DISK
1014 @end example
1015 You should see the list of the devices you can use (Never try to use
1016 hubs, it won't work).
1017
1018 @item Add the device in QEMU by using:
1019 @example
1020 usb_add host:1234:5678
1021 @end example
1022
1023 Normally the guest OS should report that a new USB device is
1024 plugged. You can use the option @option{-usbdevice} to do the same.
1025
1026 @item Now you can try to use the host USB device in QEMU.
1027
1028 @end enumerate
1029
1030 When relaunching QEMU, you may have to unplug and plug again the USB
1031 device to make it work again (this is a bug).
1032
1033 @node vnc_security
1034 @section VNC security
1035
1036 The VNC server capability provides access to the graphical console
1037 of the guest VM across the network. This has a number of security
1038 considerations depending on the deployment scenarios.
1039
1040 @menu
1041 * vnc_sec_none::
1042 * vnc_sec_password::
1043 * vnc_sec_certificate::
1044 * vnc_sec_certificate_verify::
1045 * vnc_sec_certificate_pw::
1046 * vnc_sec_sasl::
1047 * vnc_sec_certificate_sasl::
1048 * vnc_generate_cert::
1049 * vnc_setup_sasl::
1050 @end menu
1051 @node vnc_sec_none
1052 @subsection Without passwords
1053
1054 The simplest VNC server setup does not include any form of authentication.
1055 For this setup it is recommended to restrict it to listen on a UNIX domain
1056 socket only. For example
1057
1058 @example
1059 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1060 @end example
1061
1062 This ensures that only users on local box with read/write access to that
1063 path can access the VNC server. To securely access the VNC server from a
1064 remote machine, a combination of netcat+ssh can be used to provide a secure
1065 tunnel.
1066
1067 @node vnc_sec_password
1068 @subsection With passwords
1069
1070 The VNC protocol has limited support for password based authentication. Since
1071 the protocol limits passwords to 8 characters it should not be considered
1072 to provide high security. The password can be fairly easily brute-forced by
1073 a client making repeat connections. For this reason, a VNC server using password
1074 authentication should be restricted to only listen on the loopback interface
1075 or UNIX domain sockets. Password authentication is requested with the @code{password}
1076 option, and then once QEMU is running the password is set with the monitor. Until
1077 the monitor is used to set the password all clients will be rejected.
1078
1079 @example
1080 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1081 (qemu) change vnc password
1082 Password: ********
1083 (qemu)
1084 @end example
1085
1086 @node vnc_sec_certificate
1087 @subsection With x509 certificates
1088
1089 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1090 TLS for encryption of the session, and x509 certificates for authentication.
1091 The use of x509 certificates is strongly recommended, because TLS on its
1092 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1093 support provides a secure session, but no authentication. This allows any
1094 client to connect, and provides an encrypted session.
1095
1096 @example
1097 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1098 @end example
1099
1100 In the above example @code{/etc/pki/qemu} should contain at least three files,
1101 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1102 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1103 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1104 only be readable by the user owning it.
1105
1106 @node vnc_sec_certificate_verify
1107 @subsection With x509 certificates and client verification
1108
1109 Certificates can also provide a means to authenticate the client connecting.
1110 The server will request that the client provide a certificate, which it will
1111 then validate against the CA certificate. This is a good choice if deploying
1112 in an environment with a private internal certificate authority.
1113
1114 @example
1115 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1116 @end example
1117
1118
1119 @node vnc_sec_certificate_pw
1120 @subsection With x509 certificates, client verification and passwords
1121
1122 Finally, the previous method can be combined with VNC password authentication
1123 to provide two layers of authentication for clients.
1124
1125 @example
1126 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1127 (qemu) change vnc password
1128 Password: ********
1129 (qemu)
1130 @end example
1131
1132
1133 @node vnc_sec_sasl
1134 @subsection With SASL authentication
1135
1136 The SASL authentication method is a VNC extension, that provides an
1137 easily extendable, pluggable authentication method. This allows for
1138 integration with a wide range of authentication mechanisms, such as
1139 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1140 The strength of the authentication depends on the exact mechanism
1141 configured. If the chosen mechanism also provides a SSF layer, then
1142 it will encrypt the datastream as well.
1143
1144 Refer to the later docs on how to choose the exact SASL mechanism
1145 used for authentication, but assuming use of one supporting SSF,
1146 then QEMU can be launched with:
1147
1148 @example
1149 qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1150 @end example
1151
1152 @node vnc_sec_certificate_sasl
1153 @subsection With x509 certificates and SASL authentication
1154
1155 If the desired SASL authentication mechanism does not supported
1156 SSF layers, then it is strongly advised to run it in combination
1157 with TLS and x509 certificates. This provides securely encrypted
1158 data stream, avoiding risk of compromising of the security
1159 credentials. This can be enabled, by combining the 'sasl' option
1160 with the aforementioned TLS + x509 options:
1161
1162 @example
1163 qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1164 @end example
1165
1166
1167 @node vnc_generate_cert
1168 @subsection Generating certificates for VNC
1169
1170 The GNU TLS packages provides a command called @code{certtool} which can
1171 be used to generate certificates and keys in PEM format. At a minimum it
1172 is necessary to setup a certificate authority, and issue certificates to
1173 each server. If using certificates for authentication, then each client
1174 will also need to be issued a certificate. The recommendation is for the
1175 server to keep its certificates in either @code{/etc/pki/qemu} or for
1176 unprivileged users in @code{$HOME/.pki/qemu}.
1177
1178 @menu
1179 * vnc_generate_ca::
1180 * vnc_generate_server::
1181 * vnc_generate_client::
1182 @end menu
1183 @node vnc_generate_ca
1184 @subsubsection Setup the Certificate Authority
1185
1186 This step only needs to be performed once per organization / organizational
1187 unit. First the CA needs a private key. This key must be kept VERY secret
1188 and secure. If this key is compromised the entire trust chain of the certificates
1189 issued with it is lost.
1190
1191 @example
1192 # certtool --generate-privkey > ca-key.pem
1193 @end example
1194
1195 A CA needs to have a public certificate. For simplicity it can be a self-signed
1196 certificate, or one issue by a commercial certificate issuing authority. To
1197 generate a self-signed certificate requires one core piece of information, the
1198 name of the organization.
1199
1200 @example
1201 # cat > ca.info <<EOF
1202 cn = Name of your organization
1203 ca
1204 cert_signing_key
1205 EOF
1206 # certtool --generate-self-signed \
1207            --load-privkey ca-key.pem
1208            --template ca.info \
1209            --outfile ca-cert.pem
1210 @end example
1211
1212 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1213 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1214
1215 @node vnc_generate_server
1216 @subsubsection Issuing server certificates
1217
1218 Each server (or host) needs to be issued with a key and certificate. When connecting
1219 the certificate is sent to the client which validates it against the CA certificate.
1220 The core piece of information for a server certificate is the hostname. This should
1221 be the fully qualified hostname that the client will connect with, since the client
1222 will typically also verify the hostname in the certificate. On the host holding the
1223 secure CA private key:
1224
1225 @example
1226 # cat > server.info <<EOF
1227 organization = Name  of your organization
1228 cn = server.foo.example.com
1229 tls_www_server
1230 encryption_key
1231 signing_key
1232 EOF
1233 # certtool --generate-privkey > server-key.pem
1234 # certtool --generate-certificate \
1235            --load-ca-certificate ca-cert.pem \
1236            --load-ca-privkey ca-key.pem \
1237            --load-privkey server server-key.pem \
1238            --template server.info \
1239            --outfile server-cert.pem
1240 @end example
1241
1242 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1243 to the server for which they were generated. The @code{server-key.pem} is security
1244 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1245
1246 @node vnc_generate_client
1247 @subsubsection Issuing client certificates
1248
1249 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1250 certificates as its authentication mechanism, each client also needs to be issued
1251 a certificate. The client certificate contains enough metadata to uniquely identify
1252 the client, typically organization, state, city, building, etc. On the host holding
1253 the secure CA private key:
1254
1255 @example
1256 # cat > client.info <<EOF
1257 country = GB
1258 state = London
1259 locality = London
1260 organiazation = Name of your organization
1261 cn = client.foo.example.com
1262 tls_www_client
1263 encryption_key
1264 signing_key
1265 EOF
1266 # certtool --generate-privkey > client-key.pem
1267 # certtool --generate-certificate \
1268            --load-ca-certificate ca-cert.pem \
1269            --load-ca-privkey ca-key.pem \
1270            --load-privkey client-key.pem \
1271            --template client.info \
1272            --outfile client-cert.pem
1273 @end example
1274
1275 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1276 copied to the client for which they were generated.
1277
1278
1279 @node vnc_setup_sasl
1280
1281 @subsection Configuring SASL mechanisms
1282
1283 The following documentation assumes use of the Cyrus SASL implementation on a
1284 Linux host, but the principals should apply to any other SASL impl. When SASL
1285 is enabled, the mechanism configuration will be loaded from system default
1286 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1287 unprivileged user, an environment variable SASL_CONF_PATH can be used
1288 to make it search alternate locations for the service config.
1289
1290 The default configuration might contain
1291
1292 @example
1293 mech_list: digest-md5
1294 sasldb_path: /etc/qemu/passwd.db
1295 @end example
1296
1297 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1298 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1299 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1300 command. While this mechanism is easy to configure and use, it is not
1301 considered secure by modern standards, so only suitable for developers /
1302 ad-hoc testing.
1303
1304 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1305 mechanism
1306
1307 @example
1308 mech_list: gssapi
1309 keytab: /etc/qemu/krb5.tab
1310 @end example
1311
1312 For this to work the administrator of your KDC must generate a Kerberos
1313 principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1314 replacing 'somehost.example.com' with the fully qualified host name of the
1315 machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1316
1317 Other configurations will be left as an exercise for the reader. It should
1318 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1319 encryption. For all other mechanisms, VNC should always be configured to
1320 use TLS and x509 certificates to protect security credentials from snooping.
1321
1322 @node gdb_usage
1323 @section GDB usage
1324
1325 QEMU has a primitive support to work with gdb, so that you can do
1326 'Ctrl-C' while the virtual machine is running and inspect its state.
1327
1328 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1329 gdb connection:
1330 @example
1331 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1332        -append "root=/dev/hda"
1333 Connected to host network interface: tun0
1334 Waiting gdb connection on port 1234
1335 @end example
1336
1337 Then launch gdb on the 'vmlinux' executable:
1338 @example
1339 > gdb vmlinux
1340 @end example
1341
1342 In gdb, connect to QEMU:
1343 @example
1344 (gdb) target remote localhost:1234
1345 @end example
1346
1347 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1348 @example
1349 (gdb) c
1350 @end example
1351
1352 Here are some useful tips in order to use gdb on system code:
1353
1354 @enumerate
1355 @item
1356 Use @code{info reg} to display all the CPU registers.
1357 @item
1358 Use @code{x/10i $eip} to display the code at the PC position.
1359 @item
1360 Use @code{set architecture i8086} to dump 16 bit code. Then use
1361 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1362 @end enumerate
1363
1364 Advanced debugging options:
1365
1366 The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1367 @table @code
1368 @item maintenance packet qqemu.sstepbits
1369
1370 This will display the MASK bits used to control the single stepping IE:
1371 @example
1372 (gdb) maintenance packet qqemu.sstepbits
1373 sending: "qqemu.sstepbits"
1374 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1375 @end example
1376 @item maintenance packet qqemu.sstep
1377
1378 This will display the current value of the mask used when single stepping IE:
1379 @example
1380 (gdb) maintenance packet qqemu.sstep
1381 sending: "qqemu.sstep"
1382 received: "0x7"
1383 @end example
1384 @item maintenance packet Qqemu.sstep=HEX_VALUE
1385
1386 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1387 @example
1388 (gdb) maintenance packet Qqemu.sstep=0x5
1389 sending: "qemu.sstep=0x5"
1390 received: "OK"
1391 @end example
1392 @end table
1393
1394 @node pcsys_os_specific
1395 @section Target OS specific information
1396
1397 @subsection Linux
1398
1399 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1400 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1401 color depth in the guest and the host OS.
1402
1403 When using a 2.6 guest Linux kernel, you should add the option
1404 @code{clock=pit} on the kernel command line because the 2.6 Linux
1405 kernels make very strict real time clock checks by default that QEMU
1406 cannot simulate exactly.
1407
1408 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1409 not activated because QEMU is slower with this patch. The QEMU
1410 Accelerator Module is also much slower in this case. Earlier Fedora
1411 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1412 patch by default. Newer kernels don't have it.
1413
1414 @subsection Windows
1415
1416 If you have a slow host, using Windows 95 is better as it gives the
1417 best speed. Windows 2000 is also a good choice.
1418
1419 @subsubsection SVGA graphic modes support
1420
1421 QEMU emulates a Cirrus Logic GD5446 Video
1422 card. All Windows versions starting from Windows 95 should recognize
1423 and use this graphic card. For optimal performances, use 16 bit color
1424 depth in the guest and the host OS.
1425
1426 If you are using Windows XP as guest OS and if you want to use high
1427 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1428 1280x1024x16), then you should use the VESA VBE virtual graphic card
1429 (option @option{-std-vga}).
1430
1431 @subsubsection CPU usage reduction
1432
1433 Windows 9x does not correctly use the CPU HLT
1434 instruction. The result is that it takes host CPU cycles even when
1435 idle. You can install the utility from
1436 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1437 problem. Note that no such tool is needed for NT, 2000 or XP.
1438
1439 @subsubsection Windows 2000 disk full problem
1440
1441 Windows 2000 has a bug which gives a disk full problem during its
1442 installation. When installing it, use the @option{-win2k-hack} QEMU
1443 option to enable a specific workaround. After Windows 2000 is
1444 installed, you no longer need this option (this option slows down the
1445 IDE transfers).
1446
1447 @subsubsection Windows 2000 shutdown
1448
1449 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1450 can. It comes from the fact that Windows 2000 does not automatically
1451 use the APM driver provided by the BIOS.
1452
1453 In order to correct that, do the following (thanks to Struan
1454 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1455 Add/Troubleshoot a device => Add a new device & Next => No, select the
1456 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1457 (again) a few times. Now the driver is installed and Windows 2000 now
1458 correctly instructs QEMU to shutdown at the appropriate moment.
1459
1460 @subsubsection Share a directory between Unix and Windows
1461
1462 See @ref{sec_invocation} about the help of the option @option{-smb}.
1463
1464 @subsubsection Windows XP security problem
1465
1466 Some releases of Windows XP install correctly but give a security
1467 error when booting:
1468 @example
1469 A problem is preventing Windows from accurately checking the
1470 license for this computer. Error code: 0x800703e6.
1471 @end example
1472
1473 The workaround is to install a service pack for XP after a boot in safe
1474 mode. Then reboot, and the problem should go away. Since there is no
1475 network while in safe mode, its recommended to download the full
1476 installation of SP1 or SP2 and transfer that via an ISO or using the
1477 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1478
1479 @subsection MS-DOS and FreeDOS
1480
1481 @subsubsection CPU usage reduction
1482
1483 DOS does not correctly use the CPU HLT instruction. The result is that
1484 it takes host CPU cycles even when idle. You can install the utility
1485 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1486 problem.
1487
1488 @node QEMU System emulator for non PC targets
1489 @chapter QEMU System emulator for non PC targets
1490
1491 QEMU is a generic emulator and it emulates many non PC
1492 machines. Most of the options are similar to the PC emulator. The
1493 differences are mentioned in the following sections.
1494
1495 @menu
1496 * PowerPC System emulator::
1497 * Sparc32 System emulator::
1498 * Sparc64 System emulator::
1499 * MIPS System emulator::
1500 * ARM System emulator::
1501 * ColdFire System emulator::
1502 * Cris System emulator::
1503 * Microblaze System emulator::
1504 * SH4 System emulator::
1505 * Xtensa System emulator::
1506 @end menu
1507
1508 @node PowerPC System emulator
1509 @section PowerPC System emulator
1510 @cindex system emulation (PowerPC)
1511
1512 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1513 or PowerMac PowerPC system.
1514
1515 QEMU emulates the following PowerMac peripherals:
1516
1517 @itemize @minus
1518 @item
1519 UniNorth or Grackle PCI Bridge
1520 @item
1521 PCI VGA compatible card with VESA Bochs Extensions
1522 @item
1523 2 PMAC IDE interfaces with hard disk and CD-ROM support
1524 @item
1525 NE2000 PCI adapters
1526 @item
1527 Non Volatile RAM
1528 @item
1529 VIA-CUDA with ADB keyboard and mouse.
1530 @end itemize
1531
1532 QEMU emulates the following PREP peripherals:
1533
1534 @itemize @minus
1535 @item
1536 PCI Bridge
1537 @item
1538 PCI VGA compatible card with VESA Bochs Extensions
1539 @item
1540 2 IDE interfaces with hard disk and CD-ROM support
1541 @item
1542 Floppy disk
1543 @item
1544 NE2000 network adapters
1545 @item
1546 Serial port
1547 @item
1548 PREP Non Volatile RAM
1549 @item
1550 PC compatible keyboard and mouse.
1551 @end itemize
1552
1553 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1554 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1555
1556 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1557 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1558 v2) portable firmware implementation. The goal is to implement a 100%
1559 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1560
1561 @c man begin OPTIONS
1562
1563 The following options are specific to the PowerPC emulation:
1564
1565 @table @option
1566
1567 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1568
1569 Set the initial VGA graphic mode. The default is 800x600x15.
1570
1571 @item -prom-env @var{string}
1572
1573 Set OpenBIOS variables in NVRAM, for example:
1574
1575 @example
1576 qemu-system-ppc -prom-env 'auto-boot?=false' \
1577  -prom-env 'boot-device=hd:2,\yaboot' \
1578  -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1579 @end example
1580
1581 These variables are not used by Open Hack'Ware.
1582
1583 @end table
1584
1585 @c man end
1586
1587
1588 More information is available at
1589 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1590
1591 @node Sparc32 System emulator
1592 @section Sparc32 System emulator
1593 @cindex system emulation (Sparc32)
1594
1595 Use the executable @file{qemu-system-sparc} to simulate the following
1596 Sun4m architecture machines:
1597 @itemize @minus
1598 @item
1599 SPARCstation 4
1600 @item
1601 SPARCstation 5
1602 @item
1603 SPARCstation 10
1604 @item
1605 SPARCstation 20
1606 @item
1607 SPARCserver 600MP
1608 @item
1609 SPARCstation LX
1610 @item
1611 SPARCstation Voyager
1612 @item
1613 SPARCclassic
1614 @item
1615 SPARCbook
1616 @end itemize
1617
1618 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1619 but Linux limits the number of usable CPUs to 4.
1620
1621 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1622 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1623 emulators are not usable yet.
1624
1625 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1626
1627 @itemize @minus
1628 @item
1629 IOMMU or IO-UNITs
1630 @item
1631 TCX Frame buffer
1632 @item
1633 Lance (Am7990) Ethernet
1634 @item
1635 Non Volatile RAM M48T02/M48T08
1636 @item
1637 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1638 and power/reset logic
1639 @item
1640 ESP SCSI controller with hard disk and CD-ROM support
1641 @item
1642 Floppy drive (not on SS-600MP)
1643 @item
1644 CS4231 sound device (only on SS-5, not working yet)
1645 @end itemize
1646
1647 The number of peripherals is fixed in the architecture.  Maximum
1648 memory size depends on the machine type, for SS-5 it is 256MB and for
1649 others 2047MB.
1650
1651 Since version 0.8.2, QEMU uses OpenBIOS
1652 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1653 firmware implementation. The goal is to implement a 100% IEEE
1654 1275-1994 (referred to as Open Firmware) compliant firmware.
1655
1656 A sample Linux 2.6 series kernel and ram disk image are available on
1657 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1658 some kernel versions work. Please note that currently Solaris kernels
1659 don't work probably due to interface issues between OpenBIOS and
1660 Solaris.
1661
1662 @c man begin OPTIONS
1663
1664 The following options are specific to the Sparc32 emulation:
1665
1666 @table @option
1667
1668 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
1669
1670 Set the initial TCX graphic mode. The default is 1024x768x8, currently
1671 the only other possible mode is 1024x768x24.
1672
1673 @item -prom-env @var{string}
1674
1675 Set OpenBIOS variables in NVRAM, for example:
1676
1677 @example
1678 qemu-system-sparc -prom-env 'auto-boot?=false' \
1679  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1680 @end example
1681
1682 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1683
1684 Set the emulated machine type. Default is SS-5.
1685
1686 @end table
1687
1688 @c man end
1689
1690 @node Sparc64 System emulator
1691 @section Sparc64 System emulator
1692 @cindex system emulation (Sparc64)
1693
1694 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1695 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1696 Niagara (T1) machine. The emulator is not usable for anything yet, but
1697 it can launch some kernels.
1698
1699 QEMU emulates the following peripherals:
1700
1701 @itemize @minus
1702 @item
1703 UltraSparc IIi APB PCI Bridge
1704 @item
1705 PCI VGA compatible card with VESA Bochs Extensions
1706 @item
1707 PS/2 mouse and keyboard
1708 @item
1709 Non Volatile RAM M48T59
1710 @item
1711 PC-compatible serial ports
1712 @item
1713 2 PCI IDE interfaces with hard disk and CD-ROM support
1714 @item
1715 Floppy disk
1716 @end itemize
1717
1718 @c man begin OPTIONS
1719
1720 The following options are specific to the Sparc64 emulation:
1721
1722 @table @option
1723
1724 @item -prom-env @var{string}
1725
1726 Set OpenBIOS variables in NVRAM, for example:
1727
1728 @example
1729 qemu-system-sparc64 -prom-env 'auto-boot?=false'
1730 @end example
1731
1732 @item -M [sun4u|sun4v|Niagara]
1733
1734 Set the emulated machine type. The default is sun4u.
1735
1736 @end table
1737
1738 @c man end
1739
1740 @node MIPS System emulator
1741 @section MIPS System emulator
1742 @cindex system emulation (MIPS)
1743
1744 Four executables cover simulation of 32 and 64-bit MIPS systems in
1745 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1746 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1747 Five different machine types are emulated:
1748
1749 @itemize @minus
1750 @item
1751 A generic ISA PC-like machine "mips"
1752 @item
1753 The MIPS Malta prototype board "malta"
1754 @item
1755 An ACER Pica "pica61". This machine needs the 64-bit emulator.
1756 @item
1757 MIPS emulator pseudo board "mipssim"
1758 @item
1759 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1760 @end itemize
1761
1762 The generic emulation is supported by Debian 'Etch' and is able to
1763 install Debian into a virtual disk image. The following devices are
1764 emulated:
1765
1766 @itemize @minus
1767 @item
1768 A range of MIPS CPUs, default is the 24Kf
1769 @item
1770 PC style serial port
1771 @item
1772 PC style IDE disk
1773 @item
1774 NE2000 network card
1775 @end itemize
1776
1777 The Malta emulation supports the following devices:
1778
1779 @itemize @minus
1780 @item
1781 Core board with MIPS 24Kf CPU and Galileo system controller
1782 @item
1783 PIIX4 PCI/USB/SMbus controller
1784 @item
1785 The Multi-I/O chip's serial device
1786 @item
1787 PCI network cards (PCnet32 and others)
1788 @item
1789 Malta FPGA serial device
1790 @item
1791 Cirrus (default) or any other PCI VGA graphics card
1792 @end itemize
1793
1794 The ACER Pica emulation supports:
1795
1796 @itemize @minus
1797 @item
1798 MIPS R4000 CPU
1799 @item
1800 PC-style IRQ and DMA controllers
1801 @item
1802 PC Keyboard
1803 @item
1804 IDE controller
1805 @end itemize
1806
1807 The mipssim pseudo board emulation provides an environment similar
1808 to what the proprietary MIPS emulator uses for running Linux.
1809 It supports:
1810
1811 @itemize @minus
1812 @item
1813 A range of MIPS CPUs, default is the 24Kf
1814 @item
1815 PC style serial port
1816 @item
1817 MIPSnet network emulation
1818 @end itemize
1819
1820 The MIPS Magnum R4000 emulation supports:
1821
1822 @itemize @minus
1823 @item
1824 MIPS R4000 CPU
1825 @item
1826 PC-style IRQ controller
1827 @item
1828 PC Keyboard
1829 @item
1830 SCSI controller
1831 @item
1832 G364 framebuffer
1833 @end itemize
1834
1835
1836 @node ARM System emulator
1837 @section ARM System emulator
1838 @cindex system emulation (ARM)
1839
1840 Use the executable @file{qemu-system-arm} to simulate a ARM
1841 machine. The ARM Integrator/CP board is emulated with the following
1842 devices:
1843
1844 @itemize @minus
1845 @item
1846 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1847 @item
1848 Two PL011 UARTs
1849 @item
1850 SMC 91c111 Ethernet adapter
1851 @item
1852 PL110 LCD controller
1853 @item
1854 PL050 KMI with PS/2 keyboard and mouse.
1855 @item
1856 PL181 MultiMedia Card Interface with SD card.
1857 @end itemize
1858
1859 The ARM Versatile baseboard is emulated with the following devices:
1860
1861 @itemize @minus
1862 @item
1863 ARM926E, ARM1136 or Cortex-A8 CPU
1864 @item
1865 PL190 Vectored Interrupt Controller
1866 @item
1867 Four PL011 UARTs
1868 @item
1869 SMC 91c111 Ethernet adapter
1870 @item
1871 PL110 LCD controller
1872 @item
1873 PL050 KMI with PS/2 keyboard and mouse.
1874 @item
1875 PCI host bridge.  Note the emulated PCI bridge only provides access to
1876 PCI memory space.  It does not provide access to PCI IO space.
1877 This means some devices (eg. ne2k_pci NIC) are not usable, and others
1878 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1879 mapped control registers.
1880 @item
1881 PCI OHCI USB controller.
1882 @item
1883 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1884 @item
1885 PL181 MultiMedia Card Interface with SD card.
1886 @end itemize
1887
1888 Several variants of the ARM RealView baseboard are emulated,
1889 including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1890 bootloader, only certain Linux kernel configurations work out
1891 of the box on these boards.
1892
1893 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1894 enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1895 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1896 disabled and expect 1024M RAM.
1897
1898 The following devices are emulated:
1899
1900 @itemize @minus
1901 @item
1902 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1903 @item
1904 ARM AMBA Generic/Distributed Interrupt Controller
1905 @item
1906 Four PL011 UARTs
1907 @item
1908 SMC 91c111 or SMSC LAN9118 Ethernet adapter
1909 @item
1910 PL110 LCD controller
1911 @item
1912 PL050 KMI with PS/2 keyboard and mouse
1913 @item
1914 PCI host bridge
1915 @item
1916 PCI OHCI USB controller
1917 @item
1918 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1919 @item
1920 PL181 MultiMedia Card Interface with SD card.
1921 @end itemize
1922
1923 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1924 and "Terrier") emulation includes the following peripherals:
1925
1926 @itemize @minus
1927 @item
1928 Intel PXA270 System-on-chip (ARM V5TE core)
1929 @item
1930 NAND Flash memory
1931 @item
1932 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1933 @item
1934 On-chip OHCI USB controller
1935 @item
1936 On-chip LCD controller
1937 @item
1938 On-chip Real Time Clock
1939 @item
1940 TI ADS7846 touchscreen controller on SSP bus
1941 @item
1942 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1943 @item
1944 GPIO-connected keyboard controller and LEDs
1945 @item
1946 Secure Digital card connected to PXA MMC/SD host
1947 @item
1948 Three on-chip UARTs
1949 @item
1950 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1951 @end itemize
1952
1953 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1954 following elements:
1955
1956 @itemize @minus
1957 @item
1958 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1959 @item
1960 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1961 @item
1962 On-chip LCD controller
1963 @item
1964 On-chip Real Time Clock
1965 @item
1966 TI TSC2102i touchscreen controller / analog-digital converter / Audio
1967 CODEC, connected through MicroWire and I@math{^2}S busses
1968 @item
1969 GPIO-connected matrix keypad
1970 @item
1971 Secure Digital card connected to OMAP MMC/SD host
1972 @item
1973 Three on-chip UARTs
1974 @end itemize
1975
1976 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1977 emulation supports the following elements:
1978
1979 @itemize @minus
1980 @item
1981 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1982 @item
1983 RAM and non-volatile OneNAND Flash memories
1984 @item
1985 Display connected to EPSON remote framebuffer chip and OMAP on-chip
1986 display controller and a LS041y3 MIPI DBI-C controller
1987 @item
1988 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1989 driven through SPI bus
1990 @item
1991 National Semiconductor LM8323-controlled qwerty keyboard driven
1992 through I@math{^2}C bus
1993 @item
1994 Secure Digital card connected to OMAP MMC/SD host
1995 @item
1996 Three OMAP on-chip UARTs and on-chip STI debugging console
1997 @item
1998 A Bluetooth(R) transceiver and HCI connected to an UART
1999 @item
2000 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2001 TUSB6010 chip - only USB host mode is supported
2002 @item
2003 TI TMP105 temperature sensor driven through I@math{^2}C bus
2004 @item
2005 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2006 @item
2007 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2008 through CBUS
2009 @end itemize
2010
2011 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2012 devices:
2013
2014 @itemize @minus
2015 @item
2016 Cortex-M3 CPU core.
2017 @item
2018 64k Flash and 8k SRAM.
2019 @item
2020 Timers, UARTs, ADC and I@math{^2}C interface.
2021 @item
2022 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2023 @end itemize
2024
2025 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2026 devices:
2027
2028 @itemize @minus
2029 @item
2030 Cortex-M3 CPU core.
2031 @item
2032 256k Flash and 64k SRAM.
2033 @item
2034 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2035 @item
2036 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2037 @end itemize
2038
2039 The Freecom MusicPal internet radio emulation includes the following
2040 elements:
2041
2042 @itemize @minus
2043 @item
2044 Marvell MV88W8618 ARM core.
2045 @item
2046 32 MB RAM, 256 KB SRAM, 8 MB flash.
2047 @item
2048 Up to 2 16550 UARTs
2049 @item
2050 MV88W8xx8 Ethernet controller
2051 @item
2052 MV88W8618 audio controller, WM8750 CODEC and mixer
2053 @item
2054 128×64 display with brightness control
2055 @item
2056 2 buttons, 2 navigation wheels with button function
2057 @end itemize
2058
2059 The Siemens SX1 models v1 and v2 (default) basic emulation.
2060 The emulation includes the following elements:
2061
2062 @itemize @minus
2063 @item
2064 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2065 @item
2066 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2067 V1
2068 1 Flash of 16MB and 1 Flash of 8MB
2069 V2
2070 1 Flash of 32MB
2071 @item
2072 On-chip LCD controller
2073 @item
2074 On-chip Real Time Clock
2075 @item
2076 Secure Digital card connected to OMAP MMC/SD host
2077 @item
2078 Three on-chip UARTs
2079 @end itemize
2080
2081 A Linux 2.6 test image is available on the QEMU web site. More
2082 information is available in the QEMU mailing-list archive.
2083
2084 @c man begin OPTIONS
2085
2086 The following options are specific to the ARM emulation:
2087
2088 @table @option
2089
2090 @item -semihosting
2091 Enable semihosting syscall emulation.
2092
2093 On ARM this implements the "Angel" interface.
2094
2095 Note that this allows guest direct access to the host filesystem,
2096 so should only be used with trusted guest OS.
2097
2098 @end table
2099
2100 @node ColdFire System emulator
2101 @section ColdFire System emulator
2102 @cindex system emulation (ColdFire)
2103 @cindex system emulation (M68K)
2104
2105 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2106 The emulator is able to boot a uClinux kernel.
2107
2108 The M5208EVB emulation includes the following devices:
2109
2110 @itemize @minus
2111 @item
2112 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2113 @item
2114 Three Two on-chip UARTs.
2115 @item
2116 Fast Ethernet Controller (FEC)
2117 @end itemize
2118
2119 The AN5206 emulation includes the following devices:
2120
2121 @itemize @minus
2122 @item
2123 MCF5206 ColdFire V2 Microprocessor.
2124 @item
2125 Two on-chip UARTs.
2126 @end itemize
2127
2128 @c man begin OPTIONS
2129
2130 The following options are specific to the ColdFire emulation:
2131
2132 @table @option
2133
2134 @item -semihosting
2135 Enable semihosting syscall emulation.
2136
2137 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2138
2139 Note that this allows guest direct access to the host filesystem,
2140 so should only be used with trusted guest OS.
2141
2142 @end table
2143
2144 @node Cris System emulator
2145 @section Cris System emulator
2146 @cindex system emulation (Cris)
2147
2148 TODO
2149
2150 @node Microblaze System emulator
2151 @section Microblaze System emulator
2152 @cindex system emulation (Microblaze)
2153
2154 TODO
2155
2156 @node SH4 System emulator
2157 @section SH4 System emulator
2158 @cindex system emulation (SH4)
2159
2160 TODO
2161
2162 @node Xtensa System emulator
2163 @section Xtensa System emulator
2164 @cindex system emulation (Xtensa)
2165
2166 Two executables cover simulation of both Xtensa endian options,
2167 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2168 Two different machine types are emulated:
2169
2170 @itemize @minus
2171 @item
2172 Xtensa emulator pseudo board "sim"
2173 @item
2174 Avnet LX60/LX110/LX200 board
2175 @end itemize
2176
2177 The sim pseudo board emulation provides an environment similar
2178 to one provided by the proprietary Tensilica ISS.
2179 It supports:
2180
2181 @itemize @minus
2182 @item
2183 A range of Xtensa CPUs, default is the DC232B
2184 @item
2185 Console and filesystem access via semihosting calls
2186 @end itemize
2187
2188 The Avnet LX60/LX110/LX200 emulation supports:
2189
2190 @itemize @minus
2191 @item
2192 A range of Xtensa CPUs, default is the DC232B
2193 @item
2194 16550 UART
2195 @item
2196 OpenCores 10/100 Mbps Ethernet MAC
2197 @end itemize
2198
2199 @c man begin OPTIONS
2200
2201 The following options are specific to the Xtensa emulation:
2202
2203 @table @option
2204
2205 @item -semihosting
2206 Enable semihosting syscall emulation.
2207
2208 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2209 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2210
2211 Note that this allows guest direct access to the host filesystem,
2212 so should only be used with trusted guest OS.
2213
2214 @end table
2215 @node QEMU User space emulator
2216 @chapter QEMU User space emulator
2217
2218 @menu
2219 * Supported Operating Systems ::
2220 * Linux User space emulator::
2221 * Mac OS X/Darwin User space emulator ::
2222 * BSD User space emulator ::
2223 @end menu
2224
2225 @node Supported Operating Systems
2226 @section Supported Operating Systems
2227
2228 The following OS are supported in user space emulation:
2229
2230 @itemize @minus
2231 @item
2232 Linux (referred as qemu-linux-user)
2233 @item
2234 Mac OS X/Darwin (referred as qemu-darwin-user)
2235 @item
2236 BSD (referred as qemu-bsd-user)
2237 @end itemize
2238
2239 @node Linux User space emulator
2240 @section Linux User space emulator
2241
2242 @menu
2243 * Quick Start::
2244 * Wine launch::
2245 * Command line options::
2246 * Other binaries::
2247 @end menu
2248
2249 @node Quick Start
2250 @subsection Quick Start
2251
2252 In order to launch a Linux process, QEMU needs the process executable
2253 itself and all the target (x86) dynamic libraries used by it.
2254
2255 @itemize
2256
2257 @item On x86, you can just try to launch any process by using the native
2258 libraries:
2259
2260 @example
2261 qemu-i386 -L / /bin/ls
2262 @end example
2263
2264 @code{-L /} tells that the x86 dynamic linker must be searched with a
2265 @file{/} prefix.
2266
2267 @item Since QEMU is also a linux process, you can launch qemu with
2268 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2269
2270 @example
2271 qemu-i386 -L / qemu-i386 -L / /bin/ls
2272 @end example
2273
2274 @item On non x86 CPUs, you need first to download at least an x86 glibc
2275 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2276 @code{LD_LIBRARY_PATH} is not set:
2277
2278 @example
2279 unset LD_LIBRARY_PATH
2280 @end example
2281
2282 Then you can launch the precompiled @file{ls} x86 executable:
2283
2284 @example
2285 qemu-i386 tests/i386/ls
2286 @end example
2287 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2288 QEMU is automatically launched by the Linux kernel when you try to
2289 launch x86 executables. It requires the @code{binfmt_misc} module in the
2290 Linux kernel.
2291
2292 @item The x86 version of QEMU is also included. You can try weird things such as:
2293 @example
2294 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2295           /usr/local/qemu-i386/bin/ls-i386
2296 @end example
2297
2298 @end itemize
2299
2300 @node Wine launch
2301 @subsection Wine launch
2302
2303 @itemize
2304
2305 @item Ensure that you have a working QEMU with the x86 glibc
2306 distribution (see previous section). In order to verify it, you must be
2307 able to do:
2308
2309 @example
2310 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2311 @end example
2312
2313 @item Download the binary x86 Wine install
2314 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2315
2316 @item Configure Wine on your account. Look at the provided script
2317 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2318 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2319
2320 @item Then you can try the example @file{putty.exe}:
2321
2322 @example
2323 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2324           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2325 @end example
2326
2327 @end itemize
2328
2329 @node Command line options
2330 @subsection Command line options
2331
2332 @example
2333 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2334 @end example
2335
2336 @table @option
2337 @item -h
2338 Print the help
2339 @item -L path
2340 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2341 @item -s size
2342 Set the x86 stack size in bytes (default=524288)
2343 @item -cpu model
2344 Select CPU model (-cpu ? for list and additional feature selection)
2345 @item -ignore-environment
2346 Start with an empty environment. Without this option,
2347 the initial environment is a copy of the caller's environment.
2348 @item -E @var{var}=@var{value}
2349 Set environment @var{var} to @var{value}.
2350 @item -U @var{var}
2351 Remove @var{var} from the environment.
2352 @item -B offset
2353 Offset guest address by the specified number of bytes.  This is useful when
2354 the address region required by guest applications is reserved on the host.
2355 This option is currently only supported on some hosts.
2356 @item -R size
2357 Pre-allocate a guest virtual address space of the given size (in bytes).
2358 "G", "M", and "k" suffixes may be used when specifying the size.
2359 @end table
2360
2361 Debug options:
2362
2363 @table @option
2364 @item -d
2365 Activate log (logfile=/tmp/qemu.log)
2366 @item -p pagesize
2367 Act as if the host page size was 'pagesize' bytes
2368 @item -g port
2369 Wait gdb connection to port
2370 @item -singlestep
2371 Run the emulation in single step mode.
2372 @end table
2373
2374 Environment variables:
2375
2376 @table @env
2377 @item QEMU_STRACE
2378 Print system calls and arguments similar to the 'strace' program
2379 (NOTE: the actual 'strace' program will not work because the user
2380 space emulator hasn't implemented ptrace).  At the moment this is
2381 incomplete.  All system calls that don't have a specific argument
2382 format are printed with information for six arguments.  Many
2383 flag-style arguments don't have decoders and will show up as numbers.
2384 @end table
2385
2386 @node Other binaries
2387 @subsection Other binaries
2388
2389 @cindex user mode (Alpha)
2390 @command{qemu-alpha} TODO.
2391
2392 @cindex user mode (ARM)
2393 @command{qemu-armeb} TODO.
2394
2395 @cindex user mode (ARM)
2396 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2397 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2398 configurations), and arm-uclinux bFLT format binaries.
2399
2400 @cindex user mode (ColdFire)
2401 @cindex user mode (M68K)
2402 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2403 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2404 coldfire uClinux bFLT format binaries.
2405
2406 The binary format is detected automatically.
2407
2408 @cindex user mode (Cris)
2409 @command{qemu-cris} TODO.
2410
2411 @cindex user mode (i386)
2412 @command{qemu-i386} TODO.
2413 @command{qemu-x86_64} TODO.
2414
2415 @cindex user mode (Microblaze)
2416 @command{qemu-microblaze} TODO.
2417
2418 @cindex user mode (MIPS)
2419 @command{qemu-mips} TODO.
2420 @command{qemu-mipsel} TODO.
2421
2422 @cindex user mode (PowerPC)
2423 @command{qemu-ppc64abi32} TODO.
2424 @command{qemu-ppc64} TODO.
2425 @command{qemu-ppc} TODO.
2426
2427 @cindex user mode (SH4)
2428 @command{qemu-sh4eb} TODO.
2429 @command{qemu-sh4} TODO.
2430
2431 @cindex user mode (SPARC)
2432 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2433
2434 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2435 (Sparc64 CPU, 32 bit ABI).
2436
2437 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2438 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2439
2440 @node Mac OS X/Darwin User space emulator
2441 @section Mac OS X/Darwin User space emulator
2442
2443 @menu
2444 * Mac OS X/Darwin Status::
2445 * Mac OS X/Darwin Quick Start::
2446 * Mac OS X/Darwin Command line options::
2447 @end menu
2448
2449 @node Mac OS X/Darwin Status
2450 @subsection Mac OS X/Darwin Status
2451
2452 @itemize @minus
2453 @item
2454 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2455 @item
2456 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2457 @item
2458 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2459 @item
2460 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2461 @end itemize
2462
2463 [1] If you're host commpage can be executed by qemu.
2464
2465 @node Mac OS X/Darwin Quick Start
2466 @subsection Quick Start
2467
2468 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2469 itself and all the target dynamic libraries used by it. If you don't have the FAT
2470 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2471 CD or compile them by hand.
2472
2473 @itemize
2474
2475 @item On x86, you can just try to launch any process by using the native
2476 libraries:
2477
2478 @example
2479 qemu-i386 /bin/ls
2480 @end example
2481
2482 or to run the ppc version of the executable:
2483
2484 @example
2485 qemu-ppc /bin/ls
2486 @end example
2487
2488 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2489 are installed:
2490
2491 @example
2492 qemu-i386 -L /opt/x86_root/ /bin/ls
2493 @end example
2494
2495 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2496 @file{/opt/x86_root/usr/bin/dyld}.
2497
2498 @end itemize
2499
2500 @node Mac OS X/Darwin Command line options
2501 @subsection Command line options
2502
2503 @example
2504 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2505 @end example
2506
2507 @table @option
2508 @item -h
2509 Print the help
2510 @item -L path
2511 Set the library root path (default=/)
2512 @item -s size
2513 Set the stack size in bytes (default=524288)
2514 @end table
2515
2516 Debug options:
2517
2518 @table @option
2519 @item -d
2520 Activate log (logfile=/tmp/qemu.log)
2521 @item -p pagesize
2522 Act as if the host page size was 'pagesize' bytes
2523 @item -singlestep
2524 Run the emulation in single step mode.
2525 @end table
2526
2527 @node BSD User space emulator
2528 @section BSD User space emulator
2529
2530 @menu
2531 * BSD Status::
2532 * BSD Quick Start::
2533 * BSD Command line options::
2534 @end menu
2535
2536 @node BSD Status
2537 @subsection BSD Status
2538
2539 @itemize @minus
2540 @item
2541 target Sparc64 on Sparc64: Some trivial programs work.
2542 @end itemize
2543
2544 @node BSD Quick Start
2545 @subsection Quick Start
2546
2547 In order to launch a BSD process, QEMU needs the process executable
2548 itself and all the target dynamic libraries used by it.
2549
2550 @itemize
2551
2552 @item On Sparc64, you can just try to launch any process by using the native
2553 libraries:
2554
2555 @example
2556 qemu-sparc64 /bin/ls
2557 @end example
2558
2559 @end itemize
2560
2561 @node BSD Command line options
2562 @subsection Command line options
2563
2564 @example
2565 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2566 @end example
2567
2568 @table @option
2569 @item -h
2570 Print the help
2571 @item -L path
2572 Set the library root path (default=/)
2573 @item -s size
2574 Set the stack size in bytes (default=524288)
2575 @item -ignore-environment
2576 Start with an empty environment. Without this option,
2577 the initial environment is a copy of the caller's environment.
2578 @item -E @var{var}=@var{value}
2579 Set environment @var{var} to @var{value}.
2580 @item -U @var{var}
2581 Remove @var{var} from the environment.
2582 @item -bsd type
2583 Set the type of the emulated BSD Operating system. Valid values are
2584 FreeBSD, NetBSD and OpenBSD (default).
2585 @end table
2586
2587 Debug options:
2588
2589 @table @option
2590 @item -d
2591 Activate log (logfile=/tmp/qemu.log)
2592 @item -p pagesize
2593 Act as if the host page size was 'pagesize' bytes
2594 @item -singlestep
2595 Run the emulation in single step mode.
2596 @end table
2597
2598 @node compilation
2599 @chapter Compilation from the sources
2600
2601 @menu
2602 * Linux/Unix::
2603 * Windows::
2604 * Cross compilation for Windows with Linux::
2605 * Mac OS X::
2606 * Make targets::
2607 @end menu
2608
2609 @node Linux/Unix
2610 @section Linux/Unix
2611
2612 @subsection Compilation
2613
2614 First you must decompress the sources:
2615 @example
2616 cd /tmp
2617 tar zxvf qemu-x.y.z.tar.gz
2618 cd qemu-x.y.z
2619 @end example
2620
2621 Then you configure QEMU and build it (usually no options are needed):
2622 @example
2623 ./configure
2624 make
2625 @end example
2626
2627 Then type as root user:
2628 @example
2629 make install
2630 @end example
2631 to install QEMU in @file{/usr/local}.
2632
2633 @node Windows
2634 @section Windows
2635
2636 @itemize
2637 @item Install the current versions of MSYS and MinGW from
2638 @url{http://www.mingw.org/}. You can find detailed installation
2639 instructions in the download section and the FAQ.
2640
2641 @item Download
2642 the MinGW development library of SDL 1.2.x
2643 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2644 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2645 edit the @file{sdl-config} script so that it gives the
2646 correct SDL directory when invoked.
2647
2648 @item Install the MinGW version of zlib and make sure
2649 @file{zlib.h} and @file{libz.dll.a} are in
2650 MinGW's default header and linker search paths.
2651
2652 @item Extract the current version of QEMU.
2653
2654 @item Start the MSYS shell (file @file{msys.bat}).
2655
2656 @item Change to the QEMU directory. Launch @file{./configure} and
2657 @file{make}.  If you have problems using SDL, verify that
2658 @file{sdl-config} can be launched from the MSYS command line.
2659
2660 @item You can install QEMU in @file{Program Files/Qemu} by typing
2661 @file{make install}. Don't forget to copy @file{SDL.dll} in
2662 @file{Program Files/Qemu}.
2663
2664 @end itemize
2665
2666 @node Cross compilation for Windows with Linux
2667 @section Cross compilation for Windows with Linux
2668
2669 @itemize
2670 @item
2671 Install the MinGW cross compilation tools available at
2672 @url{http://www.mingw.org/}.
2673
2674 @item Download
2675 the MinGW development library of SDL 1.2.x
2676 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2677 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2678 edit the @file{sdl-config} script so that it gives the
2679 correct SDL directory when invoked.  Set up the @code{PATH} environment
2680 variable so that @file{sdl-config} can be launched by
2681 the QEMU configuration script.
2682
2683 @item Install the MinGW version of zlib and make sure
2684 @file{zlib.h} and @file{libz.dll.a} are in
2685 MinGW's default header and linker search paths.
2686
2687 @item
2688 Configure QEMU for Windows cross compilation:
2689 @example
2690 PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2691 @end example
2692 The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2693 MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2694 We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2695 use --cross-prefix to specify the name of the cross compiler.
2696 You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2697
2698 Under Fedora Linux, you can run:
2699 @example
2700 yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2701 @end example
2702 to get a suitable cross compilation environment.
2703
2704 @item You can install QEMU in the installation directory by typing
2705 @code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2706 installation directory.
2707
2708 @end itemize
2709
2710 Wine can be used to launch the resulting qemu.exe compiled for Win32.
2711
2712 @node Mac OS X
2713 @section Mac OS X
2714
2715 The Mac OS X patches are not fully merged in QEMU, so you should look
2716 at the QEMU mailing list archive to have all the necessary
2717 information.
2718
2719 @node Make targets
2720 @section Make targets
2721
2722 @table @code
2723
2724 @item make
2725 @item make all
2726 Make everything which is typically needed.
2727
2728 @item install
2729 TODO
2730
2731 @item install-doc
2732 TODO
2733
2734 @item make clean
2735 Remove most files which were built during make.
2736
2737 @item make distclean
2738 Remove everything which was built during make.
2739
2740 @item make dvi
2741 @item make html
2742 @item make info
2743 @item make pdf
2744 Create documentation in dvi, html, info or pdf format.
2745
2746 @item make cscope
2747 TODO
2748
2749 @item make defconfig
2750 (Re-)create some build configuration files.
2751 User made changes will be overwritten.
2752
2753 @item tar
2754 @item tarbin
2755 TODO
2756
2757 @end table
2758
2759 @node License
2760 @appendix License
2761
2762 QEMU is a trademark of Fabrice Bellard.
2763
2764 QEMU is released under the GNU General Public License (TODO: add link).
2765 Parts of QEMU have specific licenses, see file LICENSE.
2766
2767 TODO (refer to file LICENSE, include it, include the GPL?)
2768
2769 @node Index
2770 @appendix Index
2771 @menu
2772 * Concept Index::
2773 * Function Index::
2774 * Keystroke Index::
2775 * Program Index::
2776 * Data Type Index::
2777 * Variable Index::
2778 @end menu
2779
2780 @node Concept Index
2781 @section Concept Index
2782 This is the main index. Should we combine all keywords in one index? TODO
2783 @printindex cp
2784
2785 @node Function Index
2786 @section Function Index
2787 This index could be used for command line options and monitor functions.
2788 @printindex fn
2789
2790 @node Keystroke Index
2791 @section Keystroke Index
2792
2793 This is a list of all keystrokes which have a special function
2794 in system emulation.
2795
2796 @printindex ky
2797
2798 @node Program Index
2799 @section Program Index
2800 @printindex pg
2801
2802 @node Data Type Index
2803 @section Data Type Index
2804
2805 This index could be used for qdev device names and options.
2806
2807 @printindex tp
2808
2809 @node Variable Index
2810 @section Variable Index
2811 @printindex vr
2812
2813 @bye