slirp: correct size computation while concatenating mbuf
[qemu.git] / slirp / slirp.c
1 /*
2 * libslirp glue
3 *
4 * Copyright (c) 2004-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "qemu/timer.h"
27 #include "qemu/error-report.h"
28 #include "chardev/char-fe.h"
29 #include "migration/register.h"
30 #include "slirp.h"
31 #include "hw/hw.h"
32 #include "qemu/cutils.h"
33
34 #ifndef _WIN32
35 #include <net/if.h>
36 #endif
37
38 /* host loopback address */
39 struct in_addr loopback_addr;
40 /* host loopback network mask */
41 unsigned long loopback_mask;
42
43 /* emulated hosts use the MAC addr 52:55:IP:IP:IP:IP */
44 static const uint8_t special_ethaddr[ETH_ALEN] = {
45 0x52, 0x55, 0x00, 0x00, 0x00, 0x00
46 };
47
48 u_int curtime;
49
50 static QTAILQ_HEAD(slirp_instances, Slirp) slirp_instances =
51 QTAILQ_HEAD_INITIALIZER(slirp_instances);
52
53 static struct in_addr dns_addr;
54 #ifndef _WIN32
55 static struct in6_addr dns6_addr;
56 #endif
57 static u_int dns_addr_time;
58 #ifndef _WIN32
59 static u_int dns6_addr_time;
60 #endif
61
62 #define TIMEOUT_FAST 2 /* milliseconds */
63 #define TIMEOUT_SLOW 499 /* milliseconds */
64 /* for the aging of certain requests like DNS */
65 #define TIMEOUT_DEFAULT 1000 /* milliseconds */
66
67 #ifdef _WIN32
68
69 int get_dns_addr(struct in_addr *pdns_addr)
70 {
71 FIXED_INFO *FixedInfo=NULL;
72 ULONG BufLen;
73 DWORD ret;
74 IP_ADDR_STRING *pIPAddr;
75 struct in_addr tmp_addr;
76
77 if (dns_addr.s_addr != 0 && (curtime - dns_addr_time) < TIMEOUT_DEFAULT) {
78 *pdns_addr = dns_addr;
79 return 0;
80 }
81
82 FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO));
83 BufLen = sizeof(FIXED_INFO);
84
85 if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) {
86 if (FixedInfo) {
87 GlobalFree(FixedInfo);
88 FixedInfo = NULL;
89 }
90 FixedInfo = GlobalAlloc(GPTR, BufLen);
91 }
92
93 if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) {
94 printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret );
95 if (FixedInfo) {
96 GlobalFree(FixedInfo);
97 FixedInfo = NULL;
98 }
99 return -1;
100 }
101
102 pIPAddr = &(FixedInfo->DnsServerList);
103 inet_aton(pIPAddr->IpAddress.String, &tmp_addr);
104 *pdns_addr = tmp_addr;
105 dns_addr = tmp_addr;
106 dns_addr_time = curtime;
107 if (FixedInfo) {
108 GlobalFree(FixedInfo);
109 FixedInfo = NULL;
110 }
111 return 0;
112 }
113
114 int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id)
115 {
116 return -1;
117 }
118
119 static void winsock_cleanup(void)
120 {
121 WSACleanup();
122 }
123
124 #else
125
126 static int get_dns_addr_cached(void *pdns_addr, void *cached_addr,
127 socklen_t addrlen,
128 struct stat *cached_stat, u_int *cached_time)
129 {
130 struct stat old_stat;
131 if (curtime - *cached_time < TIMEOUT_DEFAULT) {
132 memcpy(pdns_addr, cached_addr, addrlen);
133 return 0;
134 }
135 old_stat = *cached_stat;
136 if (stat("/etc/resolv.conf", cached_stat) != 0) {
137 return -1;
138 }
139 if (cached_stat->st_dev == old_stat.st_dev
140 && cached_stat->st_ino == old_stat.st_ino
141 && cached_stat->st_size == old_stat.st_size
142 && cached_stat->st_mtime == old_stat.st_mtime) {
143 memcpy(pdns_addr, cached_addr, addrlen);
144 return 0;
145 }
146 return 1;
147 }
148
149 static int get_dns_addr_resolv_conf(int af, void *pdns_addr, void *cached_addr,
150 socklen_t addrlen, uint32_t *scope_id,
151 u_int *cached_time)
152 {
153 char buff[512];
154 char buff2[257];
155 FILE *f;
156 int found = 0;
157 void *tmp_addr = alloca(addrlen);
158 unsigned if_index;
159
160 f = fopen("/etc/resolv.conf", "r");
161 if (!f)
162 return -1;
163
164 #ifdef DEBUG
165 fprintf(stderr, "IP address of your DNS(s): ");
166 #endif
167 while (fgets(buff, 512, f) != NULL) {
168 if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
169 char *c = strchr(buff2, '%');
170 if (c) {
171 if_index = if_nametoindex(c + 1);
172 *c = '\0';
173 } else {
174 if_index = 0;
175 }
176
177 if (!inet_pton(af, buff2, tmp_addr)) {
178 continue;
179 }
180 /* If it's the first one, set it to dns_addr */
181 if (!found) {
182 memcpy(pdns_addr, tmp_addr, addrlen);
183 memcpy(cached_addr, tmp_addr, addrlen);
184 if (scope_id) {
185 *scope_id = if_index;
186 }
187 *cached_time = curtime;
188 }
189 #ifdef DEBUG
190 else
191 fprintf(stderr, ", ");
192 #endif
193 if (++found > 3) {
194 #ifdef DEBUG
195 fprintf(stderr, "(more)");
196 #endif
197 break;
198 }
199 #ifdef DEBUG
200 else {
201 char s[INET6_ADDRSTRLEN];
202 const char *res = inet_ntop(af, tmp_addr, s, sizeof(s));
203 if (!res) {
204 res = "(string conversion error)";
205 }
206 fprintf(stderr, "%s", res);
207 }
208 #endif
209 }
210 }
211 fclose(f);
212 if (!found)
213 return -1;
214 return 0;
215 }
216
217 int get_dns_addr(struct in_addr *pdns_addr)
218 {
219 static struct stat dns_addr_stat;
220
221 if (dns_addr.s_addr != 0) {
222 int ret;
223 ret = get_dns_addr_cached(pdns_addr, &dns_addr, sizeof(dns_addr),
224 &dns_addr_stat, &dns_addr_time);
225 if (ret <= 0) {
226 return ret;
227 }
228 }
229 return get_dns_addr_resolv_conf(AF_INET, pdns_addr, &dns_addr,
230 sizeof(dns_addr), NULL, &dns_addr_time);
231 }
232
233 int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id)
234 {
235 static struct stat dns6_addr_stat;
236
237 if (!in6_zero(&dns6_addr)) {
238 int ret;
239 ret = get_dns_addr_cached(pdns6_addr, &dns6_addr, sizeof(dns6_addr),
240 &dns6_addr_stat, &dns6_addr_time);
241 if (ret <= 0) {
242 return ret;
243 }
244 }
245 return get_dns_addr_resolv_conf(AF_INET6, pdns6_addr, &dns6_addr,
246 sizeof(dns6_addr),
247 scope_id, &dns6_addr_time);
248 }
249
250 #endif
251
252 static void slirp_init_once(void)
253 {
254 static int initialized;
255 #ifdef _WIN32
256 WSADATA Data;
257 #endif
258
259 if (initialized) {
260 return;
261 }
262 initialized = 1;
263
264 #ifdef _WIN32
265 WSAStartup(MAKEWORD(2,0), &Data);
266 atexit(winsock_cleanup);
267 #endif
268
269 loopback_addr.s_addr = htonl(INADDR_LOOPBACK);
270 loopback_mask = htonl(IN_CLASSA_NET);
271 }
272
273 static void slirp_state_save(QEMUFile *f, void *opaque);
274 static int slirp_state_load(QEMUFile *f, void *opaque, int version_id);
275
276 static SaveVMHandlers savevm_slirp_state = {
277 .save_state = slirp_state_save,
278 .load_state = slirp_state_load,
279 };
280
281 Slirp *slirp_init(int restricted, bool in_enabled, struct in_addr vnetwork,
282 struct in_addr vnetmask, struct in_addr vhost,
283 bool in6_enabled,
284 struct in6_addr vprefix_addr6, uint8_t vprefix_len,
285 struct in6_addr vhost6, const char *vhostname,
286 const char *tftp_path, const char *bootfile,
287 struct in_addr vdhcp_start, struct in_addr vnameserver,
288 struct in6_addr vnameserver6, const char **vdnssearch,
289 const char *vdomainname, void *opaque)
290 {
291 Slirp *slirp = g_malloc0(sizeof(Slirp));
292
293 slirp_init_once();
294
295 slirp->grand = g_rand_new();
296 slirp->restricted = restricted;
297
298 slirp->in_enabled = in_enabled;
299 slirp->in6_enabled = in6_enabled;
300
301 if_init(slirp);
302 ip_init(slirp);
303 ip6_init(slirp);
304
305 /* Initialise mbufs *after* setting the MTU */
306 m_init(slirp);
307
308 slirp->vnetwork_addr = vnetwork;
309 slirp->vnetwork_mask = vnetmask;
310 slirp->vhost_addr = vhost;
311 slirp->vprefix_addr6 = vprefix_addr6;
312 slirp->vprefix_len = vprefix_len;
313 slirp->vhost_addr6 = vhost6;
314 if (vhostname) {
315 pstrcpy(slirp->client_hostname, sizeof(slirp->client_hostname),
316 vhostname);
317 }
318 slirp->tftp_prefix = g_strdup(tftp_path);
319 slirp->bootp_filename = g_strdup(bootfile);
320 slirp->vdomainname = g_strdup(vdomainname);
321 slirp->vdhcp_startaddr = vdhcp_start;
322 slirp->vnameserver_addr = vnameserver;
323 slirp->vnameserver_addr6 = vnameserver6;
324
325 if (vdnssearch) {
326 translate_dnssearch(slirp, vdnssearch);
327 }
328
329 slirp->opaque = opaque;
330
331 register_savevm_live(NULL, "slirp", 0, 4, &savevm_slirp_state, slirp);
332
333 QTAILQ_INSERT_TAIL(&slirp_instances, slirp, entry);
334
335 return slirp;
336 }
337
338 void slirp_cleanup(Slirp *slirp)
339 {
340 QTAILQ_REMOVE(&slirp_instances, slirp, entry);
341
342 unregister_savevm(NULL, "slirp", slirp);
343
344 ip_cleanup(slirp);
345 ip6_cleanup(slirp);
346 m_cleanup(slirp);
347
348 g_rand_free(slirp->grand);
349
350 g_free(slirp->vdnssearch);
351 g_free(slirp->tftp_prefix);
352 g_free(slirp->bootp_filename);
353 g_free(slirp->vdomainname);
354 g_free(slirp);
355 }
356
357 #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
358 #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
359
360 static void slirp_update_timeout(uint32_t *timeout)
361 {
362 Slirp *slirp;
363 uint32_t t;
364
365 if (*timeout <= TIMEOUT_FAST) {
366 return;
367 }
368
369 t = MIN(1000, *timeout);
370
371 /* If we have tcp timeout with slirp, then we will fill @timeout with
372 * more precise value.
373 */
374 QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
375 if (slirp->time_fasttimo) {
376 *timeout = TIMEOUT_FAST;
377 return;
378 }
379 if (slirp->do_slowtimo) {
380 t = MIN(TIMEOUT_SLOW, t);
381 }
382 }
383 *timeout = t;
384 }
385
386 void slirp_pollfds_fill(GArray *pollfds, uint32_t *timeout)
387 {
388 Slirp *slirp;
389 struct socket *so, *so_next;
390
391 if (QTAILQ_EMPTY(&slirp_instances)) {
392 return;
393 }
394
395 /*
396 * First, TCP sockets
397 */
398
399 QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
400 /*
401 * *_slowtimo needs calling if there are IP fragments
402 * in the fragment queue, or there are TCP connections active
403 */
404 slirp->do_slowtimo = ((slirp->tcb.so_next != &slirp->tcb) ||
405 (&slirp->ipq.ip_link != slirp->ipq.ip_link.next));
406
407 for (so = slirp->tcb.so_next; so != &slirp->tcb;
408 so = so_next) {
409 int events = 0;
410
411 so_next = so->so_next;
412
413 so->pollfds_idx = -1;
414
415 /*
416 * See if we need a tcp_fasttimo
417 */
418 if (slirp->time_fasttimo == 0 &&
419 so->so_tcpcb->t_flags & TF_DELACK) {
420 slirp->time_fasttimo = curtime; /* Flag when want a fasttimo */
421 }
422
423 /*
424 * NOFDREF can include still connecting to local-host,
425 * newly socreated() sockets etc. Don't want to select these.
426 */
427 if (so->so_state & SS_NOFDREF || so->s == -1) {
428 continue;
429 }
430
431 /*
432 * Set for reading sockets which are accepting
433 */
434 if (so->so_state & SS_FACCEPTCONN) {
435 GPollFD pfd = {
436 .fd = so->s,
437 .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
438 };
439 so->pollfds_idx = pollfds->len;
440 g_array_append_val(pollfds, pfd);
441 continue;
442 }
443
444 /*
445 * Set for writing sockets which are connecting
446 */
447 if (so->so_state & SS_ISFCONNECTING) {
448 GPollFD pfd = {
449 .fd = so->s,
450 .events = G_IO_OUT | G_IO_ERR,
451 };
452 so->pollfds_idx = pollfds->len;
453 g_array_append_val(pollfds, pfd);
454 continue;
455 }
456
457 /*
458 * Set for writing if we are connected, can send more, and
459 * we have something to send
460 */
461 if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
462 events |= G_IO_OUT | G_IO_ERR;
463 }
464
465 /*
466 * Set for reading (and urgent data) if we are connected, can
467 * receive more, and we have room for it XXX /2 ?
468 */
469 if (CONN_CANFRCV(so) &&
470 (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
471 events |= G_IO_IN | G_IO_HUP | G_IO_ERR | G_IO_PRI;
472 }
473
474 if (events) {
475 GPollFD pfd = {
476 .fd = so->s,
477 .events = events,
478 };
479 so->pollfds_idx = pollfds->len;
480 g_array_append_val(pollfds, pfd);
481 }
482 }
483
484 /*
485 * UDP sockets
486 */
487 for (so = slirp->udb.so_next; so != &slirp->udb;
488 so = so_next) {
489 so_next = so->so_next;
490
491 so->pollfds_idx = -1;
492
493 /*
494 * See if it's timed out
495 */
496 if (so->so_expire) {
497 if (so->so_expire <= curtime) {
498 udp_detach(so);
499 continue;
500 } else {
501 slirp->do_slowtimo = true; /* Let socket expire */
502 }
503 }
504
505 /*
506 * When UDP packets are received from over the
507 * link, they're sendto()'d straight away, so
508 * no need for setting for writing
509 * Limit the number of packets queued by this session
510 * to 4. Note that even though we try and limit this
511 * to 4 packets, the session could have more queued
512 * if the packets needed to be fragmented
513 * (XXX <= 4 ?)
514 */
515 if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
516 GPollFD pfd = {
517 .fd = so->s,
518 .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
519 };
520 so->pollfds_idx = pollfds->len;
521 g_array_append_val(pollfds, pfd);
522 }
523 }
524
525 /*
526 * ICMP sockets
527 */
528 for (so = slirp->icmp.so_next; so != &slirp->icmp;
529 so = so_next) {
530 so_next = so->so_next;
531
532 so->pollfds_idx = -1;
533
534 /*
535 * See if it's timed out
536 */
537 if (so->so_expire) {
538 if (so->so_expire <= curtime) {
539 icmp_detach(so);
540 continue;
541 } else {
542 slirp->do_slowtimo = true; /* Let socket expire */
543 }
544 }
545
546 if (so->so_state & SS_ISFCONNECTED) {
547 GPollFD pfd = {
548 .fd = so->s,
549 .events = G_IO_IN | G_IO_HUP | G_IO_ERR,
550 };
551 so->pollfds_idx = pollfds->len;
552 g_array_append_val(pollfds, pfd);
553 }
554 }
555 }
556 slirp_update_timeout(timeout);
557 }
558
559 void slirp_pollfds_poll(GArray *pollfds, int select_error)
560 {
561 Slirp *slirp;
562 struct socket *so, *so_next;
563 int ret;
564
565 if (QTAILQ_EMPTY(&slirp_instances)) {
566 return;
567 }
568
569 curtime = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
570
571 QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
572 /*
573 * See if anything has timed out
574 */
575 if (slirp->time_fasttimo &&
576 ((curtime - slirp->time_fasttimo) >= TIMEOUT_FAST)) {
577 tcp_fasttimo(slirp);
578 slirp->time_fasttimo = 0;
579 }
580 if (slirp->do_slowtimo &&
581 ((curtime - slirp->last_slowtimo) >= TIMEOUT_SLOW)) {
582 ip_slowtimo(slirp);
583 tcp_slowtimo(slirp);
584 slirp->last_slowtimo = curtime;
585 }
586
587 /*
588 * Check sockets
589 */
590 if (!select_error) {
591 /*
592 * Check TCP sockets
593 */
594 for (so = slirp->tcb.so_next; so != &slirp->tcb;
595 so = so_next) {
596 int revents;
597
598 so_next = so->so_next;
599
600 revents = 0;
601 if (so->pollfds_idx != -1) {
602 revents = g_array_index(pollfds, GPollFD,
603 so->pollfds_idx).revents;
604 }
605
606 if (so->so_state & SS_NOFDREF || so->s == -1) {
607 continue;
608 }
609
610 /*
611 * Check for URG data
612 * This will soread as well, so no need to
613 * test for G_IO_IN below if this succeeds
614 */
615 if (revents & G_IO_PRI) {
616 ret = sorecvoob(so);
617 if (ret < 0) {
618 /* Socket error might have resulted in the socket being
619 * removed, do not try to do anything more with it. */
620 continue;
621 }
622 }
623 /*
624 * Check sockets for reading
625 */
626 else if (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR)) {
627 /*
628 * Check for incoming connections
629 */
630 if (so->so_state & SS_FACCEPTCONN) {
631 tcp_connect(so);
632 continue;
633 } /* else */
634 ret = soread(so);
635
636 /* Output it if we read something */
637 if (ret > 0) {
638 tcp_output(sototcpcb(so));
639 }
640 if (ret < 0) {
641 /* Socket error might have resulted in the socket being
642 * removed, do not try to do anything more with it. */
643 continue;
644 }
645 }
646
647 /*
648 * Check sockets for writing
649 */
650 if (!(so->so_state & SS_NOFDREF) &&
651 (revents & (G_IO_OUT | G_IO_ERR))) {
652 /*
653 * Check for non-blocking, still-connecting sockets
654 */
655 if (so->so_state & SS_ISFCONNECTING) {
656 /* Connected */
657 so->so_state &= ~SS_ISFCONNECTING;
658
659 ret = send(so->s, (const void *) &ret, 0, 0);
660 if (ret < 0) {
661 /* XXXXX Must fix, zero bytes is a NOP */
662 if (errno == EAGAIN || errno == EWOULDBLOCK ||
663 errno == EINPROGRESS || errno == ENOTCONN) {
664 continue;
665 }
666
667 /* else failed */
668 so->so_state &= SS_PERSISTENT_MASK;
669 so->so_state |= SS_NOFDREF;
670 }
671 /* else so->so_state &= ~SS_ISFCONNECTING; */
672
673 /*
674 * Continue tcp_input
675 */
676 tcp_input((struct mbuf *)NULL, sizeof(struct ip), so,
677 so->so_ffamily);
678 /* continue; */
679 } else {
680 ret = sowrite(so);
681 if (ret > 0) {
682 /* Call tcp_output in case we need to send a window
683 * update to the guest, otherwise it will be stuck
684 * until it sends a window probe. */
685 tcp_output(sototcpcb(so));
686 }
687 }
688 }
689
690 /*
691 * Probe a still-connecting, non-blocking socket
692 * to check if it's still alive
693 */
694 #ifdef PROBE_CONN
695 if (so->so_state & SS_ISFCONNECTING) {
696 ret = qemu_recv(so->s, &ret, 0, 0);
697
698 if (ret < 0) {
699 /* XXX */
700 if (errno == EAGAIN || errno == EWOULDBLOCK ||
701 errno == EINPROGRESS || errno == ENOTCONN) {
702 continue; /* Still connecting, continue */
703 }
704
705 /* else failed */
706 so->so_state &= SS_PERSISTENT_MASK;
707 so->so_state |= SS_NOFDREF;
708
709 /* tcp_input will take care of it */
710 } else {
711 ret = send(so->s, &ret, 0, 0);
712 if (ret < 0) {
713 /* XXX */
714 if (errno == EAGAIN || errno == EWOULDBLOCK ||
715 errno == EINPROGRESS || errno == ENOTCONN) {
716 continue;
717 }
718 /* else failed */
719 so->so_state &= SS_PERSISTENT_MASK;
720 so->so_state |= SS_NOFDREF;
721 } else {
722 so->so_state &= ~SS_ISFCONNECTING;
723 }
724
725 }
726 tcp_input((struct mbuf *)NULL, sizeof(struct ip), so,
727 so->so_ffamily);
728 } /* SS_ISFCONNECTING */
729 #endif
730 }
731
732 /*
733 * Now UDP sockets.
734 * Incoming packets are sent straight away, they're not buffered.
735 * Incoming UDP data isn't buffered either.
736 */
737 for (so = slirp->udb.so_next; so != &slirp->udb;
738 so = so_next) {
739 int revents;
740
741 so_next = so->so_next;
742
743 revents = 0;
744 if (so->pollfds_idx != -1) {
745 revents = g_array_index(pollfds, GPollFD,
746 so->pollfds_idx).revents;
747 }
748
749 if (so->s != -1 &&
750 (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) {
751 sorecvfrom(so);
752 }
753 }
754
755 /*
756 * Check incoming ICMP relies.
757 */
758 for (so = slirp->icmp.so_next; so != &slirp->icmp;
759 so = so_next) {
760 int revents;
761
762 so_next = so->so_next;
763
764 revents = 0;
765 if (so->pollfds_idx != -1) {
766 revents = g_array_index(pollfds, GPollFD,
767 so->pollfds_idx).revents;
768 }
769
770 if (so->s != -1 &&
771 (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) {
772 icmp_receive(so);
773 }
774 }
775 }
776
777 if_start(slirp);
778 }
779 }
780
781 static void arp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len)
782 {
783 struct slirp_arphdr *ah = (struct slirp_arphdr *)(pkt + ETH_HLEN);
784 uint8_t arp_reply[MAX(ETH_HLEN + sizeof(struct slirp_arphdr), 64)];
785 struct ethhdr *reh = (struct ethhdr *)arp_reply;
786 struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_reply + ETH_HLEN);
787 int ar_op;
788 struct ex_list *ex_ptr;
789
790 if (!slirp->in_enabled) {
791 return;
792 }
793
794 ar_op = ntohs(ah->ar_op);
795 switch(ar_op) {
796 case ARPOP_REQUEST:
797 if (ah->ar_tip == ah->ar_sip) {
798 /* Gratuitous ARP */
799 arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
800 return;
801 }
802
803 if ((ah->ar_tip & slirp->vnetwork_mask.s_addr) ==
804 slirp->vnetwork_addr.s_addr) {
805 if (ah->ar_tip == slirp->vnameserver_addr.s_addr ||
806 ah->ar_tip == slirp->vhost_addr.s_addr)
807 goto arp_ok;
808 for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
809 if (ex_ptr->ex_addr.s_addr == ah->ar_tip)
810 goto arp_ok;
811 }
812 return;
813 arp_ok:
814 memset(arp_reply, 0, sizeof(arp_reply));
815
816 arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
817
818 /* ARP request for alias/dns mac address */
819 memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
820 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
821 memcpy(&reh->h_source[2], &ah->ar_tip, 4);
822 reh->h_proto = htons(ETH_P_ARP);
823
824 rah->ar_hrd = htons(1);
825 rah->ar_pro = htons(ETH_P_IP);
826 rah->ar_hln = ETH_ALEN;
827 rah->ar_pln = 4;
828 rah->ar_op = htons(ARPOP_REPLY);
829 memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
830 rah->ar_sip = ah->ar_tip;
831 memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
832 rah->ar_tip = ah->ar_sip;
833 slirp_output(slirp->opaque, arp_reply, sizeof(arp_reply));
834 }
835 break;
836 case ARPOP_REPLY:
837 arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
838 break;
839 default:
840 break;
841 }
842 }
843
844 void slirp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len)
845 {
846 struct mbuf *m;
847 int proto;
848
849 if (pkt_len < ETH_HLEN)
850 return;
851
852 proto = ntohs(*(uint16_t *)(pkt + 12));
853 switch(proto) {
854 case ETH_P_ARP:
855 arp_input(slirp, pkt, pkt_len);
856 break;
857 case ETH_P_IP:
858 case ETH_P_IPV6:
859 m = m_get(slirp);
860 if (!m)
861 return;
862 /* Note: we add 2 to align the IP header on 4 bytes,
863 * and add the margin for the tcpiphdr overhead */
864 if (M_FREEROOM(m) < pkt_len + TCPIPHDR_DELTA + 2) {
865 m_inc(m, pkt_len + TCPIPHDR_DELTA + 2);
866 }
867 m->m_len = pkt_len + TCPIPHDR_DELTA + 2;
868 memcpy(m->m_data + TCPIPHDR_DELTA + 2, pkt, pkt_len);
869
870 m->m_data += TCPIPHDR_DELTA + 2 + ETH_HLEN;
871 m->m_len -= TCPIPHDR_DELTA + 2 + ETH_HLEN;
872
873 if (proto == ETH_P_IP) {
874 ip_input(m);
875 } else if (proto == ETH_P_IPV6) {
876 ip6_input(m);
877 }
878 break;
879
880 case ETH_P_NCSI:
881 ncsi_input(slirp, pkt, pkt_len);
882 break;
883
884 default:
885 break;
886 }
887 }
888
889 /* Prepare the IPv4 packet to be sent to the ethernet device. Returns 1 if no
890 * packet should be sent, 0 if the packet must be re-queued, 2 if the packet
891 * is ready to go.
892 */
893 static int if_encap4(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh,
894 uint8_t ethaddr[ETH_ALEN])
895 {
896 const struct ip *iph = (const struct ip *)ifm->m_data;
897
898 if (iph->ip_dst.s_addr == 0) {
899 /* 0.0.0.0 can not be a destination address, something went wrong,
900 * avoid making it worse */
901 return 1;
902 }
903 if (!arp_table_search(slirp, iph->ip_dst.s_addr, ethaddr)) {
904 uint8_t arp_req[ETH_HLEN + sizeof(struct slirp_arphdr)];
905 struct ethhdr *reh = (struct ethhdr *)arp_req;
906 struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_req + ETH_HLEN);
907
908 if (!ifm->resolution_requested) {
909 /* If the client addr is not known, send an ARP request */
910 memset(reh->h_dest, 0xff, ETH_ALEN);
911 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
912 memcpy(&reh->h_source[2], &slirp->vhost_addr, 4);
913 reh->h_proto = htons(ETH_P_ARP);
914 rah->ar_hrd = htons(1);
915 rah->ar_pro = htons(ETH_P_IP);
916 rah->ar_hln = ETH_ALEN;
917 rah->ar_pln = 4;
918 rah->ar_op = htons(ARPOP_REQUEST);
919
920 /* source hw addr */
921 memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 4);
922 memcpy(&rah->ar_sha[2], &slirp->vhost_addr, 4);
923
924 /* source IP */
925 rah->ar_sip = slirp->vhost_addr.s_addr;
926
927 /* target hw addr (none) */
928 memset(rah->ar_tha, 0, ETH_ALEN);
929
930 /* target IP */
931 rah->ar_tip = iph->ip_dst.s_addr;
932 slirp->client_ipaddr = iph->ip_dst;
933 slirp_output(slirp->opaque, arp_req, sizeof(arp_req));
934 ifm->resolution_requested = true;
935
936 /* Expire request and drop outgoing packet after 1 second */
937 ifm->expiration_date = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL;
938 }
939 return 0;
940 } else {
941 memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 4);
942 /* XXX: not correct */
943 memcpy(&eh->h_source[2], &slirp->vhost_addr, 4);
944 eh->h_proto = htons(ETH_P_IP);
945
946 /* Send this */
947 return 2;
948 }
949 }
950
951 /* Prepare the IPv6 packet to be sent to the ethernet device. Returns 1 if no
952 * packet should be sent, 0 if the packet must be re-queued, 2 if the packet
953 * is ready to go.
954 */
955 static int if_encap6(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh,
956 uint8_t ethaddr[ETH_ALEN])
957 {
958 const struct ip6 *ip6h = mtod(ifm, const struct ip6 *);
959 if (!ndp_table_search(slirp, ip6h->ip_dst, ethaddr)) {
960 if (!ifm->resolution_requested) {
961 ndp_send_ns(slirp, ip6h->ip_dst);
962 ifm->resolution_requested = true;
963 ifm->expiration_date =
964 qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL;
965 }
966 return 0;
967 } else {
968 eh->h_proto = htons(ETH_P_IPV6);
969 in6_compute_ethaddr(ip6h->ip_src, eh->h_source);
970
971 /* Send this */
972 return 2;
973 }
974 }
975
976 /* Output the IP packet to the ethernet device. Returns 0 if the packet must be
977 * re-queued.
978 */
979 int if_encap(Slirp *slirp, struct mbuf *ifm)
980 {
981 uint8_t buf[1600];
982 struct ethhdr *eh = (struct ethhdr *)buf;
983 uint8_t ethaddr[ETH_ALEN];
984 const struct ip *iph = (const struct ip *)ifm->m_data;
985 int ret;
986
987 if (ifm->m_len + ETH_HLEN > sizeof(buf)) {
988 return 1;
989 }
990
991 switch (iph->ip_v) {
992 case IPVERSION:
993 ret = if_encap4(slirp, ifm, eh, ethaddr);
994 if (ret < 2) {
995 return ret;
996 }
997 break;
998
999 case IP6VERSION:
1000 ret = if_encap6(slirp, ifm, eh, ethaddr);
1001 if (ret < 2) {
1002 return ret;
1003 }
1004 break;
1005
1006 default:
1007 g_assert_not_reached();
1008 break;
1009 }
1010
1011 memcpy(eh->h_dest, ethaddr, ETH_ALEN);
1012 DEBUG_ARGS((dfd, " src = %02x:%02x:%02x:%02x:%02x:%02x\n",
1013 eh->h_source[0], eh->h_source[1], eh->h_source[2],
1014 eh->h_source[3], eh->h_source[4], eh->h_source[5]));
1015 DEBUG_ARGS((dfd, " dst = %02x:%02x:%02x:%02x:%02x:%02x\n",
1016 eh->h_dest[0], eh->h_dest[1], eh->h_dest[2],
1017 eh->h_dest[3], eh->h_dest[4], eh->h_dest[5]));
1018 memcpy(buf + sizeof(struct ethhdr), ifm->m_data, ifm->m_len);
1019 slirp_output(slirp->opaque, buf, ifm->m_len + ETH_HLEN);
1020 return 1;
1021 }
1022
1023 /* Drop host forwarding rule, return 0 if found. */
1024 int slirp_remove_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr,
1025 int host_port)
1026 {
1027 struct socket *so;
1028 struct socket *head = (is_udp ? &slirp->udb : &slirp->tcb);
1029 struct sockaddr_in addr;
1030 int port = htons(host_port);
1031 socklen_t addr_len;
1032
1033 for (so = head->so_next; so != head; so = so->so_next) {
1034 addr_len = sizeof(addr);
1035 if ((so->so_state & SS_HOSTFWD) &&
1036 getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 &&
1037 addr.sin_addr.s_addr == host_addr.s_addr &&
1038 addr.sin_port == port) {
1039 close(so->s);
1040 sofree(so);
1041 return 0;
1042 }
1043 }
1044
1045 return -1;
1046 }
1047
1048 int slirp_add_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr,
1049 int host_port, struct in_addr guest_addr, int guest_port)
1050 {
1051 if (!guest_addr.s_addr) {
1052 guest_addr = slirp->vdhcp_startaddr;
1053 }
1054 if (is_udp) {
1055 if (!udp_listen(slirp, host_addr.s_addr, htons(host_port),
1056 guest_addr.s_addr, htons(guest_port), SS_HOSTFWD))
1057 return -1;
1058 } else {
1059 if (!tcp_listen(slirp, host_addr.s_addr, htons(host_port),
1060 guest_addr.s_addr, htons(guest_port), SS_HOSTFWD))
1061 return -1;
1062 }
1063 return 0;
1064 }
1065
1066 int slirp_add_exec(Slirp *slirp, int do_pty, const void *args,
1067 struct in_addr *guest_addr, int guest_port)
1068 {
1069 if (!guest_addr->s_addr) {
1070 guest_addr->s_addr = slirp->vnetwork_addr.s_addr |
1071 (htonl(0x0204) & ~slirp->vnetwork_mask.s_addr);
1072 }
1073 if ((guest_addr->s_addr & slirp->vnetwork_mask.s_addr) !=
1074 slirp->vnetwork_addr.s_addr ||
1075 guest_addr->s_addr == slirp->vhost_addr.s_addr ||
1076 guest_addr->s_addr == slirp->vnameserver_addr.s_addr) {
1077 return -1;
1078 }
1079 return add_exec(&slirp->exec_list, do_pty, (char *)args, *guest_addr,
1080 htons(guest_port));
1081 }
1082
1083 ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags)
1084 {
1085 if (so->s == -1 && so->extra) {
1086 /* XXX this blocks entire thread. Rewrite to use
1087 * qemu_chr_fe_write and background I/O callbacks */
1088 qemu_chr_fe_write_all(so->extra, buf, len);
1089 return len;
1090 }
1091
1092 return send(so->s, buf, len, flags);
1093 }
1094
1095 static struct socket *
1096 slirp_find_ctl_socket(Slirp *slirp, struct in_addr guest_addr, int guest_port)
1097 {
1098 struct socket *so;
1099
1100 for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) {
1101 if (so->so_faddr.s_addr == guest_addr.s_addr &&
1102 htons(so->so_fport) == guest_port) {
1103 return so;
1104 }
1105 }
1106 return NULL;
1107 }
1108
1109 size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr,
1110 int guest_port)
1111 {
1112 struct iovec iov[2];
1113 struct socket *so;
1114
1115 so = slirp_find_ctl_socket(slirp, guest_addr, guest_port);
1116
1117 if (!so || so->so_state & SS_NOFDREF) {
1118 return 0;
1119 }
1120
1121 if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen/2)) {
1122 return 0;
1123 }
1124
1125 return sopreprbuf(so, iov, NULL);
1126 }
1127
1128 void slirp_socket_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port,
1129 const uint8_t *buf, int size)
1130 {
1131 int ret;
1132 struct socket *so = slirp_find_ctl_socket(slirp, guest_addr, guest_port);
1133
1134 if (!so)
1135 return;
1136
1137 ret = soreadbuf(so, (const char *)buf, size);
1138
1139 if (ret > 0)
1140 tcp_output(sototcpcb(so));
1141 }
1142
1143 static int slirp_tcp_post_load(void *opaque, int version)
1144 {
1145 tcp_template((struct tcpcb *)opaque);
1146
1147 return 0;
1148 }
1149
1150 static const VMStateDescription vmstate_slirp_tcp = {
1151 .name = "slirp-tcp",
1152 .version_id = 0,
1153 .post_load = slirp_tcp_post_load,
1154 .fields = (VMStateField[]) {
1155 VMSTATE_INT16(t_state, struct tcpcb),
1156 VMSTATE_INT16_ARRAY(t_timer, struct tcpcb, TCPT_NTIMERS),
1157 VMSTATE_INT16(t_rxtshift, struct tcpcb),
1158 VMSTATE_INT16(t_rxtcur, struct tcpcb),
1159 VMSTATE_INT16(t_dupacks, struct tcpcb),
1160 VMSTATE_UINT16(t_maxseg, struct tcpcb),
1161 VMSTATE_UINT8(t_force, struct tcpcb),
1162 VMSTATE_UINT16(t_flags, struct tcpcb),
1163 VMSTATE_UINT32(snd_una, struct tcpcb),
1164 VMSTATE_UINT32(snd_nxt, struct tcpcb),
1165 VMSTATE_UINT32(snd_up, struct tcpcb),
1166 VMSTATE_UINT32(snd_wl1, struct tcpcb),
1167 VMSTATE_UINT32(snd_wl2, struct tcpcb),
1168 VMSTATE_UINT32(iss, struct tcpcb),
1169 VMSTATE_UINT32(snd_wnd, struct tcpcb),
1170 VMSTATE_UINT32(rcv_wnd, struct tcpcb),
1171 VMSTATE_UINT32(rcv_nxt, struct tcpcb),
1172 VMSTATE_UINT32(rcv_up, struct tcpcb),
1173 VMSTATE_UINT32(irs, struct tcpcb),
1174 VMSTATE_UINT32(rcv_adv, struct tcpcb),
1175 VMSTATE_UINT32(snd_max, struct tcpcb),
1176 VMSTATE_UINT32(snd_cwnd, struct tcpcb),
1177 VMSTATE_UINT32(snd_ssthresh, struct tcpcb),
1178 VMSTATE_INT16(t_idle, struct tcpcb),
1179 VMSTATE_INT16(t_rtt, struct tcpcb),
1180 VMSTATE_UINT32(t_rtseq, struct tcpcb),
1181 VMSTATE_INT16(t_srtt, struct tcpcb),
1182 VMSTATE_INT16(t_rttvar, struct tcpcb),
1183 VMSTATE_UINT16(t_rttmin, struct tcpcb),
1184 VMSTATE_UINT32(max_sndwnd, struct tcpcb),
1185 VMSTATE_UINT8(t_oobflags, struct tcpcb),
1186 VMSTATE_UINT8(t_iobc, struct tcpcb),
1187 VMSTATE_INT16(t_softerror, struct tcpcb),
1188 VMSTATE_UINT8(snd_scale, struct tcpcb),
1189 VMSTATE_UINT8(rcv_scale, struct tcpcb),
1190 VMSTATE_UINT8(request_r_scale, struct tcpcb),
1191 VMSTATE_UINT8(requested_s_scale, struct tcpcb),
1192 VMSTATE_UINT32(ts_recent, struct tcpcb),
1193 VMSTATE_UINT32(ts_recent_age, struct tcpcb),
1194 VMSTATE_UINT32(last_ack_sent, struct tcpcb),
1195 VMSTATE_END_OF_LIST()
1196 }
1197 };
1198
1199 /* The sbuf has a pair of pointers that are migrated as offsets;
1200 * we calculate the offsets and restore the pointers using
1201 * pre_save/post_load on a tmp structure.
1202 */
1203 struct sbuf_tmp {
1204 struct sbuf *parent;
1205 uint32_t roff, woff;
1206 };
1207
1208 static int sbuf_tmp_pre_save(void *opaque)
1209 {
1210 struct sbuf_tmp *tmp = opaque;
1211 tmp->woff = tmp->parent->sb_wptr - tmp->parent->sb_data;
1212 tmp->roff = tmp->parent->sb_rptr - tmp->parent->sb_data;
1213
1214 return 0;
1215 }
1216
1217 static int sbuf_tmp_post_load(void *opaque, int version)
1218 {
1219 struct sbuf_tmp *tmp = opaque;
1220 uint32_t requested_len = tmp->parent->sb_datalen;
1221
1222 /* Allocate the buffer space used by the field after the tmp */
1223 sbreserve(tmp->parent, tmp->parent->sb_datalen);
1224
1225 if (tmp->parent->sb_datalen != requested_len) {
1226 return -ENOMEM;
1227 }
1228 if (tmp->woff >= requested_len ||
1229 tmp->roff >= requested_len) {
1230 error_report("invalid sbuf offsets r/w=%u/%u len=%u",
1231 tmp->roff, tmp->woff, requested_len);
1232 return -EINVAL;
1233 }
1234
1235 tmp->parent->sb_wptr = tmp->parent->sb_data + tmp->woff;
1236 tmp->parent->sb_rptr = tmp->parent->sb_data + tmp->roff;
1237
1238 return 0;
1239 }
1240
1241
1242 static const VMStateDescription vmstate_slirp_sbuf_tmp = {
1243 .name = "slirp-sbuf-tmp",
1244 .post_load = sbuf_tmp_post_load,
1245 .pre_save = sbuf_tmp_pre_save,
1246 .version_id = 0,
1247 .fields = (VMStateField[]) {
1248 VMSTATE_UINT32(woff, struct sbuf_tmp),
1249 VMSTATE_UINT32(roff, struct sbuf_tmp),
1250 VMSTATE_END_OF_LIST()
1251 }
1252 };
1253
1254 static const VMStateDescription vmstate_slirp_sbuf = {
1255 .name = "slirp-sbuf",
1256 .version_id = 0,
1257 .fields = (VMStateField[]) {
1258 VMSTATE_UINT32(sb_cc, struct sbuf),
1259 VMSTATE_UINT32(sb_datalen, struct sbuf),
1260 VMSTATE_WITH_TMP(struct sbuf, struct sbuf_tmp, vmstate_slirp_sbuf_tmp),
1261 VMSTATE_VBUFFER_UINT32(sb_data, struct sbuf, 0, NULL, sb_datalen),
1262 VMSTATE_END_OF_LIST()
1263 }
1264 };
1265
1266 static bool slirp_older_than_v4(void *opaque, int version_id)
1267 {
1268 return version_id < 4;
1269 }
1270
1271 static bool slirp_family_inet(void *opaque, int version_id)
1272 {
1273 union slirp_sockaddr *ssa = (union slirp_sockaddr *)opaque;
1274 return ssa->ss.ss_family == AF_INET;
1275 }
1276
1277 static int slirp_socket_pre_load(void *opaque)
1278 {
1279 struct socket *so = opaque;
1280 if (tcp_attach(so) < 0) {
1281 return -ENOMEM;
1282 }
1283 /* Older versions don't load these fields */
1284 so->so_ffamily = AF_INET;
1285 so->so_lfamily = AF_INET;
1286 return 0;
1287 }
1288
1289 #ifndef _WIN32
1290 #define VMSTATE_SIN4_ADDR(f, s, t) VMSTATE_UINT32_TEST(f, s, t)
1291 #else
1292 /* Win uses u_long rather than uint32_t - but it's still 32bits long */
1293 #define VMSTATE_SIN4_ADDR(f, s, t) VMSTATE_SINGLE_TEST(f, s, t, 0, \
1294 vmstate_info_uint32, u_long)
1295 #endif
1296
1297 /* The OS provided ss_family field isn't that portable; it's size
1298 * and type varies (16/8 bit, signed, unsigned)
1299 * and the values it contains aren't fully portable.
1300 */
1301 typedef struct SS_FamilyTmpStruct {
1302 union slirp_sockaddr *parent;
1303 uint16_t portable_family;
1304 } SS_FamilyTmpStruct;
1305
1306 #define SS_FAMILY_MIG_IPV4 2 /* Linux, BSD, Win... */
1307 #define SS_FAMILY_MIG_IPV6 10 /* Linux */
1308 #define SS_FAMILY_MIG_OTHER 0xffff
1309
1310 static int ss_family_pre_save(void *opaque)
1311 {
1312 SS_FamilyTmpStruct *tss = opaque;
1313
1314 tss->portable_family = SS_FAMILY_MIG_OTHER;
1315
1316 if (tss->parent->ss.ss_family == AF_INET) {
1317 tss->portable_family = SS_FAMILY_MIG_IPV4;
1318 } else if (tss->parent->ss.ss_family == AF_INET6) {
1319 tss->portable_family = SS_FAMILY_MIG_IPV6;
1320 }
1321
1322 return 0;
1323 }
1324
1325 static int ss_family_post_load(void *opaque, int version_id)
1326 {
1327 SS_FamilyTmpStruct *tss = opaque;
1328
1329 switch (tss->portable_family) {
1330 case SS_FAMILY_MIG_IPV4:
1331 tss->parent->ss.ss_family = AF_INET;
1332 break;
1333 case SS_FAMILY_MIG_IPV6:
1334 case 23: /* compatibility: AF_INET6 from mingw */
1335 case 28: /* compatibility: AF_INET6 from FreeBSD sys/socket.h */
1336 tss->parent->ss.ss_family = AF_INET6;
1337 break;
1338 default:
1339 error_report("invalid ss_family type %x", tss->portable_family);
1340 return -EINVAL;
1341 }
1342
1343 return 0;
1344 }
1345
1346 static const VMStateDescription vmstate_slirp_ss_family = {
1347 .name = "slirp-socket-addr/ss_family",
1348 .pre_save = ss_family_pre_save,
1349 .post_load = ss_family_post_load,
1350 .fields = (VMStateField[]) {
1351 VMSTATE_UINT16(portable_family, SS_FamilyTmpStruct),
1352 VMSTATE_END_OF_LIST()
1353 }
1354 };
1355
1356 static const VMStateDescription vmstate_slirp_socket_addr = {
1357 .name = "slirp-socket-addr",
1358 .version_id = 4,
1359 .fields = (VMStateField[]) {
1360 VMSTATE_WITH_TMP(union slirp_sockaddr, SS_FamilyTmpStruct,
1361 vmstate_slirp_ss_family),
1362 VMSTATE_SIN4_ADDR(sin.sin_addr.s_addr, union slirp_sockaddr,
1363 slirp_family_inet),
1364 VMSTATE_UINT16_TEST(sin.sin_port, union slirp_sockaddr,
1365 slirp_family_inet),
1366
1367 #if 0
1368 /* Untested: Needs checking by someone with IPv6 test */
1369 VMSTATE_BUFFER_TEST(sin6.sin6_addr, union slirp_sockaddr,
1370 slirp_family_inet6),
1371 VMSTATE_UINT16_TEST(sin6.sin6_port, union slirp_sockaddr,
1372 slirp_family_inet6),
1373 VMSTATE_UINT32_TEST(sin6.sin6_flowinfo, union slirp_sockaddr,
1374 slirp_family_inet6),
1375 VMSTATE_UINT32_TEST(sin6.sin6_scope_id, union slirp_sockaddr,
1376 slirp_family_inet6),
1377 #endif
1378
1379 VMSTATE_END_OF_LIST()
1380 }
1381 };
1382
1383 static const VMStateDescription vmstate_slirp_socket = {
1384 .name = "slirp-socket",
1385 .version_id = 4,
1386 .pre_load = slirp_socket_pre_load,
1387 .fields = (VMStateField[]) {
1388 VMSTATE_UINT32(so_urgc, struct socket),
1389 /* Pre-v4 versions */
1390 VMSTATE_SIN4_ADDR(so_faddr.s_addr, struct socket,
1391 slirp_older_than_v4),
1392 VMSTATE_SIN4_ADDR(so_laddr.s_addr, struct socket,
1393 slirp_older_than_v4),
1394 VMSTATE_UINT16_TEST(so_fport, struct socket, slirp_older_than_v4),
1395 VMSTATE_UINT16_TEST(so_lport, struct socket, slirp_older_than_v4),
1396 /* v4 and newer */
1397 VMSTATE_STRUCT(fhost, struct socket, 4, vmstate_slirp_socket_addr,
1398 union slirp_sockaddr),
1399 VMSTATE_STRUCT(lhost, struct socket, 4, vmstate_slirp_socket_addr,
1400 union slirp_sockaddr),
1401
1402 VMSTATE_UINT8(so_iptos, struct socket),
1403 VMSTATE_UINT8(so_emu, struct socket),
1404 VMSTATE_UINT8(so_type, struct socket),
1405 VMSTATE_INT32(so_state, struct socket),
1406 VMSTATE_STRUCT(so_rcv, struct socket, 0, vmstate_slirp_sbuf,
1407 struct sbuf),
1408 VMSTATE_STRUCT(so_snd, struct socket, 0, vmstate_slirp_sbuf,
1409 struct sbuf),
1410 VMSTATE_STRUCT_POINTER(so_tcpcb, struct socket, vmstate_slirp_tcp,
1411 struct tcpcb),
1412 VMSTATE_END_OF_LIST()
1413 }
1414 };
1415
1416 static const VMStateDescription vmstate_slirp_bootp_client = {
1417 .name = "slirp_bootpclient",
1418 .fields = (VMStateField[]) {
1419 VMSTATE_UINT16(allocated, BOOTPClient),
1420 VMSTATE_BUFFER(macaddr, BOOTPClient),
1421 VMSTATE_END_OF_LIST()
1422 }
1423 };
1424
1425 static const VMStateDescription vmstate_slirp = {
1426 .name = "slirp",
1427 .version_id = 4,
1428 .fields = (VMStateField[]) {
1429 VMSTATE_UINT16_V(ip_id, Slirp, 2),
1430 VMSTATE_STRUCT_ARRAY(bootp_clients, Slirp, NB_BOOTP_CLIENTS, 3,
1431 vmstate_slirp_bootp_client, BOOTPClient),
1432 VMSTATE_END_OF_LIST()
1433 }
1434 };
1435
1436 static void slirp_state_save(QEMUFile *f, void *opaque)
1437 {
1438 Slirp *slirp = opaque;
1439 struct ex_list *ex_ptr;
1440
1441 for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
1442 if (ex_ptr->ex_pty == 3) {
1443 struct socket *so;
1444 so = slirp_find_ctl_socket(slirp, ex_ptr->ex_addr,
1445 ntohs(ex_ptr->ex_fport));
1446 if (!so)
1447 continue;
1448
1449 qemu_put_byte(f, 42);
1450 vmstate_save_state(f, &vmstate_slirp_socket, so, NULL);
1451 }
1452 qemu_put_byte(f, 0);
1453
1454 vmstate_save_state(f, &vmstate_slirp, slirp, NULL);
1455 }
1456
1457
1458 static int slirp_state_load(QEMUFile *f, void *opaque, int version_id)
1459 {
1460 Slirp *slirp = opaque;
1461 struct ex_list *ex_ptr;
1462
1463 while (qemu_get_byte(f)) {
1464 int ret;
1465 struct socket *so = socreate(slirp);
1466
1467 if (!so)
1468 return -ENOMEM;
1469
1470 ret = vmstate_load_state(f, &vmstate_slirp_socket, so, version_id);
1471
1472 if (ret < 0)
1473 return ret;
1474
1475 if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) !=
1476 slirp->vnetwork_addr.s_addr) {
1477 return -EINVAL;
1478 }
1479 for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
1480 if (ex_ptr->ex_pty == 3 &&
1481 so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr &&
1482 so->so_fport == ex_ptr->ex_fport) {
1483 break;
1484 }
1485 }
1486 if (!ex_ptr)
1487 return -EINVAL;
1488
1489 so->extra = (void *)ex_ptr->ex_exec;
1490 }
1491
1492 return vmstate_load_state(f, &vmstate_slirp, slirp, version_id);
1493 }