vmsvga: don't process more than 1024 fifo commands at once
[qemu.git] / target-i386 / ops_sse.h
1 /*
2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com>
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "crypto/aes.h"
22
23 #if SHIFT == 0
24 #define Reg MMXReg
25 #define XMM_ONLY(...)
26 #define B(n) MMX_B(n)
27 #define W(n) MMX_W(n)
28 #define L(n) MMX_L(n)
29 #define Q(n) MMX_Q(n)
30 #define SUFFIX _mmx
31 #else
32 #define Reg ZMMReg
33 #define XMM_ONLY(...) __VA_ARGS__
34 #define B(n) ZMM_B(n)
35 #define W(n) ZMM_W(n)
36 #define L(n) ZMM_L(n)
37 #define Q(n) ZMM_Q(n)
38 #define SUFFIX _xmm
39 #endif
40
41 void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
42 {
43 int shift;
44
45 if (s->Q(0) > 15) {
46 d->Q(0) = 0;
47 #if SHIFT == 1
48 d->Q(1) = 0;
49 #endif
50 } else {
51 shift = s->B(0);
52 d->W(0) >>= shift;
53 d->W(1) >>= shift;
54 d->W(2) >>= shift;
55 d->W(3) >>= shift;
56 #if SHIFT == 1
57 d->W(4) >>= shift;
58 d->W(5) >>= shift;
59 d->W(6) >>= shift;
60 d->W(7) >>= shift;
61 #endif
62 }
63 }
64
65 void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
66 {
67 int shift;
68
69 if (s->Q(0) > 15) {
70 shift = 15;
71 } else {
72 shift = s->B(0);
73 }
74 d->W(0) = (int16_t)d->W(0) >> shift;
75 d->W(1) = (int16_t)d->W(1) >> shift;
76 d->W(2) = (int16_t)d->W(2) >> shift;
77 d->W(3) = (int16_t)d->W(3) >> shift;
78 #if SHIFT == 1
79 d->W(4) = (int16_t)d->W(4) >> shift;
80 d->W(5) = (int16_t)d->W(5) >> shift;
81 d->W(6) = (int16_t)d->W(6) >> shift;
82 d->W(7) = (int16_t)d->W(7) >> shift;
83 #endif
84 }
85
86 void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
87 {
88 int shift;
89
90 if (s->Q(0) > 15) {
91 d->Q(0) = 0;
92 #if SHIFT == 1
93 d->Q(1) = 0;
94 #endif
95 } else {
96 shift = s->B(0);
97 d->W(0) <<= shift;
98 d->W(1) <<= shift;
99 d->W(2) <<= shift;
100 d->W(3) <<= shift;
101 #if SHIFT == 1
102 d->W(4) <<= shift;
103 d->W(5) <<= shift;
104 d->W(6) <<= shift;
105 d->W(7) <<= shift;
106 #endif
107 }
108 }
109
110 void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
111 {
112 int shift;
113
114 if (s->Q(0) > 31) {
115 d->Q(0) = 0;
116 #if SHIFT == 1
117 d->Q(1) = 0;
118 #endif
119 } else {
120 shift = s->B(0);
121 d->L(0) >>= shift;
122 d->L(1) >>= shift;
123 #if SHIFT == 1
124 d->L(2) >>= shift;
125 d->L(3) >>= shift;
126 #endif
127 }
128 }
129
130 void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
131 {
132 int shift;
133
134 if (s->Q(0) > 31) {
135 shift = 31;
136 } else {
137 shift = s->B(0);
138 }
139 d->L(0) = (int32_t)d->L(0) >> shift;
140 d->L(1) = (int32_t)d->L(1) >> shift;
141 #if SHIFT == 1
142 d->L(2) = (int32_t)d->L(2) >> shift;
143 d->L(3) = (int32_t)d->L(3) >> shift;
144 #endif
145 }
146
147 void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
148 {
149 int shift;
150
151 if (s->Q(0) > 31) {
152 d->Q(0) = 0;
153 #if SHIFT == 1
154 d->Q(1) = 0;
155 #endif
156 } else {
157 shift = s->B(0);
158 d->L(0) <<= shift;
159 d->L(1) <<= shift;
160 #if SHIFT == 1
161 d->L(2) <<= shift;
162 d->L(3) <<= shift;
163 #endif
164 }
165 }
166
167 void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
168 {
169 int shift;
170
171 if (s->Q(0) > 63) {
172 d->Q(0) = 0;
173 #if SHIFT == 1
174 d->Q(1) = 0;
175 #endif
176 } else {
177 shift = s->B(0);
178 d->Q(0) >>= shift;
179 #if SHIFT == 1
180 d->Q(1) >>= shift;
181 #endif
182 }
183 }
184
185 void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
186 {
187 int shift;
188
189 if (s->Q(0) > 63) {
190 d->Q(0) = 0;
191 #if SHIFT == 1
192 d->Q(1) = 0;
193 #endif
194 } else {
195 shift = s->B(0);
196 d->Q(0) <<= shift;
197 #if SHIFT == 1
198 d->Q(1) <<= shift;
199 #endif
200 }
201 }
202
203 #if SHIFT == 1
204 void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
205 {
206 int shift, i;
207
208 shift = s->L(0);
209 if (shift > 16) {
210 shift = 16;
211 }
212 for (i = 0; i < 16 - shift; i++) {
213 d->B(i) = d->B(i + shift);
214 }
215 for (i = 16 - shift; i < 16; i++) {
216 d->B(i) = 0;
217 }
218 }
219
220 void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
221 {
222 int shift, i;
223
224 shift = s->L(0);
225 if (shift > 16) {
226 shift = 16;
227 }
228 for (i = 15; i >= shift; i--) {
229 d->B(i) = d->B(i - shift);
230 }
231 for (i = 0; i < shift; i++) {
232 d->B(i) = 0;
233 }
234 }
235 #endif
236
237 #define SSE_HELPER_B(name, F) \
238 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
239 { \
240 d->B(0) = F(d->B(0), s->B(0)); \
241 d->B(1) = F(d->B(1), s->B(1)); \
242 d->B(2) = F(d->B(2), s->B(2)); \
243 d->B(3) = F(d->B(3), s->B(3)); \
244 d->B(4) = F(d->B(4), s->B(4)); \
245 d->B(5) = F(d->B(5), s->B(5)); \
246 d->B(6) = F(d->B(6), s->B(6)); \
247 d->B(7) = F(d->B(7), s->B(7)); \
248 XMM_ONLY( \
249 d->B(8) = F(d->B(8), s->B(8)); \
250 d->B(9) = F(d->B(9), s->B(9)); \
251 d->B(10) = F(d->B(10), s->B(10)); \
252 d->B(11) = F(d->B(11), s->B(11)); \
253 d->B(12) = F(d->B(12), s->B(12)); \
254 d->B(13) = F(d->B(13), s->B(13)); \
255 d->B(14) = F(d->B(14), s->B(14)); \
256 d->B(15) = F(d->B(15), s->B(15)); \
257 ) \
258 }
259
260 #define SSE_HELPER_W(name, F) \
261 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
262 { \
263 d->W(0) = F(d->W(0), s->W(0)); \
264 d->W(1) = F(d->W(1), s->W(1)); \
265 d->W(2) = F(d->W(2), s->W(2)); \
266 d->W(3) = F(d->W(3), s->W(3)); \
267 XMM_ONLY( \
268 d->W(4) = F(d->W(4), s->W(4)); \
269 d->W(5) = F(d->W(5), s->W(5)); \
270 d->W(6) = F(d->W(6), s->W(6)); \
271 d->W(7) = F(d->W(7), s->W(7)); \
272 ) \
273 }
274
275 #define SSE_HELPER_L(name, F) \
276 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
277 { \
278 d->L(0) = F(d->L(0), s->L(0)); \
279 d->L(1) = F(d->L(1), s->L(1)); \
280 XMM_ONLY( \
281 d->L(2) = F(d->L(2), s->L(2)); \
282 d->L(3) = F(d->L(3), s->L(3)); \
283 ) \
284 }
285
286 #define SSE_HELPER_Q(name, F) \
287 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
288 { \
289 d->Q(0) = F(d->Q(0), s->Q(0)); \
290 XMM_ONLY( \
291 d->Q(1) = F(d->Q(1), s->Q(1)); \
292 ) \
293 }
294
295 #if SHIFT == 0
296 static inline int satub(int x)
297 {
298 if (x < 0) {
299 return 0;
300 } else if (x > 255) {
301 return 255;
302 } else {
303 return x;
304 }
305 }
306
307 static inline int satuw(int x)
308 {
309 if (x < 0) {
310 return 0;
311 } else if (x > 65535) {
312 return 65535;
313 } else {
314 return x;
315 }
316 }
317
318 static inline int satsb(int x)
319 {
320 if (x < -128) {
321 return -128;
322 } else if (x > 127) {
323 return 127;
324 } else {
325 return x;
326 }
327 }
328
329 static inline int satsw(int x)
330 {
331 if (x < -32768) {
332 return -32768;
333 } else if (x > 32767) {
334 return 32767;
335 } else {
336 return x;
337 }
338 }
339
340 #define FADD(a, b) ((a) + (b))
341 #define FADDUB(a, b) satub((a) + (b))
342 #define FADDUW(a, b) satuw((a) + (b))
343 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
344 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
345
346 #define FSUB(a, b) ((a) - (b))
347 #define FSUBUB(a, b) satub((a) - (b))
348 #define FSUBUW(a, b) satuw((a) - (b))
349 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
350 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
351 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
352 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
353 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
354 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
355
356 #define FAND(a, b) ((a) & (b))
357 #define FANDN(a, b) ((~(a)) & (b))
358 #define FOR(a, b) ((a) | (b))
359 #define FXOR(a, b) ((a) ^ (b))
360
361 #define FCMPGTB(a, b) ((int8_t)(a) > (int8_t)(b) ? -1 : 0)
362 #define FCMPGTW(a, b) ((int16_t)(a) > (int16_t)(b) ? -1 : 0)
363 #define FCMPGTL(a, b) ((int32_t)(a) > (int32_t)(b) ? -1 : 0)
364 #define FCMPEQ(a, b) ((a) == (b) ? -1 : 0)
365
366 #define FMULLW(a, b) ((a) * (b))
367 #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16)
368 #define FMULHUW(a, b) ((a) * (b) >> 16)
369 #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16)
370
371 #define FAVG(a, b) (((a) + (b) + 1) >> 1)
372 #endif
373
374 SSE_HELPER_B(helper_paddb, FADD)
375 SSE_HELPER_W(helper_paddw, FADD)
376 SSE_HELPER_L(helper_paddl, FADD)
377 SSE_HELPER_Q(helper_paddq, FADD)
378
379 SSE_HELPER_B(helper_psubb, FSUB)
380 SSE_HELPER_W(helper_psubw, FSUB)
381 SSE_HELPER_L(helper_psubl, FSUB)
382 SSE_HELPER_Q(helper_psubq, FSUB)
383
384 SSE_HELPER_B(helper_paddusb, FADDUB)
385 SSE_HELPER_B(helper_paddsb, FADDSB)
386 SSE_HELPER_B(helper_psubusb, FSUBUB)
387 SSE_HELPER_B(helper_psubsb, FSUBSB)
388
389 SSE_HELPER_W(helper_paddusw, FADDUW)
390 SSE_HELPER_W(helper_paddsw, FADDSW)
391 SSE_HELPER_W(helper_psubusw, FSUBUW)
392 SSE_HELPER_W(helper_psubsw, FSUBSW)
393
394 SSE_HELPER_B(helper_pminub, FMINUB)
395 SSE_HELPER_B(helper_pmaxub, FMAXUB)
396
397 SSE_HELPER_W(helper_pminsw, FMINSW)
398 SSE_HELPER_W(helper_pmaxsw, FMAXSW)
399
400 SSE_HELPER_Q(helper_pand, FAND)
401 SSE_HELPER_Q(helper_pandn, FANDN)
402 SSE_HELPER_Q(helper_por, FOR)
403 SSE_HELPER_Q(helper_pxor, FXOR)
404
405 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
406 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
407 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
408
409 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
410 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
411 SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
412
413 SSE_HELPER_W(helper_pmullw, FMULLW)
414 #if SHIFT == 0
415 SSE_HELPER_W(helper_pmulhrw, FMULHRW)
416 #endif
417 SSE_HELPER_W(helper_pmulhuw, FMULHUW)
418 SSE_HELPER_W(helper_pmulhw, FMULHW)
419
420 SSE_HELPER_B(helper_pavgb, FAVG)
421 SSE_HELPER_W(helper_pavgw, FAVG)
422
423 void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
424 {
425 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
426 #if SHIFT == 1
427 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
428 #endif
429 }
430
431 void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
432 {
433 int i;
434
435 for (i = 0; i < (2 << SHIFT); i++) {
436 d->L(i) = (int16_t)s->W(2 * i) * (int16_t)d->W(2 * i) +
437 (int16_t)s->W(2 * i + 1) * (int16_t)d->W(2 * i + 1);
438 }
439 }
440
441 #if SHIFT == 0
442 static inline int abs1(int a)
443 {
444 if (a < 0) {
445 return -a;
446 } else {
447 return a;
448 }
449 }
450 #endif
451 void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
452 {
453 unsigned int val;
454
455 val = 0;
456 val += abs1(d->B(0) - s->B(0));
457 val += abs1(d->B(1) - s->B(1));
458 val += abs1(d->B(2) - s->B(2));
459 val += abs1(d->B(3) - s->B(3));
460 val += abs1(d->B(4) - s->B(4));
461 val += abs1(d->B(5) - s->B(5));
462 val += abs1(d->B(6) - s->B(6));
463 val += abs1(d->B(7) - s->B(7));
464 d->Q(0) = val;
465 #if SHIFT == 1
466 val = 0;
467 val += abs1(d->B(8) - s->B(8));
468 val += abs1(d->B(9) - s->B(9));
469 val += abs1(d->B(10) - s->B(10));
470 val += abs1(d->B(11) - s->B(11));
471 val += abs1(d->B(12) - s->B(12));
472 val += abs1(d->B(13) - s->B(13));
473 val += abs1(d->B(14) - s->B(14));
474 val += abs1(d->B(15) - s->B(15));
475 d->Q(1) = val;
476 #endif
477 }
478
479 void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
480 target_ulong a0)
481 {
482 int i;
483
484 for (i = 0; i < (8 << SHIFT); i++) {
485 if (s->B(i) & 0x80) {
486 cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC());
487 }
488 }
489 }
490
491 void glue(helper_movl_mm_T0, SUFFIX)(Reg *d, uint32_t val)
492 {
493 d->L(0) = val;
494 d->L(1) = 0;
495 #if SHIFT == 1
496 d->Q(1) = 0;
497 #endif
498 }
499
500 #ifdef TARGET_X86_64
501 void glue(helper_movq_mm_T0, SUFFIX)(Reg *d, uint64_t val)
502 {
503 d->Q(0) = val;
504 #if SHIFT == 1
505 d->Q(1) = 0;
506 #endif
507 }
508 #endif
509
510 #if SHIFT == 0
511 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order)
512 {
513 Reg r;
514
515 r.W(0) = s->W(order & 3);
516 r.W(1) = s->W((order >> 2) & 3);
517 r.W(2) = s->W((order >> 4) & 3);
518 r.W(3) = s->W((order >> 6) & 3);
519 *d = r;
520 }
521 #else
522 void helper_shufps(Reg *d, Reg *s, int order)
523 {
524 Reg r;
525
526 r.L(0) = d->L(order & 3);
527 r.L(1) = d->L((order >> 2) & 3);
528 r.L(2) = s->L((order >> 4) & 3);
529 r.L(3) = s->L((order >> 6) & 3);
530 *d = r;
531 }
532
533 void helper_shufpd(Reg *d, Reg *s, int order)
534 {
535 Reg r;
536
537 r.Q(0) = d->Q(order & 1);
538 r.Q(1) = s->Q((order >> 1) & 1);
539 *d = r;
540 }
541
542 void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order)
543 {
544 Reg r;
545
546 r.L(0) = s->L(order & 3);
547 r.L(1) = s->L((order >> 2) & 3);
548 r.L(2) = s->L((order >> 4) & 3);
549 r.L(3) = s->L((order >> 6) & 3);
550 *d = r;
551 }
552
553 void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order)
554 {
555 Reg r;
556
557 r.W(0) = s->W(order & 3);
558 r.W(1) = s->W((order >> 2) & 3);
559 r.W(2) = s->W((order >> 4) & 3);
560 r.W(3) = s->W((order >> 6) & 3);
561 r.Q(1) = s->Q(1);
562 *d = r;
563 }
564
565 void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order)
566 {
567 Reg r;
568
569 r.Q(0) = s->Q(0);
570 r.W(4) = s->W(4 + (order & 3));
571 r.W(5) = s->W(4 + ((order >> 2) & 3));
572 r.W(6) = s->W(4 + ((order >> 4) & 3));
573 r.W(7) = s->W(4 + ((order >> 6) & 3));
574 *d = r;
575 }
576 #endif
577
578 #if SHIFT == 1
579 /* FPU ops */
580 /* XXX: not accurate */
581
582 #define SSE_HELPER_S(name, F) \
583 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \
584 { \
585 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
586 d->ZMM_S(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \
587 d->ZMM_S(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \
588 d->ZMM_S(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \
589 } \
590 \
591 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \
592 { \
593 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
594 } \
595 \
596 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \
597 { \
598 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
599 d->ZMM_D(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \
600 } \
601 \
602 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \
603 { \
604 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
605 }
606
607 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
608 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
609 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
610 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
611 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
612
613 /* Note that the choice of comparison op here is important to get the
614 * special cases right: for min and max Intel specifies that (-0,0),
615 * (NaN, anything) and (anything, NaN) return the second argument.
616 */
617 #define FPU_MIN(size, a, b) \
618 (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b))
619 #define FPU_MAX(size, a, b) \
620 (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b))
621
622 SSE_HELPER_S(add, FPU_ADD)
623 SSE_HELPER_S(sub, FPU_SUB)
624 SSE_HELPER_S(mul, FPU_MUL)
625 SSE_HELPER_S(div, FPU_DIV)
626 SSE_HELPER_S(min, FPU_MIN)
627 SSE_HELPER_S(max, FPU_MAX)
628 SSE_HELPER_S(sqrt, FPU_SQRT)
629
630
631 /* float to float conversions */
632 void helper_cvtps2pd(CPUX86State *env, Reg *d, Reg *s)
633 {
634 float32 s0, s1;
635
636 s0 = s->ZMM_S(0);
637 s1 = s->ZMM_S(1);
638 d->ZMM_D(0) = float32_to_float64(s0, &env->sse_status);
639 d->ZMM_D(1) = float32_to_float64(s1, &env->sse_status);
640 }
641
642 void helper_cvtpd2ps(CPUX86State *env, Reg *d, Reg *s)
643 {
644 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status);
645 d->ZMM_S(1) = float64_to_float32(s->ZMM_D(1), &env->sse_status);
646 d->Q(1) = 0;
647 }
648
649 void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *s)
650 {
651 d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status);
652 }
653
654 void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *s)
655 {
656 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status);
657 }
658
659 /* integer to float */
660 void helper_cvtdq2ps(CPUX86State *env, Reg *d, Reg *s)
661 {
662 d->ZMM_S(0) = int32_to_float32(s->ZMM_L(0), &env->sse_status);
663 d->ZMM_S(1) = int32_to_float32(s->ZMM_L(1), &env->sse_status);
664 d->ZMM_S(2) = int32_to_float32(s->ZMM_L(2), &env->sse_status);
665 d->ZMM_S(3) = int32_to_float32(s->ZMM_L(3), &env->sse_status);
666 }
667
668 void helper_cvtdq2pd(CPUX86State *env, Reg *d, Reg *s)
669 {
670 int32_t l0, l1;
671
672 l0 = (int32_t)s->ZMM_L(0);
673 l1 = (int32_t)s->ZMM_L(1);
674 d->ZMM_D(0) = int32_to_float64(l0, &env->sse_status);
675 d->ZMM_D(1) = int32_to_float64(l1, &env->sse_status);
676 }
677
678 void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s)
679 {
680 d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
681 d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
682 }
683
684 void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s)
685 {
686 d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
687 d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
688 }
689
690 void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val)
691 {
692 d->ZMM_S(0) = int32_to_float32(val, &env->sse_status);
693 }
694
695 void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val)
696 {
697 d->ZMM_D(0) = int32_to_float64(val, &env->sse_status);
698 }
699
700 #ifdef TARGET_X86_64
701 void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val)
702 {
703 d->ZMM_S(0) = int64_to_float32(val, &env->sse_status);
704 }
705
706 void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val)
707 {
708 d->ZMM_D(0) = int64_to_float64(val, &env->sse_status);
709 }
710 #endif
711
712 /* float to integer */
713 void helper_cvtps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
714 {
715 d->ZMM_L(0) = float32_to_int32(s->ZMM_S(0), &env->sse_status);
716 d->ZMM_L(1) = float32_to_int32(s->ZMM_S(1), &env->sse_status);
717 d->ZMM_L(2) = float32_to_int32(s->ZMM_S(2), &env->sse_status);
718 d->ZMM_L(3) = float32_to_int32(s->ZMM_S(3), &env->sse_status);
719 }
720
721 void helper_cvtpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
722 {
723 d->ZMM_L(0) = float64_to_int32(s->ZMM_D(0), &env->sse_status);
724 d->ZMM_L(1) = float64_to_int32(s->ZMM_D(1), &env->sse_status);
725 d->ZMM_Q(1) = 0;
726 }
727
728 void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
729 {
730 d->MMX_L(0) = float32_to_int32(s->ZMM_S(0), &env->sse_status);
731 d->MMX_L(1) = float32_to_int32(s->ZMM_S(1), &env->sse_status);
732 }
733
734 void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
735 {
736 d->MMX_L(0) = float64_to_int32(s->ZMM_D(0), &env->sse_status);
737 d->MMX_L(1) = float64_to_int32(s->ZMM_D(1), &env->sse_status);
738 }
739
740 int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s)
741 {
742 return float32_to_int32(s->ZMM_S(0), &env->sse_status);
743 }
744
745 int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s)
746 {
747 return float64_to_int32(s->ZMM_D(0), &env->sse_status);
748 }
749
750 #ifdef TARGET_X86_64
751 int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s)
752 {
753 return float32_to_int64(s->ZMM_S(0), &env->sse_status);
754 }
755
756 int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s)
757 {
758 return float64_to_int64(s->ZMM_D(0), &env->sse_status);
759 }
760 #endif
761
762 /* float to integer truncated */
763 void helper_cvttps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
764 {
765 d->ZMM_L(0) = float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
766 d->ZMM_L(1) = float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status);
767 d->ZMM_L(2) = float32_to_int32_round_to_zero(s->ZMM_S(2), &env->sse_status);
768 d->ZMM_L(3) = float32_to_int32_round_to_zero(s->ZMM_S(3), &env->sse_status);
769 }
770
771 void helper_cvttpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
772 {
773 d->ZMM_L(0) = float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
774 d->ZMM_L(1) = float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status);
775 d->ZMM_Q(1) = 0;
776 }
777
778 void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
779 {
780 d->MMX_L(0) = float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
781 d->MMX_L(1) = float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status);
782 }
783
784 void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
785 {
786 d->MMX_L(0) = float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
787 d->MMX_L(1) = float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status);
788 }
789
790 int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s)
791 {
792 return float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
793 }
794
795 int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s)
796 {
797 return float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
798 }
799
800 #ifdef TARGET_X86_64
801 int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s)
802 {
803 return float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status);
804 }
805
806 int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s)
807 {
808 return float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status);
809 }
810 #endif
811
812 void helper_rsqrtps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
813 {
814 d->ZMM_S(0) = float32_div(float32_one,
815 float32_sqrt(s->ZMM_S(0), &env->sse_status),
816 &env->sse_status);
817 d->ZMM_S(1) = float32_div(float32_one,
818 float32_sqrt(s->ZMM_S(1), &env->sse_status),
819 &env->sse_status);
820 d->ZMM_S(2) = float32_div(float32_one,
821 float32_sqrt(s->ZMM_S(2), &env->sse_status),
822 &env->sse_status);
823 d->ZMM_S(3) = float32_div(float32_one,
824 float32_sqrt(s->ZMM_S(3), &env->sse_status),
825 &env->sse_status);
826 }
827
828 void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *s)
829 {
830 d->ZMM_S(0) = float32_div(float32_one,
831 float32_sqrt(s->ZMM_S(0), &env->sse_status),
832 &env->sse_status);
833 }
834
835 void helper_rcpps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
836 {
837 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status);
838 d->ZMM_S(1) = float32_div(float32_one, s->ZMM_S(1), &env->sse_status);
839 d->ZMM_S(2) = float32_div(float32_one, s->ZMM_S(2), &env->sse_status);
840 d->ZMM_S(3) = float32_div(float32_one, s->ZMM_S(3), &env->sse_status);
841 }
842
843 void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *s)
844 {
845 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status);
846 }
847
848 static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
849 {
850 uint64_t mask;
851
852 if (len == 0) {
853 mask = ~0LL;
854 } else {
855 mask = (1ULL << len) - 1;
856 }
857 return (src >> shift) & mask;
858 }
859
860 void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
861 {
862 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1), s->ZMM_B(0));
863 }
864
865 void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length)
866 {
867 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length);
868 }
869
870 static inline uint64_t helper_insertq(uint64_t src, int shift, int len)
871 {
872 uint64_t mask;
873
874 if (len == 0) {
875 mask = ~0ULL;
876 } else {
877 mask = (1ULL << len) - 1;
878 }
879 return (src & ~(mask << shift)) | ((src & mask) << shift);
880 }
881
882 void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
883 {
884 d->ZMM_Q(0) = helper_insertq(s->ZMM_Q(0), s->ZMM_B(9), s->ZMM_B(8));
885 }
886
887 void helper_insertq_i(CPUX86State *env, ZMMReg *d, int index, int length)
888 {
889 d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), index, length);
890 }
891
892 void helper_haddps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
893 {
894 ZMMReg r;
895
896 r.ZMM_S(0) = float32_add(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status);
897 r.ZMM_S(1) = float32_add(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status);
898 r.ZMM_S(2) = float32_add(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status);
899 r.ZMM_S(3) = float32_add(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status);
900 *d = r;
901 }
902
903 void helper_haddpd(CPUX86State *env, ZMMReg *d, ZMMReg *s)
904 {
905 ZMMReg r;
906
907 r.ZMM_D(0) = float64_add(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status);
908 r.ZMM_D(1) = float64_add(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status);
909 *d = r;
910 }
911
912 void helper_hsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
913 {
914 ZMMReg r;
915
916 r.ZMM_S(0) = float32_sub(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status);
917 r.ZMM_S(1) = float32_sub(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status);
918 r.ZMM_S(2) = float32_sub(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status);
919 r.ZMM_S(3) = float32_sub(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status);
920 *d = r;
921 }
922
923 void helper_hsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s)
924 {
925 ZMMReg r;
926
927 r.ZMM_D(0) = float64_sub(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status);
928 r.ZMM_D(1) = float64_sub(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status);
929 *d = r;
930 }
931
932 void helper_addsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
933 {
934 d->ZMM_S(0) = float32_sub(d->ZMM_S(0), s->ZMM_S(0), &env->sse_status);
935 d->ZMM_S(1) = float32_add(d->ZMM_S(1), s->ZMM_S(1), &env->sse_status);
936 d->ZMM_S(2) = float32_sub(d->ZMM_S(2), s->ZMM_S(2), &env->sse_status);
937 d->ZMM_S(3) = float32_add(d->ZMM_S(3), s->ZMM_S(3), &env->sse_status);
938 }
939
940 void helper_addsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s)
941 {
942 d->ZMM_D(0) = float64_sub(d->ZMM_D(0), s->ZMM_D(0), &env->sse_status);
943 d->ZMM_D(1) = float64_add(d->ZMM_D(1), s->ZMM_D(1), &env->sse_status);
944 }
945
946 /* XXX: unordered */
947 #define SSE_HELPER_CMP(name, F) \
948 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \
949 { \
950 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
951 d->ZMM_L(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \
952 d->ZMM_L(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \
953 d->ZMM_L(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \
954 } \
955 \
956 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \
957 { \
958 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
959 } \
960 \
961 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \
962 { \
963 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
964 d->ZMM_Q(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \
965 } \
966 \
967 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \
968 { \
969 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
970 }
971
972 #define FPU_CMPEQ(size, a, b) \
973 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0)
974 #define FPU_CMPLT(size, a, b) \
975 (float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0)
976 #define FPU_CMPLE(size, a, b) \
977 (float ## size ## _le(a, b, &env->sse_status) ? -1 : 0)
978 #define FPU_CMPUNORD(size, a, b) \
979 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? -1 : 0)
980 #define FPU_CMPNEQ(size, a, b) \
981 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1)
982 #define FPU_CMPNLT(size, a, b) \
983 (float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1)
984 #define FPU_CMPNLE(size, a, b) \
985 (float ## size ## _le(a, b, &env->sse_status) ? 0 : -1)
986 #define FPU_CMPORD(size, a, b) \
987 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1)
988
989 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
990 SSE_HELPER_CMP(cmplt, FPU_CMPLT)
991 SSE_HELPER_CMP(cmple, FPU_CMPLE)
992 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
993 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
994 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
995 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
996 SSE_HELPER_CMP(cmpord, FPU_CMPORD)
997
998 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
999
1000 void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s)
1001 {
1002 int ret;
1003 float32 s0, s1;
1004
1005 s0 = d->ZMM_S(0);
1006 s1 = s->ZMM_S(0);
1007 ret = float32_compare_quiet(s0, s1, &env->sse_status);
1008 CC_SRC = comis_eflags[ret + 1];
1009 }
1010
1011 void helper_comiss(CPUX86State *env, Reg *d, Reg *s)
1012 {
1013 int ret;
1014 float32 s0, s1;
1015
1016 s0 = d->ZMM_S(0);
1017 s1 = s->ZMM_S(0);
1018 ret = float32_compare(s0, s1, &env->sse_status);
1019 CC_SRC = comis_eflags[ret + 1];
1020 }
1021
1022 void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s)
1023 {
1024 int ret;
1025 float64 d0, d1;
1026
1027 d0 = d->ZMM_D(0);
1028 d1 = s->ZMM_D(0);
1029 ret = float64_compare_quiet(d0, d1, &env->sse_status);
1030 CC_SRC = comis_eflags[ret + 1];
1031 }
1032
1033 void helper_comisd(CPUX86State *env, Reg *d, Reg *s)
1034 {
1035 int ret;
1036 float64 d0, d1;
1037
1038 d0 = d->ZMM_D(0);
1039 d1 = s->ZMM_D(0);
1040 ret = float64_compare(d0, d1, &env->sse_status);
1041 CC_SRC = comis_eflags[ret + 1];
1042 }
1043
1044 uint32_t helper_movmskps(CPUX86State *env, Reg *s)
1045 {
1046 int b0, b1, b2, b3;
1047
1048 b0 = s->ZMM_L(0) >> 31;
1049 b1 = s->ZMM_L(1) >> 31;
1050 b2 = s->ZMM_L(2) >> 31;
1051 b3 = s->ZMM_L(3) >> 31;
1052 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
1053 }
1054
1055 uint32_t helper_movmskpd(CPUX86State *env, Reg *s)
1056 {
1057 int b0, b1;
1058
1059 b0 = s->ZMM_L(1) >> 31;
1060 b1 = s->ZMM_L(3) >> 31;
1061 return b0 | (b1 << 1);
1062 }
1063
1064 #endif
1065
1066 uint32_t glue(helper_pmovmskb, SUFFIX)(CPUX86State *env, Reg *s)
1067 {
1068 uint32_t val;
1069
1070 val = 0;
1071 val |= (s->B(0) >> 7);
1072 val |= (s->B(1) >> 6) & 0x02;
1073 val |= (s->B(2) >> 5) & 0x04;
1074 val |= (s->B(3) >> 4) & 0x08;
1075 val |= (s->B(4) >> 3) & 0x10;
1076 val |= (s->B(5) >> 2) & 0x20;
1077 val |= (s->B(6) >> 1) & 0x40;
1078 val |= (s->B(7)) & 0x80;
1079 #if SHIFT == 1
1080 val |= (s->B(8) << 1) & 0x0100;
1081 val |= (s->B(9) << 2) & 0x0200;
1082 val |= (s->B(10) << 3) & 0x0400;
1083 val |= (s->B(11) << 4) & 0x0800;
1084 val |= (s->B(12) << 5) & 0x1000;
1085 val |= (s->B(13) << 6) & 0x2000;
1086 val |= (s->B(14) << 7) & 0x4000;
1087 val |= (s->B(15) << 8) & 0x8000;
1088 #endif
1089 return val;
1090 }
1091
1092 void glue(helper_packsswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1093 {
1094 Reg r;
1095
1096 r.B(0) = satsb((int16_t)d->W(0));
1097 r.B(1) = satsb((int16_t)d->W(1));
1098 r.B(2) = satsb((int16_t)d->W(2));
1099 r.B(3) = satsb((int16_t)d->W(3));
1100 #if SHIFT == 1
1101 r.B(4) = satsb((int16_t)d->W(4));
1102 r.B(5) = satsb((int16_t)d->W(5));
1103 r.B(6) = satsb((int16_t)d->W(6));
1104 r.B(7) = satsb((int16_t)d->W(7));
1105 #endif
1106 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1107 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1108 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1109 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1110 #if SHIFT == 1
1111 r.B(12) = satsb((int16_t)s->W(4));
1112 r.B(13) = satsb((int16_t)s->W(5));
1113 r.B(14) = satsb((int16_t)s->W(6));
1114 r.B(15) = satsb((int16_t)s->W(7));
1115 #endif
1116 *d = r;
1117 }
1118
1119 void glue(helper_packuswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1120 {
1121 Reg r;
1122
1123 r.B(0) = satub((int16_t)d->W(0));
1124 r.B(1) = satub((int16_t)d->W(1));
1125 r.B(2) = satub((int16_t)d->W(2));
1126 r.B(3) = satub((int16_t)d->W(3));
1127 #if SHIFT == 1
1128 r.B(4) = satub((int16_t)d->W(4));
1129 r.B(5) = satub((int16_t)d->W(5));
1130 r.B(6) = satub((int16_t)d->W(6));
1131 r.B(7) = satub((int16_t)d->W(7));
1132 #endif
1133 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1134 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1135 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1136 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1137 #if SHIFT == 1
1138 r.B(12) = satub((int16_t)s->W(4));
1139 r.B(13) = satub((int16_t)s->W(5));
1140 r.B(14) = satub((int16_t)s->W(6));
1141 r.B(15) = satub((int16_t)s->W(7));
1142 #endif
1143 *d = r;
1144 }
1145
1146 void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1147 {
1148 Reg r;
1149
1150 r.W(0) = satsw(d->L(0));
1151 r.W(1) = satsw(d->L(1));
1152 #if SHIFT == 1
1153 r.W(2) = satsw(d->L(2));
1154 r.W(3) = satsw(d->L(3));
1155 #endif
1156 r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1157 r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1158 #if SHIFT == 1
1159 r.W(6) = satsw(s->L(2));
1160 r.W(7) = satsw(s->L(3));
1161 #endif
1162 *d = r;
1163 }
1164
1165 #define UNPCK_OP(base_name, base) \
1166 \
1167 void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\
1168 Reg *d, Reg *s) \
1169 { \
1170 Reg r; \
1171 \
1172 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \
1173 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \
1174 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \
1175 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \
1176 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \
1177 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \
1178 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \
1179 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \
1180 XMM_ONLY( \
1181 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \
1182 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \
1183 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \
1184 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \
1185 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \
1186 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \
1187 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \
1188 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \
1189 ) \
1190 *d = r; \
1191 } \
1192 \
1193 void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\
1194 Reg *d, Reg *s) \
1195 { \
1196 Reg r; \
1197 \
1198 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \
1199 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \
1200 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \
1201 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \
1202 XMM_ONLY( \
1203 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \
1204 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \
1205 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \
1206 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \
1207 ) \
1208 *d = r; \
1209 } \
1210 \
1211 void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\
1212 Reg *d, Reg *s) \
1213 { \
1214 Reg r; \
1215 \
1216 r.L(0) = d->L((base << SHIFT) + 0); \
1217 r.L(1) = s->L((base << SHIFT) + 0); \
1218 XMM_ONLY( \
1219 r.L(2) = d->L((base << SHIFT) + 1); \
1220 r.L(3) = s->L((base << SHIFT) + 1); \
1221 ) \
1222 *d = r; \
1223 } \
1224 \
1225 XMM_ONLY( \
1226 void glue(helper_punpck ## base_name ## qdq, SUFFIX)(CPUX86State \
1227 *env, \
1228 Reg *d, \
1229 Reg *s) \
1230 { \
1231 Reg r; \
1232 \
1233 r.Q(0) = d->Q(base); \
1234 r.Q(1) = s->Q(base); \
1235 *d = r; \
1236 } \
1237 )
1238
1239 UNPCK_OP(l, 0)
1240 UNPCK_OP(h, 1)
1241
1242 /* 3DNow! float ops */
1243 #if SHIFT == 0
1244 void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s)
1245 {
1246 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1247 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1248 }
1249
1250 void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s)
1251 {
1252 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1253 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1254 }
1255
1256 void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s)
1257 {
1258 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1259 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1260 }
1261
1262 void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s)
1263 {
1264 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0),
1265 &env->mmx_status));
1266 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1),
1267 &env->mmx_status));
1268 }
1269
1270 void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1271 {
1272 MMXReg r;
1273
1274 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1275 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1276 *d = r;
1277 }
1278
1279 void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s)
1280 {
1281 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1282 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1283 }
1284
1285 void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s)
1286 {
1287 d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0),
1288 &env->mmx_status) ? -1 : 0;
1289 d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1),
1290 &env->mmx_status) ? -1 : 0;
1291 }
1292
1293 void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s)
1294 {
1295 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0),
1296 &env->mmx_status) ? -1 : 0;
1297 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1),
1298 &env->mmx_status) ? -1 : 0;
1299 }
1300
1301 void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s)
1302 {
1303 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0),
1304 &env->mmx_status) ? -1 : 0;
1305 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1),
1306 &env->mmx_status) ? -1 : 0;
1307 }
1308
1309 void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s)
1310 {
1311 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) {
1312 d->MMX_S(0) = s->MMX_S(0);
1313 }
1314 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) {
1315 d->MMX_S(1) = s->MMX_S(1);
1316 }
1317 }
1318
1319 void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s)
1320 {
1321 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) {
1322 d->MMX_S(0) = s->MMX_S(0);
1323 }
1324 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) {
1325 d->MMX_S(1) = s->MMX_S(1);
1326 }
1327 }
1328
1329 void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s)
1330 {
1331 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1332 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1333 }
1334
1335 void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1336 {
1337 MMXReg r;
1338
1339 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1340 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1341 *d = r;
1342 }
1343
1344 void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1345 {
1346 MMXReg r;
1347
1348 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1349 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1350 *d = r;
1351 }
1352
1353 void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s)
1354 {
1355 d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status);
1356 d->MMX_S(1) = d->MMX_S(0);
1357 }
1358
1359 void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s)
1360 {
1361 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1362 d->MMX_S(1) = float32_div(float32_one,
1363 float32_sqrt(d->MMX_S(1), &env->mmx_status),
1364 &env->mmx_status);
1365 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1366 d->MMX_L(0) = d->MMX_L(1);
1367 }
1368
1369 void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s)
1370 {
1371 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1372 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1373 }
1374
1375 void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s)
1376 {
1377 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1378 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1379 }
1380
1381 void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s)
1382 {
1383 MMXReg r;
1384
1385 r.MMX_L(0) = s->MMX_L(1);
1386 r.MMX_L(1) = s->MMX_L(0);
1387 *d = r;
1388 }
1389 #endif
1390
1391 /* SSSE3 op helpers */
1392 void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1393 {
1394 int i;
1395 Reg r;
1396
1397 for (i = 0; i < (8 << SHIFT); i++) {
1398 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1399 }
1400
1401 *d = r;
1402 }
1403
1404 void glue(helper_phaddw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1405 {
1406 d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1407 d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1408 XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1409 XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1410 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1411 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1412 XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1413 XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1414 }
1415
1416 void glue(helper_phaddd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1417 {
1418 d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1419 XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1420 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1421 XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1422 }
1423
1424 void glue(helper_phaddsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1425 {
1426 d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1427 d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1428 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1429 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1430 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1431 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1432 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1433 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1434 }
1435
1436 void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1437 {
1438 d->W(0) = satsw((int8_t)s->B(0) * (uint8_t)d->B(0) +
1439 (int8_t)s->B(1) * (uint8_t)d->B(1));
1440 d->W(1) = satsw((int8_t)s->B(2) * (uint8_t)d->B(2) +
1441 (int8_t)s->B(3) * (uint8_t)d->B(3));
1442 d->W(2) = satsw((int8_t)s->B(4) * (uint8_t)d->B(4) +
1443 (int8_t)s->B(5) * (uint8_t)d->B(5));
1444 d->W(3) = satsw((int8_t)s->B(6) * (uint8_t)d->B(6) +
1445 (int8_t)s->B(7) * (uint8_t)d->B(7));
1446 #if SHIFT == 1
1447 d->W(4) = satsw((int8_t)s->B(8) * (uint8_t)d->B(8) +
1448 (int8_t)s->B(9) * (uint8_t)d->B(9));
1449 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1450 (int8_t)s->B(11) * (uint8_t)d->B(11));
1451 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1452 (int8_t)s->B(13) * (uint8_t)d->B(13));
1453 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1454 (int8_t)s->B(15) * (uint8_t)d->B(15));
1455 #endif
1456 }
1457
1458 void glue(helper_phsubw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1459 {
1460 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1461 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1462 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1463 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1464 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1465 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1466 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1467 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1468 }
1469
1470 void glue(helper_phsubd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1471 {
1472 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1473 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1474 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1475 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1476 }
1477
1478 void glue(helper_phsubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1479 {
1480 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1481 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1482 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1483 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1484 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1485 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1486 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1487 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1488 }
1489
1490 #define FABSB(_, x) (x > INT8_MAX ? -(int8_t)x : x)
1491 #define FABSW(_, x) (x > INT16_MAX ? -(int16_t)x : x)
1492 #define FABSL(_, x) (x > INT32_MAX ? -(int32_t)x : x)
1493 SSE_HELPER_B(helper_pabsb, FABSB)
1494 SSE_HELPER_W(helper_pabsw, FABSW)
1495 SSE_HELPER_L(helper_pabsd, FABSL)
1496
1497 #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15)
1498 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1499
1500 #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d)
1501 #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d)
1502 #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d)
1503 SSE_HELPER_B(helper_psignb, FSIGNB)
1504 SSE_HELPER_W(helper_psignw, FSIGNW)
1505 SSE_HELPER_L(helper_psignd, FSIGNL)
1506
1507 void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1508 int32_t shift)
1509 {
1510 Reg r;
1511
1512 /* XXX could be checked during translation */
1513 if (shift >= (16 << SHIFT)) {
1514 r.Q(0) = 0;
1515 XMM_ONLY(r.Q(1) = 0);
1516 } else {
1517 shift <<= 3;
1518 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1519 #if SHIFT == 0
1520 r.Q(0) = SHR(s->Q(0), shift - 0) |
1521 SHR(d->Q(0), shift - 64);
1522 #else
1523 r.Q(0) = SHR(s->Q(0), shift - 0) |
1524 SHR(s->Q(1), shift - 64) |
1525 SHR(d->Q(0), shift - 128) |
1526 SHR(d->Q(1), shift - 192);
1527 r.Q(1) = SHR(s->Q(0), shift + 64) |
1528 SHR(s->Q(1), shift - 0) |
1529 SHR(d->Q(0), shift - 64) |
1530 SHR(d->Q(1), shift - 128);
1531 #endif
1532 #undef SHR
1533 }
1534
1535 *d = r;
1536 }
1537
1538 #define XMM0 (env->xmm_regs[0])
1539
1540 #if SHIFT == 1
1541 #define SSE_HELPER_V(name, elem, num, F) \
1542 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
1543 { \
1544 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0)); \
1545 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1)); \
1546 if (num > 2) { \
1547 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2)); \
1548 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3)); \
1549 if (num > 4) { \
1550 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4)); \
1551 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5)); \
1552 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6)); \
1553 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7)); \
1554 if (num > 8) { \
1555 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8)); \
1556 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9)); \
1557 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10)); \
1558 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11)); \
1559 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12)); \
1560 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13)); \
1561 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14)); \
1562 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15)); \
1563 } \
1564 } \
1565 } \
1566 }
1567
1568 #define SSE_HELPER_I(name, elem, num, F) \
1569 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t imm) \
1570 { \
1571 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1)); \
1572 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1)); \
1573 if (num > 2) { \
1574 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1)); \
1575 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1)); \
1576 if (num > 4) { \
1577 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1)); \
1578 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1)); \
1579 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1)); \
1580 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1)); \
1581 if (num > 8) { \
1582 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1)); \
1583 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1)); \
1584 d->elem(10) = F(d->elem(10), s->elem(10), \
1585 ((imm >> 10) & 1)); \
1586 d->elem(11) = F(d->elem(11), s->elem(11), \
1587 ((imm >> 11) & 1)); \
1588 d->elem(12) = F(d->elem(12), s->elem(12), \
1589 ((imm >> 12) & 1)); \
1590 d->elem(13) = F(d->elem(13), s->elem(13), \
1591 ((imm >> 13) & 1)); \
1592 d->elem(14) = F(d->elem(14), s->elem(14), \
1593 ((imm >> 14) & 1)); \
1594 d->elem(15) = F(d->elem(15), s->elem(15), \
1595 ((imm >> 15) & 1)); \
1596 } \
1597 } \
1598 } \
1599 }
1600
1601 /* SSE4.1 op helpers */
1602 #define FBLENDVB(d, s, m) ((m & 0x80) ? s : d)
1603 #define FBLENDVPS(d, s, m) ((m & 0x80000000) ? s : d)
1604 #define FBLENDVPD(d, s, m) ((m & 0x8000000000000000LL) ? s : d)
1605 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1606 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1607 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1608
1609 void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1610 {
1611 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1));
1612 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1613
1614 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1615 }
1616
1617 #define SSE_HELPER_F(name, elem, num, F) \
1618 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
1619 { \
1620 d->elem(0) = F(0); \
1621 d->elem(1) = F(1); \
1622 if (num > 2) { \
1623 d->elem(2) = F(2); \
1624 d->elem(3) = F(3); \
1625 if (num > 4) { \
1626 d->elem(4) = F(4); \
1627 d->elem(5) = F(5); \
1628 d->elem(6) = F(6); \
1629 d->elem(7) = F(7); \
1630 } \
1631 } \
1632 }
1633
1634 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1635 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1636 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1637 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1638 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1639 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1640 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1641 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1642 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1643 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1644 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1645 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1646
1647 void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1648 {
1649 d->Q(0) = (int64_t)(int32_t) d->L(0) * (int32_t) s->L(0);
1650 d->Q(1) = (int64_t)(int32_t) d->L(2) * (int32_t) s->L(2);
1651 }
1652
1653 #define FCMPEQQ(d, s) (d == s ? -1 : 0)
1654 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1655
1656 void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1657 {
1658 d->W(0) = satuw((int32_t) d->L(0));
1659 d->W(1) = satuw((int32_t) d->L(1));
1660 d->W(2) = satuw((int32_t) d->L(2));
1661 d->W(3) = satuw((int32_t) d->L(3));
1662 d->W(4) = satuw((int32_t) s->L(0));
1663 d->W(5) = satuw((int32_t) s->L(1));
1664 d->W(6) = satuw((int32_t) s->L(2));
1665 d->W(7) = satuw((int32_t) s->L(3));
1666 }
1667
1668 #define FMINSB(d, s) MIN((int8_t)d, (int8_t)s)
1669 #define FMINSD(d, s) MIN((int32_t)d, (int32_t)s)
1670 #define FMAXSB(d, s) MAX((int8_t)d, (int8_t)s)
1671 #define FMAXSD(d, s) MAX((int32_t)d, (int32_t)s)
1672 SSE_HELPER_B(helper_pminsb, FMINSB)
1673 SSE_HELPER_L(helper_pminsd, FMINSD)
1674 SSE_HELPER_W(helper_pminuw, MIN)
1675 SSE_HELPER_L(helper_pminud, MIN)
1676 SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1677 SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1678 SSE_HELPER_W(helper_pmaxuw, MAX)
1679 SSE_HELPER_L(helper_pmaxud, MAX)
1680
1681 #define FMULLD(d, s) ((int32_t)d * (int32_t)s)
1682 SSE_HELPER_L(helper_pmulld, FMULLD)
1683
1684 void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1685 {
1686 int idx = 0;
1687
1688 if (s->W(1) < s->W(idx)) {
1689 idx = 1;
1690 }
1691 if (s->W(2) < s->W(idx)) {
1692 idx = 2;
1693 }
1694 if (s->W(3) < s->W(idx)) {
1695 idx = 3;
1696 }
1697 if (s->W(4) < s->W(idx)) {
1698 idx = 4;
1699 }
1700 if (s->W(5) < s->W(idx)) {
1701 idx = 5;
1702 }
1703 if (s->W(6) < s->W(idx)) {
1704 idx = 6;
1705 }
1706 if (s->W(7) < s->W(idx)) {
1707 idx = 7;
1708 }
1709
1710 d->Q(1) = 0;
1711 d->L(1) = 0;
1712 d->W(1) = idx;
1713 d->W(0) = s->W(idx);
1714 }
1715
1716 void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1717 uint32_t mode)
1718 {
1719 signed char prev_rounding_mode;
1720
1721 prev_rounding_mode = env->sse_status.float_rounding_mode;
1722 if (!(mode & (1 << 2))) {
1723 switch (mode & 3) {
1724 case 0:
1725 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1726 break;
1727 case 1:
1728 set_float_rounding_mode(float_round_down, &env->sse_status);
1729 break;
1730 case 2:
1731 set_float_rounding_mode(float_round_up, &env->sse_status);
1732 break;
1733 case 3:
1734 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1735 break;
1736 }
1737 }
1738
1739 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status);
1740 d->ZMM_S(1) = float32_round_to_int(s->ZMM_S(1), &env->sse_status);
1741 d->ZMM_S(2) = float32_round_to_int(s->ZMM_S(2), &env->sse_status);
1742 d->ZMM_S(3) = float32_round_to_int(s->ZMM_S(3), &env->sse_status);
1743
1744 #if 0 /* TODO */
1745 if (mode & (1 << 3)) {
1746 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1747 ~float_flag_inexact,
1748 &env->sse_status);
1749 }
1750 #endif
1751 env->sse_status.float_rounding_mode = prev_rounding_mode;
1752 }
1753
1754 void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1755 uint32_t mode)
1756 {
1757 signed char prev_rounding_mode;
1758
1759 prev_rounding_mode = env->sse_status.float_rounding_mode;
1760 if (!(mode & (1 << 2))) {
1761 switch (mode & 3) {
1762 case 0:
1763 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1764 break;
1765 case 1:
1766 set_float_rounding_mode(float_round_down, &env->sse_status);
1767 break;
1768 case 2:
1769 set_float_rounding_mode(float_round_up, &env->sse_status);
1770 break;
1771 case 3:
1772 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1773 break;
1774 }
1775 }
1776
1777 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status);
1778 d->ZMM_D(1) = float64_round_to_int(s->ZMM_D(1), &env->sse_status);
1779
1780 #if 0 /* TODO */
1781 if (mode & (1 << 3)) {
1782 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1783 ~float_flag_inexact,
1784 &env->sse_status);
1785 }
1786 #endif
1787 env->sse_status.float_rounding_mode = prev_rounding_mode;
1788 }
1789
1790 void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1791 uint32_t mode)
1792 {
1793 signed char prev_rounding_mode;
1794
1795 prev_rounding_mode = env->sse_status.float_rounding_mode;
1796 if (!(mode & (1 << 2))) {
1797 switch (mode & 3) {
1798 case 0:
1799 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1800 break;
1801 case 1:
1802 set_float_rounding_mode(float_round_down, &env->sse_status);
1803 break;
1804 case 2:
1805 set_float_rounding_mode(float_round_up, &env->sse_status);
1806 break;
1807 case 3:
1808 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1809 break;
1810 }
1811 }
1812
1813 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status);
1814
1815 #if 0 /* TODO */
1816 if (mode & (1 << 3)) {
1817 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1818 ~float_flag_inexact,
1819 &env->sse_status);
1820 }
1821 #endif
1822 env->sse_status.float_rounding_mode = prev_rounding_mode;
1823 }
1824
1825 void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1826 uint32_t mode)
1827 {
1828 signed char prev_rounding_mode;
1829
1830 prev_rounding_mode = env->sse_status.float_rounding_mode;
1831 if (!(mode & (1 << 2))) {
1832 switch (mode & 3) {
1833 case 0:
1834 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1835 break;
1836 case 1:
1837 set_float_rounding_mode(float_round_down, &env->sse_status);
1838 break;
1839 case 2:
1840 set_float_rounding_mode(float_round_up, &env->sse_status);
1841 break;
1842 case 3:
1843 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1844 break;
1845 }
1846 }
1847
1848 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status);
1849
1850 #if 0 /* TODO */
1851 if (mode & (1 << 3)) {
1852 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1853 ~float_flag_inexact,
1854 &env->sse_status);
1855 }
1856 #endif
1857 env->sse_status.float_rounding_mode = prev_rounding_mode;
1858 }
1859
1860 #define FBLENDP(d, s, m) (m ? s : d)
1861 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1862 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1863 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1864
1865 void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask)
1866 {
1867 float32 iresult = float32_zero;
1868
1869 if (mask & (1 << 4)) {
1870 iresult = float32_add(iresult,
1871 float32_mul(d->ZMM_S(0), s->ZMM_S(0),
1872 &env->sse_status),
1873 &env->sse_status);
1874 }
1875 if (mask & (1 << 5)) {
1876 iresult = float32_add(iresult,
1877 float32_mul(d->ZMM_S(1), s->ZMM_S(1),
1878 &env->sse_status),
1879 &env->sse_status);
1880 }
1881 if (mask & (1 << 6)) {
1882 iresult = float32_add(iresult,
1883 float32_mul(d->ZMM_S(2), s->ZMM_S(2),
1884 &env->sse_status),
1885 &env->sse_status);
1886 }
1887 if (mask & (1 << 7)) {
1888 iresult = float32_add(iresult,
1889 float32_mul(d->ZMM_S(3), s->ZMM_S(3),
1890 &env->sse_status),
1891 &env->sse_status);
1892 }
1893 d->ZMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero;
1894 d->ZMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero;
1895 d->ZMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero;
1896 d->ZMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero;
1897 }
1898
1899 void glue(helper_dppd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask)
1900 {
1901 float64 iresult = float64_zero;
1902
1903 if (mask & (1 << 4)) {
1904 iresult = float64_add(iresult,
1905 float64_mul(d->ZMM_D(0), s->ZMM_D(0),
1906 &env->sse_status),
1907 &env->sse_status);
1908 }
1909 if (mask & (1 << 5)) {
1910 iresult = float64_add(iresult,
1911 float64_mul(d->ZMM_D(1), s->ZMM_D(1),
1912 &env->sse_status),
1913 &env->sse_status);
1914 }
1915 d->ZMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero;
1916 d->ZMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero;
1917 }
1918
1919 void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1920 uint32_t offset)
1921 {
1922 int s0 = (offset & 3) << 2;
1923 int d0 = (offset & 4) << 0;
1924 int i;
1925 Reg r;
1926
1927 for (i = 0; i < 8; i++, d0++) {
1928 r.W(i) = 0;
1929 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1930 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1931 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1932 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1933 }
1934
1935 *d = r;
1936 }
1937
1938 /* SSE4.2 op helpers */
1939 #define FCMPGTQ(d, s) ((int64_t)d > (int64_t)s ? -1 : 0)
1940 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1941
1942 static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl)
1943 {
1944 int val;
1945
1946 /* Presence of REX.W is indicated by a bit higher than 7 set */
1947 if (ctrl >> 8) {
1948 val = abs1((int64_t)env->regs[reg]);
1949 } else {
1950 val = abs1((int32_t)env->regs[reg]);
1951 }
1952
1953 if (ctrl & 1) {
1954 if (val > 8) {
1955 return 8;
1956 }
1957 } else {
1958 if (val > 16) {
1959 return 16;
1960 }
1961 }
1962 return val;
1963 }
1964
1965 static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1966 {
1967 int val = 0;
1968
1969 if (ctrl & 1) {
1970 while (val < 8 && r->W(val)) {
1971 val++;
1972 }
1973 } else {
1974 while (val < 16 && r->B(val)) {
1975 val++;
1976 }
1977 }
1978
1979 return val;
1980 }
1981
1982 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1983 {
1984 switch ((ctrl >> 0) & 3) {
1985 case 0:
1986 return r->B(i);
1987 case 1:
1988 return r->W(i);
1989 case 2:
1990 return (int8_t)r->B(i);
1991 case 3:
1992 default:
1993 return (int16_t)r->W(i);
1994 }
1995 }
1996
1997 static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s,
1998 int8_t ctrl, int valids, int validd)
1999 {
2000 unsigned int res = 0;
2001 int v;
2002 int j, i;
2003 int upper = (ctrl & 1) ? 7 : 15;
2004
2005 valids--;
2006 validd--;
2007
2008 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
2009
2010 switch ((ctrl >> 2) & 3) {
2011 case 0:
2012 for (j = valids; j >= 0; j--) {
2013 res <<= 1;
2014 v = pcmp_val(s, ctrl, j);
2015 for (i = validd; i >= 0; i--) {
2016 res |= (v == pcmp_val(d, ctrl, i));
2017 }
2018 }
2019 break;
2020 case 1:
2021 for (j = valids; j >= 0; j--) {
2022 res <<= 1;
2023 v = pcmp_val(s, ctrl, j);
2024 for (i = ((validd - 1) | 1); i >= 0; i -= 2) {
2025 res |= (pcmp_val(d, ctrl, i - 0) >= v &&
2026 pcmp_val(d, ctrl, i - 1) <= v);
2027 }
2028 }
2029 break;
2030 case 2:
2031 res = (1 << (upper - MAX(valids, validd))) - 1;
2032 res <<= MAX(valids, validd) - MIN(valids, validd);
2033 for (i = MIN(valids, validd); i >= 0; i--) {
2034 res <<= 1;
2035 v = pcmp_val(s, ctrl, i);
2036 res |= (v == pcmp_val(d, ctrl, i));
2037 }
2038 break;
2039 case 3:
2040 for (j = valids; j >= 0; j--) {
2041 res <<= 1;
2042 v = 1;
2043 for (i = MIN(valids - j, validd); i >= 0; i--) {
2044 v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
2045 }
2046 res |= v;
2047 }
2048 break;
2049 }
2050
2051 switch ((ctrl >> 4) & 3) {
2052 case 1:
2053 res ^= (2 << upper) - 1;
2054 break;
2055 case 3:
2056 res ^= (1 << (valids + 1)) - 1;
2057 break;
2058 }
2059
2060 if (res) {
2061 CC_SRC |= CC_C;
2062 }
2063 if (res & 1) {
2064 CC_SRC |= CC_O;
2065 }
2066
2067 return res;
2068 }
2069
2070 void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2071 uint32_t ctrl)
2072 {
2073 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2074 pcmp_elen(env, R_EDX, ctrl),
2075 pcmp_elen(env, R_EAX, ctrl));
2076
2077 if (res) {
2078 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2079 } else {
2080 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2081 }
2082 }
2083
2084 void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2085 uint32_t ctrl)
2086 {
2087 int i;
2088 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2089 pcmp_elen(env, R_EDX, ctrl),
2090 pcmp_elen(env, R_EAX, ctrl));
2091
2092 if ((ctrl >> 6) & 1) {
2093 if (ctrl & 1) {
2094 for (i = 0; i < 8; i++, res >>= 1) {
2095 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2096 }
2097 } else {
2098 for (i = 0; i < 16; i++, res >>= 1) {
2099 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2100 }
2101 }
2102 } else {
2103 env->xmm_regs[0].Q(1) = 0;
2104 env->xmm_regs[0].Q(0) = res;
2105 }
2106 }
2107
2108 void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2109 uint32_t ctrl)
2110 {
2111 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2112 pcmp_ilen(s, ctrl),
2113 pcmp_ilen(d, ctrl));
2114
2115 if (res) {
2116 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2117 } else {
2118 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2119 }
2120 }
2121
2122 void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2123 uint32_t ctrl)
2124 {
2125 int i;
2126 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2127 pcmp_ilen(s, ctrl),
2128 pcmp_ilen(d, ctrl));
2129
2130 if ((ctrl >> 6) & 1) {
2131 if (ctrl & 1) {
2132 for (i = 0; i < 8; i++, res >>= 1) {
2133 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2134 }
2135 } else {
2136 for (i = 0; i < 16; i++, res >>= 1) {
2137 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2138 }
2139 }
2140 } else {
2141 env->xmm_regs[0].Q(1) = 0;
2142 env->xmm_regs[0].Q(0) = res;
2143 }
2144 }
2145
2146 #define CRCPOLY 0x1edc6f41
2147 #define CRCPOLY_BITREV 0x82f63b78
2148 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2149 {
2150 target_ulong crc = (msg & ((target_ulong) -1 >>
2151 (TARGET_LONG_BITS - len))) ^ crc1;
2152
2153 while (len--) {
2154 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2155 }
2156
2157 return crc;
2158 }
2159
2160 #define POPMASK(i) ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2161 #define POPCOUNT(n, i) ((n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i)))
2162 target_ulong helper_popcnt(CPUX86State *env, target_ulong n, uint32_t type)
2163 {
2164 CC_SRC = n ? 0 : CC_Z;
2165
2166 n = POPCOUNT(n, 0);
2167 n = POPCOUNT(n, 1);
2168 n = POPCOUNT(n, 2);
2169 n = POPCOUNT(n, 3);
2170 if (type == 1) {
2171 return n & 0xff;
2172 }
2173
2174 n = POPCOUNT(n, 4);
2175 #ifndef TARGET_X86_64
2176 return n;
2177 #else
2178 if (type == 2) {
2179 return n & 0xff;
2180 }
2181
2182 return POPCOUNT(n, 5);
2183 #endif
2184 }
2185
2186 void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2187 uint32_t ctrl)
2188 {
2189 uint64_t ah, al, b, resh, resl;
2190
2191 ah = 0;
2192 al = d->Q((ctrl & 1) != 0);
2193 b = s->Q((ctrl & 16) != 0);
2194 resh = resl = 0;
2195
2196 while (b) {
2197 if (b & 1) {
2198 resl ^= al;
2199 resh ^= ah;
2200 }
2201 ah = (ah << 1) | (al >> 63);
2202 al <<= 1;
2203 b >>= 1;
2204 }
2205
2206 d->Q(0) = resl;
2207 d->Q(1) = resh;
2208 }
2209
2210 void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2211 {
2212 int i;
2213 Reg st = *d;
2214 Reg rk = *s;
2215
2216 for (i = 0 ; i < 4 ; i++) {
2217 d->L(i) = rk.L(i) ^ bswap32(AES_Td0[st.B(AES_ishifts[4*i+0])] ^
2218 AES_Td1[st.B(AES_ishifts[4*i+1])] ^
2219 AES_Td2[st.B(AES_ishifts[4*i+2])] ^
2220 AES_Td3[st.B(AES_ishifts[4*i+3])]);
2221 }
2222 }
2223
2224 void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2225 {
2226 int i;
2227 Reg st = *d;
2228 Reg rk = *s;
2229
2230 for (i = 0; i < 16; i++) {
2231 d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i])]);
2232 }
2233 }
2234
2235 void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2236 {
2237 int i;
2238 Reg st = *d;
2239 Reg rk = *s;
2240
2241 for (i = 0 ; i < 4 ; i++) {
2242 d->L(i) = rk.L(i) ^ bswap32(AES_Te0[st.B(AES_shifts[4*i+0])] ^
2243 AES_Te1[st.B(AES_shifts[4*i+1])] ^
2244 AES_Te2[st.B(AES_shifts[4*i+2])] ^
2245 AES_Te3[st.B(AES_shifts[4*i+3])]);
2246 }
2247 }
2248
2249 void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2250 {
2251 int i;
2252 Reg st = *d;
2253 Reg rk = *s;
2254
2255 for (i = 0; i < 16; i++) {
2256 d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i])]);
2257 }
2258
2259 }
2260
2261 void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2262 {
2263 int i;
2264 Reg tmp = *s;
2265
2266 for (i = 0 ; i < 4 ; i++) {
2267 d->L(i) = bswap32(AES_imc[tmp.B(4*i+0)][0] ^
2268 AES_imc[tmp.B(4*i+1)][1] ^
2269 AES_imc[tmp.B(4*i+2)][2] ^
2270 AES_imc[tmp.B(4*i+3)][3]);
2271 }
2272 }
2273
2274 void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2275 uint32_t ctrl)
2276 {
2277 int i;
2278 Reg tmp = *s;
2279
2280 for (i = 0 ; i < 4 ; i++) {
2281 d->B(i) = AES_sbox[tmp.B(i + 4)];
2282 d->B(i + 8) = AES_sbox[tmp.B(i + 12)];
2283 }
2284 d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl;
2285 d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl;
2286 }
2287 #endif
2288
2289 #undef SHIFT
2290 #undef XMM_ONLY
2291 #undef Reg
2292 #undef B
2293 #undef W
2294 #undef L
2295 #undef Q
2296 #undef SUFFIX