target-sparc: Clean up ENV_GET_CPU() usage
[qemu.git] / target-sparc / ldst_helper.c
1 /*
2 * Helpers for loads and stores
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "cpu.h"
21 #include "helper.h"
22
23 //#define DEBUG_MMU
24 //#define DEBUG_MXCC
25 //#define DEBUG_UNALIGNED
26 //#define DEBUG_UNASSIGNED
27 //#define DEBUG_ASI
28 //#define DEBUG_CACHE_CONTROL
29
30 #ifdef DEBUG_MMU
31 #define DPRINTF_MMU(fmt, ...) \
32 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
33 #else
34 #define DPRINTF_MMU(fmt, ...) do {} while (0)
35 #endif
36
37 #ifdef DEBUG_MXCC
38 #define DPRINTF_MXCC(fmt, ...) \
39 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
40 #else
41 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
42 #endif
43
44 #ifdef DEBUG_ASI
45 #define DPRINTF_ASI(fmt, ...) \
46 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
47 #endif
48
49 #ifdef DEBUG_CACHE_CONTROL
50 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
51 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
52 #else
53 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
54 #endif
55
56 #ifdef TARGET_SPARC64
57 #ifndef TARGET_ABI32
58 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
59 #else
60 #define AM_CHECK(env1) (1)
61 #endif
62 #endif
63
64 #define QT0 (env->qt0)
65 #define QT1 (env->qt1)
66
67 #if !defined(CONFIG_USER_ONLY)
68 static void QEMU_NORETURN do_unaligned_access(CPUSPARCState *env,
69 target_ulong addr, int is_write,
70 int is_user, uintptr_t retaddr);
71 #include "exec/softmmu_exec.h"
72 #define MMUSUFFIX _mmu
73 #define ALIGNED_ONLY
74
75 #define SHIFT 0
76 #include "exec/softmmu_template.h"
77
78 #define SHIFT 1
79 #include "exec/softmmu_template.h"
80
81 #define SHIFT 2
82 #include "exec/softmmu_template.h"
83
84 #define SHIFT 3
85 #include "exec/softmmu_template.h"
86 #endif
87
88 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
89 /* Calculates TSB pointer value for fault page size 8k or 64k */
90 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
91 uint64_t tag_access_register,
92 int page_size)
93 {
94 uint64_t tsb_base = tsb_register & ~0x1fffULL;
95 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
96 int tsb_size = tsb_register & 0xf;
97
98 /* discard lower 13 bits which hold tag access context */
99 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
100
101 /* now reorder bits */
102 uint64_t tsb_base_mask = ~0x1fffULL;
103 uint64_t va = tag_access_va;
104
105 /* move va bits to correct position */
106 if (page_size == 8*1024) {
107 va >>= 9;
108 } else if (page_size == 64*1024) {
109 va >>= 12;
110 }
111
112 if (tsb_size) {
113 tsb_base_mask <<= tsb_size;
114 }
115
116 /* calculate tsb_base mask and adjust va if split is in use */
117 if (tsb_split) {
118 if (page_size == 8*1024) {
119 va &= ~(1ULL << (13 + tsb_size));
120 } else if (page_size == 64*1024) {
121 va |= (1ULL << (13 + tsb_size));
122 }
123 tsb_base_mask <<= 1;
124 }
125
126 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
127 }
128
129 /* Calculates tag target register value by reordering bits
130 in tag access register */
131 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
132 {
133 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
134 }
135
136 static void replace_tlb_entry(SparcTLBEntry *tlb,
137 uint64_t tlb_tag, uint64_t tlb_tte,
138 CPUSPARCState *env1)
139 {
140 target_ulong mask, size, va, offset;
141
142 /* flush page range if translation is valid */
143 if (TTE_IS_VALID(tlb->tte)) {
144
145 mask = 0xffffffffffffe000ULL;
146 mask <<= 3 * ((tlb->tte >> 61) & 3);
147 size = ~mask + 1;
148
149 va = tlb->tag & mask;
150
151 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
152 tlb_flush_page(env1, va + offset);
153 }
154 }
155
156 tlb->tag = tlb_tag;
157 tlb->tte = tlb_tte;
158 }
159
160 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
161 const char *strmmu, CPUSPARCState *env1)
162 {
163 unsigned int i;
164 target_ulong mask;
165 uint64_t context;
166
167 int is_demap_context = (demap_addr >> 6) & 1;
168
169 /* demap context */
170 switch ((demap_addr >> 4) & 3) {
171 case 0: /* primary */
172 context = env1->dmmu.mmu_primary_context;
173 break;
174 case 1: /* secondary */
175 context = env1->dmmu.mmu_secondary_context;
176 break;
177 case 2: /* nucleus */
178 context = 0;
179 break;
180 case 3: /* reserved */
181 default:
182 return;
183 }
184
185 for (i = 0; i < 64; i++) {
186 if (TTE_IS_VALID(tlb[i].tte)) {
187
188 if (is_demap_context) {
189 /* will remove non-global entries matching context value */
190 if (TTE_IS_GLOBAL(tlb[i].tte) ||
191 !tlb_compare_context(&tlb[i], context)) {
192 continue;
193 }
194 } else {
195 /* demap page
196 will remove any entry matching VA */
197 mask = 0xffffffffffffe000ULL;
198 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
199
200 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
201 continue;
202 }
203
204 /* entry should be global or matching context value */
205 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
206 !tlb_compare_context(&tlb[i], context)) {
207 continue;
208 }
209 }
210
211 replace_tlb_entry(&tlb[i], 0, 0, env1);
212 #ifdef DEBUG_MMU
213 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
214 dump_mmu(stdout, fprintf, env1);
215 #endif
216 }
217 }
218 }
219
220 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
221 uint64_t tlb_tag, uint64_t tlb_tte,
222 const char *strmmu, CPUSPARCState *env1)
223 {
224 unsigned int i, replace_used;
225
226 /* Try replacing invalid entry */
227 for (i = 0; i < 64; i++) {
228 if (!TTE_IS_VALID(tlb[i].tte)) {
229 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
230 #ifdef DEBUG_MMU
231 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
232 dump_mmu(stdout, fprintf, env1);
233 #endif
234 return;
235 }
236 }
237
238 /* All entries are valid, try replacing unlocked entry */
239
240 for (replace_used = 0; replace_used < 2; ++replace_used) {
241
242 /* Used entries are not replaced on first pass */
243
244 for (i = 0; i < 64; i++) {
245 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
246
247 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
248 #ifdef DEBUG_MMU
249 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
250 strmmu, (replace_used ? "used" : "unused"), i);
251 dump_mmu(stdout, fprintf, env1);
252 #endif
253 return;
254 }
255 }
256
257 /* Now reset used bit and search for unused entries again */
258
259 for (i = 0; i < 64; i++) {
260 TTE_SET_UNUSED(tlb[i].tte);
261 }
262 }
263
264 #ifdef DEBUG_MMU
265 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
266 #endif
267 /* error state? */
268 }
269
270 #endif
271
272 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
273 {
274 #ifdef TARGET_SPARC64
275 if (AM_CHECK(env1)) {
276 addr &= 0xffffffffULL;
277 }
278 #endif
279 return addr;
280 }
281
282 /* returns true if access using this ASI is to have address translated by MMU
283 otherwise access is to raw physical address */
284 static inline int is_translating_asi(int asi)
285 {
286 #ifdef TARGET_SPARC64
287 /* Ultrasparc IIi translating asi
288 - note this list is defined by cpu implementation
289 */
290 switch (asi) {
291 case 0x04 ... 0x11:
292 case 0x16 ... 0x19:
293 case 0x1E ... 0x1F:
294 case 0x24 ... 0x2C:
295 case 0x70 ... 0x73:
296 case 0x78 ... 0x79:
297 case 0x80 ... 0xFF:
298 return 1;
299
300 default:
301 return 0;
302 }
303 #else
304 /* TODO: check sparc32 bits */
305 return 0;
306 #endif
307 }
308
309 static inline target_ulong asi_address_mask(CPUSPARCState *env,
310 int asi, target_ulong addr)
311 {
312 if (is_translating_asi(asi)) {
313 return address_mask(env, addr);
314 } else {
315 return addr;
316 }
317 }
318
319 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
320 {
321 if (addr & align) {
322 #ifdef DEBUG_UNALIGNED
323 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
324 "\n", addr, env->pc);
325 #endif
326 helper_raise_exception(env, TT_UNALIGNED);
327 }
328 }
329
330 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
331 defined(DEBUG_MXCC)
332 static void dump_mxcc(CPUSPARCState *env)
333 {
334 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
335 "\n",
336 env->mxccdata[0], env->mxccdata[1],
337 env->mxccdata[2], env->mxccdata[3]);
338 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
339 "\n"
340 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
341 "\n",
342 env->mxccregs[0], env->mxccregs[1],
343 env->mxccregs[2], env->mxccregs[3],
344 env->mxccregs[4], env->mxccregs[5],
345 env->mxccregs[6], env->mxccregs[7]);
346 }
347 #endif
348
349 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
350 && defined(DEBUG_ASI)
351 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
352 uint64_t r1)
353 {
354 switch (size) {
355 case 1:
356 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
357 addr, asi, r1 & 0xff);
358 break;
359 case 2:
360 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
361 addr, asi, r1 & 0xffff);
362 break;
363 case 4:
364 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
365 addr, asi, r1 & 0xffffffff);
366 break;
367 case 8:
368 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
369 addr, asi, r1);
370 break;
371 }
372 }
373 #endif
374
375 #ifndef TARGET_SPARC64
376 #ifndef CONFIG_USER_ONLY
377
378
379 /* Leon3 cache control */
380
381 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
382 uint64_t val, int size)
383 {
384 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
385 addr, val, size);
386
387 if (size != 4) {
388 DPRINTF_CACHE_CONTROL("32bits only\n");
389 return;
390 }
391
392 switch (addr) {
393 case 0x00: /* Cache control */
394
395 /* These values must always be read as zeros */
396 val &= ~CACHE_CTRL_FD;
397 val &= ~CACHE_CTRL_FI;
398 val &= ~CACHE_CTRL_IB;
399 val &= ~CACHE_CTRL_IP;
400 val &= ~CACHE_CTRL_DP;
401
402 env->cache_control = val;
403 break;
404 case 0x04: /* Instruction cache configuration */
405 case 0x08: /* Data cache configuration */
406 /* Read Only */
407 break;
408 default:
409 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
410 break;
411 };
412 }
413
414 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
415 int size)
416 {
417 uint64_t ret = 0;
418
419 if (size != 4) {
420 DPRINTF_CACHE_CONTROL("32bits only\n");
421 return 0;
422 }
423
424 switch (addr) {
425 case 0x00: /* Cache control */
426 ret = env->cache_control;
427 break;
428
429 /* Configuration registers are read and only always keep those
430 predefined values */
431
432 case 0x04: /* Instruction cache configuration */
433 ret = 0x10220000;
434 break;
435 case 0x08: /* Data cache configuration */
436 ret = 0x18220000;
437 break;
438 default:
439 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
440 break;
441 };
442 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
443 addr, ret, size);
444 return ret;
445 }
446
447 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
448 int sign)
449 {
450 CPUState *cs = CPU(sparc_env_get_cpu(env));
451 uint64_t ret = 0;
452 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
453 uint32_t last_addr = addr;
454 #endif
455
456 helper_check_align(env, addr, size - 1);
457 switch (asi) {
458 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
459 switch (addr) {
460 case 0x00: /* Leon3 Cache Control */
461 case 0x08: /* Leon3 Instruction Cache config */
462 case 0x0C: /* Leon3 Date Cache config */
463 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
464 ret = leon3_cache_control_ld(env, addr, size);
465 }
466 break;
467 case 0x01c00a00: /* MXCC control register */
468 if (size == 8) {
469 ret = env->mxccregs[3];
470 } else {
471 qemu_log_mask(LOG_UNIMP,
472 "%08x: unimplemented access size: %d\n", addr,
473 size);
474 }
475 break;
476 case 0x01c00a04: /* MXCC control register */
477 if (size == 4) {
478 ret = env->mxccregs[3];
479 } else {
480 qemu_log_mask(LOG_UNIMP,
481 "%08x: unimplemented access size: %d\n", addr,
482 size);
483 }
484 break;
485 case 0x01c00c00: /* Module reset register */
486 if (size == 8) {
487 ret = env->mxccregs[5];
488 /* should we do something here? */
489 } else {
490 qemu_log_mask(LOG_UNIMP,
491 "%08x: unimplemented access size: %d\n", addr,
492 size);
493 }
494 break;
495 case 0x01c00f00: /* MBus port address register */
496 if (size == 8) {
497 ret = env->mxccregs[7];
498 } else {
499 qemu_log_mask(LOG_UNIMP,
500 "%08x: unimplemented access size: %d\n", addr,
501 size);
502 }
503 break;
504 default:
505 qemu_log_mask(LOG_UNIMP,
506 "%08x: unimplemented address, size: %d\n", addr,
507 size);
508 break;
509 }
510 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
511 "addr = %08x -> ret = %" PRIx64 ","
512 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
513 #ifdef DEBUG_MXCC
514 dump_mxcc(env);
515 #endif
516 break;
517 case 3: /* MMU probe */
518 case 0x18: /* LEON3 MMU probe */
519 {
520 int mmulev;
521
522 mmulev = (addr >> 8) & 15;
523 if (mmulev > 4) {
524 ret = 0;
525 } else {
526 ret = mmu_probe(env, addr, mmulev);
527 }
528 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
529 addr, mmulev, ret);
530 }
531 break;
532 case 4: /* read MMU regs */
533 case 0x19: /* LEON3 read MMU regs */
534 {
535 int reg = (addr >> 8) & 0x1f;
536
537 ret = env->mmuregs[reg];
538 if (reg == 3) { /* Fault status cleared on read */
539 env->mmuregs[3] = 0;
540 } else if (reg == 0x13) { /* Fault status read */
541 ret = env->mmuregs[3];
542 } else if (reg == 0x14) { /* Fault address read */
543 ret = env->mmuregs[4];
544 }
545 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
546 }
547 break;
548 case 5: /* Turbosparc ITLB Diagnostic */
549 case 6: /* Turbosparc DTLB Diagnostic */
550 case 7: /* Turbosparc IOTLB Diagnostic */
551 break;
552 case 9: /* Supervisor code access */
553 switch (size) {
554 case 1:
555 ret = cpu_ldub_code(env, addr);
556 break;
557 case 2:
558 ret = cpu_lduw_code(env, addr);
559 break;
560 default:
561 case 4:
562 ret = cpu_ldl_code(env, addr);
563 break;
564 case 8:
565 ret = cpu_ldq_code(env, addr);
566 break;
567 }
568 break;
569 case 0xa: /* User data access */
570 switch (size) {
571 case 1:
572 ret = cpu_ldub_user(env, addr);
573 break;
574 case 2:
575 ret = cpu_lduw_user(env, addr);
576 break;
577 default:
578 case 4:
579 ret = cpu_ldl_user(env, addr);
580 break;
581 case 8:
582 ret = cpu_ldq_user(env, addr);
583 break;
584 }
585 break;
586 case 0xb: /* Supervisor data access */
587 case 0x80:
588 switch (size) {
589 case 1:
590 ret = cpu_ldub_kernel(env, addr);
591 break;
592 case 2:
593 ret = cpu_lduw_kernel(env, addr);
594 break;
595 default:
596 case 4:
597 ret = cpu_ldl_kernel(env, addr);
598 break;
599 case 8:
600 ret = cpu_ldq_kernel(env, addr);
601 break;
602 }
603 break;
604 case 0xc: /* I-cache tag */
605 case 0xd: /* I-cache data */
606 case 0xe: /* D-cache tag */
607 case 0xf: /* D-cache data */
608 break;
609 case 0x20: /* MMU passthrough */
610 case 0x1c: /* LEON MMU passthrough */
611 switch (size) {
612 case 1:
613 ret = ldub_phys(cs->as, addr);
614 break;
615 case 2:
616 ret = lduw_phys(cs->as, addr);
617 break;
618 default:
619 case 4:
620 ret = ldl_phys(cs->as, addr);
621 break;
622 case 8:
623 ret = ldq_phys(cs->as, addr);
624 break;
625 }
626 break;
627 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
628 switch (size) {
629 case 1:
630 ret = ldub_phys(cs->as, (hwaddr)addr
631 | ((hwaddr)(asi & 0xf) << 32));
632 break;
633 case 2:
634 ret = lduw_phys(cs->as, (hwaddr)addr
635 | ((hwaddr)(asi & 0xf) << 32));
636 break;
637 default:
638 case 4:
639 ret = ldl_phys(cs->as, (hwaddr)addr
640 | ((hwaddr)(asi & 0xf) << 32));
641 break;
642 case 8:
643 ret = ldq_phys(cs->as, (hwaddr)addr
644 | ((hwaddr)(asi & 0xf) << 32));
645 break;
646 }
647 break;
648 case 0x30: /* Turbosparc secondary cache diagnostic */
649 case 0x31: /* Turbosparc RAM snoop */
650 case 0x32: /* Turbosparc page table descriptor diagnostic */
651 case 0x39: /* data cache diagnostic register */
652 ret = 0;
653 break;
654 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
655 {
656 int reg = (addr >> 8) & 3;
657
658 switch (reg) {
659 case 0: /* Breakpoint Value (Addr) */
660 ret = env->mmubpregs[reg];
661 break;
662 case 1: /* Breakpoint Mask */
663 ret = env->mmubpregs[reg];
664 break;
665 case 2: /* Breakpoint Control */
666 ret = env->mmubpregs[reg];
667 break;
668 case 3: /* Breakpoint Status */
669 ret = env->mmubpregs[reg];
670 env->mmubpregs[reg] = 0ULL;
671 break;
672 }
673 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
674 ret);
675 }
676 break;
677 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
678 ret = env->mmubpctrv;
679 break;
680 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
681 ret = env->mmubpctrc;
682 break;
683 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
684 ret = env->mmubpctrs;
685 break;
686 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
687 ret = env->mmubpaction;
688 break;
689 case 8: /* User code access, XXX */
690 default:
691 cpu_unassigned_access(cs, addr, false, false, asi, size);
692 ret = 0;
693 break;
694 }
695 if (sign) {
696 switch (size) {
697 case 1:
698 ret = (int8_t) ret;
699 break;
700 case 2:
701 ret = (int16_t) ret;
702 break;
703 case 4:
704 ret = (int32_t) ret;
705 break;
706 default:
707 break;
708 }
709 }
710 #ifdef DEBUG_ASI
711 dump_asi("read ", last_addr, asi, size, ret);
712 #endif
713 return ret;
714 }
715
716 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi,
717 int size)
718 {
719 CPUState *cs = CPU(sparc_env_get_cpu(env));
720 helper_check_align(env, addr, size - 1);
721 switch (asi) {
722 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
723 switch (addr) {
724 case 0x00: /* Leon3 Cache Control */
725 case 0x08: /* Leon3 Instruction Cache config */
726 case 0x0C: /* Leon3 Date Cache config */
727 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
728 leon3_cache_control_st(env, addr, val, size);
729 }
730 break;
731
732 case 0x01c00000: /* MXCC stream data register 0 */
733 if (size == 8) {
734 env->mxccdata[0] = val;
735 } else {
736 qemu_log_mask(LOG_UNIMP,
737 "%08x: unimplemented access size: %d\n", addr,
738 size);
739 }
740 break;
741 case 0x01c00008: /* MXCC stream data register 1 */
742 if (size == 8) {
743 env->mxccdata[1] = val;
744 } else {
745 qemu_log_mask(LOG_UNIMP,
746 "%08x: unimplemented access size: %d\n", addr,
747 size);
748 }
749 break;
750 case 0x01c00010: /* MXCC stream data register 2 */
751 if (size == 8) {
752 env->mxccdata[2] = val;
753 } else {
754 qemu_log_mask(LOG_UNIMP,
755 "%08x: unimplemented access size: %d\n", addr,
756 size);
757 }
758 break;
759 case 0x01c00018: /* MXCC stream data register 3 */
760 if (size == 8) {
761 env->mxccdata[3] = val;
762 } else {
763 qemu_log_mask(LOG_UNIMP,
764 "%08x: unimplemented access size: %d\n", addr,
765 size);
766 }
767 break;
768 case 0x01c00100: /* MXCC stream source */
769 if (size == 8) {
770 env->mxccregs[0] = val;
771 } else {
772 qemu_log_mask(LOG_UNIMP,
773 "%08x: unimplemented access size: %d\n", addr,
774 size);
775 }
776 env->mxccdata[0] = ldq_phys(cs->as,
777 (env->mxccregs[0] & 0xffffffffULL) +
778 0);
779 env->mxccdata[1] = ldq_phys(cs->as,
780 (env->mxccregs[0] & 0xffffffffULL) +
781 8);
782 env->mxccdata[2] = ldq_phys(cs->as,
783 (env->mxccregs[0] & 0xffffffffULL) +
784 16);
785 env->mxccdata[3] = ldq_phys(cs->as,
786 (env->mxccregs[0] & 0xffffffffULL) +
787 24);
788 break;
789 case 0x01c00200: /* MXCC stream destination */
790 if (size == 8) {
791 env->mxccregs[1] = val;
792 } else {
793 qemu_log_mask(LOG_UNIMP,
794 "%08x: unimplemented access size: %d\n", addr,
795 size);
796 }
797 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 0,
798 env->mxccdata[0]);
799 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 8,
800 env->mxccdata[1]);
801 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
802 env->mxccdata[2]);
803 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
804 env->mxccdata[3]);
805 break;
806 case 0x01c00a00: /* MXCC control register */
807 if (size == 8) {
808 env->mxccregs[3] = val;
809 } else {
810 qemu_log_mask(LOG_UNIMP,
811 "%08x: unimplemented access size: %d\n", addr,
812 size);
813 }
814 break;
815 case 0x01c00a04: /* MXCC control register */
816 if (size == 4) {
817 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
818 | val;
819 } else {
820 qemu_log_mask(LOG_UNIMP,
821 "%08x: unimplemented access size: %d\n", addr,
822 size);
823 }
824 break;
825 case 0x01c00e00: /* MXCC error register */
826 /* writing a 1 bit clears the error */
827 if (size == 8) {
828 env->mxccregs[6] &= ~val;
829 } else {
830 qemu_log_mask(LOG_UNIMP,
831 "%08x: unimplemented access size: %d\n", addr,
832 size);
833 }
834 break;
835 case 0x01c00f00: /* MBus port address register */
836 if (size == 8) {
837 env->mxccregs[7] = val;
838 } else {
839 qemu_log_mask(LOG_UNIMP,
840 "%08x: unimplemented access size: %d\n", addr,
841 size);
842 }
843 break;
844 default:
845 qemu_log_mask(LOG_UNIMP,
846 "%08x: unimplemented address, size: %d\n", addr,
847 size);
848 break;
849 }
850 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
851 asi, size, addr, val);
852 #ifdef DEBUG_MXCC
853 dump_mxcc(env);
854 #endif
855 break;
856 case 3: /* MMU flush */
857 case 0x18: /* LEON3 MMU flush */
858 {
859 int mmulev;
860
861 mmulev = (addr >> 8) & 15;
862 DPRINTF_MMU("mmu flush level %d\n", mmulev);
863 switch (mmulev) {
864 case 0: /* flush page */
865 tlb_flush_page(env, addr & 0xfffff000);
866 break;
867 case 1: /* flush segment (256k) */
868 case 2: /* flush region (16M) */
869 case 3: /* flush context (4G) */
870 case 4: /* flush entire */
871 tlb_flush(env, 1);
872 break;
873 default:
874 break;
875 }
876 #ifdef DEBUG_MMU
877 dump_mmu(stdout, fprintf, env);
878 #endif
879 }
880 break;
881 case 4: /* write MMU regs */
882 case 0x19: /* LEON3 write MMU regs */
883 {
884 int reg = (addr >> 8) & 0x1f;
885 uint32_t oldreg;
886
887 oldreg = env->mmuregs[reg];
888 switch (reg) {
889 case 0: /* Control Register */
890 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
891 (val & 0x00ffffff);
892 /* Mappings generated during no-fault mode or MMU
893 disabled mode are invalid in normal mode */
894 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
895 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
896 tlb_flush(env, 1);
897 }
898 break;
899 case 1: /* Context Table Pointer Register */
900 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
901 break;
902 case 2: /* Context Register */
903 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
904 if (oldreg != env->mmuregs[reg]) {
905 /* we flush when the MMU context changes because
906 QEMU has no MMU context support */
907 tlb_flush(env, 1);
908 }
909 break;
910 case 3: /* Synchronous Fault Status Register with Clear */
911 case 4: /* Synchronous Fault Address Register */
912 break;
913 case 0x10: /* TLB Replacement Control Register */
914 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
915 break;
916 case 0x13: /* Synchronous Fault Status Register with Read
917 and Clear */
918 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
919 break;
920 case 0x14: /* Synchronous Fault Address Register */
921 env->mmuregs[4] = val;
922 break;
923 default:
924 env->mmuregs[reg] = val;
925 break;
926 }
927 if (oldreg != env->mmuregs[reg]) {
928 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
929 reg, oldreg, env->mmuregs[reg]);
930 }
931 #ifdef DEBUG_MMU
932 dump_mmu(stdout, fprintf, env);
933 #endif
934 }
935 break;
936 case 5: /* Turbosparc ITLB Diagnostic */
937 case 6: /* Turbosparc DTLB Diagnostic */
938 case 7: /* Turbosparc IOTLB Diagnostic */
939 break;
940 case 0xa: /* User data access */
941 switch (size) {
942 case 1:
943 cpu_stb_user(env, addr, val);
944 break;
945 case 2:
946 cpu_stw_user(env, addr, val);
947 break;
948 default:
949 case 4:
950 cpu_stl_user(env, addr, val);
951 break;
952 case 8:
953 cpu_stq_user(env, addr, val);
954 break;
955 }
956 break;
957 case 0xb: /* Supervisor data access */
958 case 0x80:
959 switch (size) {
960 case 1:
961 cpu_stb_kernel(env, addr, val);
962 break;
963 case 2:
964 cpu_stw_kernel(env, addr, val);
965 break;
966 default:
967 case 4:
968 cpu_stl_kernel(env, addr, val);
969 break;
970 case 8:
971 cpu_stq_kernel(env, addr, val);
972 break;
973 }
974 break;
975 case 0xc: /* I-cache tag */
976 case 0xd: /* I-cache data */
977 case 0xe: /* D-cache tag */
978 case 0xf: /* D-cache data */
979 case 0x10: /* I/D-cache flush page */
980 case 0x11: /* I/D-cache flush segment */
981 case 0x12: /* I/D-cache flush region */
982 case 0x13: /* I/D-cache flush context */
983 case 0x14: /* I/D-cache flush user */
984 break;
985 case 0x17: /* Block copy, sta access */
986 {
987 /* val = src
988 addr = dst
989 copy 32 bytes */
990 unsigned int i;
991 uint32_t src = val & ~3, dst = addr & ~3, temp;
992
993 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
994 temp = cpu_ldl_kernel(env, src);
995 cpu_stl_kernel(env, dst, temp);
996 }
997 }
998 break;
999 case 0x1f: /* Block fill, stda access */
1000 {
1001 /* addr = dst
1002 fill 32 bytes with val */
1003 unsigned int i;
1004 uint32_t dst = addr & 7;
1005
1006 for (i = 0; i < 32; i += 8, dst += 8) {
1007 cpu_stq_kernel(env, dst, val);
1008 }
1009 }
1010 break;
1011 case 0x20: /* MMU passthrough */
1012 case 0x1c: /* LEON MMU passthrough */
1013 {
1014 switch (size) {
1015 case 1:
1016 stb_phys(cs->as, addr, val);
1017 break;
1018 case 2:
1019 stw_phys(cs->as, addr, val);
1020 break;
1021 case 4:
1022 default:
1023 stl_phys(cs->as, addr, val);
1024 break;
1025 case 8:
1026 stq_phys(cs->as, addr, val);
1027 break;
1028 }
1029 }
1030 break;
1031 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1032 {
1033 switch (size) {
1034 case 1:
1035 stb_phys(cs->as, (hwaddr)addr
1036 | ((hwaddr)(asi & 0xf) << 32), val);
1037 break;
1038 case 2:
1039 stw_phys(cs->as, (hwaddr)addr
1040 | ((hwaddr)(asi & 0xf) << 32), val);
1041 break;
1042 case 4:
1043 default:
1044 stl_phys(cs->as, (hwaddr)addr
1045 | ((hwaddr)(asi & 0xf) << 32), val);
1046 break;
1047 case 8:
1048 stq_phys(cs->as, (hwaddr)addr
1049 | ((hwaddr)(asi & 0xf) << 32), val);
1050 break;
1051 }
1052 }
1053 break;
1054 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1055 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1056 Turbosparc snoop RAM */
1057 case 0x32: /* store buffer control or Turbosparc page table
1058 descriptor diagnostic */
1059 case 0x36: /* I-cache flash clear */
1060 case 0x37: /* D-cache flash clear */
1061 break;
1062 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1063 {
1064 int reg = (addr >> 8) & 3;
1065
1066 switch (reg) {
1067 case 0: /* Breakpoint Value (Addr) */
1068 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1069 break;
1070 case 1: /* Breakpoint Mask */
1071 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1072 break;
1073 case 2: /* Breakpoint Control */
1074 env->mmubpregs[reg] = (val & 0x7fULL);
1075 break;
1076 case 3: /* Breakpoint Status */
1077 env->mmubpregs[reg] = (val & 0xfULL);
1078 break;
1079 }
1080 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1081 env->mmuregs[reg]);
1082 }
1083 break;
1084 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1085 env->mmubpctrv = val & 0xffffffff;
1086 break;
1087 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1088 env->mmubpctrc = val & 0x3;
1089 break;
1090 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1091 env->mmubpctrs = val & 0x3;
1092 break;
1093 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1094 env->mmubpaction = val & 0x1fff;
1095 break;
1096 case 8: /* User code access, XXX */
1097 case 9: /* Supervisor code access, XXX */
1098 default:
1099 cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
1100 addr, true, false, asi, size);
1101 break;
1102 }
1103 #ifdef DEBUG_ASI
1104 dump_asi("write", addr, asi, size, val);
1105 #endif
1106 }
1107
1108 #endif /* CONFIG_USER_ONLY */
1109 #else /* TARGET_SPARC64 */
1110
1111 #ifdef CONFIG_USER_ONLY
1112 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1113 int sign)
1114 {
1115 uint64_t ret = 0;
1116 #if defined(DEBUG_ASI)
1117 target_ulong last_addr = addr;
1118 #endif
1119
1120 if (asi < 0x80) {
1121 helper_raise_exception(env, TT_PRIV_ACT);
1122 }
1123
1124 helper_check_align(env, addr, size - 1);
1125 addr = asi_address_mask(env, asi, addr);
1126
1127 switch (asi) {
1128 case 0x82: /* Primary no-fault */
1129 case 0x8a: /* Primary no-fault LE */
1130 if (page_check_range(addr, size, PAGE_READ) == -1) {
1131 #ifdef DEBUG_ASI
1132 dump_asi("read ", last_addr, asi, size, ret);
1133 #endif
1134 return 0;
1135 }
1136 /* Fall through */
1137 case 0x80: /* Primary */
1138 case 0x88: /* Primary LE */
1139 {
1140 switch (size) {
1141 case 1:
1142 ret = ldub_raw(addr);
1143 break;
1144 case 2:
1145 ret = lduw_raw(addr);
1146 break;
1147 case 4:
1148 ret = ldl_raw(addr);
1149 break;
1150 default:
1151 case 8:
1152 ret = ldq_raw(addr);
1153 break;
1154 }
1155 }
1156 break;
1157 case 0x83: /* Secondary no-fault */
1158 case 0x8b: /* Secondary no-fault LE */
1159 if (page_check_range(addr, size, PAGE_READ) == -1) {
1160 #ifdef DEBUG_ASI
1161 dump_asi("read ", last_addr, asi, size, ret);
1162 #endif
1163 return 0;
1164 }
1165 /* Fall through */
1166 case 0x81: /* Secondary */
1167 case 0x89: /* Secondary LE */
1168 /* XXX */
1169 break;
1170 default:
1171 break;
1172 }
1173
1174 /* Convert from little endian */
1175 switch (asi) {
1176 case 0x88: /* Primary LE */
1177 case 0x89: /* Secondary LE */
1178 case 0x8a: /* Primary no-fault LE */
1179 case 0x8b: /* Secondary no-fault LE */
1180 switch (size) {
1181 case 2:
1182 ret = bswap16(ret);
1183 break;
1184 case 4:
1185 ret = bswap32(ret);
1186 break;
1187 case 8:
1188 ret = bswap64(ret);
1189 break;
1190 default:
1191 break;
1192 }
1193 default:
1194 break;
1195 }
1196
1197 /* Convert to signed number */
1198 if (sign) {
1199 switch (size) {
1200 case 1:
1201 ret = (int8_t) ret;
1202 break;
1203 case 2:
1204 ret = (int16_t) ret;
1205 break;
1206 case 4:
1207 ret = (int32_t) ret;
1208 break;
1209 default:
1210 break;
1211 }
1212 }
1213 #ifdef DEBUG_ASI
1214 dump_asi("read ", last_addr, asi, size, ret);
1215 #endif
1216 return ret;
1217 }
1218
1219 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1220 int asi, int size)
1221 {
1222 #ifdef DEBUG_ASI
1223 dump_asi("write", addr, asi, size, val);
1224 #endif
1225 if (asi < 0x80) {
1226 helper_raise_exception(env, TT_PRIV_ACT);
1227 }
1228
1229 helper_check_align(env, addr, size - 1);
1230 addr = asi_address_mask(env, asi, addr);
1231
1232 /* Convert to little endian */
1233 switch (asi) {
1234 case 0x88: /* Primary LE */
1235 case 0x89: /* Secondary LE */
1236 switch (size) {
1237 case 2:
1238 val = bswap16(val);
1239 break;
1240 case 4:
1241 val = bswap32(val);
1242 break;
1243 case 8:
1244 val = bswap64(val);
1245 break;
1246 default:
1247 break;
1248 }
1249 default:
1250 break;
1251 }
1252
1253 switch (asi) {
1254 case 0x80: /* Primary */
1255 case 0x88: /* Primary LE */
1256 {
1257 switch (size) {
1258 case 1:
1259 stb_raw(addr, val);
1260 break;
1261 case 2:
1262 stw_raw(addr, val);
1263 break;
1264 case 4:
1265 stl_raw(addr, val);
1266 break;
1267 case 8:
1268 default:
1269 stq_raw(addr, val);
1270 break;
1271 }
1272 }
1273 break;
1274 case 0x81: /* Secondary */
1275 case 0x89: /* Secondary LE */
1276 /* XXX */
1277 return;
1278
1279 case 0x82: /* Primary no-fault, RO */
1280 case 0x83: /* Secondary no-fault, RO */
1281 case 0x8a: /* Primary no-fault LE, RO */
1282 case 0x8b: /* Secondary no-fault LE, RO */
1283 default:
1284 helper_raise_exception(env, TT_DATA_ACCESS);
1285 return;
1286 }
1287 }
1288
1289 #else /* CONFIG_USER_ONLY */
1290
1291 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1292 int sign)
1293 {
1294 CPUState *cs = CPU(sparc_env_get_cpu(env));
1295 uint64_t ret = 0;
1296 #if defined(DEBUG_ASI)
1297 target_ulong last_addr = addr;
1298 #endif
1299
1300 asi &= 0xff;
1301
1302 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1303 || (cpu_has_hypervisor(env)
1304 && asi >= 0x30 && asi < 0x80
1305 && !(env->hpstate & HS_PRIV))) {
1306 helper_raise_exception(env, TT_PRIV_ACT);
1307 }
1308
1309 helper_check_align(env, addr, size - 1);
1310 addr = asi_address_mask(env, asi, addr);
1311
1312 /* process nonfaulting loads first */
1313 if ((asi & 0xf6) == 0x82) {
1314 int mmu_idx;
1315
1316 /* secondary space access has lowest asi bit equal to 1 */
1317 if (env->pstate & PS_PRIV) {
1318 mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
1319 } else {
1320 mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
1321 }
1322
1323 if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
1324 #ifdef DEBUG_ASI
1325 dump_asi("read ", last_addr, asi, size, ret);
1326 #endif
1327 /* env->exception_index is set in get_physical_address_data(). */
1328 helper_raise_exception(env, env->exception_index);
1329 }
1330
1331 /* convert nonfaulting load ASIs to normal load ASIs */
1332 asi &= ~0x02;
1333 }
1334
1335 switch (asi) {
1336 case 0x10: /* As if user primary */
1337 case 0x11: /* As if user secondary */
1338 case 0x18: /* As if user primary LE */
1339 case 0x19: /* As if user secondary LE */
1340 case 0x80: /* Primary */
1341 case 0x81: /* Secondary */
1342 case 0x88: /* Primary LE */
1343 case 0x89: /* Secondary LE */
1344 case 0xe2: /* UA2007 Primary block init */
1345 case 0xe3: /* UA2007 Secondary block init */
1346 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1347 if (cpu_hypervisor_mode(env)) {
1348 switch (size) {
1349 case 1:
1350 ret = cpu_ldub_hypv(env, addr);
1351 break;
1352 case 2:
1353 ret = cpu_lduw_hypv(env, addr);
1354 break;
1355 case 4:
1356 ret = cpu_ldl_hypv(env, addr);
1357 break;
1358 default:
1359 case 8:
1360 ret = cpu_ldq_hypv(env, addr);
1361 break;
1362 }
1363 } else {
1364 /* secondary space access has lowest asi bit equal to 1 */
1365 if (asi & 1) {
1366 switch (size) {
1367 case 1:
1368 ret = cpu_ldub_kernel_secondary(env, addr);
1369 break;
1370 case 2:
1371 ret = cpu_lduw_kernel_secondary(env, addr);
1372 break;
1373 case 4:
1374 ret = cpu_ldl_kernel_secondary(env, addr);
1375 break;
1376 default:
1377 case 8:
1378 ret = cpu_ldq_kernel_secondary(env, addr);
1379 break;
1380 }
1381 } else {
1382 switch (size) {
1383 case 1:
1384 ret = cpu_ldub_kernel(env, addr);
1385 break;
1386 case 2:
1387 ret = cpu_lduw_kernel(env, addr);
1388 break;
1389 case 4:
1390 ret = cpu_ldl_kernel(env, addr);
1391 break;
1392 default:
1393 case 8:
1394 ret = cpu_ldq_kernel(env, addr);
1395 break;
1396 }
1397 }
1398 }
1399 } else {
1400 /* secondary space access has lowest asi bit equal to 1 */
1401 if (asi & 1) {
1402 switch (size) {
1403 case 1:
1404 ret = cpu_ldub_user_secondary(env, addr);
1405 break;
1406 case 2:
1407 ret = cpu_lduw_user_secondary(env, addr);
1408 break;
1409 case 4:
1410 ret = cpu_ldl_user_secondary(env, addr);
1411 break;
1412 default:
1413 case 8:
1414 ret = cpu_ldq_user_secondary(env, addr);
1415 break;
1416 }
1417 } else {
1418 switch (size) {
1419 case 1:
1420 ret = cpu_ldub_user(env, addr);
1421 break;
1422 case 2:
1423 ret = cpu_lduw_user(env, addr);
1424 break;
1425 case 4:
1426 ret = cpu_ldl_user(env, addr);
1427 break;
1428 default:
1429 case 8:
1430 ret = cpu_ldq_user(env, addr);
1431 break;
1432 }
1433 }
1434 }
1435 break;
1436 case 0x14: /* Bypass */
1437 case 0x15: /* Bypass, non-cacheable */
1438 case 0x1c: /* Bypass LE */
1439 case 0x1d: /* Bypass, non-cacheable LE */
1440 {
1441 switch (size) {
1442 case 1:
1443 ret = ldub_phys(cs->as, addr);
1444 break;
1445 case 2:
1446 ret = lduw_phys(cs->as, addr);
1447 break;
1448 case 4:
1449 ret = ldl_phys(cs->as, addr);
1450 break;
1451 default:
1452 case 8:
1453 ret = ldq_phys(cs->as, addr);
1454 break;
1455 }
1456 break;
1457 }
1458 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1459 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1460 Only ldda allowed */
1461 helper_raise_exception(env, TT_ILL_INSN);
1462 return 0;
1463 case 0x04: /* Nucleus */
1464 case 0x0c: /* Nucleus Little Endian (LE) */
1465 {
1466 switch (size) {
1467 case 1:
1468 ret = cpu_ldub_nucleus(env, addr);
1469 break;
1470 case 2:
1471 ret = cpu_lduw_nucleus(env, addr);
1472 break;
1473 case 4:
1474 ret = cpu_ldl_nucleus(env, addr);
1475 break;
1476 default:
1477 case 8:
1478 ret = cpu_ldq_nucleus(env, addr);
1479 break;
1480 }
1481 break;
1482 }
1483 case 0x4a: /* UPA config */
1484 /* XXX */
1485 break;
1486 case 0x45: /* LSU */
1487 ret = env->lsu;
1488 break;
1489 case 0x50: /* I-MMU regs */
1490 {
1491 int reg = (addr >> 3) & 0xf;
1492
1493 if (reg == 0) {
1494 /* I-TSB Tag Target register */
1495 ret = ultrasparc_tag_target(env->immu.tag_access);
1496 } else {
1497 ret = env->immuregs[reg];
1498 }
1499
1500 break;
1501 }
1502 case 0x51: /* I-MMU 8k TSB pointer */
1503 {
1504 /* env->immuregs[5] holds I-MMU TSB register value
1505 env->immuregs[6] holds I-MMU Tag Access register value */
1506 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1507 8*1024);
1508 break;
1509 }
1510 case 0x52: /* I-MMU 64k TSB pointer */
1511 {
1512 /* env->immuregs[5] holds I-MMU TSB register value
1513 env->immuregs[6] holds I-MMU Tag Access register value */
1514 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1515 64*1024);
1516 break;
1517 }
1518 case 0x55: /* I-MMU data access */
1519 {
1520 int reg = (addr >> 3) & 0x3f;
1521
1522 ret = env->itlb[reg].tte;
1523 break;
1524 }
1525 case 0x56: /* I-MMU tag read */
1526 {
1527 int reg = (addr >> 3) & 0x3f;
1528
1529 ret = env->itlb[reg].tag;
1530 break;
1531 }
1532 case 0x58: /* D-MMU regs */
1533 {
1534 int reg = (addr >> 3) & 0xf;
1535
1536 if (reg == 0) {
1537 /* D-TSB Tag Target register */
1538 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1539 } else {
1540 ret = env->dmmuregs[reg];
1541 }
1542 break;
1543 }
1544 case 0x59: /* D-MMU 8k TSB pointer */
1545 {
1546 /* env->dmmuregs[5] holds D-MMU TSB register value
1547 env->dmmuregs[6] holds D-MMU Tag Access register value */
1548 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1549 8*1024);
1550 break;
1551 }
1552 case 0x5a: /* D-MMU 64k TSB pointer */
1553 {
1554 /* env->dmmuregs[5] holds D-MMU TSB register value
1555 env->dmmuregs[6] holds D-MMU Tag Access register value */
1556 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1557 64*1024);
1558 break;
1559 }
1560 case 0x5d: /* D-MMU data access */
1561 {
1562 int reg = (addr >> 3) & 0x3f;
1563
1564 ret = env->dtlb[reg].tte;
1565 break;
1566 }
1567 case 0x5e: /* D-MMU tag read */
1568 {
1569 int reg = (addr >> 3) & 0x3f;
1570
1571 ret = env->dtlb[reg].tag;
1572 break;
1573 }
1574 case 0x48: /* Interrupt dispatch, RO */
1575 break;
1576 case 0x49: /* Interrupt data receive */
1577 ret = env->ivec_status;
1578 break;
1579 case 0x7f: /* Incoming interrupt vector, RO */
1580 {
1581 int reg = (addr >> 4) & 0x3;
1582 if (reg < 3) {
1583 ret = env->ivec_data[reg];
1584 }
1585 break;
1586 }
1587 case 0x46: /* D-cache data */
1588 case 0x47: /* D-cache tag access */
1589 case 0x4b: /* E-cache error enable */
1590 case 0x4c: /* E-cache asynchronous fault status */
1591 case 0x4d: /* E-cache asynchronous fault address */
1592 case 0x4e: /* E-cache tag data */
1593 case 0x66: /* I-cache instruction access */
1594 case 0x67: /* I-cache tag access */
1595 case 0x6e: /* I-cache predecode */
1596 case 0x6f: /* I-cache LRU etc. */
1597 case 0x76: /* E-cache tag */
1598 case 0x7e: /* E-cache tag */
1599 break;
1600 case 0x5b: /* D-MMU data pointer */
1601 case 0x54: /* I-MMU data in, WO */
1602 case 0x57: /* I-MMU demap, WO */
1603 case 0x5c: /* D-MMU data in, WO */
1604 case 0x5f: /* D-MMU demap, WO */
1605 case 0x77: /* Interrupt vector, WO */
1606 default:
1607 cpu_unassigned_access(cs, addr, false, false, 1, size);
1608 ret = 0;
1609 break;
1610 }
1611
1612 /* Convert from little endian */
1613 switch (asi) {
1614 case 0x0c: /* Nucleus Little Endian (LE) */
1615 case 0x18: /* As if user primary LE */
1616 case 0x19: /* As if user secondary LE */
1617 case 0x1c: /* Bypass LE */
1618 case 0x1d: /* Bypass, non-cacheable LE */
1619 case 0x88: /* Primary LE */
1620 case 0x89: /* Secondary LE */
1621 switch(size) {
1622 case 2:
1623 ret = bswap16(ret);
1624 break;
1625 case 4:
1626 ret = bswap32(ret);
1627 break;
1628 case 8:
1629 ret = bswap64(ret);
1630 break;
1631 default:
1632 break;
1633 }
1634 default:
1635 break;
1636 }
1637
1638 /* Convert to signed number */
1639 if (sign) {
1640 switch (size) {
1641 case 1:
1642 ret = (int8_t) ret;
1643 break;
1644 case 2:
1645 ret = (int16_t) ret;
1646 break;
1647 case 4:
1648 ret = (int32_t) ret;
1649 break;
1650 default:
1651 break;
1652 }
1653 }
1654 #ifdef DEBUG_ASI
1655 dump_asi("read ", last_addr, asi, size, ret);
1656 #endif
1657 return ret;
1658 }
1659
1660 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1661 int asi, int size)
1662 {
1663 CPUState *cs = CPU(sparc_env_get_cpu(env));
1664 #ifdef DEBUG_ASI
1665 dump_asi("write", addr, asi, size, val);
1666 #endif
1667
1668 asi &= 0xff;
1669
1670 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1671 || (cpu_has_hypervisor(env)
1672 && asi >= 0x30 && asi < 0x80
1673 && !(env->hpstate & HS_PRIV))) {
1674 helper_raise_exception(env, TT_PRIV_ACT);
1675 }
1676
1677 helper_check_align(env, addr, size - 1);
1678 addr = asi_address_mask(env, asi, addr);
1679
1680 /* Convert to little endian */
1681 switch (asi) {
1682 case 0x0c: /* Nucleus Little Endian (LE) */
1683 case 0x18: /* As if user primary LE */
1684 case 0x19: /* As if user secondary LE */
1685 case 0x1c: /* Bypass LE */
1686 case 0x1d: /* Bypass, non-cacheable LE */
1687 case 0x88: /* Primary LE */
1688 case 0x89: /* Secondary LE */
1689 switch (size) {
1690 case 2:
1691 val = bswap16(val);
1692 break;
1693 case 4:
1694 val = bswap32(val);
1695 break;
1696 case 8:
1697 val = bswap64(val);
1698 break;
1699 default:
1700 break;
1701 }
1702 default:
1703 break;
1704 }
1705
1706 switch (asi) {
1707 case 0x10: /* As if user primary */
1708 case 0x11: /* As if user secondary */
1709 case 0x18: /* As if user primary LE */
1710 case 0x19: /* As if user secondary LE */
1711 case 0x80: /* Primary */
1712 case 0x81: /* Secondary */
1713 case 0x88: /* Primary LE */
1714 case 0x89: /* Secondary LE */
1715 case 0xe2: /* UA2007 Primary block init */
1716 case 0xe3: /* UA2007 Secondary block init */
1717 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1718 if (cpu_hypervisor_mode(env)) {
1719 switch (size) {
1720 case 1:
1721 cpu_stb_hypv(env, addr, val);
1722 break;
1723 case 2:
1724 cpu_stw_hypv(env, addr, val);
1725 break;
1726 case 4:
1727 cpu_stl_hypv(env, addr, val);
1728 break;
1729 case 8:
1730 default:
1731 cpu_stq_hypv(env, addr, val);
1732 break;
1733 }
1734 } else {
1735 /* secondary space access has lowest asi bit equal to 1 */
1736 if (asi & 1) {
1737 switch (size) {
1738 case 1:
1739 cpu_stb_kernel_secondary(env, addr, val);
1740 break;
1741 case 2:
1742 cpu_stw_kernel_secondary(env, addr, val);
1743 break;
1744 case 4:
1745 cpu_stl_kernel_secondary(env, addr, val);
1746 break;
1747 case 8:
1748 default:
1749 cpu_stq_kernel_secondary(env, addr, val);
1750 break;
1751 }
1752 } else {
1753 switch (size) {
1754 case 1:
1755 cpu_stb_kernel(env, addr, val);
1756 break;
1757 case 2:
1758 cpu_stw_kernel(env, addr, val);
1759 break;
1760 case 4:
1761 cpu_stl_kernel(env, addr, val);
1762 break;
1763 case 8:
1764 default:
1765 cpu_stq_kernel(env, addr, val);
1766 break;
1767 }
1768 }
1769 }
1770 } else {
1771 /* secondary space access has lowest asi bit equal to 1 */
1772 if (asi & 1) {
1773 switch (size) {
1774 case 1:
1775 cpu_stb_user_secondary(env, addr, val);
1776 break;
1777 case 2:
1778 cpu_stw_user_secondary(env, addr, val);
1779 break;
1780 case 4:
1781 cpu_stl_user_secondary(env, addr, val);
1782 break;
1783 case 8:
1784 default:
1785 cpu_stq_user_secondary(env, addr, val);
1786 break;
1787 }
1788 } else {
1789 switch (size) {
1790 case 1:
1791 cpu_stb_user(env, addr, val);
1792 break;
1793 case 2:
1794 cpu_stw_user(env, addr, val);
1795 break;
1796 case 4:
1797 cpu_stl_user(env, addr, val);
1798 break;
1799 case 8:
1800 default:
1801 cpu_stq_user(env, addr, val);
1802 break;
1803 }
1804 }
1805 }
1806 break;
1807 case 0x14: /* Bypass */
1808 case 0x15: /* Bypass, non-cacheable */
1809 case 0x1c: /* Bypass LE */
1810 case 0x1d: /* Bypass, non-cacheable LE */
1811 {
1812 switch (size) {
1813 case 1:
1814 stb_phys(cs->as, addr, val);
1815 break;
1816 case 2:
1817 stw_phys(cs->as, addr, val);
1818 break;
1819 case 4:
1820 stl_phys(cs->as, addr, val);
1821 break;
1822 case 8:
1823 default:
1824 stq_phys(cs->as, addr, val);
1825 break;
1826 }
1827 }
1828 return;
1829 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1830 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1831 Only ldda allowed */
1832 helper_raise_exception(env, TT_ILL_INSN);
1833 return;
1834 case 0x04: /* Nucleus */
1835 case 0x0c: /* Nucleus Little Endian (LE) */
1836 {
1837 switch (size) {
1838 case 1:
1839 cpu_stb_nucleus(env, addr, val);
1840 break;
1841 case 2:
1842 cpu_stw_nucleus(env, addr, val);
1843 break;
1844 case 4:
1845 cpu_stl_nucleus(env, addr, val);
1846 break;
1847 default:
1848 case 8:
1849 cpu_stq_nucleus(env, addr, val);
1850 break;
1851 }
1852 break;
1853 }
1854
1855 case 0x4a: /* UPA config */
1856 /* XXX */
1857 return;
1858 case 0x45: /* LSU */
1859 {
1860 uint64_t oldreg;
1861
1862 oldreg = env->lsu;
1863 env->lsu = val & (DMMU_E | IMMU_E);
1864 /* Mappings generated during D/I MMU disabled mode are
1865 invalid in normal mode */
1866 if (oldreg != env->lsu) {
1867 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1868 oldreg, env->lsu);
1869 #ifdef DEBUG_MMU
1870 dump_mmu(stdout, fprintf, env);
1871 #endif
1872 tlb_flush(env, 1);
1873 }
1874 return;
1875 }
1876 case 0x50: /* I-MMU regs */
1877 {
1878 int reg = (addr >> 3) & 0xf;
1879 uint64_t oldreg;
1880
1881 oldreg = env->immuregs[reg];
1882 switch (reg) {
1883 case 0: /* RO */
1884 return;
1885 case 1: /* Not in I-MMU */
1886 case 2:
1887 return;
1888 case 3: /* SFSR */
1889 if ((val & 1) == 0) {
1890 val = 0; /* Clear SFSR */
1891 }
1892 env->immu.sfsr = val;
1893 break;
1894 case 4: /* RO */
1895 return;
1896 case 5: /* TSB access */
1897 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1898 PRIx64 "\n", env->immu.tsb, val);
1899 env->immu.tsb = val;
1900 break;
1901 case 6: /* Tag access */
1902 env->immu.tag_access = val;
1903 break;
1904 case 7:
1905 case 8:
1906 return;
1907 default:
1908 break;
1909 }
1910
1911 if (oldreg != env->immuregs[reg]) {
1912 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1913 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1914 }
1915 #ifdef DEBUG_MMU
1916 dump_mmu(stdout, fprintf, env);
1917 #endif
1918 return;
1919 }
1920 case 0x54: /* I-MMU data in */
1921 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
1922 return;
1923 case 0x55: /* I-MMU data access */
1924 {
1925 /* TODO: auto demap */
1926
1927 unsigned int i = (addr >> 3) & 0x3f;
1928
1929 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
1930
1931 #ifdef DEBUG_MMU
1932 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1933 dump_mmu(stdout, fprintf, env);
1934 #endif
1935 return;
1936 }
1937 case 0x57: /* I-MMU demap */
1938 demap_tlb(env->itlb, addr, "immu", env);
1939 return;
1940 case 0x58: /* D-MMU regs */
1941 {
1942 int reg = (addr >> 3) & 0xf;
1943 uint64_t oldreg;
1944
1945 oldreg = env->dmmuregs[reg];
1946 switch (reg) {
1947 case 0: /* RO */
1948 case 4:
1949 return;
1950 case 3: /* SFSR */
1951 if ((val & 1) == 0) {
1952 val = 0; /* Clear SFSR, Fault address */
1953 env->dmmu.sfar = 0;
1954 }
1955 env->dmmu.sfsr = val;
1956 break;
1957 case 1: /* Primary context */
1958 env->dmmu.mmu_primary_context = val;
1959 /* can be optimized to only flush MMU_USER_IDX
1960 and MMU_KERNEL_IDX entries */
1961 tlb_flush(env, 1);
1962 break;
1963 case 2: /* Secondary context */
1964 env->dmmu.mmu_secondary_context = val;
1965 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1966 and MMU_KERNEL_SECONDARY_IDX entries */
1967 tlb_flush(env, 1);
1968 break;
1969 case 5: /* TSB access */
1970 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1971 PRIx64 "\n", env->dmmu.tsb, val);
1972 env->dmmu.tsb = val;
1973 break;
1974 case 6: /* Tag access */
1975 env->dmmu.tag_access = val;
1976 break;
1977 case 7: /* Virtual Watchpoint */
1978 case 8: /* Physical Watchpoint */
1979 default:
1980 env->dmmuregs[reg] = val;
1981 break;
1982 }
1983
1984 if (oldreg != env->dmmuregs[reg]) {
1985 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1986 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1987 }
1988 #ifdef DEBUG_MMU
1989 dump_mmu(stdout, fprintf, env);
1990 #endif
1991 return;
1992 }
1993 case 0x5c: /* D-MMU data in */
1994 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
1995 return;
1996 case 0x5d: /* D-MMU data access */
1997 {
1998 unsigned int i = (addr >> 3) & 0x3f;
1999
2000 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
2001
2002 #ifdef DEBUG_MMU
2003 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
2004 dump_mmu(stdout, fprintf, env);
2005 #endif
2006 return;
2007 }
2008 case 0x5f: /* D-MMU demap */
2009 demap_tlb(env->dtlb, addr, "dmmu", env);
2010 return;
2011 case 0x49: /* Interrupt data receive */
2012 env->ivec_status = val & 0x20;
2013 return;
2014 case 0x46: /* D-cache data */
2015 case 0x47: /* D-cache tag access */
2016 case 0x4b: /* E-cache error enable */
2017 case 0x4c: /* E-cache asynchronous fault status */
2018 case 0x4d: /* E-cache asynchronous fault address */
2019 case 0x4e: /* E-cache tag data */
2020 case 0x66: /* I-cache instruction access */
2021 case 0x67: /* I-cache tag access */
2022 case 0x6e: /* I-cache predecode */
2023 case 0x6f: /* I-cache LRU etc. */
2024 case 0x76: /* E-cache tag */
2025 case 0x7e: /* E-cache tag */
2026 return;
2027 case 0x51: /* I-MMU 8k TSB pointer, RO */
2028 case 0x52: /* I-MMU 64k TSB pointer, RO */
2029 case 0x56: /* I-MMU tag read, RO */
2030 case 0x59: /* D-MMU 8k TSB pointer, RO */
2031 case 0x5a: /* D-MMU 64k TSB pointer, RO */
2032 case 0x5b: /* D-MMU data pointer, RO */
2033 case 0x5e: /* D-MMU tag read, RO */
2034 case 0x48: /* Interrupt dispatch, RO */
2035 case 0x7f: /* Incoming interrupt vector, RO */
2036 case 0x82: /* Primary no-fault, RO */
2037 case 0x83: /* Secondary no-fault, RO */
2038 case 0x8a: /* Primary no-fault LE, RO */
2039 case 0x8b: /* Secondary no-fault LE, RO */
2040 default:
2041 cpu_unassigned_access(cs, addr, true, false, 1, size);
2042 return;
2043 }
2044 }
2045 #endif /* CONFIG_USER_ONLY */
2046
2047 void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd)
2048 {
2049 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2050 || (cpu_has_hypervisor(env)
2051 && asi >= 0x30 && asi < 0x80
2052 && !(env->hpstate & HS_PRIV))) {
2053 helper_raise_exception(env, TT_PRIV_ACT);
2054 }
2055
2056 addr = asi_address_mask(env, asi, addr);
2057
2058 switch (asi) {
2059 #if !defined(CONFIG_USER_ONLY)
2060 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2061 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
2062 helper_check_align(env, addr, 0xf);
2063 if (rd == 0) {
2064 env->gregs[1] = cpu_ldq_nucleus(env, addr + 8);
2065 if (asi == 0x2c) {
2066 bswap64s(&env->gregs[1]);
2067 }
2068 } else if (rd < 8) {
2069 env->gregs[rd] = cpu_ldq_nucleus(env, addr);
2070 env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2071 if (asi == 0x2c) {
2072 bswap64s(&env->gregs[rd]);
2073 bswap64s(&env->gregs[rd + 1]);
2074 }
2075 } else {
2076 env->regwptr[rd] = cpu_ldq_nucleus(env, addr);
2077 env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2078 if (asi == 0x2c) {
2079 bswap64s(&env->regwptr[rd]);
2080 bswap64s(&env->regwptr[rd + 1]);
2081 }
2082 }
2083 break;
2084 #endif
2085 default:
2086 helper_check_align(env, addr, 0x3);
2087 if (rd == 0) {
2088 env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2089 } else if (rd < 8) {
2090 env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2091 env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2092 } else {
2093 env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2094 env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2095 }
2096 break;
2097 }
2098 }
2099
2100 void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2101 int rd)
2102 {
2103 unsigned int i;
2104 target_ulong val;
2105
2106 helper_check_align(env, addr, 3);
2107 addr = asi_address_mask(env, asi, addr);
2108
2109 switch (asi) {
2110 case 0xf0: /* UA2007/JPS1 Block load primary */
2111 case 0xf1: /* UA2007/JPS1 Block load secondary */
2112 case 0xf8: /* UA2007/JPS1 Block load primary LE */
2113 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
2114 if (rd & 7) {
2115 helper_raise_exception(env, TT_ILL_INSN);
2116 return;
2117 }
2118 helper_check_align(env, addr, 0x3f);
2119 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2120 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0);
2121 }
2122 return;
2123
2124 case 0x16: /* UA2007 Block load primary, user privilege */
2125 case 0x17: /* UA2007 Block load secondary, user privilege */
2126 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2127 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2128 case 0x70: /* JPS1 Block load primary, user privilege */
2129 case 0x71: /* JPS1 Block load secondary, user privilege */
2130 case 0x78: /* JPS1 Block load primary LE, user privilege */
2131 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2132 if (rd & 7) {
2133 helper_raise_exception(env, TT_ILL_INSN);
2134 return;
2135 }
2136 helper_check_align(env, addr, 0x3f);
2137 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2138 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0);
2139 }
2140 return;
2141
2142 default:
2143 break;
2144 }
2145
2146 switch (size) {
2147 default:
2148 case 4:
2149 val = helper_ld_asi(env, addr, asi, size, 0);
2150 if (rd & 1) {
2151 env->fpr[rd / 2].l.lower = val;
2152 } else {
2153 env->fpr[rd / 2].l.upper = val;
2154 }
2155 break;
2156 case 8:
2157 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0);
2158 break;
2159 case 16:
2160 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0);
2161 env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0);
2162 break;
2163 }
2164 }
2165
2166 void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2167 int rd)
2168 {
2169 unsigned int i;
2170 target_ulong val;
2171
2172 helper_check_align(env, addr, 3);
2173 addr = asi_address_mask(env, asi, addr);
2174
2175 switch (asi) {
2176 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
2177 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
2178 case 0xf0: /* UA2007/JPS1 Block store primary */
2179 case 0xf1: /* UA2007/JPS1 Block store secondary */
2180 case 0xf8: /* UA2007/JPS1 Block store primary LE */
2181 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
2182 if (rd & 7) {
2183 helper_raise_exception(env, TT_ILL_INSN);
2184 return;
2185 }
2186 helper_check_align(env, addr, 0x3f);
2187 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2188 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8);
2189 }
2190
2191 return;
2192 case 0x16: /* UA2007 Block load primary, user privilege */
2193 case 0x17: /* UA2007 Block load secondary, user privilege */
2194 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2195 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2196 case 0x70: /* JPS1 Block store primary, user privilege */
2197 case 0x71: /* JPS1 Block store secondary, user privilege */
2198 case 0x78: /* JPS1 Block load primary LE, user privilege */
2199 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2200 if (rd & 7) {
2201 helper_raise_exception(env, TT_ILL_INSN);
2202 return;
2203 }
2204 helper_check_align(env, addr, 0x3f);
2205 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2206 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8);
2207 }
2208
2209 return;
2210 default:
2211 break;
2212 }
2213
2214 switch (size) {
2215 default:
2216 case 4:
2217 if (rd & 1) {
2218 val = env->fpr[rd / 2].l.lower;
2219 } else {
2220 val = env->fpr[rd / 2].l.upper;
2221 }
2222 helper_st_asi(env, addr, val, asi, size);
2223 break;
2224 case 8:
2225 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size);
2226 break;
2227 case 16:
2228 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8);
2229 helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8);
2230 break;
2231 }
2232 }
2233
2234 target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr,
2235 target_ulong val1, target_ulong val2,
2236 uint32_t asi)
2237 {
2238 target_ulong ret;
2239
2240 ret = helper_ld_asi(env, addr, asi, 8, 0);
2241 if (val2 == ret) {
2242 helper_st_asi(env, addr, val1, asi, 8);
2243 }
2244 return ret;
2245 }
2246 #endif /* TARGET_SPARC64 */
2247
2248 #if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64)
2249 target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr,
2250 target_ulong val1, target_ulong val2, uint32_t asi)
2251 {
2252 target_ulong ret;
2253
2254 val2 &= 0xffffffffUL;
2255 ret = helper_ld_asi(env, addr, asi, 4, 0);
2256 ret &= 0xffffffffUL;
2257 if (val2 == ret) {
2258 helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4);
2259 }
2260 return ret;
2261 }
2262 #endif /* !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) */
2263
2264 void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2265 {
2266 /* XXX add 128 bit load */
2267 CPU_QuadU u;
2268
2269 helper_check_align(env, addr, 7);
2270 #if !defined(CONFIG_USER_ONLY)
2271 switch (mem_idx) {
2272 case MMU_USER_IDX:
2273 u.ll.upper = cpu_ldq_user(env, addr);
2274 u.ll.lower = cpu_ldq_user(env, addr + 8);
2275 QT0 = u.q;
2276 break;
2277 case MMU_KERNEL_IDX:
2278 u.ll.upper = cpu_ldq_kernel(env, addr);
2279 u.ll.lower = cpu_ldq_kernel(env, addr + 8);
2280 QT0 = u.q;
2281 break;
2282 #ifdef TARGET_SPARC64
2283 case MMU_HYPV_IDX:
2284 u.ll.upper = cpu_ldq_hypv(env, addr);
2285 u.ll.lower = cpu_ldq_hypv(env, addr + 8);
2286 QT0 = u.q;
2287 break;
2288 #endif
2289 default:
2290 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
2291 break;
2292 }
2293 #else
2294 u.ll.upper = ldq_raw(address_mask(env, addr));
2295 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
2296 QT0 = u.q;
2297 #endif
2298 }
2299
2300 void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2301 {
2302 /* XXX add 128 bit store */
2303 CPU_QuadU u;
2304
2305 helper_check_align(env, addr, 7);
2306 #if !defined(CONFIG_USER_ONLY)
2307 switch (mem_idx) {
2308 case MMU_USER_IDX:
2309 u.q = QT0;
2310 cpu_stq_user(env, addr, u.ll.upper);
2311 cpu_stq_user(env, addr + 8, u.ll.lower);
2312 break;
2313 case MMU_KERNEL_IDX:
2314 u.q = QT0;
2315 cpu_stq_kernel(env, addr, u.ll.upper);
2316 cpu_stq_kernel(env, addr + 8, u.ll.lower);
2317 break;
2318 #ifdef TARGET_SPARC64
2319 case MMU_HYPV_IDX:
2320 u.q = QT0;
2321 cpu_stq_hypv(env, addr, u.ll.upper);
2322 cpu_stq_hypv(env, addr + 8, u.ll.lower);
2323 break;
2324 #endif
2325 default:
2326 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
2327 break;
2328 }
2329 #else
2330 u.q = QT0;
2331 stq_raw(address_mask(env, addr), u.ll.upper);
2332 stq_raw(address_mask(env, addr + 8), u.ll.lower);
2333 #endif
2334 }
2335
2336 #if !defined(CONFIG_USER_ONLY)
2337 #ifndef TARGET_SPARC64
2338 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2339 bool is_write, bool is_exec, int is_asi,
2340 unsigned size)
2341 {
2342 SPARCCPU *cpu = SPARC_CPU(cs);
2343 CPUSPARCState *env = &cpu->env;
2344 int fault_type;
2345
2346 #ifdef DEBUG_UNASSIGNED
2347 if (is_asi) {
2348 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2349 " asi 0x%02x from " TARGET_FMT_lx "\n",
2350 is_exec ? "exec" : is_write ? "write" : "read", size,
2351 size == 1 ? "" : "s", addr, is_asi, env->pc);
2352 } else {
2353 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2354 " from " TARGET_FMT_lx "\n",
2355 is_exec ? "exec" : is_write ? "write" : "read", size,
2356 size == 1 ? "" : "s", addr, env->pc);
2357 }
2358 #endif
2359 /* Don't overwrite translation and access faults */
2360 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
2361 if ((fault_type > 4) || (fault_type == 0)) {
2362 env->mmuregs[3] = 0; /* Fault status register */
2363 if (is_asi) {
2364 env->mmuregs[3] |= 1 << 16;
2365 }
2366 if (env->psrs) {
2367 env->mmuregs[3] |= 1 << 5;
2368 }
2369 if (is_exec) {
2370 env->mmuregs[3] |= 1 << 6;
2371 }
2372 if (is_write) {
2373 env->mmuregs[3] |= 1 << 7;
2374 }
2375 env->mmuregs[3] |= (5 << 2) | 2;
2376 /* SuperSPARC will never place instruction fault addresses in the FAR */
2377 if (!is_exec) {
2378 env->mmuregs[4] = addr; /* Fault address register */
2379 }
2380 }
2381 /* overflow (same type fault was not read before another fault) */
2382 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
2383 env->mmuregs[3] |= 1;
2384 }
2385
2386 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2387 if (is_exec) {
2388 helper_raise_exception(env, TT_CODE_ACCESS);
2389 } else {
2390 helper_raise_exception(env, TT_DATA_ACCESS);
2391 }
2392 }
2393
2394 /* flush neverland mappings created during no-fault mode,
2395 so the sequential MMU faults report proper fault types */
2396 if (env->mmuregs[0] & MMU_NF) {
2397 tlb_flush(env, 1);
2398 }
2399 }
2400 #else
2401 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2402 bool is_write, bool is_exec, int is_asi,
2403 unsigned size)
2404 {
2405 SPARCCPU *cpu = SPARC_CPU(cs);
2406 CPUSPARCState *env = &cpu->env;
2407
2408 #ifdef DEBUG_UNASSIGNED
2409 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2410 "\n", addr, env->pc);
2411 #endif
2412
2413 if (is_exec) {
2414 helper_raise_exception(env, TT_CODE_ACCESS);
2415 } else {
2416 helper_raise_exception(env, TT_DATA_ACCESS);
2417 }
2418 }
2419 #endif
2420 #endif
2421
2422 #if !defined(CONFIG_USER_ONLY)
2423 static void QEMU_NORETURN do_unaligned_access(CPUSPARCState *env,
2424 target_ulong addr, int is_write,
2425 int is_user, uintptr_t retaddr)
2426 {
2427 #ifdef DEBUG_UNALIGNED
2428 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2429 "\n", addr, env->pc);
2430 #endif
2431 if (retaddr) {
2432 cpu_restore_state(env, retaddr);
2433 }
2434 helper_raise_exception(env, TT_UNALIGNED);
2435 }
2436
2437 /* try to fill the TLB and return an exception if error. If retaddr is
2438 NULL, it means that the function was called in C code (i.e. not
2439 from generated code or from helper.c) */
2440 /* XXX: fix it to restore all registers */
2441 void tlb_fill(CPUSPARCState *env, target_ulong addr, int is_write, int mmu_idx,
2442 uintptr_t retaddr)
2443 {
2444 int ret;
2445
2446 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx);
2447 if (ret) {
2448 if (retaddr) {
2449 cpu_restore_state(env, retaddr);
2450 }
2451 cpu_loop_exit(env);
2452 }
2453 }
2454 #endif