target/arm: Fix has_vfp/has_neon ID reg squashing for M-profile
[qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45 ARMCPU *cpu = ARM_CPU(cs);
46 CPUARMState *env = &cpu->env;
47
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
54 }
55 }
56
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
61
62 /*
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
65 */
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
70 }
71 }
72
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75 ARMCPU *cpu = ARM_CPU(cs);
76
77 return (cpu->power_state != PSCI_OFF)
78 && cs->interrupt_request &
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
82 }
83
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
86 {
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88
89 entry->hook = hook;
90 entry->opaque = opaque;
91
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 void *opaque)
97 {
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99
100 entry->hook = hook;
101 entry->opaque = opaque;
102
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
111
112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113 return;
114 }
115
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
119 }
120
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
125 */
126 if (!ri->fieldoffset) {
127 return;
128 }
129
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134 }
135 }
136
137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
138 {
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
143 */
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
147
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
150 }
151
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
156 }
157
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160 CPUState *s = CPU(dev);
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163 CPUARMState *env = &cpu->env;
164
165 acc->parent_reset(dev);
166
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168
169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171
172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176
177 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
178
179 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
180 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
181 }
182
183 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
184 /* 64 bit CPUs always start in 64 bit mode */
185 env->aarch64 = 1;
186 #if defined(CONFIG_USER_ONLY)
187 env->pstate = PSTATE_MODE_EL0t;
188 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
189 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
190 /* Enable all PAC keys. */
191 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
192 SCTLR_EnDA | SCTLR_EnDB);
193 /* and to the FP/Neon instructions */
194 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
195 /* and to the SVE instructions */
196 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
197 /* with reasonable vector length */
198 if (cpu_isar_feature(aa64_sve, cpu)) {
199 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
200 }
201 /*
202 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
203 * turning on both here will produce smaller code and otherwise
204 * make no difference to the user-level emulation.
205 *
206 * In sve_probe_page, we assume that this is set.
207 * Do not modify this without other changes.
208 */
209 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211 /* Reset into the highest available EL */
212 if (arm_feature(env, ARM_FEATURE_EL3)) {
213 env->pstate = PSTATE_MODE_EL3h;
214 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215 env->pstate = PSTATE_MODE_EL2h;
216 } else {
217 env->pstate = PSTATE_MODE_EL1h;
218 }
219 env->pc = cpu->rvbar;
220 #endif
221 } else {
222 #if defined(CONFIG_USER_ONLY)
223 /* Userspace expects access to cp10 and cp11 for FP/Neon */
224 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
226 }
227
228 #if defined(CONFIG_USER_ONLY)
229 env->uncached_cpsr = ARM_CPU_MODE_USR;
230 /* For user mode we must enable access to coprocessors */
231 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233 env->cp15.c15_cpar = 3;
234 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235 env->cp15.c15_cpar = 1;
236 }
237 #else
238
239 /*
240 * If the highest available EL is EL2, AArch32 will start in Hyp
241 * mode; otherwise it starts in SVC. Note that if we start in
242 * AArch64 then these values in the uncached_cpsr will be ignored.
243 */
244 if (arm_feature(env, ARM_FEATURE_EL2) &&
245 !arm_feature(env, ARM_FEATURE_EL3)) {
246 env->uncached_cpsr = ARM_CPU_MODE_HYP;
247 } else {
248 env->uncached_cpsr = ARM_CPU_MODE_SVC;
249 }
250 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
251
252 if (arm_feature(env, ARM_FEATURE_M)) {
253 uint32_t initial_msp; /* Loaded from 0x0 */
254 uint32_t initial_pc; /* Loaded from 0x4 */
255 uint8_t *rom;
256 uint32_t vecbase;
257
258 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
259 env->v7m.secure = true;
260 } else {
261 /* This bit resets to 0 if security is supported, but 1 if
262 * it is not. The bit is not present in v7M, but we set it
263 * here so we can avoid having to make checks on it conditional
264 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
265 */
266 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
267 /*
268 * Set NSACR to indicate "NS access permitted to everything";
269 * this avoids having to have all the tests of it being
270 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
271 * v8.1M the guest-visible value of NSACR in a CPU without the
272 * Security Extension is 0xcff.
273 */
274 env->v7m.nsacr = 0xcff;
275 }
276
277 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
278 * that it resets to 1, so QEMU always does that rather than making
279 * it dependent on CPU model. In v8M it is RES1.
280 */
281 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
282 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
283 if (arm_feature(env, ARM_FEATURE_V8)) {
284 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
285 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
286 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
287 }
288 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
289 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
290 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
291 }
292
293 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
294 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
295 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
296 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
297 }
298 /* Unlike A/R profile, M profile defines the reset LR value */
299 env->regs[14] = 0xffffffff;
300
301 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
302
303 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
304 vecbase = env->v7m.vecbase[env->v7m.secure];
305 rom = rom_ptr(vecbase, 8);
306 if (rom) {
307 /* Address zero is covered by ROM which hasn't yet been
308 * copied into physical memory.
309 */
310 initial_msp = ldl_p(rom);
311 initial_pc = ldl_p(rom + 4);
312 } else {
313 /* Address zero not covered by a ROM blob, or the ROM blob
314 * is in non-modifiable memory and this is a second reset after
315 * it got copied into memory. In the latter case, rom_ptr
316 * will return a NULL pointer and we should use ldl_phys instead.
317 */
318 initial_msp = ldl_phys(s->as, vecbase);
319 initial_pc = ldl_phys(s->as, vecbase + 4);
320 }
321
322 env->regs[13] = initial_msp & 0xFFFFFFFC;
323 env->regs[15] = initial_pc & ~1;
324 env->thumb = initial_pc & 1;
325 }
326
327 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
328 * executing as AArch32 then check if highvecs are enabled and
329 * adjust the PC accordingly.
330 */
331 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
332 env->regs[15] = 0xFFFF0000;
333 }
334
335 /* M profile requires that reset clears the exclusive monitor;
336 * A profile does not, but clearing it makes more sense than having it
337 * set with an exclusive access on address zero.
338 */
339 arm_clear_exclusive(env);
340
341 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
342 #endif
343
344 if (arm_feature(env, ARM_FEATURE_PMSA)) {
345 if (cpu->pmsav7_dregion > 0) {
346 if (arm_feature(env, ARM_FEATURE_V8)) {
347 memset(env->pmsav8.rbar[M_REG_NS], 0,
348 sizeof(*env->pmsav8.rbar[M_REG_NS])
349 * cpu->pmsav7_dregion);
350 memset(env->pmsav8.rlar[M_REG_NS], 0,
351 sizeof(*env->pmsav8.rlar[M_REG_NS])
352 * cpu->pmsav7_dregion);
353 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
354 memset(env->pmsav8.rbar[M_REG_S], 0,
355 sizeof(*env->pmsav8.rbar[M_REG_S])
356 * cpu->pmsav7_dregion);
357 memset(env->pmsav8.rlar[M_REG_S], 0,
358 sizeof(*env->pmsav8.rlar[M_REG_S])
359 * cpu->pmsav7_dregion);
360 }
361 } else if (arm_feature(env, ARM_FEATURE_V7)) {
362 memset(env->pmsav7.drbar, 0,
363 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
364 memset(env->pmsav7.drsr, 0,
365 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
366 memset(env->pmsav7.dracr, 0,
367 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
368 }
369 }
370 env->pmsav7.rnr[M_REG_NS] = 0;
371 env->pmsav7.rnr[M_REG_S] = 0;
372 env->pmsav8.mair0[M_REG_NS] = 0;
373 env->pmsav8.mair0[M_REG_S] = 0;
374 env->pmsav8.mair1[M_REG_NS] = 0;
375 env->pmsav8.mair1[M_REG_S] = 0;
376 }
377
378 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
379 if (cpu->sau_sregion > 0) {
380 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
381 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
382 }
383 env->sau.rnr = 0;
384 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
385 * the Cortex-M33 does.
386 */
387 env->sau.ctrl = 0;
388 }
389
390 set_flush_to_zero(1, &env->vfp.standard_fp_status);
391 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
392 set_default_nan_mode(1, &env->vfp.standard_fp_status);
393 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
394 set_float_detect_tininess(float_tininess_before_rounding,
395 &env->vfp.fp_status);
396 set_float_detect_tininess(float_tininess_before_rounding,
397 &env->vfp.standard_fp_status);
398 set_float_detect_tininess(float_tininess_before_rounding,
399 &env->vfp.fp_status_f16);
400 set_float_detect_tininess(float_tininess_before_rounding,
401 &env->vfp.standard_fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403 if (kvm_enabled()) {
404 kvm_arm_reset_vcpu(cpu);
405 }
406 #endif
407
408 hw_breakpoint_update_all(cpu);
409 hw_watchpoint_update_all(cpu);
410 arm_rebuild_hflags(env);
411 }
412
413 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
414 unsigned int target_el,
415 unsigned int cur_el, bool secure,
416 uint64_t hcr_el2)
417 {
418 CPUARMState *env = cs->env_ptr;
419 bool pstate_unmasked;
420 bool unmasked = false;
421
422 /*
423 * Don't take exceptions if they target a lower EL.
424 * This check should catch any exceptions that would not be taken
425 * but left pending.
426 */
427 if (cur_el > target_el) {
428 return false;
429 }
430
431 switch (excp_idx) {
432 case EXCP_FIQ:
433 pstate_unmasked = !(env->daif & PSTATE_F);
434 break;
435
436 case EXCP_IRQ:
437 pstate_unmasked = !(env->daif & PSTATE_I);
438 break;
439
440 case EXCP_VFIQ:
441 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
442 /* VFIQs are only taken when hypervized and non-secure. */
443 return false;
444 }
445 return !(env->daif & PSTATE_F);
446 case EXCP_VIRQ:
447 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
448 /* VIRQs are only taken when hypervized and non-secure. */
449 return false;
450 }
451 return !(env->daif & PSTATE_I);
452 default:
453 g_assert_not_reached();
454 }
455
456 /*
457 * Use the target EL, current execution state and SCR/HCR settings to
458 * determine whether the corresponding CPSR bit is used to mask the
459 * interrupt.
460 */
461 if ((target_el > cur_el) && (target_el != 1)) {
462 /* Exceptions targeting a higher EL may not be maskable */
463 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
464 /*
465 * 64-bit masking rules are simple: exceptions to EL3
466 * can't be masked, and exceptions to EL2 can only be
467 * masked from Secure state. The HCR and SCR settings
468 * don't affect the masking logic, only the interrupt routing.
469 */
470 if (target_el == 3 || !secure) {
471 unmasked = true;
472 }
473 } else {
474 /*
475 * The old 32-bit-only environment has a more complicated
476 * masking setup. HCR and SCR bits not only affect interrupt
477 * routing but also change the behaviour of masking.
478 */
479 bool hcr, scr;
480
481 switch (excp_idx) {
482 case EXCP_FIQ:
483 /*
484 * If FIQs are routed to EL3 or EL2 then there are cases where
485 * we override the CPSR.F in determining if the exception is
486 * masked or not. If neither of these are set then we fall back
487 * to the CPSR.F setting otherwise we further assess the state
488 * below.
489 */
490 hcr = hcr_el2 & HCR_FMO;
491 scr = (env->cp15.scr_el3 & SCR_FIQ);
492
493 /*
494 * When EL3 is 32-bit, the SCR.FW bit controls whether the
495 * CPSR.F bit masks FIQ interrupts when taken in non-secure
496 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
497 * when non-secure but only when FIQs are only routed to EL3.
498 */
499 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
500 break;
501 case EXCP_IRQ:
502 /*
503 * When EL3 execution state is 32-bit, if HCR.IMO is set then
504 * we may override the CPSR.I masking when in non-secure state.
505 * The SCR.IRQ setting has already been taken into consideration
506 * when setting the target EL, so it does not have a further
507 * affect here.
508 */
509 hcr = hcr_el2 & HCR_IMO;
510 scr = false;
511 break;
512 default:
513 g_assert_not_reached();
514 }
515
516 if ((scr || hcr) && !secure) {
517 unmasked = true;
518 }
519 }
520 }
521
522 /*
523 * The PSTATE bits only mask the interrupt if we have not overriden the
524 * ability above.
525 */
526 return unmasked || pstate_unmasked;
527 }
528
529 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
530 {
531 CPUClass *cc = CPU_GET_CLASS(cs);
532 CPUARMState *env = cs->env_ptr;
533 uint32_t cur_el = arm_current_el(env);
534 bool secure = arm_is_secure(env);
535 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
536 uint32_t target_el;
537 uint32_t excp_idx;
538
539 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
540
541 if (interrupt_request & CPU_INTERRUPT_FIQ) {
542 excp_idx = EXCP_FIQ;
543 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
544 if (arm_excp_unmasked(cs, excp_idx, target_el,
545 cur_el, secure, hcr_el2)) {
546 goto found;
547 }
548 }
549 if (interrupt_request & CPU_INTERRUPT_HARD) {
550 excp_idx = EXCP_IRQ;
551 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
552 if (arm_excp_unmasked(cs, excp_idx, target_el,
553 cur_el, secure, hcr_el2)) {
554 goto found;
555 }
556 }
557 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
558 excp_idx = EXCP_VIRQ;
559 target_el = 1;
560 if (arm_excp_unmasked(cs, excp_idx, target_el,
561 cur_el, secure, hcr_el2)) {
562 goto found;
563 }
564 }
565 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
566 excp_idx = EXCP_VFIQ;
567 target_el = 1;
568 if (arm_excp_unmasked(cs, excp_idx, target_el,
569 cur_el, secure, hcr_el2)) {
570 goto found;
571 }
572 }
573 return false;
574
575 found:
576 cs->exception_index = excp_idx;
577 env->exception.target_el = target_el;
578 cc->do_interrupt(cs);
579 return true;
580 }
581
582 void arm_cpu_update_virq(ARMCPU *cpu)
583 {
584 /*
585 * Update the interrupt level for VIRQ, which is the logical OR of
586 * the HCR_EL2.VI bit and the input line level from the GIC.
587 */
588 CPUARMState *env = &cpu->env;
589 CPUState *cs = CPU(cpu);
590
591 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
592 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
593
594 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
595 if (new_state) {
596 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
597 } else {
598 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
599 }
600 }
601 }
602
603 void arm_cpu_update_vfiq(ARMCPU *cpu)
604 {
605 /*
606 * Update the interrupt level for VFIQ, which is the logical OR of
607 * the HCR_EL2.VF bit and the input line level from the GIC.
608 */
609 CPUARMState *env = &cpu->env;
610 CPUState *cs = CPU(cpu);
611
612 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
613 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
614
615 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
616 if (new_state) {
617 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
618 } else {
619 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
620 }
621 }
622 }
623
624 #ifndef CONFIG_USER_ONLY
625 static void arm_cpu_set_irq(void *opaque, int irq, int level)
626 {
627 ARMCPU *cpu = opaque;
628 CPUARMState *env = &cpu->env;
629 CPUState *cs = CPU(cpu);
630 static const int mask[] = {
631 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
632 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
633 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
634 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
635 };
636
637 if (level) {
638 env->irq_line_state |= mask[irq];
639 } else {
640 env->irq_line_state &= ~mask[irq];
641 }
642
643 switch (irq) {
644 case ARM_CPU_VIRQ:
645 assert(arm_feature(env, ARM_FEATURE_EL2));
646 arm_cpu_update_virq(cpu);
647 break;
648 case ARM_CPU_VFIQ:
649 assert(arm_feature(env, ARM_FEATURE_EL2));
650 arm_cpu_update_vfiq(cpu);
651 break;
652 case ARM_CPU_IRQ:
653 case ARM_CPU_FIQ:
654 if (level) {
655 cpu_interrupt(cs, mask[irq]);
656 } else {
657 cpu_reset_interrupt(cs, mask[irq]);
658 }
659 break;
660 default:
661 g_assert_not_reached();
662 }
663 }
664
665 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
666 {
667 #ifdef CONFIG_KVM
668 ARMCPU *cpu = opaque;
669 CPUARMState *env = &cpu->env;
670 CPUState *cs = CPU(cpu);
671 uint32_t linestate_bit;
672 int irq_id;
673
674 switch (irq) {
675 case ARM_CPU_IRQ:
676 irq_id = KVM_ARM_IRQ_CPU_IRQ;
677 linestate_bit = CPU_INTERRUPT_HARD;
678 break;
679 case ARM_CPU_FIQ:
680 irq_id = KVM_ARM_IRQ_CPU_FIQ;
681 linestate_bit = CPU_INTERRUPT_FIQ;
682 break;
683 default:
684 g_assert_not_reached();
685 }
686
687 if (level) {
688 env->irq_line_state |= linestate_bit;
689 } else {
690 env->irq_line_state &= ~linestate_bit;
691 }
692 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
693 #endif
694 }
695
696 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
697 {
698 ARMCPU *cpu = ARM_CPU(cs);
699 CPUARMState *env = &cpu->env;
700
701 cpu_synchronize_state(cs);
702 return arm_cpu_data_is_big_endian(env);
703 }
704
705 #endif
706
707 static int
708 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
709 {
710 return print_insn_arm(pc | 1, info);
711 }
712
713 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
714 {
715 ARMCPU *ac = ARM_CPU(cpu);
716 CPUARMState *env = &ac->env;
717 bool sctlr_b;
718
719 if (is_a64(env)) {
720 /* We might not be compiled with the A64 disassembler
721 * because it needs a C++ compiler. Leave print_insn
722 * unset in this case to use the caller default behaviour.
723 */
724 #if defined(CONFIG_ARM_A64_DIS)
725 info->print_insn = print_insn_arm_a64;
726 #endif
727 info->cap_arch = CS_ARCH_ARM64;
728 info->cap_insn_unit = 4;
729 info->cap_insn_split = 4;
730 } else {
731 int cap_mode;
732 if (env->thumb) {
733 info->print_insn = print_insn_thumb1;
734 info->cap_insn_unit = 2;
735 info->cap_insn_split = 4;
736 cap_mode = CS_MODE_THUMB;
737 } else {
738 info->print_insn = print_insn_arm;
739 info->cap_insn_unit = 4;
740 info->cap_insn_split = 4;
741 cap_mode = CS_MODE_ARM;
742 }
743 if (arm_feature(env, ARM_FEATURE_V8)) {
744 cap_mode |= CS_MODE_V8;
745 }
746 if (arm_feature(env, ARM_FEATURE_M)) {
747 cap_mode |= CS_MODE_MCLASS;
748 }
749 info->cap_arch = CS_ARCH_ARM;
750 info->cap_mode = cap_mode;
751 }
752
753 sctlr_b = arm_sctlr_b(env);
754 if (bswap_code(sctlr_b)) {
755 #ifdef TARGET_WORDS_BIGENDIAN
756 info->endian = BFD_ENDIAN_LITTLE;
757 #else
758 info->endian = BFD_ENDIAN_BIG;
759 #endif
760 }
761 info->flags &= ~INSN_ARM_BE32;
762 #ifndef CONFIG_USER_ONLY
763 if (sctlr_b) {
764 info->flags |= INSN_ARM_BE32;
765 }
766 #endif
767 }
768
769 #ifdef TARGET_AARCH64
770
771 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
772 {
773 ARMCPU *cpu = ARM_CPU(cs);
774 CPUARMState *env = &cpu->env;
775 uint32_t psr = pstate_read(env);
776 int i;
777 int el = arm_current_el(env);
778 const char *ns_status;
779
780 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
781 for (i = 0; i < 32; i++) {
782 if (i == 31) {
783 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
784 } else {
785 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
786 (i + 2) % 3 ? " " : "\n");
787 }
788 }
789
790 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
791 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
792 } else {
793 ns_status = "";
794 }
795 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
796 psr,
797 psr & PSTATE_N ? 'N' : '-',
798 psr & PSTATE_Z ? 'Z' : '-',
799 psr & PSTATE_C ? 'C' : '-',
800 psr & PSTATE_V ? 'V' : '-',
801 ns_status,
802 el,
803 psr & PSTATE_SP ? 'h' : 't');
804
805 if (cpu_isar_feature(aa64_bti, cpu)) {
806 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
807 }
808 if (!(flags & CPU_DUMP_FPU)) {
809 qemu_fprintf(f, "\n");
810 return;
811 }
812 if (fp_exception_el(env, el) != 0) {
813 qemu_fprintf(f, " FPU disabled\n");
814 return;
815 }
816 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
817 vfp_get_fpcr(env), vfp_get_fpsr(env));
818
819 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
820 int j, zcr_len = sve_zcr_len_for_el(env, el);
821
822 for (i = 0; i <= FFR_PRED_NUM; i++) {
823 bool eol;
824 if (i == FFR_PRED_NUM) {
825 qemu_fprintf(f, "FFR=");
826 /* It's last, so end the line. */
827 eol = true;
828 } else {
829 qemu_fprintf(f, "P%02d=", i);
830 switch (zcr_len) {
831 case 0:
832 eol = i % 8 == 7;
833 break;
834 case 1:
835 eol = i % 6 == 5;
836 break;
837 case 2:
838 case 3:
839 eol = i % 3 == 2;
840 break;
841 default:
842 /* More than one quadword per predicate. */
843 eol = true;
844 break;
845 }
846 }
847 for (j = zcr_len / 4; j >= 0; j--) {
848 int digits;
849 if (j * 4 + 4 <= zcr_len + 1) {
850 digits = 16;
851 } else {
852 digits = (zcr_len % 4 + 1) * 4;
853 }
854 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
855 env->vfp.pregs[i].p[j],
856 j ? ":" : eol ? "\n" : " ");
857 }
858 }
859
860 for (i = 0; i < 32; i++) {
861 if (zcr_len == 0) {
862 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
863 i, env->vfp.zregs[i].d[1],
864 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
865 } else if (zcr_len == 1) {
866 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
867 ":%016" PRIx64 ":%016" PRIx64 "\n",
868 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
869 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
870 } else {
871 for (j = zcr_len; j >= 0; j--) {
872 bool odd = (zcr_len - j) % 2 != 0;
873 if (j == zcr_len) {
874 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
875 } else if (!odd) {
876 if (j > 0) {
877 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
878 } else {
879 qemu_fprintf(f, " [%x]=", j);
880 }
881 }
882 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
883 env->vfp.zregs[i].d[j * 2 + 1],
884 env->vfp.zregs[i].d[j * 2],
885 odd || j == 0 ? "\n" : ":");
886 }
887 }
888 }
889 } else {
890 for (i = 0; i < 32; i++) {
891 uint64_t *q = aa64_vfp_qreg(env, i);
892 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
893 i, q[1], q[0], (i & 1 ? "\n" : " "));
894 }
895 }
896 }
897
898 #else
899
900 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
901 {
902 g_assert_not_reached();
903 }
904
905 #endif
906
907 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
908 {
909 ARMCPU *cpu = ARM_CPU(cs);
910 CPUARMState *env = &cpu->env;
911 int i;
912
913 if (is_a64(env)) {
914 aarch64_cpu_dump_state(cs, f, flags);
915 return;
916 }
917
918 for (i = 0; i < 16; i++) {
919 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
920 if ((i % 4) == 3) {
921 qemu_fprintf(f, "\n");
922 } else {
923 qemu_fprintf(f, " ");
924 }
925 }
926
927 if (arm_feature(env, ARM_FEATURE_M)) {
928 uint32_t xpsr = xpsr_read(env);
929 const char *mode;
930 const char *ns_status = "";
931
932 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
933 ns_status = env->v7m.secure ? "S " : "NS ";
934 }
935
936 if (xpsr & XPSR_EXCP) {
937 mode = "handler";
938 } else {
939 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
940 mode = "unpriv-thread";
941 } else {
942 mode = "priv-thread";
943 }
944 }
945
946 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
947 xpsr,
948 xpsr & XPSR_N ? 'N' : '-',
949 xpsr & XPSR_Z ? 'Z' : '-',
950 xpsr & XPSR_C ? 'C' : '-',
951 xpsr & XPSR_V ? 'V' : '-',
952 xpsr & XPSR_T ? 'T' : 'A',
953 ns_status,
954 mode);
955 } else {
956 uint32_t psr = cpsr_read(env);
957 const char *ns_status = "";
958
959 if (arm_feature(env, ARM_FEATURE_EL3) &&
960 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
961 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
962 }
963
964 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
965 psr,
966 psr & CPSR_N ? 'N' : '-',
967 psr & CPSR_Z ? 'Z' : '-',
968 psr & CPSR_C ? 'C' : '-',
969 psr & CPSR_V ? 'V' : '-',
970 psr & CPSR_T ? 'T' : 'A',
971 ns_status,
972 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
973 }
974
975 if (flags & CPU_DUMP_FPU) {
976 int numvfpregs = 0;
977 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
978 numvfpregs = 32;
979 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
980 numvfpregs = 16;
981 }
982 for (i = 0; i < numvfpregs; i++) {
983 uint64_t v = *aa32_vfp_dreg(env, i);
984 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
985 i * 2, (uint32_t)v,
986 i * 2 + 1, (uint32_t)(v >> 32),
987 i, v);
988 }
989 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
990 }
991 }
992
993 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
994 {
995 uint32_t Aff1 = idx / clustersz;
996 uint32_t Aff0 = idx % clustersz;
997 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
998 }
999
1000 static void cpreg_hashtable_data_destroy(gpointer data)
1001 {
1002 /*
1003 * Destroy function for cpu->cp_regs hashtable data entries.
1004 * We must free the name string because it was g_strdup()ed in
1005 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1006 * from r->name because we know we definitely allocated it.
1007 */
1008 ARMCPRegInfo *r = data;
1009
1010 g_free((void *)r->name);
1011 g_free(r);
1012 }
1013
1014 static void arm_cpu_initfn(Object *obj)
1015 {
1016 ARMCPU *cpu = ARM_CPU(obj);
1017
1018 cpu_set_cpustate_pointers(cpu);
1019 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1020 g_free, cpreg_hashtable_data_destroy);
1021
1022 QLIST_INIT(&cpu->pre_el_change_hooks);
1023 QLIST_INIT(&cpu->el_change_hooks);
1024
1025 #ifndef CONFIG_USER_ONLY
1026 /* Our inbound IRQ and FIQ lines */
1027 if (kvm_enabled()) {
1028 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1029 * the same interface as non-KVM CPUs.
1030 */
1031 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1032 } else {
1033 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1034 }
1035
1036 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1037 ARRAY_SIZE(cpu->gt_timer_outputs));
1038
1039 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1040 "gicv3-maintenance-interrupt", 1);
1041 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1042 "pmu-interrupt", 1);
1043 #endif
1044
1045 /* DTB consumers generally don't in fact care what the 'compatible'
1046 * string is, so always provide some string and trust that a hypothetical
1047 * picky DTB consumer will also provide a helpful error message.
1048 */
1049 cpu->dtb_compatible = "qemu,unknown";
1050 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1051 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1052
1053 if (tcg_enabled()) {
1054 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1055 }
1056 }
1057
1058 static Property arm_cpu_gt_cntfrq_property =
1059 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1060 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1061
1062 static Property arm_cpu_reset_cbar_property =
1063 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1064
1065 static Property arm_cpu_reset_hivecs_property =
1066 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1067
1068 static Property arm_cpu_rvbar_property =
1069 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1070
1071 #ifndef CONFIG_USER_ONLY
1072 static Property arm_cpu_has_el2_property =
1073 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1074
1075 static Property arm_cpu_has_el3_property =
1076 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1077 #endif
1078
1079 static Property arm_cpu_cfgend_property =
1080 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1081
1082 static Property arm_cpu_has_vfp_property =
1083 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1084
1085 static Property arm_cpu_has_neon_property =
1086 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1087
1088 static Property arm_cpu_has_dsp_property =
1089 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1090
1091 static Property arm_cpu_has_mpu_property =
1092 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1093
1094 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1095 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1096 * the right value for that particular CPU type, and we don't want
1097 * to override that with an incorrect constant value.
1098 */
1099 static Property arm_cpu_pmsav7_dregion_property =
1100 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1101 pmsav7_dregion,
1102 qdev_prop_uint32, uint32_t);
1103
1104 static bool arm_get_pmu(Object *obj, Error **errp)
1105 {
1106 ARMCPU *cpu = ARM_CPU(obj);
1107
1108 return cpu->has_pmu;
1109 }
1110
1111 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1112 {
1113 ARMCPU *cpu = ARM_CPU(obj);
1114
1115 if (value) {
1116 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1117 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1118 return;
1119 }
1120 set_feature(&cpu->env, ARM_FEATURE_PMU);
1121 } else {
1122 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1123 }
1124 cpu->has_pmu = value;
1125 }
1126
1127 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1128 {
1129 /*
1130 * The exact approach to calculating guest ticks is:
1131 *
1132 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1133 * NANOSECONDS_PER_SECOND);
1134 *
1135 * We don't do that. Rather we intentionally use integer division
1136 * truncation below and in the caller for the conversion of host monotonic
1137 * time to guest ticks to provide the exact inverse for the semantics of
1138 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1139 * it loses precision when representing frequencies where
1140 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1141 * provide an exact inverse leads to scheduling timers with negative
1142 * periods, which in turn leads to sticky behaviour in the guest.
1143 *
1144 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1145 * cannot become zero.
1146 */
1147 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1148 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1149 }
1150
1151 void arm_cpu_post_init(Object *obj)
1152 {
1153 ARMCPU *cpu = ARM_CPU(obj);
1154
1155 /* M profile implies PMSA. We have to do this here rather than
1156 * in realize with the other feature-implication checks because
1157 * we look at the PMSA bit to see if we should add some properties.
1158 */
1159 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1160 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1161 }
1162
1163 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1164 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1165 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1166 }
1167
1168 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1169 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1170 }
1171
1172 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1173 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1174 }
1175
1176 #ifndef CONFIG_USER_ONLY
1177 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1178 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1179 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1180 */
1181 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1182
1183 object_property_add_link(obj, "secure-memory",
1184 TYPE_MEMORY_REGION,
1185 (Object **)&cpu->secure_memory,
1186 qdev_prop_allow_set_link_before_realize,
1187 OBJ_PROP_LINK_STRONG);
1188 }
1189
1190 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1191 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1192 }
1193 #endif
1194
1195 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1196 cpu->has_pmu = true;
1197 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1198 }
1199
1200 /*
1201 * Allow user to turn off VFP and Neon support, but only for TCG --
1202 * KVM does not currently allow us to lie to the guest about its
1203 * ID/feature registers, so the guest always sees what the host has.
1204 */
1205 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1206 ? cpu_isar_feature(aa64_fp_simd, cpu)
1207 : cpu_isar_feature(aa32_vfp, cpu)) {
1208 cpu->has_vfp = true;
1209 if (!kvm_enabled()) {
1210 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1211 }
1212 }
1213
1214 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1215 cpu->has_neon = true;
1216 if (!kvm_enabled()) {
1217 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1218 }
1219 }
1220
1221 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1222 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1223 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1224 }
1225
1226 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1227 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1228 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1229 qdev_property_add_static(DEVICE(obj),
1230 &arm_cpu_pmsav7_dregion_property);
1231 }
1232 }
1233
1234 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1235 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1236 qdev_prop_allow_set_link_before_realize,
1237 OBJ_PROP_LINK_STRONG);
1238 /*
1239 * M profile: initial value of the Secure VTOR. We can't just use
1240 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1241 * the property to be set after realize.
1242 */
1243 object_property_add_uint32_ptr(obj, "init-svtor",
1244 &cpu->init_svtor,
1245 OBJ_PROP_FLAG_READWRITE);
1246 }
1247
1248 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1249
1250 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1251 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1252 }
1253
1254 if (kvm_enabled()) {
1255 kvm_arm_add_vcpu_properties(obj);
1256 }
1257
1258 #ifndef CONFIG_USER_ONLY
1259 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1260 cpu_isar_feature(aa64_mte, cpu)) {
1261 object_property_add_link(obj, "tag-memory",
1262 TYPE_MEMORY_REGION,
1263 (Object **)&cpu->tag_memory,
1264 qdev_prop_allow_set_link_before_realize,
1265 OBJ_PROP_LINK_STRONG);
1266
1267 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1268 object_property_add_link(obj, "secure-tag-memory",
1269 TYPE_MEMORY_REGION,
1270 (Object **)&cpu->secure_tag_memory,
1271 qdev_prop_allow_set_link_before_realize,
1272 OBJ_PROP_LINK_STRONG);
1273 }
1274 }
1275 #endif
1276 }
1277
1278 static void arm_cpu_finalizefn(Object *obj)
1279 {
1280 ARMCPU *cpu = ARM_CPU(obj);
1281 ARMELChangeHook *hook, *next;
1282
1283 g_hash_table_destroy(cpu->cp_regs);
1284
1285 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1286 QLIST_REMOVE(hook, node);
1287 g_free(hook);
1288 }
1289 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1290 QLIST_REMOVE(hook, node);
1291 g_free(hook);
1292 }
1293 #ifndef CONFIG_USER_ONLY
1294 if (cpu->pmu_timer) {
1295 timer_del(cpu->pmu_timer);
1296 timer_deinit(cpu->pmu_timer);
1297 timer_free(cpu->pmu_timer);
1298 }
1299 #endif
1300 }
1301
1302 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1303 {
1304 Error *local_err = NULL;
1305
1306 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1307 arm_cpu_sve_finalize(cpu, &local_err);
1308 if (local_err != NULL) {
1309 error_propagate(errp, local_err);
1310 return;
1311 }
1312 }
1313
1314 if (kvm_enabled()) {
1315 kvm_arm_steal_time_finalize(cpu, &local_err);
1316 if (local_err != NULL) {
1317 error_propagate(errp, local_err);
1318 return;
1319 }
1320 }
1321 }
1322
1323 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1324 {
1325 CPUState *cs = CPU(dev);
1326 ARMCPU *cpu = ARM_CPU(dev);
1327 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1328 CPUARMState *env = &cpu->env;
1329 int pagebits;
1330 Error *local_err = NULL;
1331 bool no_aa32 = false;
1332
1333 /* If we needed to query the host kernel for the CPU features
1334 * then it's possible that might have failed in the initfn, but
1335 * this is the first point where we can report it.
1336 */
1337 if (cpu->host_cpu_probe_failed) {
1338 if (!kvm_enabled()) {
1339 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1340 } else {
1341 error_setg(errp, "Failed to retrieve host CPU features");
1342 }
1343 return;
1344 }
1345
1346 #ifndef CONFIG_USER_ONLY
1347 /* The NVIC and M-profile CPU are two halves of a single piece of
1348 * hardware; trying to use one without the other is a command line
1349 * error and will result in segfaults if not caught here.
1350 */
1351 if (arm_feature(env, ARM_FEATURE_M)) {
1352 if (!env->nvic) {
1353 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1354 return;
1355 }
1356 } else {
1357 if (env->nvic) {
1358 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1359 return;
1360 }
1361 }
1362
1363 {
1364 uint64_t scale;
1365
1366 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1367 if (!cpu->gt_cntfrq_hz) {
1368 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1369 cpu->gt_cntfrq_hz);
1370 return;
1371 }
1372 scale = gt_cntfrq_period_ns(cpu);
1373 } else {
1374 scale = GTIMER_SCALE;
1375 }
1376
1377 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1378 arm_gt_ptimer_cb, cpu);
1379 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1380 arm_gt_vtimer_cb, cpu);
1381 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1382 arm_gt_htimer_cb, cpu);
1383 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1384 arm_gt_stimer_cb, cpu);
1385 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1386 arm_gt_hvtimer_cb, cpu);
1387 }
1388 #endif
1389
1390 cpu_exec_realizefn(cs, &local_err);
1391 if (local_err != NULL) {
1392 error_propagate(errp, local_err);
1393 return;
1394 }
1395
1396 arm_cpu_finalize_features(cpu, &local_err);
1397 if (local_err != NULL) {
1398 error_propagate(errp, local_err);
1399 return;
1400 }
1401
1402 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1403 cpu->has_vfp != cpu->has_neon) {
1404 /*
1405 * This is an architectural requirement for AArch64; AArch32 is
1406 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1407 */
1408 error_setg(errp,
1409 "AArch64 CPUs must have both VFP and Neon or neither");
1410 return;
1411 }
1412
1413 if (!cpu->has_vfp) {
1414 uint64_t t;
1415 uint32_t u;
1416
1417 t = cpu->isar.id_aa64isar1;
1418 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1419 cpu->isar.id_aa64isar1 = t;
1420
1421 t = cpu->isar.id_aa64pfr0;
1422 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1423 cpu->isar.id_aa64pfr0 = t;
1424
1425 u = cpu->isar.id_isar6;
1426 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1427 cpu->isar.id_isar6 = u;
1428
1429 u = cpu->isar.mvfr0;
1430 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1431 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1432 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1433 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1434 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1435 if (!arm_feature(env, ARM_FEATURE_M)) {
1436 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1437 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1438 }
1439 cpu->isar.mvfr0 = u;
1440
1441 u = cpu->isar.mvfr1;
1442 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1443 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1444 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1445 if (arm_feature(env, ARM_FEATURE_M)) {
1446 u = FIELD_DP32(u, MVFR1, FP16, 0);
1447 }
1448 cpu->isar.mvfr1 = u;
1449
1450 u = cpu->isar.mvfr2;
1451 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1452 cpu->isar.mvfr2 = u;
1453 }
1454
1455 if (!cpu->has_neon) {
1456 uint64_t t;
1457 uint32_t u;
1458
1459 unset_feature(env, ARM_FEATURE_NEON);
1460
1461 t = cpu->isar.id_aa64isar0;
1462 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1463 cpu->isar.id_aa64isar0 = t;
1464
1465 t = cpu->isar.id_aa64isar1;
1466 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1467 cpu->isar.id_aa64isar1 = t;
1468
1469 t = cpu->isar.id_aa64pfr0;
1470 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1471 cpu->isar.id_aa64pfr0 = t;
1472
1473 u = cpu->isar.id_isar5;
1474 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1475 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1476 cpu->isar.id_isar5 = u;
1477
1478 u = cpu->isar.id_isar6;
1479 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1480 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1481 cpu->isar.id_isar6 = u;
1482
1483 if (!arm_feature(env, ARM_FEATURE_M)) {
1484 u = cpu->isar.mvfr1;
1485 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1486 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1487 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1488 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1489 cpu->isar.mvfr1 = u;
1490
1491 u = cpu->isar.mvfr2;
1492 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1493 cpu->isar.mvfr2 = u;
1494 }
1495 }
1496
1497 if (!cpu->has_neon && !cpu->has_vfp) {
1498 uint64_t t;
1499 uint32_t u;
1500
1501 t = cpu->isar.id_aa64isar0;
1502 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1503 cpu->isar.id_aa64isar0 = t;
1504
1505 t = cpu->isar.id_aa64isar1;
1506 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1507 cpu->isar.id_aa64isar1 = t;
1508
1509 u = cpu->isar.mvfr0;
1510 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1511 cpu->isar.mvfr0 = u;
1512
1513 /* Despite the name, this field covers both VFP and Neon */
1514 u = cpu->isar.mvfr1;
1515 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1516 cpu->isar.mvfr1 = u;
1517 }
1518
1519 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1520 uint32_t u;
1521
1522 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1523
1524 u = cpu->isar.id_isar1;
1525 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1526 cpu->isar.id_isar1 = u;
1527
1528 u = cpu->isar.id_isar2;
1529 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1530 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1531 cpu->isar.id_isar2 = u;
1532
1533 u = cpu->isar.id_isar3;
1534 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1535 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1536 cpu->isar.id_isar3 = u;
1537 }
1538
1539 /* Some features automatically imply others: */
1540 if (arm_feature(env, ARM_FEATURE_V8)) {
1541 if (arm_feature(env, ARM_FEATURE_M)) {
1542 set_feature(env, ARM_FEATURE_V7);
1543 } else {
1544 set_feature(env, ARM_FEATURE_V7VE);
1545 }
1546 }
1547
1548 /*
1549 * There exist AArch64 cpus without AArch32 support. When KVM
1550 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1551 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1552 * As a general principle, we also do not make ID register
1553 * consistency checks anywhere unless using TCG, because only
1554 * for TCG would a consistency-check failure be a QEMU bug.
1555 */
1556 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1557 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1558 }
1559
1560 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1561 /* v7 Virtualization Extensions. In real hardware this implies
1562 * EL2 and also the presence of the Security Extensions.
1563 * For QEMU, for backwards-compatibility we implement some
1564 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1565 * include the various other features that V7VE implies.
1566 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1567 * Security Extensions is ARM_FEATURE_EL3.
1568 */
1569 assert(!tcg_enabled() || no_aa32 ||
1570 cpu_isar_feature(aa32_arm_div, cpu));
1571 set_feature(env, ARM_FEATURE_LPAE);
1572 set_feature(env, ARM_FEATURE_V7);
1573 }
1574 if (arm_feature(env, ARM_FEATURE_V7)) {
1575 set_feature(env, ARM_FEATURE_VAPA);
1576 set_feature(env, ARM_FEATURE_THUMB2);
1577 set_feature(env, ARM_FEATURE_MPIDR);
1578 if (!arm_feature(env, ARM_FEATURE_M)) {
1579 set_feature(env, ARM_FEATURE_V6K);
1580 } else {
1581 set_feature(env, ARM_FEATURE_V6);
1582 }
1583
1584 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1585 * non-EL3 configs. This is needed by some legacy boards.
1586 */
1587 set_feature(env, ARM_FEATURE_VBAR);
1588 }
1589 if (arm_feature(env, ARM_FEATURE_V6K)) {
1590 set_feature(env, ARM_FEATURE_V6);
1591 set_feature(env, ARM_FEATURE_MVFR);
1592 }
1593 if (arm_feature(env, ARM_FEATURE_V6)) {
1594 set_feature(env, ARM_FEATURE_V5);
1595 if (!arm_feature(env, ARM_FEATURE_M)) {
1596 assert(!tcg_enabled() || no_aa32 ||
1597 cpu_isar_feature(aa32_jazelle, cpu));
1598 set_feature(env, ARM_FEATURE_AUXCR);
1599 }
1600 }
1601 if (arm_feature(env, ARM_FEATURE_V5)) {
1602 set_feature(env, ARM_FEATURE_V4T);
1603 }
1604 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1605 set_feature(env, ARM_FEATURE_V7MP);
1606 }
1607 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1608 set_feature(env, ARM_FEATURE_CBAR);
1609 }
1610 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1611 !arm_feature(env, ARM_FEATURE_M)) {
1612 set_feature(env, ARM_FEATURE_THUMB_DSP);
1613 }
1614
1615 /*
1616 * We rely on no XScale CPU having VFP so we can use the same bits in the
1617 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1618 */
1619 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1620 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1621 !arm_feature(env, ARM_FEATURE_XSCALE));
1622
1623 if (arm_feature(env, ARM_FEATURE_V7) &&
1624 !arm_feature(env, ARM_FEATURE_M) &&
1625 !arm_feature(env, ARM_FEATURE_PMSA)) {
1626 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1627 * can use 4K pages.
1628 */
1629 pagebits = 12;
1630 } else {
1631 /* For CPUs which might have tiny 1K pages, or which have an
1632 * MPU and might have small region sizes, stick with 1K pages.
1633 */
1634 pagebits = 10;
1635 }
1636 if (!set_preferred_target_page_bits(pagebits)) {
1637 /* This can only ever happen for hotplugging a CPU, or if
1638 * the board code incorrectly creates a CPU which it has
1639 * promised via minimum_page_size that it will not.
1640 */
1641 error_setg(errp, "This CPU requires a smaller page size than the "
1642 "system is using");
1643 return;
1644 }
1645
1646 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1647 * We don't support setting cluster ID ([16..23]) (known as Aff2
1648 * in later ARM ARM versions), or any of the higher affinity level fields,
1649 * so these bits always RAZ.
1650 */
1651 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1652 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1653 ARM_DEFAULT_CPUS_PER_CLUSTER);
1654 }
1655
1656 if (cpu->reset_hivecs) {
1657 cpu->reset_sctlr |= (1 << 13);
1658 }
1659
1660 if (cpu->cfgend) {
1661 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1662 cpu->reset_sctlr |= SCTLR_EE;
1663 } else {
1664 cpu->reset_sctlr |= SCTLR_B;
1665 }
1666 }
1667
1668 if (!cpu->has_el3) {
1669 /* If the has_el3 CPU property is disabled then we need to disable the
1670 * feature.
1671 */
1672 unset_feature(env, ARM_FEATURE_EL3);
1673
1674 /* Disable the security extension feature bits in the processor feature
1675 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1676 */
1677 cpu->isar.id_pfr1 &= ~0xf0;
1678 cpu->isar.id_aa64pfr0 &= ~0xf000;
1679 }
1680
1681 if (!cpu->has_el2) {
1682 unset_feature(env, ARM_FEATURE_EL2);
1683 }
1684
1685 if (!cpu->has_pmu) {
1686 unset_feature(env, ARM_FEATURE_PMU);
1687 }
1688 if (arm_feature(env, ARM_FEATURE_PMU)) {
1689 pmu_init(cpu);
1690
1691 if (!kvm_enabled()) {
1692 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1693 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1694 }
1695
1696 #ifndef CONFIG_USER_ONLY
1697 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1698 cpu);
1699 #endif
1700 } else {
1701 cpu->isar.id_aa64dfr0 =
1702 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1703 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1704 cpu->pmceid0 = 0;
1705 cpu->pmceid1 = 0;
1706 }
1707
1708 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1709 /* Disable the hypervisor feature bits in the processor feature
1710 * registers if we don't have EL2. These are id_pfr1[15:12] and
1711 * id_aa64pfr0_el1[11:8].
1712 */
1713 cpu->isar.id_aa64pfr0 &= ~0xf00;
1714 cpu->isar.id_pfr1 &= ~0xf000;
1715 }
1716
1717 #ifndef CONFIG_USER_ONLY
1718 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1719 /*
1720 * Disable the MTE feature bits if we do not have tag-memory
1721 * provided by the machine.
1722 */
1723 cpu->isar.id_aa64pfr1 =
1724 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1725 }
1726 #endif
1727
1728 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1729 * to false or by setting pmsav7-dregion to 0.
1730 */
1731 if (!cpu->has_mpu) {
1732 cpu->pmsav7_dregion = 0;
1733 }
1734 if (cpu->pmsav7_dregion == 0) {
1735 cpu->has_mpu = false;
1736 }
1737
1738 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1739 arm_feature(env, ARM_FEATURE_V7)) {
1740 uint32_t nr = cpu->pmsav7_dregion;
1741
1742 if (nr > 0xff) {
1743 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1744 return;
1745 }
1746
1747 if (nr) {
1748 if (arm_feature(env, ARM_FEATURE_V8)) {
1749 /* PMSAv8 */
1750 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1751 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1752 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1753 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1754 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1755 }
1756 } else {
1757 env->pmsav7.drbar = g_new0(uint32_t, nr);
1758 env->pmsav7.drsr = g_new0(uint32_t, nr);
1759 env->pmsav7.dracr = g_new0(uint32_t, nr);
1760 }
1761 }
1762 }
1763
1764 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1765 uint32_t nr = cpu->sau_sregion;
1766
1767 if (nr > 0xff) {
1768 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1769 return;
1770 }
1771
1772 if (nr) {
1773 env->sau.rbar = g_new0(uint32_t, nr);
1774 env->sau.rlar = g_new0(uint32_t, nr);
1775 }
1776 }
1777
1778 if (arm_feature(env, ARM_FEATURE_EL3)) {
1779 set_feature(env, ARM_FEATURE_VBAR);
1780 }
1781
1782 register_cp_regs_for_features(cpu);
1783 arm_cpu_register_gdb_regs_for_features(cpu);
1784
1785 init_cpreg_list(cpu);
1786
1787 #ifndef CONFIG_USER_ONLY
1788 MachineState *ms = MACHINE(qdev_get_machine());
1789 unsigned int smp_cpus = ms->smp.cpus;
1790 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1791
1792 /*
1793 * We must set cs->num_ases to the final value before
1794 * the first call to cpu_address_space_init.
1795 */
1796 if (cpu->tag_memory != NULL) {
1797 cs->num_ases = 3 + has_secure;
1798 } else {
1799 cs->num_ases = 1 + has_secure;
1800 }
1801
1802 if (has_secure) {
1803 if (!cpu->secure_memory) {
1804 cpu->secure_memory = cs->memory;
1805 }
1806 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1807 cpu->secure_memory);
1808 }
1809
1810 if (cpu->tag_memory != NULL) {
1811 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1812 cpu->tag_memory);
1813 if (has_secure) {
1814 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1815 cpu->secure_tag_memory);
1816 }
1817 }
1818
1819 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1820
1821 /* No core_count specified, default to smp_cpus. */
1822 if (cpu->core_count == -1) {
1823 cpu->core_count = smp_cpus;
1824 }
1825 #endif
1826
1827 if (tcg_enabled()) {
1828 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1829
1830 /*
1831 * We only support DCZ blocklen that fits on one page.
1832 *
1833 * Architectually this is always true. However TARGET_PAGE_SIZE
1834 * is variable and, for compatibility with -machine virt-2.7,
1835 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1836 * But even then, while the largest architectural DCZ blocklen
1837 * is 2KiB, no cpu actually uses such a large blocklen.
1838 */
1839 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1840
1841 /*
1842 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1843 * both nibbles of each byte storing tag data may be written at once.
1844 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1845 */
1846 if (cpu_isar_feature(aa64_mte, cpu)) {
1847 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1848 }
1849 }
1850
1851 qemu_init_vcpu(cs);
1852 cpu_reset(cs);
1853
1854 acc->parent_realize(dev, errp);
1855 }
1856
1857 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1858 {
1859 ObjectClass *oc;
1860 char *typename;
1861 char **cpuname;
1862 const char *cpunamestr;
1863
1864 cpuname = g_strsplit(cpu_model, ",", 1);
1865 cpunamestr = cpuname[0];
1866 #ifdef CONFIG_USER_ONLY
1867 /* For backwards compatibility usermode emulation allows "-cpu any",
1868 * which has the same semantics as "-cpu max".
1869 */
1870 if (!strcmp(cpunamestr, "any")) {
1871 cpunamestr = "max";
1872 }
1873 #endif
1874 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1875 oc = object_class_by_name(typename);
1876 g_strfreev(cpuname);
1877 g_free(typename);
1878 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1879 object_class_is_abstract(oc)) {
1880 return NULL;
1881 }
1882 return oc;
1883 }
1884
1885 /* CPU models. These are not needed for the AArch64 linux-user build. */
1886 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1887
1888 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1889 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1890 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1891 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1892 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1893 REGINFO_SENTINEL
1894 };
1895
1896 static void cortex_a8_initfn(Object *obj)
1897 {
1898 ARMCPU *cpu = ARM_CPU(obj);
1899
1900 cpu->dtb_compatible = "arm,cortex-a8";
1901 set_feature(&cpu->env, ARM_FEATURE_V7);
1902 set_feature(&cpu->env, ARM_FEATURE_NEON);
1903 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1904 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1905 set_feature(&cpu->env, ARM_FEATURE_EL3);
1906 cpu->midr = 0x410fc080;
1907 cpu->reset_fpsid = 0x410330c0;
1908 cpu->isar.mvfr0 = 0x11110222;
1909 cpu->isar.mvfr1 = 0x00011111;
1910 cpu->ctr = 0x82048004;
1911 cpu->reset_sctlr = 0x00c50078;
1912 cpu->isar.id_pfr0 = 0x1031;
1913 cpu->isar.id_pfr1 = 0x11;
1914 cpu->isar.id_dfr0 = 0x400;
1915 cpu->id_afr0 = 0;
1916 cpu->isar.id_mmfr0 = 0x31100003;
1917 cpu->isar.id_mmfr1 = 0x20000000;
1918 cpu->isar.id_mmfr2 = 0x01202000;
1919 cpu->isar.id_mmfr3 = 0x11;
1920 cpu->isar.id_isar0 = 0x00101111;
1921 cpu->isar.id_isar1 = 0x12112111;
1922 cpu->isar.id_isar2 = 0x21232031;
1923 cpu->isar.id_isar3 = 0x11112131;
1924 cpu->isar.id_isar4 = 0x00111142;
1925 cpu->isar.dbgdidr = 0x15141000;
1926 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1927 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1928 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1929 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1930 cpu->reset_auxcr = 2;
1931 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1932 }
1933
1934 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1935 /* power_control should be set to maximum latency. Again,
1936 * default to 0 and set by private hook
1937 */
1938 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1939 .access = PL1_RW, .resetvalue = 0,
1940 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1941 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1942 .access = PL1_RW, .resetvalue = 0,
1943 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1944 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1945 .access = PL1_RW, .resetvalue = 0,
1946 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1947 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1948 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1949 /* TLB lockdown control */
1950 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1951 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1952 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1953 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1954 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1955 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1956 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1957 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1958 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1959 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1960 REGINFO_SENTINEL
1961 };
1962
1963 static void cortex_a9_initfn(Object *obj)
1964 {
1965 ARMCPU *cpu = ARM_CPU(obj);
1966
1967 cpu->dtb_compatible = "arm,cortex-a9";
1968 set_feature(&cpu->env, ARM_FEATURE_V7);
1969 set_feature(&cpu->env, ARM_FEATURE_NEON);
1970 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1971 set_feature(&cpu->env, ARM_FEATURE_EL3);
1972 /* Note that A9 supports the MP extensions even for
1973 * A9UP and single-core A9MP (which are both different
1974 * and valid configurations; we don't model A9UP).
1975 */
1976 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1977 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1978 cpu->midr = 0x410fc090;
1979 cpu->reset_fpsid = 0x41033090;
1980 cpu->isar.mvfr0 = 0x11110222;
1981 cpu->isar.mvfr1 = 0x01111111;
1982 cpu->ctr = 0x80038003;
1983 cpu->reset_sctlr = 0x00c50078;
1984 cpu->isar.id_pfr0 = 0x1031;
1985 cpu->isar.id_pfr1 = 0x11;
1986 cpu->isar.id_dfr0 = 0x000;
1987 cpu->id_afr0 = 0;
1988 cpu->isar.id_mmfr0 = 0x00100103;
1989 cpu->isar.id_mmfr1 = 0x20000000;
1990 cpu->isar.id_mmfr2 = 0x01230000;
1991 cpu->isar.id_mmfr3 = 0x00002111;
1992 cpu->isar.id_isar0 = 0x00101111;
1993 cpu->isar.id_isar1 = 0x13112111;
1994 cpu->isar.id_isar2 = 0x21232041;
1995 cpu->isar.id_isar3 = 0x11112131;
1996 cpu->isar.id_isar4 = 0x00111142;
1997 cpu->isar.dbgdidr = 0x35141000;
1998 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1999 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2000 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2001 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2002 }
2003
2004 #ifndef CONFIG_USER_ONLY
2005 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2006 {
2007 MachineState *ms = MACHINE(qdev_get_machine());
2008
2009 /* Linux wants the number of processors from here.
2010 * Might as well set the interrupt-controller bit too.
2011 */
2012 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2013 }
2014 #endif
2015
2016 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2017 #ifndef CONFIG_USER_ONLY
2018 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2019 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2020 .writefn = arm_cp_write_ignore, },
2021 #endif
2022 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2023 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2024 REGINFO_SENTINEL
2025 };
2026
2027 static void cortex_a7_initfn(Object *obj)
2028 {
2029 ARMCPU *cpu = ARM_CPU(obj);
2030
2031 cpu->dtb_compatible = "arm,cortex-a7";
2032 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2033 set_feature(&cpu->env, ARM_FEATURE_NEON);
2034 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2035 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2036 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2037 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2038 set_feature(&cpu->env, ARM_FEATURE_EL2);
2039 set_feature(&cpu->env, ARM_FEATURE_EL3);
2040 set_feature(&cpu->env, ARM_FEATURE_PMU);
2041 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2042 cpu->midr = 0x410fc075;
2043 cpu->reset_fpsid = 0x41023075;
2044 cpu->isar.mvfr0 = 0x10110222;
2045 cpu->isar.mvfr1 = 0x11111111;
2046 cpu->ctr = 0x84448003;
2047 cpu->reset_sctlr = 0x00c50078;
2048 cpu->isar.id_pfr0 = 0x00001131;
2049 cpu->isar.id_pfr1 = 0x00011011;
2050 cpu->isar.id_dfr0 = 0x02010555;
2051 cpu->id_afr0 = 0x00000000;
2052 cpu->isar.id_mmfr0 = 0x10101105;
2053 cpu->isar.id_mmfr1 = 0x40000000;
2054 cpu->isar.id_mmfr2 = 0x01240000;
2055 cpu->isar.id_mmfr3 = 0x02102211;
2056 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2057 * table 4-41 gives 0x02101110, which includes the arm div insns.
2058 */
2059 cpu->isar.id_isar0 = 0x02101110;
2060 cpu->isar.id_isar1 = 0x13112111;
2061 cpu->isar.id_isar2 = 0x21232041;
2062 cpu->isar.id_isar3 = 0x11112131;
2063 cpu->isar.id_isar4 = 0x10011142;
2064 cpu->isar.dbgdidr = 0x3515f005;
2065 cpu->clidr = 0x0a200023;
2066 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2067 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2068 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2069 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2070 }
2071
2072 static void cortex_a15_initfn(Object *obj)
2073 {
2074 ARMCPU *cpu = ARM_CPU(obj);
2075
2076 cpu->dtb_compatible = "arm,cortex-a15";
2077 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2078 set_feature(&cpu->env, ARM_FEATURE_NEON);
2079 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2080 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2081 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2082 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2083 set_feature(&cpu->env, ARM_FEATURE_EL2);
2084 set_feature(&cpu->env, ARM_FEATURE_EL3);
2085 set_feature(&cpu->env, ARM_FEATURE_PMU);
2086 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2087 cpu->midr = 0x412fc0f1;
2088 cpu->reset_fpsid = 0x410430f0;
2089 cpu->isar.mvfr0 = 0x10110222;
2090 cpu->isar.mvfr1 = 0x11111111;
2091 cpu->ctr = 0x8444c004;
2092 cpu->reset_sctlr = 0x00c50078;
2093 cpu->isar.id_pfr0 = 0x00001131;
2094 cpu->isar.id_pfr1 = 0x00011011;
2095 cpu->isar.id_dfr0 = 0x02010555;
2096 cpu->id_afr0 = 0x00000000;
2097 cpu->isar.id_mmfr0 = 0x10201105;
2098 cpu->isar.id_mmfr1 = 0x20000000;
2099 cpu->isar.id_mmfr2 = 0x01240000;
2100 cpu->isar.id_mmfr3 = 0x02102211;
2101 cpu->isar.id_isar0 = 0x02101110;
2102 cpu->isar.id_isar1 = 0x13112111;
2103 cpu->isar.id_isar2 = 0x21232041;
2104 cpu->isar.id_isar3 = 0x11112131;
2105 cpu->isar.id_isar4 = 0x10011142;
2106 cpu->isar.dbgdidr = 0x3515f021;
2107 cpu->clidr = 0x0a200023;
2108 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2109 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2110 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2111 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2112 }
2113
2114 #ifndef TARGET_AARCH64
2115 /*
2116 * -cpu max: a CPU with as many features enabled as our emulation supports.
2117 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2118 * this only needs to handle 32 bits, and need not care about KVM.
2119 */
2120 static void arm_max_initfn(Object *obj)
2121 {
2122 ARMCPU *cpu = ARM_CPU(obj);
2123
2124 cortex_a15_initfn(obj);
2125
2126 /* old-style VFP short-vector support */
2127 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2128
2129 #ifdef CONFIG_USER_ONLY
2130 /*
2131 * We don't set these in system emulation mode for the moment,
2132 * since we don't correctly set (all of) the ID registers to
2133 * advertise them.
2134 */
2135 set_feature(&cpu->env, ARM_FEATURE_V8);
2136 {
2137 uint32_t t;
2138
2139 t = cpu->isar.id_isar5;
2140 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2141 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2142 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2143 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2144 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2145 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2146 cpu->isar.id_isar5 = t;
2147
2148 t = cpu->isar.id_isar6;
2149 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2150 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2151 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2152 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2153 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2154 cpu->isar.id_isar6 = t;
2155
2156 t = cpu->isar.mvfr1;
2157 t = FIELD_DP32(t, MVFR1, FPHP, 3); /* v8.2-FP16 */
2158 t = FIELD_DP32(t, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
2159 cpu->isar.mvfr1 = t;
2160
2161 t = cpu->isar.mvfr2;
2162 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2163 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2164 cpu->isar.mvfr2 = t;
2165
2166 t = cpu->isar.id_mmfr3;
2167 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2168 cpu->isar.id_mmfr3 = t;
2169
2170 t = cpu->isar.id_mmfr4;
2171 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2172 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2173 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2174 t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2175 cpu->isar.id_mmfr4 = t;
2176 }
2177 #endif
2178 }
2179 #endif
2180
2181 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2182
2183 static const ARMCPUInfo arm_cpus[] = {
2184 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2185 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2186 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2187 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2188 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2189 #ifndef TARGET_AARCH64
2190 { .name = "max", .initfn = arm_max_initfn },
2191 #endif
2192 #ifdef CONFIG_USER_ONLY
2193 { .name = "any", .initfn = arm_max_initfn },
2194 #endif
2195 #endif
2196 };
2197
2198 static Property arm_cpu_properties[] = {
2199 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2200 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2201 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2202 mp_affinity, ARM64_AFFINITY_INVALID),
2203 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2204 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2205 DEFINE_PROP_END_OF_LIST()
2206 };
2207
2208 static gchar *arm_gdb_arch_name(CPUState *cs)
2209 {
2210 ARMCPU *cpu = ARM_CPU(cs);
2211 CPUARMState *env = &cpu->env;
2212
2213 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2214 return g_strdup("iwmmxt");
2215 }
2216 return g_strdup("arm");
2217 }
2218
2219 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2220 {
2221 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2222 CPUClass *cc = CPU_CLASS(acc);
2223 DeviceClass *dc = DEVICE_CLASS(oc);
2224
2225 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2226 &acc->parent_realize);
2227
2228 device_class_set_props(dc, arm_cpu_properties);
2229 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2230
2231 cc->class_by_name = arm_cpu_class_by_name;
2232 cc->has_work = arm_cpu_has_work;
2233 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2234 cc->dump_state = arm_cpu_dump_state;
2235 cc->set_pc = arm_cpu_set_pc;
2236 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2237 cc->gdb_read_register = arm_cpu_gdb_read_register;
2238 cc->gdb_write_register = arm_cpu_gdb_write_register;
2239 #ifndef CONFIG_USER_ONLY
2240 cc->do_interrupt = arm_cpu_do_interrupt;
2241 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2242 cc->asidx_from_attrs = arm_asidx_from_attrs;
2243 cc->vmsd = &vmstate_arm_cpu;
2244 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2245 cc->write_elf64_note = arm_cpu_write_elf64_note;
2246 cc->write_elf32_note = arm_cpu_write_elf32_note;
2247 #endif
2248 cc->gdb_num_core_regs = 26;
2249 cc->gdb_core_xml_file = "arm-core.xml";
2250 cc->gdb_arch_name = arm_gdb_arch_name;
2251 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2252 cc->gdb_stop_before_watchpoint = true;
2253 cc->disas_set_info = arm_disas_set_info;
2254 #ifdef CONFIG_TCG
2255 cc->tcg_initialize = arm_translate_init;
2256 cc->tlb_fill = arm_cpu_tlb_fill;
2257 cc->debug_excp_handler = arm_debug_excp_handler;
2258 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2259 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2260 #if !defined(CONFIG_USER_ONLY)
2261 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2262 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2263 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2264 #endif
2265 }
2266
2267 #ifdef CONFIG_KVM
2268 static void arm_host_initfn(Object *obj)
2269 {
2270 ARMCPU *cpu = ARM_CPU(obj);
2271
2272 kvm_arm_set_cpu_features_from_host(cpu);
2273 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2274 aarch64_add_sve_properties(obj);
2275 }
2276 arm_cpu_post_init(obj);
2277 }
2278
2279 static const TypeInfo host_arm_cpu_type_info = {
2280 .name = TYPE_ARM_HOST_CPU,
2281 .parent = TYPE_AARCH64_CPU,
2282 .instance_init = arm_host_initfn,
2283 };
2284
2285 #endif
2286
2287 static void arm_cpu_instance_init(Object *obj)
2288 {
2289 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2290
2291 acc->info->initfn(obj);
2292 arm_cpu_post_init(obj);
2293 }
2294
2295 static void cpu_register_class_init(ObjectClass *oc, void *data)
2296 {
2297 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2298
2299 acc->info = data;
2300 }
2301
2302 void arm_cpu_register(const ARMCPUInfo *info)
2303 {
2304 TypeInfo type_info = {
2305 .parent = TYPE_ARM_CPU,
2306 .instance_size = sizeof(ARMCPU),
2307 .instance_align = __alignof__(ARMCPU),
2308 .instance_init = arm_cpu_instance_init,
2309 .class_size = sizeof(ARMCPUClass),
2310 .class_init = info->class_init ?: cpu_register_class_init,
2311 .class_data = (void *)info,
2312 };
2313
2314 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2315 type_register(&type_info);
2316 g_free((void *)type_info.name);
2317 }
2318
2319 static const TypeInfo arm_cpu_type_info = {
2320 .name = TYPE_ARM_CPU,
2321 .parent = TYPE_CPU,
2322 .instance_size = sizeof(ARMCPU),
2323 .instance_align = __alignof__(ARMCPU),
2324 .instance_init = arm_cpu_initfn,
2325 .instance_finalize = arm_cpu_finalizefn,
2326 .abstract = true,
2327 .class_size = sizeof(ARMCPUClass),
2328 .class_init = arm_cpu_class_init,
2329 };
2330
2331 static const TypeInfo idau_interface_type_info = {
2332 .name = TYPE_IDAU_INTERFACE,
2333 .parent = TYPE_INTERFACE,
2334 .class_size = sizeof(IDAUInterfaceClass),
2335 };
2336
2337 static void arm_cpu_register_types(void)
2338 {
2339 const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2340
2341 type_register_static(&arm_cpu_type_info);
2342
2343 #ifdef CONFIG_KVM
2344 type_register_static(&host_arm_cpu_type_info);
2345 #endif
2346
2347 if (cpu_count) {
2348 size_t i;
2349
2350 type_register_static(&idau_interface_type_info);
2351 for (i = 0; i < cpu_count; ++i) {
2352 arm_cpu_register(&arm_cpus[i]);
2353 }
2354 }
2355 }
2356
2357 type_init(arm_cpu_register_types)