Merge remote-tracking branch 'remotes/ehabkost/tags/x86-and-machine-pull-request...
[qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45 ARMCPU *cpu = ARM_CPU(cs);
46 CPUARMState *env = &cpu->env;
47
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
54 }
55 }
56
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
61
62 /*
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
65 */
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
70 }
71 }
72
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75 ARMCPU *cpu = ARM_CPU(cs);
76
77 return (cpu->power_state != PSCI_OFF)
78 && cs->interrupt_request &
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
82 }
83
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
86 {
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88
89 entry->hook = hook;
90 entry->opaque = opaque;
91
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 void *opaque)
97 {
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99
100 entry->hook = hook;
101 entry->opaque = opaque;
102
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
111
112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113 return;
114 }
115
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
119 }
120
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
125 */
126 if (!ri->fieldoffset) {
127 return;
128 }
129
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134 }
135 }
136
137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
138 {
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
143 */
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
147
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
150 }
151
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
156 }
157
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160 CPUState *s = CPU(dev);
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163 CPUARMState *env = &cpu->env;
164
165 acc->parent_reset(dev);
166
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168
169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171
172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176
177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178 s->halted = cpu->start_powered_off;
179
180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 }
183
184 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185 /* 64 bit CPUs always start in 64 bit mode */
186 env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188 env->pstate = PSTATE_MODE_EL0t;
189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191 /* Enable all PAC keys. */
192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193 SCTLR_EnDA | SCTLR_EnDB);
194 /* and to the FP/Neon instructions */
195 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196 /* and to the SVE instructions */
197 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198 /* with reasonable vector length */
199 if (cpu_isar_feature(aa64_sve, cpu)) {
200 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
201 }
202 /*
203 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
204 * turning on both here will produce smaller code and otherwise
205 * make no difference to the user-level emulation.
206 */
207 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
208 #else
209 /* Reset into the highest available EL */
210 if (arm_feature(env, ARM_FEATURE_EL3)) {
211 env->pstate = PSTATE_MODE_EL3h;
212 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
213 env->pstate = PSTATE_MODE_EL2h;
214 } else {
215 env->pstate = PSTATE_MODE_EL1h;
216 }
217 env->pc = cpu->rvbar;
218 #endif
219 } else {
220 #if defined(CONFIG_USER_ONLY)
221 /* Userspace expects access to cp10 and cp11 for FP/Neon */
222 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
223 #endif
224 }
225
226 #if defined(CONFIG_USER_ONLY)
227 env->uncached_cpsr = ARM_CPU_MODE_USR;
228 /* For user mode we must enable access to coprocessors */
229 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231 env->cp15.c15_cpar = 3;
232 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
233 env->cp15.c15_cpar = 1;
234 }
235 #else
236
237 /*
238 * If the highest available EL is EL2, AArch32 will start in Hyp
239 * mode; otherwise it starts in SVC. Note that if we start in
240 * AArch64 then these values in the uncached_cpsr will be ignored.
241 */
242 if (arm_feature(env, ARM_FEATURE_EL2) &&
243 !arm_feature(env, ARM_FEATURE_EL3)) {
244 env->uncached_cpsr = ARM_CPU_MODE_HYP;
245 } else {
246 env->uncached_cpsr = ARM_CPU_MODE_SVC;
247 }
248 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
249
250 if (arm_feature(env, ARM_FEATURE_M)) {
251 uint32_t initial_msp; /* Loaded from 0x0 */
252 uint32_t initial_pc; /* Loaded from 0x4 */
253 uint8_t *rom;
254 uint32_t vecbase;
255
256 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
257 env->v7m.secure = true;
258 } else {
259 /* This bit resets to 0 if security is supported, but 1 if
260 * it is not. The bit is not present in v7M, but we set it
261 * here so we can avoid having to make checks on it conditional
262 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
263 */
264 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
265 /*
266 * Set NSACR to indicate "NS access permitted to everything";
267 * this avoids having to have all the tests of it being
268 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
269 * v8.1M the guest-visible value of NSACR in a CPU without the
270 * Security Extension is 0xcff.
271 */
272 env->v7m.nsacr = 0xcff;
273 }
274
275 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
276 * that it resets to 1, so QEMU always does that rather than making
277 * it dependent on CPU model. In v8M it is RES1.
278 */
279 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
280 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
281 if (arm_feature(env, ARM_FEATURE_V8)) {
282 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
283 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
284 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
285 }
286 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
287 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
288 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
289 }
290
291 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
292 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
293 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
294 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
295 }
296 /* Unlike A/R profile, M profile defines the reset LR value */
297 env->regs[14] = 0xffffffff;
298
299 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
300
301 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
302 vecbase = env->v7m.vecbase[env->v7m.secure];
303 rom = rom_ptr(vecbase, 8);
304 if (rom) {
305 /* Address zero is covered by ROM which hasn't yet been
306 * copied into physical memory.
307 */
308 initial_msp = ldl_p(rom);
309 initial_pc = ldl_p(rom + 4);
310 } else {
311 /* Address zero not covered by a ROM blob, or the ROM blob
312 * is in non-modifiable memory and this is a second reset after
313 * it got copied into memory. In the latter case, rom_ptr
314 * will return a NULL pointer and we should use ldl_phys instead.
315 */
316 initial_msp = ldl_phys(s->as, vecbase);
317 initial_pc = ldl_phys(s->as, vecbase + 4);
318 }
319
320 env->regs[13] = initial_msp & 0xFFFFFFFC;
321 env->regs[15] = initial_pc & ~1;
322 env->thumb = initial_pc & 1;
323 }
324
325 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
326 * executing as AArch32 then check if highvecs are enabled and
327 * adjust the PC accordingly.
328 */
329 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
330 env->regs[15] = 0xFFFF0000;
331 }
332
333 /* M profile requires that reset clears the exclusive monitor;
334 * A profile does not, but clearing it makes more sense than having it
335 * set with an exclusive access on address zero.
336 */
337 arm_clear_exclusive(env);
338
339 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
340 #endif
341
342 if (arm_feature(env, ARM_FEATURE_PMSA)) {
343 if (cpu->pmsav7_dregion > 0) {
344 if (arm_feature(env, ARM_FEATURE_V8)) {
345 memset(env->pmsav8.rbar[M_REG_NS], 0,
346 sizeof(*env->pmsav8.rbar[M_REG_NS])
347 * cpu->pmsav7_dregion);
348 memset(env->pmsav8.rlar[M_REG_NS], 0,
349 sizeof(*env->pmsav8.rlar[M_REG_NS])
350 * cpu->pmsav7_dregion);
351 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
352 memset(env->pmsav8.rbar[M_REG_S], 0,
353 sizeof(*env->pmsav8.rbar[M_REG_S])
354 * cpu->pmsav7_dregion);
355 memset(env->pmsav8.rlar[M_REG_S], 0,
356 sizeof(*env->pmsav8.rlar[M_REG_S])
357 * cpu->pmsav7_dregion);
358 }
359 } else if (arm_feature(env, ARM_FEATURE_V7)) {
360 memset(env->pmsav7.drbar, 0,
361 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
362 memset(env->pmsav7.drsr, 0,
363 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
364 memset(env->pmsav7.dracr, 0,
365 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
366 }
367 }
368 env->pmsav7.rnr[M_REG_NS] = 0;
369 env->pmsav7.rnr[M_REG_S] = 0;
370 env->pmsav8.mair0[M_REG_NS] = 0;
371 env->pmsav8.mair0[M_REG_S] = 0;
372 env->pmsav8.mair1[M_REG_NS] = 0;
373 env->pmsav8.mair1[M_REG_S] = 0;
374 }
375
376 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
377 if (cpu->sau_sregion > 0) {
378 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
379 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
380 }
381 env->sau.rnr = 0;
382 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
383 * the Cortex-M33 does.
384 */
385 env->sau.ctrl = 0;
386 }
387
388 set_flush_to_zero(1, &env->vfp.standard_fp_status);
389 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
390 set_default_nan_mode(1, &env->vfp.standard_fp_status);
391 set_float_detect_tininess(float_tininess_before_rounding,
392 &env->vfp.fp_status);
393 set_float_detect_tininess(float_tininess_before_rounding,
394 &env->vfp.standard_fp_status);
395 set_float_detect_tininess(float_tininess_before_rounding,
396 &env->vfp.fp_status_f16);
397 #ifndef CONFIG_USER_ONLY
398 if (kvm_enabled()) {
399 kvm_arm_reset_vcpu(cpu);
400 }
401 #endif
402
403 hw_breakpoint_update_all(cpu);
404 hw_watchpoint_update_all(cpu);
405 arm_rebuild_hflags(env);
406 }
407
408 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
409 unsigned int target_el,
410 unsigned int cur_el, bool secure,
411 uint64_t hcr_el2)
412 {
413 CPUARMState *env = cs->env_ptr;
414 bool pstate_unmasked;
415 bool unmasked = false;
416
417 /*
418 * Don't take exceptions if they target a lower EL.
419 * This check should catch any exceptions that would not be taken
420 * but left pending.
421 */
422 if (cur_el > target_el) {
423 return false;
424 }
425
426 switch (excp_idx) {
427 case EXCP_FIQ:
428 pstate_unmasked = !(env->daif & PSTATE_F);
429 break;
430
431 case EXCP_IRQ:
432 pstate_unmasked = !(env->daif & PSTATE_I);
433 break;
434
435 case EXCP_VFIQ:
436 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
437 /* VFIQs are only taken when hypervized and non-secure. */
438 return false;
439 }
440 return !(env->daif & PSTATE_F);
441 case EXCP_VIRQ:
442 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
443 /* VIRQs are only taken when hypervized and non-secure. */
444 return false;
445 }
446 return !(env->daif & PSTATE_I);
447 default:
448 g_assert_not_reached();
449 }
450
451 /*
452 * Use the target EL, current execution state and SCR/HCR settings to
453 * determine whether the corresponding CPSR bit is used to mask the
454 * interrupt.
455 */
456 if ((target_el > cur_el) && (target_el != 1)) {
457 /* Exceptions targeting a higher EL may not be maskable */
458 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
459 /*
460 * 64-bit masking rules are simple: exceptions to EL3
461 * can't be masked, and exceptions to EL2 can only be
462 * masked from Secure state. The HCR and SCR settings
463 * don't affect the masking logic, only the interrupt routing.
464 */
465 if (target_el == 3 || !secure) {
466 unmasked = true;
467 }
468 } else {
469 /*
470 * The old 32-bit-only environment has a more complicated
471 * masking setup. HCR and SCR bits not only affect interrupt
472 * routing but also change the behaviour of masking.
473 */
474 bool hcr, scr;
475
476 switch (excp_idx) {
477 case EXCP_FIQ:
478 /*
479 * If FIQs are routed to EL3 or EL2 then there are cases where
480 * we override the CPSR.F in determining if the exception is
481 * masked or not. If neither of these are set then we fall back
482 * to the CPSR.F setting otherwise we further assess the state
483 * below.
484 */
485 hcr = hcr_el2 & HCR_FMO;
486 scr = (env->cp15.scr_el3 & SCR_FIQ);
487
488 /*
489 * When EL3 is 32-bit, the SCR.FW bit controls whether the
490 * CPSR.F bit masks FIQ interrupts when taken in non-secure
491 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
492 * when non-secure but only when FIQs are only routed to EL3.
493 */
494 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
495 break;
496 case EXCP_IRQ:
497 /*
498 * When EL3 execution state is 32-bit, if HCR.IMO is set then
499 * we may override the CPSR.I masking when in non-secure state.
500 * The SCR.IRQ setting has already been taken into consideration
501 * when setting the target EL, so it does not have a further
502 * affect here.
503 */
504 hcr = hcr_el2 & HCR_IMO;
505 scr = false;
506 break;
507 default:
508 g_assert_not_reached();
509 }
510
511 if ((scr || hcr) && !secure) {
512 unmasked = true;
513 }
514 }
515 }
516
517 /*
518 * The PSTATE bits only mask the interrupt if we have not overriden the
519 * ability above.
520 */
521 return unmasked || pstate_unmasked;
522 }
523
524 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
525 {
526 CPUClass *cc = CPU_GET_CLASS(cs);
527 CPUARMState *env = cs->env_ptr;
528 uint32_t cur_el = arm_current_el(env);
529 bool secure = arm_is_secure(env);
530 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
531 uint32_t target_el;
532 uint32_t excp_idx;
533
534 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
535
536 if (interrupt_request & CPU_INTERRUPT_FIQ) {
537 excp_idx = EXCP_FIQ;
538 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
539 if (arm_excp_unmasked(cs, excp_idx, target_el,
540 cur_el, secure, hcr_el2)) {
541 goto found;
542 }
543 }
544 if (interrupt_request & CPU_INTERRUPT_HARD) {
545 excp_idx = EXCP_IRQ;
546 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
547 if (arm_excp_unmasked(cs, excp_idx, target_el,
548 cur_el, secure, hcr_el2)) {
549 goto found;
550 }
551 }
552 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
553 excp_idx = EXCP_VIRQ;
554 target_el = 1;
555 if (arm_excp_unmasked(cs, excp_idx, target_el,
556 cur_el, secure, hcr_el2)) {
557 goto found;
558 }
559 }
560 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
561 excp_idx = EXCP_VFIQ;
562 target_el = 1;
563 if (arm_excp_unmasked(cs, excp_idx, target_el,
564 cur_el, secure, hcr_el2)) {
565 goto found;
566 }
567 }
568 return false;
569
570 found:
571 cs->exception_index = excp_idx;
572 env->exception.target_el = target_el;
573 cc->do_interrupt(cs);
574 return true;
575 }
576
577 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
578 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
579 {
580 CPUClass *cc = CPU_GET_CLASS(cs);
581 ARMCPU *cpu = ARM_CPU(cs);
582 CPUARMState *env = &cpu->env;
583 bool ret = false;
584
585 /* ARMv7-M interrupt masking works differently than -A or -R.
586 * There is no FIQ/IRQ distinction. Instead of I and F bits
587 * masking FIQ and IRQ interrupts, an exception is taken only
588 * if it is higher priority than the current execution priority
589 * (which depends on state like BASEPRI, FAULTMASK and the
590 * currently active exception).
591 */
592 if (interrupt_request & CPU_INTERRUPT_HARD
593 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
594 cs->exception_index = EXCP_IRQ;
595 cc->do_interrupt(cs);
596 ret = true;
597 }
598 return ret;
599 }
600 #endif
601
602 void arm_cpu_update_virq(ARMCPU *cpu)
603 {
604 /*
605 * Update the interrupt level for VIRQ, which is the logical OR of
606 * the HCR_EL2.VI bit and the input line level from the GIC.
607 */
608 CPUARMState *env = &cpu->env;
609 CPUState *cs = CPU(cpu);
610
611 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
612 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
613
614 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
615 if (new_state) {
616 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
617 } else {
618 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
619 }
620 }
621 }
622
623 void arm_cpu_update_vfiq(ARMCPU *cpu)
624 {
625 /*
626 * Update the interrupt level for VFIQ, which is the logical OR of
627 * the HCR_EL2.VF bit and the input line level from the GIC.
628 */
629 CPUARMState *env = &cpu->env;
630 CPUState *cs = CPU(cpu);
631
632 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
633 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
634
635 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
636 if (new_state) {
637 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
638 } else {
639 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
640 }
641 }
642 }
643
644 #ifndef CONFIG_USER_ONLY
645 static void arm_cpu_set_irq(void *opaque, int irq, int level)
646 {
647 ARMCPU *cpu = opaque;
648 CPUARMState *env = &cpu->env;
649 CPUState *cs = CPU(cpu);
650 static const int mask[] = {
651 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
652 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
653 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
654 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
655 };
656
657 if (level) {
658 env->irq_line_state |= mask[irq];
659 } else {
660 env->irq_line_state &= ~mask[irq];
661 }
662
663 switch (irq) {
664 case ARM_CPU_VIRQ:
665 assert(arm_feature(env, ARM_FEATURE_EL2));
666 arm_cpu_update_virq(cpu);
667 break;
668 case ARM_CPU_VFIQ:
669 assert(arm_feature(env, ARM_FEATURE_EL2));
670 arm_cpu_update_vfiq(cpu);
671 break;
672 case ARM_CPU_IRQ:
673 case ARM_CPU_FIQ:
674 if (level) {
675 cpu_interrupt(cs, mask[irq]);
676 } else {
677 cpu_reset_interrupt(cs, mask[irq]);
678 }
679 break;
680 default:
681 g_assert_not_reached();
682 }
683 }
684
685 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
686 {
687 #ifdef CONFIG_KVM
688 ARMCPU *cpu = opaque;
689 CPUARMState *env = &cpu->env;
690 CPUState *cs = CPU(cpu);
691 uint32_t linestate_bit;
692 int irq_id;
693
694 switch (irq) {
695 case ARM_CPU_IRQ:
696 irq_id = KVM_ARM_IRQ_CPU_IRQ;
697 linestate_bit = CPU_INTERRUPT_HARD;
698 break;
699 case ARM_CPU_FIQ:
700 irq_id = KVM_ARM_IRQ_CPU_FIQ;
701 linestate_bit = CPU_INTERRUPT_FIQ;
702 break;
703 default:
704 g_assert_not_reached();
705 }
706
707 if (level) {
708 env->irq_line_state |= linestate_bit;
709 } else {
710 env->irq_line_state &= ~linestate_bit;
711 }
712 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
713 #endif
714 }
715
716 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
717 {
718 ARMCPU *cpu = ARM_CPU(cs);
719 CPUARMState *env = &cpu->env;
720
721 cpu_synchronize_state(cs);
722 return arm_cpu_data_is_big_endian(env);
723 }
724
725 #endif
726
727 static inline void set_feature(CPUARMState *env, int feature)
728 {
729 env->features |= 1ULL << feature;
730 }
731
732 static inline void unset_feature(CPUARMState *env, int feature)
733 {
734 env->features &= ~(1ULL << feature);
735 }
736
737 static int
738 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
739 {
740 return print_insn_arm(pc | 1, info);
741 }
742
743 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
744 {
745 ARMCPU *ac = ARM_CPU(cpu);
746 CPUARMState *env = &ac->env;
747 bool sctlr_b;
748
749 if (is_a64(env)) {
750 /* We might not be compiled with the A64 disassembler
751 * because it needs a C++ compiler. Leave print_insn
752 * unset in this case to use the caller default behaviour.
753 */
754 #if defined(CONFIG_ARM_A64_DIS)
755 info->print_insn = print_insn_arm_a64;
756 #endif
757 info->cap_arch = CS_ARCH_ARM64;
758 info->cap_insn_unit = 4;
759 info->cap_insn_split = 4;
760 } else {
761 int cap_mode;
762 if (env->thumb) {
763 info->print_insn = print_insn_thumb1;
764 info->cap_insn_unit = 2;
765 info->cap_insn_split = 4;
766 cap_mode = CS_MODE_THUMB;
767 } else {
768 info->print_insn = print_insn_arm;
769 info->cap_insn_unit = 4;
770 info->cap_insn_split = 4;
771 cap_mode = CS_MODE_ARM;
772 }
773 if (arm_feature(env, ARM_FEATURE_V8)) {
774 cap_mode |= CS_MODE_V8;
775 }
776 if (arm_feature(env, ARM_FEATURE_M)) {
777 cap_mode |= CS_MODE_MCLASS;
778 }
779 info->cap_arch = CS_ARCH_ARM;
780 info->cap_mode = cap_mode;
781 }
782
783 sctlr_b = arm_sctlr_b(env);
784 if (bswap_code(sctlr_b)) {
785 #ifdef TARGET_WORDS_BIGENDIAN
786 info->endian = BFD_ENDIAN_LITTLE;
787 #else
788 info->endian = BFD_ENDIAN_BIG;
789 #endif
790 }
791 info->flags &= ~INSN_ARM_BE32;
792 #ifndef CONFIG_USER_ONLY
793 if (sctlr_b) {
794 info->flags |= INSN_ARM_BE32;
795 }
796 #endif
797 }
798
799 #ifdef TARGET_AARCH64
800
801 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
802 {
803 ARMCPU *cpu = ARM_CPU(cs);
804 CPUARMState *env = &cpu->env;
805 uint32_t psr = pstate_read(env);
806 int i;
807 int el = arm_current_el(env);
808 const char *ns_status;
809
810 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
811 for (i = 0; i < 32; i++) {
812 if (i == 31) {
813 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
814 } else {
815 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
816 (i + 2) % 3 ? " " : "\n");
817 }
818 }
819
820 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
821 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
822 } else {
823 ns_status = "";
824 }
825 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
826 psr,
827 psr & PSTATE_N ? 'N' : '-',
828 psr & PSTATE_Z ? 'Z' : '-',
829 psr & PSTATE_C ? 'C' : '-',
830 psr & PSTATE_V ? 'V' : '-',
831 ns_status,
832 el,
833 psr & PSTATE_SP ? 'h' : 't');
834
835 if (cpu_isar_feature(aa64_bti, cpu)) {
836 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
837 }
838 if (!(flags & CPU_DUMP_FPU)) {
839 qemu_fprintf(f, "\n");
840 return;
841 }
842 if (fp_exception_el(env, el) != 0) {
843 qemu_fprintf(f, " FPU disabled\n");
844 return;
845 }
846 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
847 vfp_get_fpcr(env), vfp_get_fpsr(env));
848
849 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
850 int j, zcr_len = sve_zcr_len_for_el(env, el);
851
852 for (i = 0; i <= FFR_PRED_NUM; i++) {
853 bool eol;
854 if (i == FFR_PRED_NUM) {
855 qemu_fprintf(f, "FFR=");
856 /* It's last, so end the line. */
857 eol = true;
858 } else {
859 qemu_fprintf(f, "P%02d=", i);
860 switch (zcr_len) {
861 case 0:
862 eol = i % 8 == 7;
863 break;
864 case 1:
865 eol = i % 6 == 5;
866 break;
867 case 2:
868 case 3:
869 eol = i % 3 == 2;
870 break;
871 default:
872 /* More than one quadword per predicate. */
873 eol = true;
874 break;
875 }
876 }
877 for (j = zcr_len / 4; j >= 0; j--) {
878 int digits;
879 if (j * 4 + 4 <= zcr_len + 1) {
880 digits = 16;
881 } else {
882 digits = (zcr_len % 4 + 1) * 4;
883 }
884 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
885 env->vfp.pregs[i].p[j],
886 j ? ":" : eol ? "\n" : " ");
887 }
888 }
889
890 for (i = 0; i < 32; i++) {
891 if (zcr_len == 0) {
892 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
893 i, env->vfp.zregs[i].d[1],
894 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
895 } else if (zcr_len == 1) {
896 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
897 ":%016" PRIx64 ":%016" PRIx64 "\n",
898 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
899 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
900 } else {
901 for (j = zcr_len; j >= 0; j--) {
902 bool odd = (zcr_len - j) % 2 != 0;
903 if (j == zcr_len) {
904 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
905 } else if (!odd) {
906 if (j > 0) {
907 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
908 } else {
909 qemu_fprintf(f, " [%x]=", j);
910 }
911 }
912 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
913 env->vfp.zregs[i].d[j * 2 + 1],
914 env->vfp.zregs[i].d[j * 2],
915 odd || j == 0 ? "\n" : ":");
916 }
917 }
918 }
919 } else {
920 for (i = 0; i < 32; i++) {
921 uint64_t *q = aa64_vfp_qreg(env, i);
922 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
923 i, q[1], q[0], (i & 1 ? "\n" : " "));
924 }
925 }
926 }
927
928 #else
929
930 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
931 {
932 g_assert_not_reached();
933 }
934
935 #endif
936
937 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
938 {
939 ARMCPU *cpu = ARM_CPU(cs);
940 CPUARMState *env = &cpu->env;
941 int i;
942
943 if (is_a64(env)) {
944 aarch64_cpu_dump_state(cs, f, flags);
945 return;
946 }
947
948 for (i = 0; i < 16; i++) {
949 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
950 if ((i % 4) == 3) {
951 qemu_fprintf(f, "\n");
952 } else {
953 qemu_fprintf(f, " ");
954 }
955 }
956
957 if (arm_feature(env, ARM_FEATURE_M)) {
958 uint32_t xpsr = xpsr_read(env);
959 const char *mode;
960 const char *ns_status = "";
961
962 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
963 ns_status = env->v7m.secure ? "S " : "NS ";
964 }
965
966 if (xpsr & XPSR_EXCP) {
967 mode = "handler";
968 } else {
969 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
970 mode = "unpriv-thread";
971 } else {
972 mode = "priv-thread";
973 }
974 }
975
976 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
977 xpsr,
978 xpsr & XPSR_N ? 'N' : '-',
979 xpsr & XPSR_Z ? 'Z' : '-',
980 xpsr & XPSR_C ? 'C' : '-',
981 xpsr & XPSR_V ? 'V' : '-',
982 xpsr & XPSR_T ? 'T' : 'A',
983 ns_status,
984 mode);
985 } else {
986 uint32_t psr = cpsr_read(env);
987 const char *ns_status = "";
988
989 if (arm_feature(env, ARM_FEATURE_EL3) &&
990 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
991 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
992 }
993
994 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
995 psr,
996 psr & CPSR_N ? 'N' : '-',
997 psr & CPSR_Z ? 'Z' : '-',
998 psr & CPSR_C ? 'C' : '-',
999 psr & CPSR_V ? 'V' : '-',
1000 psr & CPSR_T ? 'T' : 'A',
1001 ns_status,
1002 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1003 }
1004
1005 if (flags & CPU_DUMP_FPU) {
1006 int numvfpregs = 0;
1007 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1008 numvfpregs = 32;
1009 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1010 numvfpregs = 16;
1011 }
1012 for (i = 0; i < numvfpregs; i++) {
1013 uint64_t v = *aa32_vfp_dreg(env, i);
1014 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1015 i * 2, (uint32_t)v,
1016 i * 2 + 1, (uint32_t)(v >> 32),
1017 i, v);
1018 }
1019 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1020 }
1021 }
1022
1023 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1024 {
1025 uint32_t Aff1 = idx / clustersz;
1026 uint32_t Aff0 = idx % clustersz;
1027 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1028 }
1029
1030 static void cpreg_hashtable_data_destroy(gpointer data)
1031 {
1032 /*
1033 * Destroy function for cpu->cp_regs hashtable data entries.
1034 * We must free the name string because it was g_strdup()ed in
1035 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1036 * from r->name because we know we definitely allocated it.
1037 */
1038 ARMCPRegInfo *r = data;
1039
1040 g_free((void *)r->name);
1041 g_free(r);
1042 }
1043
1044 static void arm_cpu_initfn(Object *obj)
1045 {
1046 ARMCPU *cpu = ARM_CPU(obj);
1047
1048 cpu_set_cpustate_pointers(cpu);
1049 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1050 g_free, cpreg_hashtable_data_destroy);
1051
1052 QLIST_INIT(&cpu->pre_el_change_hooks);
1053 QLIST_INIT(&cpu->el_change_hooks);
1054
1055 #ifndef CONFIG_USER_ONLY
1056 /* Our inbound IRQ and FIQ lines */
1057 if (kvm_enabled()) {
1058 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1059 * the same interface as non-KVM CPUs.
1060 */
1061 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1062 } else {
1063 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1064 }
1065
1066 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1067 ARRAY_SIZE(cpu->gt_timer_outputs));
1068
1069 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1070 "gicv3-maintenance-interrupt", 1);
1071 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1072 "pmu-interrupt", 1);
1073 #endif
1074
1075 /* DTB consumers generally don't in fact care what the 'compatible'
1076 * string is, so always provide some string and trust that a hypothetical
1077 * picky DTB consumer will also provide a helpful error message.
1078 */
1079 cpu->dtb_compatible = "qemu,unknown";
1080 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1081 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1082
1083 if (tcg_enabled()) {
1084 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1085 }
1086 }
1087
1088 static Property arm_cpu_gt_cntfrq_property =
1089 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1090 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1091
1092 static Property arm_cpu_reset_cbar_property =
1093 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1094
1095 static Property arm_cpu_reset_hivecs_property =
1096 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1097
1098 static Property arm_cpu_rvbar_property =
1099 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1100
1101 #ifndef CONFIG_USER_ONLY
1102 static Property arm_cpu_has_el2_property =
1103 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1104
1105 static Property arm_cpu_has_el3_property =
1106 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1107 #endif
1108
1109 static Property arm_cpu_cfgend_property =
1110 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1111
1112 static Property arm_cpu_has_vfp_property =
1113 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1114
1115 static Property arm_cpu_has_neon_property =
1116 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1117
1118 static Property arm_cpu_has_dsp_property =
1119 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1120
1121 static Property arm_cpu_has_mpu_property =
1122 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1123
1124 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1125 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1126 * the right value for that particular CPU type, and we don't want
1127 * to override that with an incorrect constant value.
1128 */
1129 static Property arm_cpu_pmsav7_dregion_property =
1130 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1131 pmsav7_dregion,
1132 qdev_prop_uint32, uint32_t);
1133
1134 static bool arm_get_pmu(Object *obj, Error **errp)
1135 {
1136 ARMCPU *cpu = ARM_CPU(obj);
1137
1138 return cpu->has_pmu;
1139 }
1140
1141 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1142 {
1143 ARMCPU *cpu = ARM_CPU(obj);
1144
1145 if (value) {
1146 if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1147 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1148 return;
1149 }
1150 set_feature(&cpu->env, ARM_FEATURE_PMU);
1151 } else {
1152 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1153 }
1154 cpu->has_pmu = value;
1155 }
1156
1157 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1158 {
1159 /*
1160 * The exact approach to calculating guest ticks is:
1161 *
1162 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1163 * NANOSECONDS_PER_SECOND);
1164 *
1165 * We don't do that. Rather we intentionally use integer division
1166 * truncation below and in the caller for the conversion of host monotonic
1167 * time to guest ticks to provide the exact inverse for the semantics of
1168 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1169 * it loses precision when representing frequencies where
1170 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1171 * provide an exact inverse leads to scheduling timers with negative
1172 * periods, which in turn leads to sticky behaviour in the guest.
1173 *
1174 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1175 * cannot become zero.
1176 */
1177 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1178 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1179 }
1180
1181 void arm_cpu_post_init(Object *obj)
1182 {
1183 ARMCPU *cpu = ARM_CPU(obj);
1184
1185 /* M profile implies PMSA. We have to do this here rather than
1186 * in realize with the other feature-implication checks because
1187 * we look at the PMSA bit to see if we should add some properties.
1188 */
1189 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1190 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1191 }
1192
1193 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1194 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1195 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1196 }
1197
1198 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1199 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1200 }
1201
1202 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1203 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1204 }
1205
1206 #ifndef CONFIG_USER_ONLY
1207 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1208 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1209 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1210 */
1211 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1212
1213 object_property_add_link(obj, "secure-memory",
1214 TYPE_MEMORY_REGION,
1215 (Object **)&cpu->secure_memory,
1216 qdev_prop_allow_set_link_before_realize,
1217 OBJ_PROP_LINK_STRONG,
1218 &error_abort);
1219 }
1220
1221 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1222 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1223 }
1224 #endif
1225
1226 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1227 cpu->has_pmu = true;
1228 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1229 &error_abort);
1230 }
1231
1232 /*
1233 * Allow user to turn off VFP and Neon support, but only for TCG --
1234 * KVM does not currently allow us to lie to the guest about its
1235 * ID/feature registers, so the guest always sees what the host has.
1236 */
1237 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1238 ? cpu_isar_feature(aa64_fp_simd, cpu)
1239 : cpu_isar_feature(aa32_vfp, cpu)) {
1240 cpu->has_vfp = true;
1241 if (!kvm_enabled()) {
1242 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1243 }
1244 }
1245
1246 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1247 cpu->has_neon = true;
1248 if (!kvm_enabled()) {
1249 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1250 }
1251 }
1252
1253 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1254 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1255 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1256 }
1257
1258 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1259 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1260 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1261 qdev_property_add_static(DEVICE(obj),
1262 &arm_cpu_pmsav7_dregion_property);
1263 }
1264 }
1265
1266 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1267 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1268 qdev_prop_allow_set_link_before_realize,
1269 OBJ_PROP_LINK_STRONG,
1270 &error_abort);
1271 /*
1272 * M profile: initial value of the Secure VTOR. We can't just use
1273 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1274 * the property to be set after realize.
1275 */
1276 object_property_add_uint32_ptr(obj, "init-svtor",
1277 &cpu->init_svtor,
1278 OBJ_PROP_FLAG_READWRITE, &error_abort);
1279 }
1280
1281 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1282
1283 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1284 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1285 }
1286 }
1287
1288 static void arm_cpu_finalizefn(Object *obj)
1289 {
1290 ARMCPU *cpu = ARM_CPU(obj);
1291 ARMELChangeHook *hook, *next;
1292
1293 g_hash_table_destroy(cpu->cp_regs);
1294
1295 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1296 QLIST_REMOVE(hook, node);
1297 g_free(hook);
1298 }
1299 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1300 QLIST_REMOVE(hook, node);
1301 g_free(hook);
1302 }
1303 #ifndef CONFIG_USER_ONLY
1304 if (cpu->pmu_timer) {
1305 timer_del(cpu->pmu_timer);
1306 timer_deinit(cpu->pmu_timer);
1307 timer_free(cpu->pmu_timer);
1308 }
1309 #endif
1310 }
1311
1312 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1313 {
1314 Error *local_err = NULL;
1315
1316 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1317 arm_cpu_sve_finalize(cpu, &local_err);
1318 if (local_err != NULL) {
1319 error_propagate(errp, local_err);
1320 return;
1321 }
1322 }
1323 }
1324
1325 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1326 {
1327 CPUState *cs = CPU(dev);
1328 ARMCPU *cpu = ARM_CPU(dev);
1329 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1330 CPUARMState *env = &cpu->env;
1331 int pagebits;
1332 Error *local_err = NULL;
1333 bool no_aa32 = false;
1334
1335 /* If we needed to query the host kernel for the CPU features
1336 * then it's possible that might have failed in the initfn, but
1337 * this is the first point where we can report it.
1338 */
1339 if (cpu->host_cpu_probe_failed) {
1340 if (!kvm_enabled()) {
1341 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1342 } else {
1343 error_setg(errp, "Failed to retrieve host CPU features");
1344 }
1345 return;
1346 }
1347
1348 #ifndef CONFIG_USER_ONLY
1349 /* The NVIC and M-profile CPU are two halves of a single piece of
1350 * hardware; trying to use one without the other is a command line
1351 * error and will result in segfaults if not caught here.
1352 */
1353 if (arm_feature(env, ARM_FEATURE_M)) {
1354 if (!env->nvic) {
1355 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1356 return;
1357 }
1358 } else {
1359 if (env->nvic) {
1360 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1361 return;
1362 }
1363 }
1364
1365 {
1366 uint64_t scale;
1367
1368 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1369 if (!cpu->gt_cntfrq_hz) {
1370 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1371 cpu->gt_cntfrq_hz);
1372 return;
1373 }
1374 scale = gt_cntfrq_period_ns(cpu);
1375 } else {
1376 scale = GTIMER_SCALE;
1377 }
1378
1379 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1380 arm_gt_ptimer_cb, cpu);
1381 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1382 arm_gt_vtimer_cb, cpu);
1383 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1384 arm_gt_htimer_cb, cpu);
1385 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1386 arm_gt_stimer_cb, cpu);
1387 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1388 arm_gt_hvtimer_cb, cpu);
1389 }
1390 #endif
1391
1392 cpu_exec_realizefn(cs, &local_err);
1393 if (local_err != NULL) {
1394 error_propagate(errp, local_err);
1395 return;
1396 }
1397
1398 arm_cpu_finalize_features(cpu, &local_err);
1399 if (local_err != NULL) {
1400 error_propagate(errp, local_err);
1401 return;
1402 }
1403
1404 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1405 cpu->has_vfp != cpu->has_neon) {
1406 /*
1407 * This is an architectural requirement for AArch64; AArch32 is
1408 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1409 */
1410 error_setg(errp,
1411 "AArch64 CPUs must have both VFP and Neon or neither");
1412 return;
1413 }
1414
1415 if (!cpu->has_vfp) {
1416 uint64_t t;
1417 uint32_t u;
1418
1419 t = cpu->isar.id_aa64isar1;
1420 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1421 cpu->isar.id_aa64isar1 = t;
1422
1423 t = cpu->isar.id_aa64pfr0;
1424 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1425 cpu->isar.id_aa64pfr0 = t;
1426
1427 u = cpu->isar.id_isar6;
1428 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1429 cpu->isar.id_isar6 = u;
1430
1431 u = cpu->isar.mvfr0;
1432 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1433 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1434 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1435 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1436 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1437 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1438 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1439 cpu->isar.mvfr0 = u;
1440
1441 u = cpu->isar.mvfr1;
1442 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1443 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1444 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1445 cpu->isar.mvfr1 = u;
1446
1447 u = cpu->isar.mvfr2;
1448 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1449 cpu->isar.mvfr2 = u;
1450 }
1451
1452 if (!cpu->has_neon) {
1453 uint64_t t;
1454 uint32_t u;
1455
1456 unset_feature(env, ARM_FEATURE_NEON);
1457
1458 t = cpu->isar.id_aa64isar0;
1459 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1460 cpu->isar.id_aa64isar0 = t;
1461
1462 t = cpu->isar.id_aa64isar1;
1463 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1464 cpu->isar.id_aa64isar1 = t;
1465
1466 t = cpu->isar.id_aa64pfr0;
1467 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1468 cpu->isar.id_aa64pfr0 = t;
1469
1470 u = cpu->isar.id_isar5;
1471 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1472 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1473 cpu->isar.id_isar5 = u;
1474
1475 u = cpu->isar.id_isar6;
1476 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1477 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1478 cpu->isar.id_isar6 = u;
1479
1480 u = cpu->isar.mvfr1;
1481 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1482 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1483 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1484 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1485 cpu->isar.mvfr1 = u;
1486
1487 u = cpu->isar.mvfr2;
1488 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1489 cpu->isar.mvfr2 = u;
1490 }
1491
1492 if (!cpu->has_neon && !cpu->has_vfp) {
1493 uint64_t t;
1494 uint32_t u;
1495
1496 t = cpu->isar.id_aa64isar0;
1497 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1498 cpu->isar.id_aa64isar0 = t;
1499
1500 t = cpu->isar.id_aa64isar1;
1501 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1502 cpu->isar.id_aa64isar1 = t;
1503
1504 u = cpu->isar.mvfr0;
1505 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1506 cpu->isar.mvfr0 = u;
1507
1508 /* Despite the name, this field covers both VFP and Neon */
1509 u = cpu->isar.mvfr1;
1510 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1511 cpu->isar.mvfr1 = u;
1512 }
1513
1514 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1515 uint32_t u;
1516
1517 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1518
1519 u = cpu->isar.id_isar1;
1520 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1521 cpu->isar.id_isar1 = u;
1522
1523 u = cpu->isar.id_isar2;
1524 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1525 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1526 cpu->isar.id_isar2 = u;
1527
1528 u = cpu->isar.id_isar3;
1529 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1530 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1531 cpu->isar.id_isar3 = u;
1532 }
1533
1534 /* Some features automatically imply others: */
1535 if (arm_feature(env, ARM_FEATURE_V8)) {
1536 if (arm_feature(env, ARM_FEATURE_M)) {
1537 set_feature(env, ARM_FEATURE_V7);
1538 } else {
1539 set_feature(env, ARM_FEATURE_V7VE);
1540 }
1541 }
1542
1543 /*
1544 * There exist AArch64 cpus without AArch32 support. When KVM
1545 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1546 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1547 * As a general principle, we also do not make ID register
1548 * consistency checks anywhere unless using TCG, because only
1549 * for TCG would a consistency-check failure be a QEMU bug.
1550 */
1551 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1552 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1553 }
1554
1555 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1556 /* v7 Virtualization Extensions. In real hardware this implies
1557 * EL2 and also the presence of the Security Extensions.
1558 * For QEMU, for backwards-compatibility we implement some
1559 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1560 * include the various other features that V7VE implies.
1561 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1562 * Security Extensions is ARM_FEATURE_EL3.
1563 */
1564 assert(!tcg_enabled() || no_aa32 ||
1565 cpu_isar_feature(aa32_arm_div, cpu));
1566 set_feature(env, ARM_FEATURE_LPAE);
1567 set_feature(env, ARM_FEATURE_V7);
1568 }
1569 if (arm_feature(env, ARM_FEATURE_V7)) {
1570 set_feature(env, ARM_FEATURE_VAPA);
1571 set_feature(env, ARM_FEATURE_THUMB2);
1572 set_feature(env, ARM_FEATURE_MPIDR);
1573 if (!arm_feature(env, ARM_FEATURE_M)) {
1574 set_feature(env, ARM_FEATURE_V6K);
1575 } else {
1576 set_feature(env, ARM_FEATURE_V6);
1577 }
1578
1579 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1580 * non-EL3 configs. This is needed by some legacy boards.
1581 */
1582 set_feature(env, ARM_FEATURE_VBAR);
1583 }
1584 if (arm_feature(env, ARM_FEATURE_V6K)) {
1585 set_feature(env, ARM_FEATURE_V6);
1586 set_feature(env, ARM_FEATURE_MVFR);
1587 }
1588 if (arm_feature(env, ARM_FEATURE_V6)) {
1589 set_feature(env, ARM_FEATURE_V5);
1590 if (!arm_feature(env, ARM_FEATURE_M)) {
1591 assert(!tcg_enabled() || no_aa32 ||
1592 cpu_isar_feature(aa32_jazelle, cpu));
1593 set_feature(env, ARM_FEATURE_AUXCR);
1594 }
1595 }
1596 if (arm_feature(env, ARM_FEATURE_V5)) {
1597 set_feature(env, ARM_FEATURE_V4T);
1598 }
1599 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1600 set_feature(env, ARM_FEATURE_V7MP);
1601 set_feature(env, ARM_FEATURE_PXN);
1602 }
1603 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1604 set_feature(env, ARM_FEATURE_CBAR);
1605 }
1606 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1607 !arm_feature(env, ARM_FEATURE_M)) {
1608 set_feature(env, ARM_FEATURE_THUMB_DSP);
1609 }
1610
1611 /*
1612 * We rely on no XScale CPU having VFP so we can use the same bits in the
1613 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1614 */
1615 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1616 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1617 !arm_feature(env, ARM_FEATURE_XSCALE));
1618
1619 if (arm_feature(env, ARM_FEATURE_V7) &&
1620 !arm_feature(env, ARM_FEATURE_M) &&
1621 !arm_feature(env, ARM_FEATURE_PMSA)) {
1622 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1623 * can use 4K pages.
1624 */
1625 pagebits = 12;
1626 } else {
1627 /* For CPUs which might have tiny 1K pages, or which have an
1628 * MPU and might have small region sizes, stick with 1K pages.
1629 */
1630 pagebits = 10;
1631 }
1632 if (!set_preferred_target_page_bits(pagebits)) {
1633 /* This can only ever happen for hotplugging a CPU, or if
1634 * the board code incorrectly creates a CPU which it has
1635 * promised via minimum_page_size that it will not.
1636 */
1637 error_setg(errp, "This CPU requires a smaller page size than the "
1638 "system is using");
1639 return;
1640 }
1641
1642 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1643 * We don't support setting cluster ID ([16..23]) (known as Aff2
1644 * in later ARM ARM versions), or any of the higher affinity level fields,
1645 * so these bits always RAZ.
1646 */
1647 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1648 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1649 ARM_DEFAULT_CPUS_PER_CLUSTER);
1650 }
1651
1652 if (cpu->reset_hivecs) {
1653 cpu->reset_sctlr |= (1 << 13);
1654 }
1655
1656 if (cpu->cfgend) {
1657 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1658 cpu->reset_sctlr |= SCTLR_EE;
1659 } else {
1660 cpu->reset_sctlr |= SCTLR_B;
1661 }
1662 }
1663
1664 if (!cpu->has_el3) {
1665 /* If the has_el3 CPU property is disabled then we need to disable the
1666 * feature.
1667 */
1668 unset_feature(env, ARM_FEATURE_EL3);
1669
1670 /* Disable the security extension feature bits in the processor feature
1671 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1672 */
1673 cpu->id_pfr1 &= ~0xf0;
1674 cpu->isar.id_aa64pfr0 &= ~0xf000;
1675 }
1676
1677 if (!cpu->has_el2) {
1678 unset_feature(env, ARM_FEATURE_EL2);
1679 }
1680
1681 if (!cpu->has_pmu) {
1682 unset_feature(env, ARM_FEATURE_PMU);
1683 }
1684 if (arm_feature(env, ARM_FEATURE_PMU)) {
1685 pmu_init(cpu);
1686
1687 if (!kvm_enabled()) {
1688 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1689 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1690 }
1691
1692 #ifndef CONFIG_USER_ONLY
1693 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1694 cpu);
1695 #endif
1696 } else {
1697 cpu->isar.id_aa64dfr0 =
1698 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1699 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1700 cpu->pmceid0 = 0;
1701 cpu->pmceid1 = 0;
1702 }
1703
1704 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1705 /* Disable the hypervisor feature bits in the processor feature
1706 * registers if we don't have EL2. These are id_pfr1[15:12] and
1707 * id_aa64pfr0_el1[11:8].
1708 */
1709 cpu->isar.id_aa64pfr0 &= ~0xf00;
1710 cpu->id_pfr1 &= ~0xf000;
1711 }
1712
1713 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1714 * to false or by setting pmsav7-dregion to 0.
1715 */
1716 if (!cpu->has_mpu) {
1717 cpu->pmsav7_dregion = 0;
1718 }
1719 if (cpu->pmsav7_dregion == 0) {
1720 cpu->has_mpu = false;
1721 }
1722
1723 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1724 arm_feature(env, ARM_FEATURE_V7)) {
1725 uint32_t nr = cpu->pmsav7_dregion;
1726
1727 if (nr > 0xff) {
1728 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1729 return;
1730 }
1731
1732 if (nr) {
1733 if (arm_feature(env, ARM_FEATURE_V8)) {
1734 /* PMSAv8 */
1735 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1736 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1737 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1738 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1739 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1740 }
1741 } else {
1742 env->pmsav7.drbar = g_new0(uint32_t, nr);
1743 env->pmsav7.drsr = g_new0(uint32_t, nr);
1744 env->pmsav7.dracr = g_new0(uint32_t, nr);
1745 }
1746 }
1747 }
1748
1749 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1750 uint32_t nr = cpu->sau_sregion;
1751
1752 if (nr > 0xff) {
1753 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1754 return;
1755 }
1756
1757 if (nr) {
1758 env->sau.rbar = g_new0(uint32_t, nr);
1759 env->sau.rlar = g_new0(uint32_t, nr);
1760 }
1761 }
1762
1763 if (arm_feature(env, ARM_FEATURE_EL3)) {
1764 set_feature(env, ARM_FEATURE_VBAR);
1765 }
1766
1767 register_cp_regs_for_features(cpu);
1768 arm_cpu_register_gdb_regs_for_features(cpu);
1769
1770 init_cpreg_list(cpu);
1771
1772 #ifndef CONFIG_USER_ONLY
1773 MachineState *ms = MACHINE(qdev_get_machine());
1774 unsigned int smp_cpus = ms->smp.cpus;
1775
1776 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1777 cs->num_ases = 2;
1778
1779 if (!cpu->secure_memory) {
1780 cpu->secure_memory = cs->memory;
1781 }
1782 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1783 cpu->secure_memory);
1784 } else {
1785 cs->num_ases = 1;
1786 }
1787 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1788
1789 /* No core_count specified, default to smp_cpus. */
1790 if (cpu->core_count == -1) {
1791 cpu->core_count = smp_cpus;
1792 }
1793 #endif
1794
1795 qemu_init_vcpu(cs);
1796 cpu_reset(cs);
1797
1798 acc->parent_realize(dev, errp);
1799 }
1800
1801 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1802 {
1803 ObjectClass *oc;
1804 char *typename;
1805 char **cpuname;
1806 const char *cpunamestr;
1807
1808 cpuname = g_strsplit(cpu_model, ",", 1);
1809 cpunamestr = cpuname[0];
1810 #ifdef CONFIG_USER_ONLY
1811 /* For backwards compatibility usermode emulation allows "-cpu any",
1812 * which has the same semantics as "-cpu max".
1813 */
1814 if (!strcmp(cpunamestr, "any")) {
1815 cpunamestr = "max";
1816 }
1817 #endif
1818 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1819 oc = object_class_by_name(typename);
1820 g_strfreev(cpuname);
1821 g_free(typename);
1822 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1823 object_class_is_abstract(oc)) {
1824 return NULL;
1825 }
1826 return oc;
1827 }
1828
1829 /* CPU models. These are not needed for the AArch64 linux-user build. */
1830 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1831
1832 static void arm926_initfn(Object *obj)
1833 {
1834 ARMCPU *cpu = ARM_CPU(obj);
1835
1836 cpu->dtb_compatible = "arm,arm926";
1837 set_feature(&cpu->env, ARM_FEATURE_V5);
1838 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1839 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1840 cpu->midr = 0x41069265;
1841 cpu->reset_fpsid = 0x41011090;
1842 cpu->ctr = 0x1dd20d2;
1843 cpu->reset_sctlr = 0x00090078;
1844
1845 /*
1846 * ARMv5 does not have the ID_ISAR registers, but we can still
1847 * set the field to indicate Jazelle support within QEMU.
1848 */
1849 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1850 /*
1851 * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1852 * support even though ARMv5 doesn't have this register.
1853 */
1854 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1855 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1856 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1857 }
1858
1859 static void arm946_initfn(Object *obj)
1860 {
1861 ARMCPU *cpu = ARM_CPU(obj);
1862
1863 cpu->dtb_compatible = "arm,arm946";
1864 set_feature(&cpu->env, ARM_FEATURE_V5);
1865 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1866 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1867 cpu->midr = 0x41059461;
1868 cpu->ctr = 0x0f004006;
1869 cpu->reset_sctlr = 0x00000078;
1870 }
1871
1872 static void arm1026_initfn(Object *obj)
1873 {
1874 ARMCPU *cpu = ARM_CPU(obj);
1875
1876 cpu->dtb_compatible = "arm,arm1026";
1877 set_feature(&cpu->env, ARM_FEATURE_V5);
1878 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1879 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1880 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1881 cpu->midr = 0x4106a262;
1882 cpu->reset_fpsid = 0x410110a0;
1883 cpu->ctr = 0x1dd20d2;
1884 cpu->reset_sctlr = 0x00090078;
1885 cpu->reset_auxcr = 1;
1886
1887 /*
1888 * ARMv5 does not have the ID_ISAR registers, but we can still
1889 * set the field to indicate Jazelle support within QEMU.
1890 */
1891 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1892 /*
1893 * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1894 * support even though ARMv5 doesn't have this register.
1895 */
1896 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1897 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1898 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1899
1900 {
1901 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1902 ARMCPRegInfo ifar = {
1903 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1904 .access = PL1_RW,
1905 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1906 .resetvalue = 0
1907 };
1908 define_one_arm_cp_reg(cpu, &ifar);
1909 }
1910 }
1911
1912 static void arm1136_r2_initfn(Object *obj)
1913 {
1914 ARMCPU *cpu = ARM_CPU(obj);
1915 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1916 * older core than plain "arm1136". In particular this does not
1917 * have the v6K features.
1918 * These ID register values are correct for 1136 but may be wrong
1919 * for 1136_r2 (in particular r0p2 does not actually implement most
1920 * of the ID registers).
1921 */
1922
1923 cpu->dtb_compatible = "arm,arm1136";
1924 set_feature(&cpu->env, ARM_FEATURE_V6);
1925 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1926 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1927 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1928 cpu->midr = 0x4107b362;
1929 cpu->reset_fpsid = 0x410120b4;
1930 cpu->isar.mvfr0 = 0x11111111;
1931 cpu->isar.mvfr1 = 0x00000000;
1932 cpu->ctr = 0x1dd20d2;
1933 cpu->reset_sctlr = 0x00050078;
1934 cpu->id_pfr0 = 0x111;
1935 cpu->id_pfr1 = 0x1;
1936 cpu->isar.id_dfr0 = 0x2;
1937 cpu->id_afr0 = 0x3;
1938 cpu->isar.id_mmfr0 = 0x01130003;
1939 cpu->isar.id_mmfr1 = 0x10030302;
1940 cpu->isar.id_mmfr2 = 0x01222110;
1941 cpu->isar.id_isar0 = 0x00140011;
1942 cpu->isar.id_isar1 = 0x12002111;
1943 cpu->isar.id_isar2 = 0x11231111;
1944 cpu->isar.id_isar3 = 0x01102131;
1945 cpu->isar.id_isar4 = 0x141;
1946 cpu->reset_auxcr = 7;
1947 }
1948
1949 static void arm1136_initfn(Object *obj)
1950 {
1951 ARMCPU *cpu = ARM_CPU(obj);
1952
1953 cpu->dtb_compatible = "arm,arm1136";
1954 set_feature(&cpu->env, ARM_FEATURE_V6K);
1955 set_feature(&cpu->env, ARM_FEATURE_V6);
1956 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1957 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1958 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1959 cpu->midr = 0x4117b363;
1960 cpu->reset_fpsid = 0x410120b4;
1961 cpu->isar.mvfr0 = 0x11111111;
1962 cpu->isar.mvfr1 = 0x00000000;
1963 cpu->ctr = 0x1dd20d2;
1964 cpu->reset_sctlr = 0x00050078;
1965 cpu->id_pfr0 = 0x111;
1966 cpu->id_pfr1 = 0x1;
1967 cpu->isar.id_dfr0 = 0x2;
1968 cpu->id_afr0 = 0x3;
1969 cpu->isar.id_mmfr0 = 0x01130003;
1970 cpu->isar.id_mmfr1 = 0x10030302;
1971 cpu->isar.id_mmfr2 = 0x01222110;
1972 cpu->isar.id_isar0 = 0x00140011;
1973 cpu->isar.id_isar1 = 0x12002111;
1974 cpu->isar.id_isar2 = 0x11231111;
1975 cpu->isar.id_isar3 = 0x01102131;
1976 cpu->isar.id_isar4 = 0x141;
1977 cpu->reset_auxcr = 7;
1978 }
1979
1980 static void arm1176_initfn(Object *obj)
1981 {
1982 ARMCPU *cpu = ARM_CPU(obj);
1983
1984 cpu->dtb_compatible = "arm,arm1176";
1985 set_feature(&cpu->env, ARM_FEATURE_V6K);
1986 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1987 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1988 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1989 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1990 set_feature(&cpu->env, ARM_FEATURE_EL3);
1991 cpu->midr = 0x410fb767;
1992 cpu->reset_fpsid = 0x410120b5;
1993 cpu->isar.mvfr0 = 0x11111111;
1994 cpu->isar.mvfr1 = 0x00000000;
1995 cpu->ctr = 0x1dd20d2;
1996 cpu->reset_sctlr = 0x00050078;
1997 cpu->id_pfr0 = 0x111;
1998 cpu->id_pfr1 = 0x11;
1999 cpu->isar.id_dfr0 = 0x33;
2000 cpu->id_afr0 = 0;
2001 cpu->isar.id_mmfr0 = 0x01130003;
2002 cpu->isar.id_mmfr1 = 0x10030302;
2003 cpu->isar.id_mmfr2 = 0x01222100;
2004 cpu->isar.id_isar0 = 0x0140011;
2005 cpu->isar.id_isar1 = 0x12002111;
2006 cpu->isar.id_isar2 = 0x11231121;
2007 cpu->isar.id_isar3 = 0x01102131;
2008 cpu->isar.id_isar4 = 0x01141;
2009 cpu->reset_auxcr = 7;
2010 }
2011
2012 static void arm11mpcore_initfn(Object *obj)
2013 {
2014 ARMCPU *cpu = ARM_CPU(obj);
2015
2016 cpu->dtb_compatible = "arm,arm11mpcore";
2017 set_feature(&cpu->env, ARM_FEATURE_V6K);
2018 set_feature(&cpu->env, ARM_FEATURE_VAPA);
2019 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
2020 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2021 cpu->midr = 0x410fb022;
2022 cpu->reset_fpsid = 0x410120b4;
2023 cpu->isar.mvfr0 = 0x11111111;
2024 cpu->isar.mvfr1 = 0x00000000;
2025 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
2026 cpu->id_pfr0 = 0x111;
2027 cpu->id_pfr1 = 0x1;
2028 cpu->isar.id_dfr0 = 0;
2029 cpu->id_afr0 = 0x2;
2030 cpu->isar.id_mmfr0 = 0x01100103;
2031 cpu->isar.id_mmfr1 = 0x10020302;
2032 cpu->isar.id_mmfr2 = 0x01222000;
2033 cpu->isar.id_isar0 = 0x00100011;
2034 cpu->isar.id_isar1 = 0x12002111;
2035 cpu->isar.id_isar2 = 0x11221011;
2036 cpu->isar.id_isar3 = 0x01102131;
2037 cpu->isar.id_isar4 = 0x141;
2038 cpu->reset_auxcr = 1;
2039 }
2040
2041 static void cortex_m0_initfn(Object *obj)
2042 {
2043 ARMCPU *cpu = ARM_CPU(obj);
2044 set_feature(&cpu->env, ARM_FEATURE_V6);
2045 set_feature(&cpu->env, ARM_FEATURE_M);
2046
2047 cpu->midr = 0x410cc200;
2048 }
2049
2050 static void cortex_m3_initfn(Object *obj)
2051 {
2052 ARMCPU *cpu = ARM_CPU(obj);
2053 set_feature(&cpu->env, ARM_FEATURE_V7);
2054 set_feature(&cpu->env, ARM_FEATURE_M);
2055 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2056 cpu->midr = 0x410fc231;
2057 cpu->pmsav7_dregion = 8;
2058 cpu->id_pfr0 = 0x00000030;
2059 cpu->id_pfr1 = 0x00000200;
2060 cpu->isar.id_dfr0 = 0x00100000;
2061 cpu->id_afr0 = 0x00000000;
2062 cpu->isar.id_mmfr0 = 0x00000030;
2063 cpu->isar.id_mmfr1 = 0x00000000;
2064 cpu->isar.id_mmfr2 = 0x00000000;
2065 cpu->isar.id_mmfr3 = 0x00000000;
2066 cpu->isar.id_isar0 = 0x01141110;
2067 cpu->isar.id_isar1 = 0x02111000;
2068 cpu->isar.id_isar2 = 0x21112231;
2069 cpu->isar.id_isar3 = 0x01111110;
2070 cpu->isar.id_isar4 = 0x01310102;
2071 cpu->isar.id_isar5 = 0x00000000;
2072 cpu->isar.id_isar6 = 0x00000000;
2073 }
2074
2075 static void cortex_m4_initfn(Object *obj)
2076 {
2077 ARMCPU *cpu = ARM_CPU(obj);
2078
2079 set_feature(&cpu->env, ARM_FEATURE_V7);
2080 set_feature(&cpu->env, ARM_FEATURE_M);
2081 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2082 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2083 cpu->midr = 0x410fc240; /* r0p0 */
2084 cpu->pmsav7_dregion = 8;
2085 cpu->isar.mvfr0 = 0x10110021;
2086 cpu->isar.mvfr1 = 0x11000011;
2087 cpu->isar.mvfr2 = 0x00000000;
2088 cpu->id_pfr0 = 0x00000030;
2089 cpu->id_pfr1 = 0x00000200;
2090 cpu->isar.id_dfr0 = 0x00100000;
2091 cpu->id_afr0 = 0x00000000;
2092 cpu->isar.id_mmfr0 = 0x00000030;
2093 cpu->isar.id_mmfr1 = 0x00000000;
2094 cpu->isar.id_mmfr2 = 0x00000000;
2095 cpu->isar.id_mmfr3 = 0x00000000;
2096 cpu->isar.id_isar0 = 0x01141110;
2097 cpu->isar.id_isar1 = 0x02111000;
2098 cpu->isar.id_isar2 = 0x21112231;
2099 cpu->isar.id_isar3 = 0x01111110;
2100 cpu->isar.id_isar4 = 0x01310102;
2101 cpu->isar.id_isar5 = 0x00000000;
2102 cpu->isar.id_isar6 = 0x00000000;
2103 }
2104
2105 static void cortex_m7_initfn(Object *obj)
2106 {
2107 ARMCPU *cpu = ARM_CPU(obj);
2108
2109 set_feature(&cpu->env, ARM_FEATURE_V7);
2110 set_feature(&cpu->env, ARM_FEATURE_M);
2111 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2112 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2113 cpu->midr = 0x411fc272; /* r1p2 */
2114 cpu->pmsav7_dregion = 8;
2115 cpu->isar.mvfr0 = 0x10110221;
2116 cpu->isar.mvfr1 = 0x12000011;
2117 cpu->isar.mvfr2 = 0x00000040;
2118 cpu->id_pfr0 = 0x00000030;
2119 cpu->id_pfr1 = 0x00000200;
2120 cpu->isar.id_dfr0 = 0x00100000;
2121 cpu->id_afr0 = 0x00000000;
2122 cpu->isar.id_mmfr0 = 0x00100030;
2123 cpu->isar.id_mmfr1 = 0x00000000;
2124 cpu->isar.id_mmfr2 = 0x01000000;
2125 cpu->isar.id_mmfr3 = 0x00000000;
2126 cpu->isar.id_isar0 = 0x01101110;
2127 cpu->isar.id_isar1 = 0x02112000;
2128 cpu->isar.id_isar2 = 0x20232231;
2129 cpu->isar.id_isar3 = 0x01111131;
2130 cpu->isar.id_isar4 = 0x01310132;
2131 cpu->isar.id_isar5 = 0x00000000;
2132 cpu->isar.id_isar6 = 0x00000000;
2133 }
2134
2135 static void cortex_m33_initfn(Object *obj)
2136 {
2137 ARMCPU *cpu = ARM_CPU(obj);
2138
2139 set_feature(&cpu->env, ARM_FEATURE_V8);
2140 set_feature(&cpu->env, ARM_FEATURE_M);
2141 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2142 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2143 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2144 cpu->midr = 0x410fd213; /* r0p3 */
2145 cpu->pmsav7_dregion = 16;
2146 cpu->sau_sregion = 8;
2147 cpu->isar.mvfr0 = 0x10110021;
2148 cpu->isar.mvfr1 = 0x11000011;
2149 cpu->isar.mvfr2 = 0x00000040;
2150 cpu->id_pfr0 = 0x00000030;
2151 cpu->id_pfr1 = 0x00000210;
2152 cpu->isar.id_dfr0 = 0x00200000;
2153 cpu->id_afr0 = 0x00000000;
2154 cpu->isar.id_mmfr0 = 0x00101F40;
2155 cpu->isar.id_mmfr1 = 0x00000000;
2156 cpu->isar.id_mmfr2 = 0x01000000;
2157 cpu->isar.id_mmfr3 = 0x00000000;
2158 cpu->isar.id_isar0 = 0x01101110;
2159 cpu->isar.id_isar1 = 0x02212000;
2160 cpu->isar.id_isar2 = 0x20232232;
2161 cpu->isar.id_isar3 = 0x01111131;
2162 cpu->isar.id_isar4 = 0x01310132;
2163 cpu->isar.id_isar5 = 0x00000000;
2164 cpu->isar.id_isar6 = 0x00000000;
2165 cpu->clidr = 0x00000000;
2166 cpu->ctr = 0x8000c000;
2167 }
2168
2169 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2170 {
2171 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2172 CPUClass *cc = CPU_CLASS(oc);
2173
2174 acc->info = data;
2175 #ifndef CONFIG_USER_ONLY
2176 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2177 #endif
2178
2179 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2180 }
2181
2182 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2183 /* Dummy the TCM region regs for the moment */
2184 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2185 .access = PL1_RW, .type = ARM_CP_CONST },
2186 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2187 .access = PL1_RW, .type = ARM_CP_CONST },
2188 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2189 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2190 REGINFO_SENTINEL
2191 };
2192
2193 static void cortex_r5_initfn(Object *obj)
2194 {
2195 ARMCPU *cpu = ARM_CPU(obj);
2196
2197 set_feature(&cpu->env, ARM_FEATURE_V7);
2198 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2199 set_feature(&cpu->env, ARM_FEATURE_PMSA);
2200 set_feature(&cpu->env, ARM_FEATURE_PMU);
2201 cpu->midr = 0x411fc153; /* r1p3 */
2202 cpu->id_pfr0 = 0x0131;
2203 cpu->id_pfr1 = 0x001;
2204 cpu->isar.id_dfr0 = 0x010400;
2205 cpu->id_afr0 = 0x0;
2206 cpu->isar.id_mmfr0 = 0x0210030;
2207 cpu->isar.id_mmfr1 = 0x00000000;
2208 cpu->isar.id_mmfr2 = 0x01200000;
2209 cpu->isar.id_mmfr3 = 0x0211;
2210 cpu->isar.id_isar0 = 0x02101111;
2211 cpu->isar.id_isar1 = 0x13112111;
2212 cpu->isar.id_isar2 = 0x21232141;
2213 cpu->isar.id_isar3 = 0x01112131;
2214 cpu->isar.id_isar4 = 0x0010142;
2215 cpu->isar.id_isar5 = 0x0;
2216 cpu->isar.id_isar6 = 0x0;
2217 cpu->mp_is_up = true;
2218 cpu->pmsav7_dregion = 16;
2219 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2220 }
2221
2222 static void cortex_r5f_initfn(Object *obj)
2223 {
2224 ARMCPU *cpu = ARM_CPU(obj);
2225
2226 cortex_r5_initfn(obj);
2227 cpu->isar.mvfr0 = 0x10110221;
2228 cpu->isar.mvfr1 = 0x00000011;
2229 }
2230
2231 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2232 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2233 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2234 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2235 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2236 REGINFO_SENTINEL
2237 };
2238
2239 static void cortex_a8_initfn(Object *obj)
2240 {
2241 ARMCPU *cpu = ARM_CPU(obj);
2242
2243 cpu->dtb_compatible = "arm,cortex-a8";
2244 set_feature(&cpu->env, ARM_FEATURE_V7);
2245 set_feature(&cpu->env, ARM_FEATURE_NEON);
2246 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2247 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2248 set_feature(&cpu->env, ARM_FEATURE_EL3);
2249 cpu->midr = 0x410fc080;
2250 cpu->reset_fpsid = 0x410330c0;
2251 cpu->isar.mvfr0 = 0x11110222;
2252 cpu->isar.mvfr1 = 0x00011111;
2253 cpu->ctr = 0x82048004;
2254 cpu->reset_sctlr = 0x00c50078;
2255 cpu->id_pfr0 = 0x1031;
2256 cpu->id_pfr1 = 0x11;
2257 cpu->isar.id_dfr0 = 0x400;
2258 cpu->id_afr0 = 0;
2259 cpu->isar.id_mmfr0 = 0x31100003;
2260 cpu->isar.id_mmfr1 = 0x20000000;
2261 cpu->isar.id_mmfr2 = 0x01202000;
2262 cpu->isar.id_mmfr3 = 0x11;
2263 cpu->isar.id_isar0 = 0x00101111;
2264 cpu->isar.id_isar1 = 0x12112111;
2265 cpu->isar.id_isar2 = 0x21232031;
2266 cpu->isar.id_isar3 = 0x11112131;
2267 cpu->isar.id_isar4 = 0x00111142;
2268 cpu->isar.dbgdidr = 0x15141000;
2269 cpu->clidr = (1 << 27) | (2 << 24) | 3;
2270 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2271 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2272 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2273 cpu->reset_auxcr = 2;
2274 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2275 }
2276
2277 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2278 /* power_control should be set to maximum latency. Again,
2279 * default to 0 and set by private hook
2280 */
2281 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2282 .access = PL1_RW, .resetvalue = 0,
2283 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2284 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2285 .access = PL1_RW, .resetvalue = 0,
2286 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2287 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2288 .access = PL1_RW, .resetvalue = 0,
2289 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2290 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2291 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2292 /* TLB lockdown control */
2293 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2294 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2295 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2296 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2297 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2298 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2299 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2300 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2301 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2302 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2303 REGINFO_SENTINEL
2304 };
2305
2306 static void cortex_a9_initfn(Object *obj)
2307 {
2308 ARMCPU *cpu = ARM_CPU(obj);
2309
2310 cpu->dtb_compatible = "arm,cortex-a9";
2311 set_feature(&cpu->env, ARM_FEATURE_V7);
2312 set_feature(&cpu->env, ARM_FEATURE_NEON);
2313 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2314 set_feature(&cpu->env, ARM_FEATURE_EL3);
2315 /* Note that A9 supports the MP extensions even for
2316 * A9UP and single-core A9MP (which are both different
2317 * and valid configurations; we don't model A9UP).
2318 */
2319 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2320 set_feature(&cpu->env, ARM_FEATURE_CBAR);
2321 cpu->midr = 0x410fc090;
2322 cpu->reset_fpsid = 0x41033090;
2323 cpu->isar.mvfr0 = 0x11110222;
2324 cpu->isar.mvfr1 = 0x01111111;
2325 cpu->ctr = 0x80038003;
2326 cpu->reset_sctlr = 0x00c50078;
2327 cpu->id_pfr0 = 0x1031;
2328 cpu->id_pfr1 = 0x11;
2329 cpu->isar.id_dfr0 = 0x000;
2330 cpu->id_afr0 = 0;
2331 cpu->isar.id_mmfr0 = 0x00100103;
2332 cpu->isar.id_mmfr1 = 0x20000000;
2333 cpu->isar.id_mmfr2 = 0x01230000;
2334 cpu->isar.id_mmfr3 = 0x00002111;
2335 cpu->isar.id_isar0 = 0x00101111;
2336 cpu->isar.id_isar1 = 0x13112111;
2337 cpu->isar.id_isar2 = 0x21232041;
2338 cpu->isar.id_isar3 = 0x11112131;
2339 cpu->isar.id_isar4 = 0x00111142;
2340 cpu->isar.dbgdidr = 0x35141000;
2341 cpu->clidr = (1 << 27) | (1 << 24) | 3;
2342 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2343 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2344 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2345 }
2346
2347 #ifndef CONFIG_USER_ONLY
2348 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2349 {
2350 MachineState *ms = MACHINE(qdev_get_machine());
2351
2352 /* Linux wants the number of processors from here.
2353 * Might as well set the interrupt-controller bit too.
2354 */
2355 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2356 }
2357 #endif
2358
2359 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2360 #ifndef CONFIG_USER_ONLY
2361 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2362 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2363 .writefn = arm_cp_write_ignore, },
2364 #endif
2365 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2366 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2367 REGINFO_SENTINEL
2368 };
2369
2370 static void cortex_a7_initfn(Object *obj)
2371 {
2372 ARMCPU *cpu = ARM_CPU(obj);
2373
2374 cpu->dtb_compatible = "arm,cortex-a7";
2375 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2376 set_feature(&cpu->env, ARM_FEATURE_NEON);
2377 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2378 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2379 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2380 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2381 set_feature(&cpu->env, ARM_FEATURE_EL2);
2382 set_feature(&cpu->env, ARM_FEATURE_EL3);
2383 set_feature(&cpu->env, ARM_FEATURE_PMU);
2384 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2385 cpu->midr = 0x410fc075;
2386 cpu->reset_fpsid = 0x41023075;
2387 cpu->isar.mvfr0 = 0x10110222;
2388 cpu->isar.mvfr1 = 0x11111111;
2389 cpu->ctr = 0x84448003;
2390 cpu->reset_sctlr = 0x00c50078;
2391 cpu->id_pfr0 = 0x00001131;
2392 cpu->id_pfr1 = 0x00011011;
2393 cpu->isar.id_dfr0 = 0x02010555;
2394 cpu->id_afr0 = 0x00000000;
2395 cpu->isar.id_mmfr0 = 0x10101105;
2396 cpu->isar.id_mmfr1 = 0x40000000;
2397 cpu->isar.id_mmfr2 = 0x01240000;
2398 cpu->isar.id_mmfr3 = 0x02102211;
2399 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2400 * table 4-41 gives 0x02101110, which includes the arm div insns.
2401 */
2402 cpu->isar.id_isar0 = 0x02101110;
2403 cpu->isar.id_isar1 = 0x13112111;
2404 cpu->isar.id_isar2 = 0x21232041;
2405 cpu->isar.id_isar3 = 0x11112131;
2406 cpu->isar.id_isar4 = 0x10011142;
2407 cpu->isar.dbgdidr = 0x3515f005;
2408 cpu->clidr = 0x0a200023;
2409 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2410 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2411 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2412 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2413 }
2414
2415 static void cortex_a15_initfn(Object *obj)
2416 {
2417 ARMCPU *cpu = ARM_CPU(obj);
2418
2419 cpu->dtb_compatible = "arm,cortex-a15";
2420 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2421 set_feature(&cpu->env, ARM_FEATURE_NEON);
2422 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2423 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2424 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2425 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2426 set_feature(&cpu->env, ARM_FEATURE_EL2);
2427 set_feature(&cpu->env, ARM_FEATURE_EL3);
2428 set_feature(&cpu->env, ARM_FEATURE_PMU);
2429 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2430 cpu->midr = 0x412fc0f1;
2431 cpu->reset_fpsid = 0x410430f0;
2432 cpu->isar.mvfr0 = 0x10110222;
2433 cpu->isar.mvfr1 = 0x11111111;
2434 cpu->ctr = 0x8444c004;
2435 cpu->reset_sctlr = 0x00c50078;
2436 cpu->id_pfr0 = 0x00001131;
2437 cpu->id_pfr1 = 0x00011011;
2438 cpu->isar.id_dfr0 = 0x02010555;
2439 cpu->id_afr0 = 0x00000000;
2440 cpu->isar.id_mmfr0 = 0x10201105;
2441 cpu->isar.id_mmfr1 = 0x20000000;
2442 cpu->isar.id_mmfr2 = 0x01240000;
2443 cpu->isar.id_mmfr3 = 0x02102211;
2444 cpu->isar.id_isar0 = 0x02101110;
2445 cpu->isar.id_isar1 = 0x13112111;
2446 cpu->isar.id_isar2 = 0x21232041;
2447 cpu->isar.id_isar3 = 0x11112131;
2448 cpu->isar.id_isar4 = 0x10011142;
2449 cpu->isar.dbgdidr = 0x3515f021;
2450 cpu->clidr = 0x0a200023;
2451 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2452 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2453 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2454 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2455 }
2456
2457 static void ti925t_initfn(Object *obj)
2458 {
2459 ARMCPU *cpu = ARM_CPU(obj);
2460 set_feature(&cpu->env, ARM_FEATURE_V4T);
2461 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2462 cpu->midr = ARM_CPUID_TI925T;
2463 cpu->ctr = 0x5109149;
2464 cpu->reset_sctlr = 0x00000070;
2465 }
2466
2467 static void sa1100_initfn(Object *obj)
2468 {
2469 ARMCPU *cpu = ARM_CPU(obj);
2470
2471 cpu->dtb_compatible = "intel,sa1100";
2472 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2473 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2474 cpu->midr = 0x4401A11B;
2475 cpu->reset_sctlr = 0x00000070;
2476 }
2477
2478 static void sa1110_initfn(Object *obj)
2479 {
2480 ARMCPU *cpu = ARM_CPU(obj);
2481 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2482 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2483 cpu->midr = 0x6901B119;
2484 cpu->reset_sctlr = 0x00000070;
2485 }
2486
2487 static void pxa250_initfn(Object *obj)
2488 {
2489 ARMCPU *cpu = ARM_CPU(obj);
2490
2491 cpu->dtb_compatible = "marvell,xscale";
2492 set_feature(&cpu->env, ARM_FEATURE_V5);
2493 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2494 cpu->midr = 0x69052100;
2495 cpu->ctr = 0xd172172;
2496 cpu->reset_sctlr = 0x00000078;
2497 }
2498
2499 static void pxa255_initfn(Object *obj)
2500 {
2501 ARMCPU *cpu = ARM_CPU(obj);
2502
2503 cpu->dtb_compatible = "marvell,xscale";
2504 set_feature(&cpu->env, ARM_FEATURE_V5);
2505 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2506 cpu->midr = 0x69052d00;
2507 cpu->ctr = 0xd172172;
2508 cpu->reset_sctlr = 0x00000078;
2509 }
2510
2511 static void pxa260_initfn(Object *obj)
2512 {
2513 ARMCPU *cpu = ARM_CPU(obj);
2514
2515 cpu->dtb_compatible = "marvell,xscale";
2516 set_feature(&cpu->env, ARM_FEATURE_V5);
2517 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2518 cpu->midr = 0x69052903;
2519 cpu->ctr = 0xd172172;
2520 cpu->reset_sctlr = 0x00000078;
2521 }
2522
2523 static void pxa261_initfn(Object *obj)
2524 {
2525 ARMCPU *cpu = ARM_CPU(obj);
2526
2527 cpu->dtb_compatible = "marvell,xscale";
2528 set_feature(&cpu->env, ARM_FEATURE_V5);
2529 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2530 cpu->midr = 0x69052d05;
2531 cpu->ctr = 0xd172172;
2532 cpu->reset_sctlr = 0x00000078;
2533 }
2534
2535 static void pxa262_initfn(Object *obj)
2536 {
2537 ARMCPU *cpu = ARM_CPU(obj);
2538
2539 cpu->dtb_compatible = "marvell,xscale";
2540 set_feature(&cpu->env, ARM_FEATURE_V5);
2541 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2542 cpu->midr = 0x69052d06;
2543 cpu->ctr = 0xd172172;
2544 cpu->reset_sctlr = 0x00000078;
2545 }
2546
2547 static void pxa270a0_initfn(Object *obj)
2548 {
2549 ARMCPU *cpu = ARM_CPU(obj);
2550
2551 cpu->dtb_compatible = "marvell,xscale";
2552 set_feature(&cpu->env, ARM_FEATURE_V5);
2553 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2554 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2555 cpu->midr = 0x69054110;
2556 cpu->ctr = 0xd172172;
2557 cpu->reset_sctlr = 0x00000078;
2558 }
2559
2560 static void pxa270a1_initfn(Object *obj)
2561 {
2562 ARMCPU *cpu = ARM_CPU(obj);
2563
2564 cpu->dtb_compatible = "marvell,xscale";
2565 set_feature(&cpu->env, ARM_FEATURE_V5);
2566 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2567 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2568 cpu->midr = 0x69054111;
2569 cpu->ctr = 0xd172172;
2570 cpu->reset_sctlr = 0x00000078;
2571 }
2572
2573 static void pxa270b0_initfn(Object *obj)
2574 {
2575 ARMCPU *cpu = ARM_CPU(obj);
2576
2577 cpu->dtb_compatible = "marvell,xscale";
2578 set_feature(&cpu->env, ARM_FEATURE_V5);
2579 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2580 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2581 cpu->midr = 0x69054112;
2582 cpu->ctr = 0xd172172;
2583 cpu->reset_sctlr = 0x00000078;
2584 }
2585
2586 static void pxa270b1_initfn(Object *obj)
2587 {
2588 ARMCPU *cpu = ARM_CPU(obj);
2589
2590 cpu->dtb_compatible = "marvell,xscale";
2591 set_feature(&cpu->env, ARM_FEATURE_V5);
2592 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2593 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2594 cpu->midr = 0x69054113;
2595 cpu->ctr = 0xd172172;
2596 cpu->reset_sctlr = 0x00000078;
2597 }
2598
2599 static void pxa270c0_initfn(Object *obj)
2600 {
2601 ARMCPU *cpu = ARM_CPU(obj);
2602
2603 cpu->dtb_compatible = "marvell,xscale";
2604 set_feature(&cpu->env, ARM_FEATURE_V5);
2605 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2606 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2607 cpu->midr = 0x69054114;
2608 cpu->ctr = 0xd172172;
2609 cpu->reset_sctlr = 0x00000078;
2610 }
2611
2612 static void pxa270c5_initfn(Object *obj)
2613 {
2614 ARMCPU *cpu = ARM_CPU(obj);
2615
2616 cpu->dtb_compatible = "marvell,xscale";
2617 set_feature(&cpu->env, ARM_FEATURE_V5);
2618 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2619 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2620 cpu->midr = 0x69054117;
2621 cpu->ctr = 0xd172172;
2622 cpu->reset_sctlr = 0x00000078;
2623 }
2624
2625 #ifndef TARGET_AARCH64
2626 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2627 * otherwise, a CPU with as many features enabled as our emulation supports.
2628 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2629 * this only needs to handle 32 bits.
2630 */
2631 static void arm_max_initfn(Object *obj)
2632 {
2633 ARMCPU *cpu = ARM_CPU(obj);
2634
2635 if (kvm_enabled()) {
2636 kvm_arm_set_cpu_features_from_host(cpu);
2637 kvm_arm_add_vcpu_properties(obj);
2638 } else {
2639 cortex_a15_initfn(obj);
2640
2641 /* old-style VFP short-vector support */
2642 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2643
2644 #ifdef CONFIG_USER_ONLY
2645 /* We don't set these in system emulation mode for the moment,
2646 * since we don't correctly set (all of) the ID registers to
2647 * advertise them.
2648 */
2649 set_feature(&cpu->env, ARM_FEATURE_V8);
2650 {
2651 uint32_t t;
2652
2653 t = cpu->isar.id_isar5;
2654 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2655 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2656 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2657 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2658 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2659 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2660 cpu->isar.id_isar5 = t;
2661
2662 t = cpu->isar.id_isar6;
2663 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2664 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2665 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2666 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2667 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2668 cpu->isar.id_isar6 = t;
2669
2670 t = cpu->isar.mvfr1;
2671 t = FIELD_DP32(t, MVFR1, FPHP, 2); /* v8.0 FP support */
2672 cpu->isar.mvfr1 = t;
2673
2674 t = cpu->isar.mvfr2;
2675 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2676 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2677 cpu->isar.mvfr2 = t;
2678
2679 t = cpu->isar.id_mmfr3;
2680 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2681 cpu->isar.id_mmfr3 = t;
2682
2683 t = cpu->isar.id_mmfr4;
2684 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2685 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2686 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2687 cpu->isar.id_mmfr4 = t;
2688 }
2689 #endif
2690 }
2691 }
2692 #endif
2693
2694 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2695
2696 struct ARMCPUInfo {
2697 const char *name;
2698 void (*initfn)(Object *obj);
2699 void (*class_init)(ObjectClass *oc, void *data);
2700 };
2701
2702 static const ARMCPUInfo arm_cpus[] = {
2703 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2704 { .name = "arm926", .initfn = arm926_initfn },
2705 { .name = "arm946", .initfn = arm946_initfn },
2706 { .name = "arm1026", .initfn = arm1026_initfn },
2707 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2708 * older core than plain "arm1136". In particular this does not
2709 * have the v6K features.
2710 */
2711 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2712 { .name = "arm1136", .initfn = arm1136_initfn },
2713 { .name = "arm1176", .initfn = arm1176_initfn },
2714 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2715 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2716 .class_init = arm_v7m_class_init },
2717 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2718 .class_init = arm_v7m_class_init },
2719 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2720 .class_init = arm_v7m_class_init },
2721 { .name = "cortex-m7", .initfn = cortex_m7_initfn,
2722 .class_init = arm_v7m_class_init },
2723 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2724 .class_init = arm_v7m_class_init },
2725 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2726 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2727 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2728 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2729 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2730 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2731 { .name = "ti925t", .initfn = ti925t_initfn },
2732 { .name = "sa1100", .initfn = sa1100_initfn },
2733 { .name = "sa1110", .initfn = sa1110_initfn },
2734 { .name = "pxa250", .initfn = pxa250_initfn },
2735 { .name = "pxa255", .initfn = pxa255_initfn },
2736 { .name = "pxa260", .initfn = pxa260_initfn },
2737 { .name = "pxa261", .initfn = pxa261_initfn },
2738 { .name = "pxa262", .initfn = pxa262_initfn },
2739 /* "pxa270" is an alias for "pxa270-a0" */
2740 { .name = "pxa270", .initfn = pxa270a0_initfn },
2741 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2742 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2743 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2744 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2745 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2746 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2747 #ifndef TARGET_AARCH64
2748 { .name = "max", .initfn = arm_max_initfn },
2749 #endif
2750 #ifdef CONFIG_USER_ONLY
2751 { .name = "any", .initfn = arm_max_initfn },
2752 #endif
2753 #endif
2754 { .name = NULL }
2755 };
2756
2757 static Property arm_cpu_properties[] = {
2758 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2759 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2760 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2761 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2762 mp_affinity, ARM64_AFFINITY_INVALID),
2763 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2764 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2765 DEFINE_PROP_END_OF_LIST()
2766 };
2767
2768 static gchar *arm_gdb_arch_name(CPUState *cs)
2769 {
2770 ARMCPU *cpu = ARM_CPU(cs);
2771 CPUARMState *env = &cpu->env;
2772
2773 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2774 return g_strdup("iwmmxt");
2775 }
2776 return g_strdup("arm");
2777 }
2778
2779 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2780 {
2781 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2782 CPUClass *cc = CPU_CLASS(acc);
2783 DeviceClass *dc = DEVICE_CLASS(oc);
2784
2785 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2786 &acc->parent_realize);
2787
2788 device_class_set_props(dc, arm_cpu_properties);
2789 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2790
2791 cc->class_by_name = arm_cpu_class_by_name;
2792 cc->has_work = arm_cpu_has_work;
2793 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2794 cc->dump_state = arm_cpu_dump_state;
2795 cc->set_pc = arm_cpu_set_pc;
2796 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2797 cc->gdb_read_register = arm_cpu_gdb_read_register;
2798 cc->gdb_write_register = arm_cpu_gdb_write_register;
2799 #ifndef CONFIG_USER_ONLY
2800 cc->do_interrupt = arm_cpu_do_interrupt;
2801 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2802 cc->asidx_from_attrs = arm_asidx_from_attrs;
2803 cc->vmsd = &vmstate_arm_cpu;
2804 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2805 cc->write_elf64_note = arm_cpu_write_elf64_note;
2806 cc->write_elf32_note = arm_cpu_write_elf32_note;
2807 #endif
2808 cc->gdb_num_core_regs = 26;
2809 cc->gdb_core_xml_file = "arm-core.xml";
2810 cc->gdb_arch_name = arm_gdb_arch_name;
2811 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2812 cc->gdb_stop_before_watchpoint = true;
2813 cc->disas_set_info = arm_disas_set_info;
2814 #ifdef CONFIG_TCG
2815 cc->tcg_initialize = arm_translate_init;
2816 cc->tlb_fill = arm_cpu_tlb_fill;
2817 cc->debug_excp_handler = arm_debug_excp_handler;
2818 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2819 #if !defined(CONFIG_USER_ONLY)
2820 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2821 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2822 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2823 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2824 #endif
2825 }
2826
2827 #ifdef CONFIG_KVM
2828 static void arm_host_initfn(Object *obj)
2829 {
2830 ARMCPU *cpu = ARM_CPU(obj);
2831
2832 kvm_arm_set_cpu_features_from_host(cpu);
2833 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2834 aarch64_add_sve_properties(obj);
2835 }
2836 kvm_arm_add_vcpu_properties(obj);
2837 arm_cpu_post_init(obj);
2838 }
2839
2840 static const TypeInfo host_arm_cpu_type_info = {
2841 .name = TYPE_ARM_HOST_CPU,
2842 #ifdef TARGET_AARCH64
2843 .parent = TYPE_AARCH64_CPU,
2844 #else
2845 .parent = TYPE_ARM_CPU,
2846 #endif
2847 .instance_init = arm_host_initfn,
2848 };
2849
2850 #endif
2851
2852 static void arm_cpu_instance_init(Object *obj)
2853 {
2854 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2855
2856 acc->info->initfn(obj);
2857 arm_cpu_post_init(obj);
2858 }
2859
2860 static void cpu_register_class_init(ObjectClass *oc, void *data)
2861 {
2862 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2863
2864 acc->info = data;
2865 }
2866
2867 static void cpu_register(const ARMCPUInfo *info)
2868 {
2869 TypeInfo type_info = {
2870 .parent = TYPE_ARM_CPU,
2871 .instance_size = sizeof(ARMCPU),
2872 .instance_init = arm_cpu_instance_init,
2873 .class_size = sizeof(ARMCPUClass),
2874 .class_init = info->class_init ?: cpu_register_class_init,
2875 .class_data = (void *)info,
2876 };
2877
2878 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2879 type_register(&type_info);
2880 g_free((void *)type_info.name);
2881 }
2882
2883 static const TypeInfo arm_cpu_type_info = {
2884 .name = TYPE_ARM_CPU,
2885 .parent = TYPE_CPU,
2886 .instance_size = sizeof(ARMCPU),
2887 .instance_init = arm_cpu_initfn,
2888 .instance_finalize = arm_cpu_finalizefn,
2889 .abstract = true,
2890 .class_size = sizeof(ARMCPUClass),
2891 .class_init = arm_cpu_class_init,
2892 };
2893
2894 static const TypeInfo idau_interface_type_info = {
2895 .name = TYPE_IDAU_INTERFACE,
2896 .parent = TYPE_INTERFACE,
2897 .class_size = sizeof(IDAUInterfaceClass),
2898 };
2899
2900 static void arm_cpu_register_types(void)
2901 {
2902 const ARMCPUInfo *info = arm_cpus;
2903
2904 type_register_static(&arm_cpu_type_info);
2905 type_register_static(&idau_interface_type_info);
2906
2907 while (info->name) {
2908 cpu_register(info);
2909 info++;
2910 }
2911
2912 #ifdef CONFIG_KVM
2913 type_register_static(&host_arm_cpu_type_info);
2914 #endif
2915 }
2916
2917 type_init(arm_cpu_register_types)