target/i386: correct fix for pcmpxstrx substring search
[qemu.git] / target / i386 / ops_sse.h
1 /*
2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com>
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "crypto/aes.h"
22
23 #if SHIFT == 0
24 #define Reg MMXReg
25 #define XMM_ONLY(...)
26 #define B(n) MMX_B(n)
27 #define W(n) MMX_W(n)
28 #define L(n) MMX_L(n)
29 #define Q(n) MMX_Q(n)
30 #define SUFFIX _mmx
31 #else
32 #define Reg ZMMReg
33 #define XMM_ONLY(...) __VA_ARGS__
34 #define B(n) ZMM_B(n)
35 #define W(n) ZMM_W(n)
36 #define L(n) ZMM_L(n)
37 #define Q(n) ZMM_Q(n)
38 #define SUFFIX _xmm
39 #endif
40
41 void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
42 {
43 int shift;
44
45 if (s->Q(0) > 15) {
46 d->Q(0) = 0;
47 #if SHIFT == 1
48 d->Q(1) = 0;
49 #endif
50 } else {
51 shift = s->B(0);
52 d->W(0) >>= shift;
53 d->W(1) >>= shift;
54 d->W(2) >>= shift;
55 d->W(3) >>= shift;
56 #if SHIFT == 1
57 d->W(4) >>= shift;
58 d->W(5) >>= shift;
59 d->W(6) >>= shift;
60 d->W(7) >>= shift;
61 #endif
62 }
63 }
64
65 void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
66 {
67 int shift;
68
69 if (s->Q(0) > 15) {
70 shift = 15;
71 } else {
72 shift = s->B(0);
73 }
74 d->W(0) = (int16_t)d->W(0) >> shift;
75 d->W(1) = (int16_t)d->W(1) >> shift;
76 d->W(2) = (int16_t)d->W(2) >> shift;
77 d->W(3) = (int16_t)d->W(3) >> shift;
78 #if SHIFT == 1
79 d->W(4) = (int16_t)d->W(4) >> shift;
80 d->W(5) = (int16_t)d->W(5) >> shift;
81 d->W(6) = (int16_t)d->W(6) >> shift;
82 d->W(7) = (int16_t)d->W(7) >> shift;
83 #endif
84 }
85
86 void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
87 {
88 int shift;
89
90 if (s->Q(0) > 15) {
91 d->Q(0) = 0;
92 #if SHIFT == 1
93 d->Q(1) = 0;
94 #endif
95 } else {
96 shift = s->B(0);
97 d->W(0) <<= shift;
98 d->W(1) <<= shift;
99 d->W(2) <<= shift;
100 d->W(3) <<= shift;
101 #if SHIFT == 1
102 d->W(4) <<= shift;
103 d->W(5) <<= shift;
104 d->W(6) <<= shift;
105 d->W(7) <<= shift;
106 #endif
107 }
108 }
109
110 void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
111 {
112 int shift;
113
114 if (s->Q(0) > 31) {
115 d->Q(0) = 0;
116 #if SHIFT == 1
117 d->Q(1) = 0;
118 #endif
119 } else {
120 shift = s->B(0);
121 d->L(0) >>= shift;
122 d->L(1) >>= shift;
123 #if SHIFT == 1
124 d->L(2) >>= shift;
125 d->L(3) >>= shift;
126 #endif
127 }
128 }
129
130 void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
131 {
132 int shift;
133
134 if (s->Q(0) > 31) {
135 shift = 31;
136 } else {
137 shift = s->B(0);
138 }
139 d->L(0) = (int32_t)d->L(0) >> shift;
140 d->L(1) = (int32_t)d->L(1) >> shift;
141 #if SHIFT == 1
142 d->L(2) = (int32_t)d->L(2) >> shift;
143 d->L(3) = (int32_t)d->L(3) >> shift;
144 #endif
145 }
146
147 void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
148 {
149 int shift;
150
151 if (s->Q(0) > 31) {
152 d->Q(0) = 0;
153 #if SHIFT == 1
154 d->Q(1) = 0;
155 #endif
156 } else {
157 shift = s->B(0);
158 d->L(0) <<= shift;
159 d->L(1) <<= shift;
160 #if SHIFT == 1
161 d->L(2) <<= shift;
162 d->L(3) <<= shift;
163 #endif
164 }
165 }
166
167 void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
168 {
169 int shift;
170
171 if (s->Q(0) > 63) {
172 d->Q(0) = 0;
173 #if SHIFT == 1
174 d->Q(1) = 0;
175 #endif
176 } else {
177 shift = s->B(0);
178 d->Q(0) >>= shift;
179 #if SHIFT == 1
180 d->Q(1) >>= shift;
181 #endif
182 }
183 }
184
185 void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
186 {
187 int shift;
188
189 if (s->Q(0) > 63) {
190 d->Q(0) = 0;
191 #if SHIFT == 1
192 d->Q(1) = 0;
193 #endif
194 } else {
195 shift = s->B(0);
196 d->Q(0) <<= shift;
197 #if SHIFT == 1
198 d->Q(1) <<= shift;
199 #endif
200 }
201 }
202
203 #if SHIFT == 1
204 void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
205 {
206 int shift, i;
207
208 shift = s->L(0);
209 if (shift > 16) {
210 shift = 16;
211 }
212 for (i = 0; i < 16 - shift; i++) {
213 d->B(i) = d->B(i + shift);
214 }
215 for (i = 16 - shift; i < 16; i++) {
216 d->B(i) = 0;
217 }
218 }
219
220 void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
221 {
222 int shift, i;
223
224 shift = s->L(0);
225 if (shift > 16) {
226 shift = 16;
227 }
228 for (i = 15; i >= shift; i--) {
229 d->B(i) = d->B(i - shift);
230 }
231 for (i = 0; i < shift; i++) {
232 d->B(i) = 0;
233 }
234 }
235 #endif
236
237 #define SSE_HELPER_B(name, F) \
238 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
239 { \
240 d->B(0) = F(d->B(0), s->B(0)); \
241 d->B(1) = F(d->B(1), s->B(1)); \
242 d->B(2) = F(d->B(2), s->B(2)); \
243 d->B(3) = F(d->B(3), s->B(3)); \
244 d->B(4) = F(d->B(4), s->B(4)); \
245 d->B(5) = F(d->B(5), s->B(5)); \
246 d->B(6) = F(d->B(6), s->B(6)); \
247 d->B(7) = F(d->B(7), s->B(7)); \
248 XMM_ONLY( \
249 d->B(8) = F(d->B(8), s->B(8)); \
250 d->B(9) = F(d->B(9), s->B(9)); \
251 d->B(10) = F(d->B(10), s->B(10)); \
252 d->B(11) = F(d->B(11), s->B(11)); \
253 d->B(12) = F(d->B(12), s->B(12)); \
254 d->B(13) = F(d->B(13), s->B(13)); \
255 d->B(14) = F(d->B(14), s->B(14)); \
256 d->B(15) = F(d->B(15), s->B(15)); \
257 ) \
258 }
259
260 #define SSE_HELPER_W(name, F) \
261 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
262 { \
263 d->W(0) = F(d->W(0), s->W(0)); \
264 d->W(1) = F(d->W(1), s->W(1)); \
265 d->W(2) = F(d->W(2), s->W(2)); \
266 d->W(3) = F(d->W(3), s->W(3)); \
267 XMM_ONLY( \
268 d->W(4) = F(d->W(4), s->W(4)); \
269 d->W(5) = F(d->W(5), s->W(5)); \
270 d->W(6) = F(d->W(6), s->W(6)); \
271 d->W(7) = F(d->W(7), s->W(7)); \
272 ) \
273 }
274
275 #define SSE_HELPER_L(name, F) \
276 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
277 { \
278 d->L(0) = F(d->L(0), s->L(0)); \
279 d->L(1) = F(d->L(1), s->L(1)); \
280 XMM_ONLY( \
281 d->L(2) = F(d->L(2), s->L(2)); \
282 d->L(3) = F(d->L(3), s->L(3)); \
283 ) \
284 }
285
286 #define SSE_HELPER_Q(name, F) \
287 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
288 { \
289 d->Q(0) = F(d->Q(0), s->Q(0)); \
290 XMM_ONLY( \
291 d->Q(1) = F(d->Q(1), s->Q(1)); \
292 ) \
293 }
294
295 #if SHIFT == 0
296 static inline int satub(int x)
297 {
298 if (x < 0) {
299 return 0;
300 } else if (x > 255) {
301 return 255;
302 } else {
303 return x;
304 }
305 }
306
307 static inline int satuw(int x)
308 {
309 if (x < 0) {
310 return 0;
311 } else if (x > 65535) {
312 return 65535;
313 } else {
314 return x;
315 }
316 }
317
318 static inline int satsb(int x)
319 {
320 if (x < -128) {
321 return -128;
322 } else if (x > 127) {
323 return 127;
324 } else {
325 return x;
326 }
327 }
328
329 static inline int satsw(int x)
330 {
331 if (x < -32768) {
332 return -32768;
333 } else if (x > 32767) {
334 return 32767;
335 } else {
336 return x;
337 }
338 }
339
340 #define FADD(a, b) ((a) + (b))
341 #define FADDUB(a, b) satub((a) + (b))
342 #define FADDUW(a, b) satuw((a) + (b))
343 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
344 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
345
346 #define FSUB(a, b) ((a) - (b))
347 #define FSUBUB(a, b) satub((a) - (b))
348 #define FSUBUW(a, b) satuw((a) - (b))
349 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
350 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
351 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
352 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
353 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
354 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
355
356 #define FAND(a, b) ((a) & (b))
357 #define FANDN(a, b) ((~(a)) & (b))
358 #define FOR(a, b) ((a) | (b))
359 #define FXOR(a, b) ((a) ^ (b))
360
361 #define FCMPGTB(a, b) ((int8_t)(a) > (int8_t)(b) ? -1 : 0)
362 #define FCMPGTW(a, b) ((int16_t)(a) > (int16_t)(b) ? -1 : 0)
363 #define FCMPGTL(a, b) ((int32_t)(a) > (int32_t)(b) ? -1 : 0)
364 #define FCMPEQ(a, b) ((a) == (b) ? -1 : 0)
365
366 #define FMULLW(a, b) ((a) * (b))
367 #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16)
368 #define FMULHUW(a, b) ((a) * (b) >> 16)
369 #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16)
370
371 #define FAVG(a, b) (((a) + (b) + 1) >> 1)
372 #endif
373
374 SSE_HELPER_B(helper_paddb, FADD)
375 SSE_HELPER_W(helper_paddw, FADD)
376 SSE_HELPER_L(helper_paddl, FADD)
377 SSE_HELPER_Q(helper_paddq, FADD)
378
379 SSE_HELPER_B(helper_psubb, FSUB)
380 SSE_HELPER_W(helper_psubw, FSUB)
381 SSE_HELPER_L(helper_psubl, FSUB)
382 SSE_HELPER_Q(helper_psubq, FSUB)
383
384 SSE_HELPER_B(helper_paddusb, FADDUB)
385 SSE_HELPER_B(helper_paddsb, FADDSB)
386 SSE_HELPER_B(helper_psubusb, FSUBUB)
387 SSE_HELPER_B(helper_psubsb, FSUBSB)
388
389 SSE_HELPER_W(helper_paddusw, FADDUW)
390 SSE_HELPER_W(helper_paddsw, FADDSW)
391 SSE_HELPER_W(helper_psubusw, FSUBUW)
392 SSE_HELPER_W(helper_psubsw, FSUBSW)
393
394 SSE_HELPER_B(helper_pminub, FMINUB)
395 SSE_HELPER_B(helper_pmaxub, FMAXUB)
396
397 SSE_HELPER_W(helper_pminsw, FMINSW)
398 SSE_HELPER_W(helper_pmaxsw, FMAXSW)
399
400 SSE_HELPER_Q(helper_pand, FAND)
401 SSE_HELPER_Q(helper_pandn, FANDN)
402 SSE_HELPER_Q(helper_por, FOR)
403 SSE_HELPER_Q(helper_pxor, FXOR)
404
405 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
406 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
407 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
408
409 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
410 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
411 SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
412
413 SSE_HELPER_W(helper_pmullw, FMULLW)
414 #if SHIFT == 0
415 SSE_HELPER_W(helper_pmulhrw, FMULHRW)
416 #endif
417 SSE_HELPER_W(helper_pmulhuw, FMULHUW)
418 SSE_HELPER_W(helper_pmulhw, FMULHW)
419
420 SSE_HELPER_B(helper_pavgb, FAVG)
421 SSE_HELPER_W(helper_pavgw, FAVG)
422
423 void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
424 {
425 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
426 #if SHIFT == 1
427 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
428 #endif
429 }
430
431 void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
432 {
433 int i;
434
435 for (i = 0; i < (2 << SHIFT); i++) {
436 d->L(i) = (int16_t)s->W(2 * i) * (int16_t)d->W(2 * i) +
437 (int16_t)s->W(2 * i + 1) * (int16_t)d->W(2 * i + 1);
438 }
439 }
440
441 #if SHIFT == 0
442 static inline int abs1(int a)
443 {
444 if (a < 0) {
445 return -a;
446 } else {
447 return a;
448 }
449 }
450 #endif
451 void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
452 {
453 unsigned int val;
454
455 val = 0;
456 val += abs1(d->B(0) - s->B(0));
457 val += abs1(d->B(1) - s->B(1));
458 val += abs1(d->B(2) - s->B(2));
459 val += abs1(d->B(3) - s->B(3));
460 val += abs1(d->B(4) - s->B(4));
461 val += abs1(d->B(5) - s->B(5));
462 val += abs1(d->B(6) - s->B(6));
463 val += abs1(d->B(7) - s->B(7));
464 d->Q(0) = val;
465 #if SHIFT == 1
466 val = 0;
467 val += abs1(d->B(8) - s->B(8));
468 val += abs1(d->B(9) - s->B(9));
469 val += abs1(d->B(10) - s->B(10));
470 val += abs1(d->B(11) - s->B(11));
471 val += abs1(d->B(12) - s->B(12));
472 val += abs1(d->B(13) - s->B(13));
473 val += abs1(d->B(14) - s->B(14));
474 val += abs1(d->B(15) - s->B(15));
475 d->Q(1) = val;
476 #endif
477 }
478
479 void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
480 target_ulong a0)
481 {
482 int i;
483
484 for (i = 0; i < (8 << SHIFT); i++) {
485 if (s->B(i) & 0x80) {
486 cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC());
487 }
488 }
489 }
490
491 void glue(helper_movl_mm_T0, SUFFIX)(Reg *d, uint32_t val)
492 {
493 d->L(0) = val;
494 d->L(1) = 0;
495 #if SHIFT == 1
496 d->Q(1) = 0;
497 #endif
498 }
499
500 #ifdef TARGET_X86_64
501 void glue(helper_movq_mm_T0, SUFFIX)(Reg *d, uint64_t val)
502 {
503 d->Q(0) = val;
504 #if SHIFT == 1
505 d->Q(1) = 0;
506 #endif
507 }
508 #endif
509
510 #if SHIFT == 0
511 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order)
512 {
513 Reg r;
514
515 r.W(0) = s->W(order & 3);
516 r.W(1) = s->W((order >> 2) & 3);
517 r.W(2) = s->W((order >> 4) & 3);
518 r.W(3) = s->W((order >> 6) & 3);
519 *d = r;
520 }
521 #else
522 void helper_shufps(Reg *d, Reg *s, int order)
523 {
524 Reg r;
525
526 r.L(0) = d->L(order & 3);
527 r.L(1) = d->L((order >> 2) & 3);
528 r.L(2) = s->L((order >> 4) & 3);
529 r.L(3) = s->L((order >> 6) & 3);
530 *d = r;
531 }
532
533 void helper_shufpd(Reg *d, Reg *s, int order)
534 {
535 Reg r;
536
537 r.Q(0) = d->Q(order & 1);
538 r.Q(1) = s->Q((order >> 1) & 1);
539 *d = r;
540 }
541
542 void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order)
543 {
544 Reg r;
545
546 r.L(0) = s->L(order & 3);
547 r.L(1) = s->L((order >> 2) & 3);
548 r.L(2) = s->L((order >> 4) & 3);
549 r.L(3) = s->L((order >> 6) & 3);
550 *d = r;
551 }
552
553 void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order)
554 {
555 Reg r;
556
557 r.W(0) = s->W(order & 3);
558 r.W(1) = s->W((order >> 2) & 3);
559 r.W(2) = s->W((order >> 4) & 3);
560 r.W(3) = s->W((order >> 6) & 3);
561 r.Q(1) = s->Q(1);
562 *d = r;
563 }
564
565 void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order)
566 {
567 Reg r;
568
569 r.Q(0) = s->Q(0);
570 r.W(4) = s->W(4 + (order & 3));
571 r.W(5) = s->W(4 + ((order >> 2) & 3));
572 r.W(6) = s->W(4 + ((order >> 4) & 3));
573 r.W(7) = s->W(4 + ((order >> 6) & 3));
574 *d = r;
575 }
576 #endif
577
578 #if SHIFT == 1
579 /* FPU ops */
580 /* XXX: not accurate */
581
582 #define SSE_HELPER_S(name, F) \
583 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \
584 { \
585 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
586 d->ZMM_S(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \
587 d->ZMM_S(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \
588 d->ZMM_S(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \
589 } \
590 \
591 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \
592 { \
593 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
594 } \
595 \
596 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \
597 { \
598 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
599 d->ZMM_D(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \
600 } \
601 \
602 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \
603 { \
604 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
605 }
606
607 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
608 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
609 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
610 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
611 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
612
613 /* Note that the choice of comparison op here is important to get the
614 * special cases right: for min and max Intel specifies that (-0,0),
615 * (NaN, anything) and (anything, NaN) return the second argument.
616 */
617 #define FPU_MIN(size, a, b) \
618 (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b))
619 #define FPU_MAX(size, a, b) \
620 (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b))
621
622 SSE_HELPER_S(add, FPU_ADD)
623 SSE_HELPER_S(sub, FPU_SUB)
624 SSE_HELPER_S(mul, FPU_MUL)
625 SSE_HELPER_S(div, FPU_DIV)
626 SSE_HELPER_S(min, FPU_MIN)
627 SSE_HELPER_S(max, FPU_MAX)
628 SSE_HELPER_S(sqrt, FPU_SQRT)
629
630
631 /* float to float conversions */
632 void helper_cvtps2pd(CPUX86State *env, Reg *d, Reg *s)
633 {
634 float32 s0, s1;
635
636 s0 = s->ZMM_S(0);
637 s1 = s->ZMM_S(1);
638 d->ZMM_D(0) = float32_to_float64(s0, &env->sse_status);
639 d->ZMM_D(1) = float32_to_float64(s1, &env->sse_status);
640 }
641
642 void helper_cvtpd2ps(CPUX86State *env, Reg *d, Reg *s)
643 {
644 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status);
645 d->ZMM_S(1) = float64_to_float32(s->ZMM_D(1), &env->sse_status);
646 d->Q(1) = 0;
647 }
648
649 void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *s)
650 {
651 d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status);
652 }
653
654 void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *s)
655 {
656 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status);
657 }
658
659 /* integer to float */
660 void helper_cvtdq2ps(CPUX86State *env, Reg *d, Reg *s)
661 {
662 d->ZMM_S(0) = int32_to_float32(s->ZMM_L(0), &env->sse_status);
663 d->ZMM_S(1) = int32_to_float32(s->ZMM_L(1), &env->sse_status);
664 d->ZMM_S(2) = int32_to_float32(s->ZMM_L(2), &env->sse_status);
665 d->ZMM_S(3) = int32_to_float32(s->ZMM_L(3), &env->sse_status);
666 }
667
668 void helper_cvtdq2pd(CPUX86State *env, Reg *d, Reg *s)
669 {
670 int32_t l0, l1;
671
672 l0 = (int32_t)s->ZMM_L(0);
673 l1 = (int32_t)s->ZMM_L(1);
674 d->ZMM_D(0) = int32_to_float64(l0, &env->sse_status);
675 d->ZMM_D(1) = int32_to_float64(l1, &env->sse_status);
676 }
677
678 void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s)
679 {
680 d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
681 d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
682 }
683
684 void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s)
685 {
686 d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
687 d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
688 }
689
690 void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val)
691 {
692 d->ZMM_S(0) = int32_to_float32(val, &env->sse_status);
693 }
694
695 void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val)
696 {
697 d->ZMM_D(0) = int32_to_float64(val, &env->sse_status);
698 }
699
700 #ifdef TARGET_X86_64
701 void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val)
702 {
703 d->ZMM_S(0) = int64_to_float32(val, &env->sse_status);
704 }
705
706 void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val)
707 {
708 d->ZMM_D(0) = int64_to_float64(val, &env->sse_status);
709 }
710 #endif
711
712 /* float to integer */
713
714 /*
715 * x86 mandates that we return the indefinite integer value for the result
716 * of any float-to-integer conversion that raises the 'invalid' exception.
717 * Wrap the softfloat functions to get this behaviour.
718 */
719 #define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE) \
720 static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s) \
721 { \
722 int oldflags, newflags; \
723 RETTYPE r; \
724 \
725 oldflags = get_float_exception_flags(s); \
726 set_float_exception_flags(0, s); \
727 r = FN(a, s); \
728 newflags = get_float_exception_flags(s); \
729 if (newflags & float_flag_invalid) { \
730 r = INDEFVALUE; \
731 } \
732 set_float_exception_flags(newflags | oldflags, s); \
733 return r; \
734 }
735
736 WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN)
737 WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN)
738 WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN)
739 WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN)
740 WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN)
741 WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN)
742 WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN)
743 WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN)
744
745 void helper_cvtps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
746 {
747 d->ZMM_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
748 d->ZMM_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status);
749 d->ZMM_L(2) = x86_float32_to_int32(s->ZMM_S(2), &env->sse_status);
750 d->ZMM_L(3) = x86_float32_to_int32(s->ZMM_S(3), &env->sse_status);
751 }
752
753 void helper_cvtpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
754 {
755 d->ZMM_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
756 d->ZMM_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status);
757 d->ZMM_Q(1) = 0;
758 }
759
760 void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
761 {
762 d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
763 d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status);
764 }
765
766 void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
767 {
768 d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
769 d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status);
770 }
771
772 int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s)
773 {
774 return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
775 }
776
777 int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s)
778 {
779 return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
780 }
781
782 #ifdef TARGET_X86_64
783 int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s)
784 {
785 return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status);
786 }
787
788 int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s)
789 {
790 return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status);
791 }
792 #endif
793
794 /* float to integer truncated */
795 void helper_cvttps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
796 {
797 d->ZMM_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
798 d->ZMM_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status);
799 d->ZMM_L(2) = x86_float32_to_int32_round_to_zero(s->ZMM_S(2), &env->sse_status);
800 d->ZMM_L(3) = x86_float32_to_int32_round_to_zero(s->ZMM_S(3), &env->sse_status);
801 }
802
803 void helper_cvttpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
804 {
805 d->ZMM_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
806 d->ZMM_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status);
807 d->ZMM_Q(1) = 0;
808 }
809
810 void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
811 {
812 d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
813 d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status);
814 }
815
816 void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
817 {
818 d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
819 d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status);
820 }
821
822 int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s)
823 {
824 return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
825 }
826
827 int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s)
828 {
829 return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
830 }
831
832 #ifdef TARGET_X86_64
833 int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s)
834 {
835 return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status);
836 }
837
838 int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s)
839 {
840 return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status);
841 }
842 #endif
843
844 void helper_rsqrtps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
845 {
846 d->ZMM_S(0) = float32_div(float32_one,
847 float32_sqrt(s->ZMM_S(0), &env->sse_status),
848 &env->sse_status);
849 d->ZMM_S(1) = float32_div(float32_one,
850 float32_sqrt(s->ZMM_S(1), &env->sse_status),
851 &env->sse_status);
852 d->ZMM_S(2) = float32_div(float32_one,
853 float32_sqrt(s->ZMM_S(2), &env->sse_status),
854 &env->sse_status);
855 d->ZMM_S(3) = float32_div(float32_one,
856 float32_sqrt(s->ZMM_S(3), &env->sse_status),
857 &env->sse_status);
858 }
859
860 void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *s)
861 {
862 d->ZMM_S(0) = float32_div(float32_one,
863 float32_sqrt(s->ZMM_S(0), &env->sse_status),
864 &env->sse_status);
865 }
866
867 void helper_rcpps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
868 {
869 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status);
870 d->ZMM_S(1) = float32_div(float32_one, s->ZMM_S(1), &env->sse_status);
871 d->ZMM_S(2) = float32_div(float32_one, s->ZMM_S(2), &env->sse_status);
872 d->ZMM_S(3) = float32_div(float32_one, s->ZMM_S(3), &env->sse_status);
873 }
874
875 void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *s)
876 {
877 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status);
878 }
879
880 static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
881 {
882 uint64_t mask;
883
884 if (len == 0) {
885 mask = ~0LL;
886 } else {
887 mask = (1ULL << len) - 1;
888 }
889 return (src >> shift) & mask;
890 }
891
892 void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
893 {
894 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1), s->ZMM_B(0));
895 }
896
897 void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length)
898 {
899 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length);
900 }
901
902 static inline uint64_t helper_insertq(uint64_t src, int shift, int len)
903 {
904 uint64_t mask;
905
906 if (len == 0) {
907 mask = ~0ULL;
908 } else {
909 mask = (1ULL << len) - 1;
910 }
911 return (src & ~(mask << shift)) | ((src & mask) << shift);
912 }
913
914 void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
915 {
916 d->ZMM_Q(0) = helper_insertq(s->ZMM_Q(0), s->ZMM_B(9), s->ZMM_B(8));
917 }
918
919 void helper_insertq_i(CPUX86State *env, ZMMReg *d, int index, int length)
920 {
921 d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), index, length);
922 }
923
924 void helper_haddps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
925 {
926 ZMMReg r;
927
928 r.ZMM_S(0) = float32_add(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status);
929 r.ZMM_S(1) = float32_add(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status);
930 r.ZMM_S(2) = float32_add(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status);
931 r.ZMM_S(3) = float32_add(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status);
932 *d = r;
933 }
934
935 void helper_haddpd(CPUX86State *env, ZMMReg *d, ZMMReg *s)
936 {
937 ZMMReg r;
938
939 r.ZMM_D(0) = float64_add(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status);
940 r.ZMM_D(1) = float64_add(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status);
941 *d = r;
942 }
943
944 void helper_hsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
945 {
946 ZMMReg r;
947
948 r.ZMM_S(0) = float32_sub(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status);
949 r.ZMM_S(1) = float32_sub(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status);
950 r.ZMM_S(2) = float32_sub(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status);
951 r.ZMM_S(3) = float32_sub(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status);
952 *d = r;
953 }
954
955 void helper_hsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s)
956 {
957 ZMMReg r;
958
959 r.ZMM_D(0) = float64_sub(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status);
960 r.ZMM_D(1) = float64_sub(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status);
961 *d = r;
962 }
963
964 void helper_addsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
965 {
966 d->ZMM_S(0) = float32_sub(d->ZMM_S(0), s->ZMM_S(0), &env->sse_status);
967 d->ZMM_S(1) = float32_add(d->ZMM_S(1), s->ZMM_S(1), &env->sse_status);
968 d->ZMM_S(2) = float32_sub(d->ZMM_S(2), s->ZMM_S(2), &env->sse_status);
969 d->ZMM_S(3) = float32_add(d->ZMM_S(3), s->ZMM_S(3), &env->sse_status);
970 }
971
972 void helper_addsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s)
973 {
974 d->ZMM_D(0) = float64_sub(d->ZMM_D(0), s->ZMM_D(0), &env->sse_status);
975 d->ZMM_D(1) = float64_add(d->ZMM_D(1), s->ZMM_D(1), &env->sse_status);
976 }
977
978 /* XXX: unordered */
979 #define SSE_HELPER_CMP(name, F) \
980 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \
981 { \
982 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
983 d->ZMM_L(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \
984 d->ZMM_L(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \
985 d->ZMM_L(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \
986 } \
987 \
988 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \
989 { \
990 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
991 } \
992 \
993 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \
994 { \
995 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
996 d->ZMM_Q(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \
997 } \
998 \
999 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \
1000 { \
1001 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
1002 }
1003
1004 #define FPU_CMPEQ(size, a, b) \
1005 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0)
1006 #define FPU_CMPLT(size, a, b) \
1007 (float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0)
1008 #define FPU_CMPLE(size, a, b) \
1009 (float ## size ## _le(a, b, &env->sse_status) ? -1 : 0)
1010 #define FPU_CMPUNORD(size, a, b) \
1011 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? -1 : 0)
1012 #define FPU_CMPNEQ(size, a, b) \
1013 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1)
1014 #define FPU_CMPNLT(size, a, b) \
1015 (float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1)
1016 #define FPU_CMPNLE(size, a, b) \
1017 (float ## size ## _le(a, b, &env->sse_status) ? 0 : -1)
1018 #define FPU_CMPORD(size, a, b) \
1019 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1)
1020
1021 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
1022 SSE_HELPER_CMP(cmplt, FPU_CMPLT)
1023 SSE_HELPER_CMP(cmple, FPU_CMPLE)
1024 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
1025 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
1026 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
1027 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
1028 SSE_HELPER_CMP(cmpord, FPU_CMPORD)
1029
1030 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
1031
1032 void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s)
1033 {
1034 FloatRelation ret;
1035 float32 s0, s1;
1036
1037 s0 = d->ZMM_S(0);
1038 s1 = s->ZMM_S(0);
1039 ret = float32_compare_quiet(s0, s1, &env->sse_status);
1040 CC_SRC = comis_eflags[ret + 1];
1041 }
1042
1043 void helper_comiss(CPUX86State *env, Reg *d, Reg *s)
1044 {
1045 FloatRelation ret;
1046 float32 s0, s1;
1047
1048 s0 = d->ZMM_S(0);
1049 s1 = s->ZMM_S(0);
1050 ret = float32_compare(s0, s1, &env->sse_status);
1051 CC_SRC = comis_eflags[ret + 1];
1052 }
1053
1054 void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s)
1055 {
1056 FloatRelation ret;
1057 float64 d0, d1;
1058
1059 d0 = d->ZMM_D(0);
1060 d1 = s->ZMM_D(0);
1061 ret = float64_compare_quiet(d0, d1, &env->sse_status);
1062 CC_SRC = comis_eflags[ret + 1];
1063 }
1064
1065 void helper_comisd(CPUX86State *env, Reg *d, Reg *s)
1066 {
1067 FloatRelation ret;
1068 float64 d0, d1;
1069
1070 d0 = d->ZMM_D(0);
1071 d1 = s->ZMM_D(0);
1072 ret = float64_compare(d0, d1, &env->sse_status);
1073 CC_SRC = comis_eflags[ret + 1];
1074 }
1075
1076 uint32_t helper_movmskps(CPUX86State *env, Reg *s)
1077 {
1078 int b0, b1, b2, b3;
1079
1080 b0 = s->ZMM_L(0) >> 31;
1081 b1 = s->ZMM_L(1) >> 31;
1082 b2 = s->ZMM_L(2) >> 31;
1083 b3 = s->ZMM_L(3) >> 31;
1084 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
1085 }
1086
1087 uint32_t helper_movmskpd(CPUX86State *env, Reg *s)
1088 {
1089 int b0, b1;
1090
1091 b0 = s->ZMM_L(1) >> 31;
1092 b1 = s->ZMM_L(3) >> 31;
1093 return b0 | (b1 << 1);
1094 }
1095
1096 #endif
1097
1098 uint32_t glue(helper_pmovmskb, SUFFIX)(CPUX86State *env, Reg *s)
1099 {
1100 uint32_t val;
1101
1102 val = 0;
1103 val |= (s->B(0) >> 7);
1104 val |= (s->B(1) >> 6) & 0x02;
1105 val |= (s->B(2) >> 5) & 0x04;
1106 val |= (s->B(3) >> 4) & 0x08;
1107 val |= (s->B(4) >> 3) & 0x10;
1108 val |= (s->B(5) >> 2) & 0x20;
1109 val |= (s->B(6) >> 1) & 0x40;
1110 val |= (s->B(7)) & 0x80;
1111 #if SHIFT == 1
1112 val |= (s->B(8) << 1) & 0x0100;
1113 val |= (s->B(9) << 2) & 0x0200;
1114 val |= (s->B(10) << 3) & 0x0400;
1115 val |= (s->B(11) << 4) & 0x0800;
1116 val |= (s->B(12) << 5) & 0x1000;
1117 val |= (s->B(13) << 6) & 0x2000;
1118 val |= (s->B(14) << 7) & 0x4000;
1119 val |= (s->B(15) << 8) & 0x8000;
1120 #endif
1121 return val;
1122 }
1123
1124 void glue(helper_packsswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1125 {
1126 Reg r;
1127
1128 r.B(0) = satsb((int16_t)d->W(0));
1129 r.B(1) = satsb((int16_t)d->W(1));
1130 r.B(2) = satsb((int16_t)d->W(2));
1131 r.B(3) = satsb((int16_t)d->W(3));
1132 #if SHIFT == 1
1133 r.B(4) = satsb((int16_t)d->W(4));
1134 r.B(5) = satsb((int16_t)d->W(5));
1135 r.B(6) = satsb((int16_t)d->W(6));
1136 r.B(7) = satsb((int16_t)d->W(7));
1137 #endif
1138 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1139 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1140 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1141 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1142 #if SHIFT == 1
1143 r.B(12) = satsb((int16_t)s->W(4));
1144 r.B(13) = satsb((int16_t)s->W(5));
1145 r.B(14) = satsb((int16_t)s->W(6));
1146 r.B(15) = satsb((int16_t)s->W(7));
1147 #endif
1148 *d = r;
1149 }
1150
1151 void glue(helper_packuswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1152 {
1153 Reg r;
1154
1155 r.B(0) = satub((int16_t)d->W(0));
1156 r.B(1) = satub((int16_t)d->W(1));
1157 r.B(2) = satub((int16_t)d->W(2));
1158 r.B(3) = satub((int16_t)d->W(3));
1159 #if SHIFT == 1
1160 r.B(4) = satub((int16_t)d->W(4));
1161 r.B(5) = satub((int16_t)d->W(5));
1162 r.B(6) = satub((int16_t)d->W(6));
1163 r.B(7) = satub((int16_t)d->W(7));
1164 #endif
1165 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1166 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1167 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1168 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1169 #if SHIFT == 1
1170 r.B(12) = satub((int16_t)s->W(4));
1171 r.B(13) = satub((int16_t)s->W(5));
1172 r.B(14) = satub((int16_t)s->W(6));
1173 r.B(15) = satub((int16_t)s->W(7));
1174 #endif
1175 *d = r;
1176 }
1177
1178 void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1179 {
1180 Reg r;
1181
1182 r.W(0) = satsw(d->L(0));
1183 r.W(1) = satsw(d->L(1));
1184 #if SHIFT == 1
1185 r.W(2) = satsw(d->L(2));
1186 r.W(3) = satsw(d->L(3));
1187 #endif
1188 r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1189 r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1190 #if SHIFT == 1
1191 r.W(6) = satsw(s->L(2));
1192 r.W(7) = satsw(s->L(3));
1193 #endif
1194 *d = r;
1195 }
1196
1197 #define UNPCK_OP(base_name, base) \
1198 \
1199 void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\
1200 Reg *d, Reg *s) \
1201 { \
1202 Reg r; \
1203 \
1204 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \
1205 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \
1206 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \
1207 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \
1208 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \
1209 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \
1210 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \
1211 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \
1212 XMM_ONLY( \
1213 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \
1214 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \
1215 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \
1216 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \
1217 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \
1218 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \
1219 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \
1220 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \
1221 ) \
1222 *d = r; \
1223 } \
1224 \
1225 void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\
1226 Reg *d, Reg *s) \
1227 { \
1228 Reg r; \
1229 \
1230 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \
1231 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \
1232 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \
1233 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \
1234 XMM_ONLY( \
1235 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \
1236 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \
1237 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \
1238 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \
1239 ) \
1240 *d = r; \
1241 } \
1242 \
1243 void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\
1244 Reg *d, Reg *s) \
1245 { \
1246 Reg r; \
1247 \
1248 r.L(0) = d->L((base << SHIFT) + 0); \
1249 r.L(1) = s->L((base << SHIFT) + 0); \
1250 XMM_ONLY( \
1251 r.L(2) = d->L((base << SHIFT) + 1); \
1252 r.L(3) = s->L((base << SHIFT) + 1); \
1253 ) \
1254 *d = r; \
1255 } \
1256 \
1257 XMM_ONLY( \
1258 void glue(helper_punpck ## base_name ## qdq, SUFFIX)(CPUX86State \
1259 *env, \
1260 Reg *d, \
1261 Reg *s) \
1262 { \
1263 Reg r; \
1264 \
1265 r.Q(0) = d->Q(base); \
1266 r.Q(1) = s->Q(base); \
1267 *d = r; \
1268 } \
1269 )
1270
1271 UNPCK_OP(l, 0)
1272 UNPCK_OP(h, 1)
1273
1274 /* 3DNow! float ops */
1275 #if SHIFT == 0
1276 void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s)
1277 {
1278 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1279 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1280 }
1281
1282 void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s)
1283 {
1284 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1285 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1286 }
1287
1288 void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s)
1289 {
1290 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1291 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1292 }
1293
1294 void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s)
1295 {
1296 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0),
1297 &env->mmx_status));
1298 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1),
1299 &env->mmx_status));
1300 }
1301
1302 void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1303 {
1304 MMXReg r;
1305
1306 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1307 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1308 *d = r;
1309 }
1310
1311 void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s)
1312 {
1313 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1314 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1315 }
1316
1317 void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s)
1318 {
1319 d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0),
1320 &env->mmx_status) ? -1 : 0;
1321 d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1),
1322 &env->mmx_status) ? -1 : 0;
1323 }
1324
1325 void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s)
1326 {
1327 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0),
1328 &env->mmx_status) ? -1 : 0;
1329 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1),
1330 &env->mmx_status) ? -1 : 0;
1331 }
1332
1333 void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s)
1334 {
1335 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0),
1336 &env->mmx_status) ? -1 : 0;
1337 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1),
1338 &env->mmx_status) ? -1 : 0;
1339 }
1340
1341 void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s)
1342 {
1343 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) {
1344 d->MMX_S(0) = s->MMX_S(0);
1345 }
1346 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) {
1347 d->MMX_S(1) = s->MMX_S(1);
1348 }
1349 }
1350
1351 void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s)
1352 {
1353 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) {
1354 d->MMX_S(0) = s->MMX_S(0);
1355 }
1356 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) {
1357 d->MMX_S(1) = s->MMX_S(1);
1358 }
1359 }
1360
1361 void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s)
1362 {
1363 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1364 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1365 }
1366
1367 void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1368 {
1369 MMXReg r;
1370
1371 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1372 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1373 *d = r;
1374 }
1375
1376 void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1377 {
1378 MMXReg r;
1379
1380 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1381 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1382 *d = r;
1383 }
1384
1385 void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s)
1386 {
1387 d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status);
1388 d->MMX_S(1) = d->MMX_S(0);
1389 }
1390
1391 void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s)
1392 {
1393 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1394 d->MMX_S(1) = float32_div(float32_one,
1395 float32_sqrt(d->MMX_S(1), &env->mmx_status),
1396 &env->mmx_status);
1397 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1398 d->MMX_L(0) = d->MMX_L(1);
1399 }
1400
1401 void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s)
1402 {
1403 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1404 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1405 }
1406
1407 void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s)
1408 {
1409 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1410 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1411 }
1412
1413 void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s)
1414 {
1415 MMXReg r;
1416
1417 r.MMX_L(0) = s->MMX_L(1);
1418 r.MMX_L(1) = s->MMX_L(0);
1419 *d = r;
1420 }
1421 #endif
1422
1423 /* SSSE3 op helpers */
1424 void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1425 {
1426 int i;
1427 Reg r;
1428
1429 for (i = 0; i < (8 << SHIFT); i++) {
1430 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1431 }
1432
1433 *d = r;
1434 }
1435
1436 void glue(helper_phaddw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1437 {
1438
1439 Reg r;
1440
1441 r.W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1442 r.W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1443 XMM_ONLY(r.W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1444 XMM_ONLY(r.W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1445 r.W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1446 r.W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1447 XMM_ONLY(r.W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1448 XMM_ONLY(r.W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1449
1450 *d = r;
1451 }
1452
1453 void glue(helper_phaddd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1454 {
1455 Reg r;
1456
1457 r.L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1458 XMM_ONLY(r.L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1459 r.L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1460 XMM_ONLY(r.L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1461
1462 *d = r;
1463 }
1464
1465 void glue(helper_phaddsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1466 {
1467 Reg r;
1468
1469 r.W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1470 r.W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1471 XMM_ONLY(r.W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1472 XMM_ONLY(r.W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1473 r.W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1474 r.W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1475 XMM_ONLY(r.W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1476 XMM_ONLY(r.W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1477
1478 *d = r;
1479 }
1480
1481 void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1482 {
1483 d->W(0) = satsw((int8_t)s->B(0) * (uint8_t)d->B(0) +
1484 (int8_t)s->B(1) * (uint8_t)d->B(1));
1485 d->W(1) = satsw((int8_t)s->B(2) * (uint8_t)d->B(2) +
1486 (int8_t)s->B(3) * (uint8_t)d->B(3));
1487 d->W(2) = satsw((int8_t)s->B(4) * (uint8_t)d->B(4) +
1488 (int8_t)s->B(5) * (uint8_t)d->B(5));
1489 d->W(3) = satsw((int8_t)s->B(6) * (uint8_t)d->B(6) +
1490 (int8_t)s->B(7) * (uint8_t)d->B(7));
1491 #if SHIFT == 1
1492 d->W(4) = satsw((int8_t)s->B(8) * (uint8_t)d->B(8) +
1493 (int8_t)s->B(9) * (uint8_t)d->B(9));
1494 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1495 (int8_t)s->B(11) * (uint8_t)d->B(11));
1496 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1497 (int8_t)s->B(13) * (uint8_t)d->B(13));
1498 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1499 (int8_t)s->B(15) * (uint8_t)d->B(15));
1500 #endif
1501 }
1502
1503 void glue(helper_phsubw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1504 {
1505 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1506 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1507 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1508 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1509 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1510 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1511 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1512 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1513 }
1514
1515 void glue(helper_phsubd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1516 {
1517 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1518 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1519 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1520 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1521 }
1522
1523 void glue(helper_phsubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1524 {
1525 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1526 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1527 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1528 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1529 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1530 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1531 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1532 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1533 }
1534
1535 #define FABSB(_, x) (x > INT8_MAX ? -(int8_t)x : x)
1536 #define FABSW(_, x) (x > INT16_MAX ? -(int16_t)x : x)
1537 #define FABSL(_, x) (x > INT32_MAX ? -(int32_t)x : x)
1538 SSE_HELPER_B(helper_pabsb, FABSB)
1539 SSE_HELPER_W(helper_pabsw, FABSW)
1540 SSE_HELPER_L(helper_pabsd, FABSL)
1541
1542 #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15)
1543 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1544
1545 #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d)
1546 #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d)
1547 #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d)
1548 SSE_HELPER_B(helper_psignb, FSIGNB)
1549 SSE_HELPER_W(helper_psignw, FSIGNW)
1550 SSE_HELPER_L(helper_psignd, FSIGNL)
1551
1552 void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1553 int32_t shift)
1554 {
1555 Reg r;
1556
1557 /* XXX could be checked during translation */
1558 if (shift >= (16 << SHIFT)) {
1559 r.Q(0) = 0;
1560 XMM_ONLY(r.Q(1) = 0);
1561 } else {
1562 shift <<= 3;
1563 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1564 #if SHIFT == 0
1565 r.Q(0) = SHR(s->Q(0), shift - 0) |
1566 SHR(d->Q(0), shift - 64);
1567 #else
1568 r.Q(0) = SHR(s->Q(0), shift - 0) |
1569 SHR(s->Q(1), shift - 64) |
1570 SHR(d->Q(0), shift - 128) |
1571 SHR(d->Q(1), shift - 192);
1572 r.Q(1) = SHR(s->Q(0), shift + 64) |
1573 SHR(s->Q(1), shift - 0) |
1574 SHR(d->Q(0), shift - 64) |
1575 SHR(d->Q(1), shift - 128);
1576 #endif
1577 #undef SHR
1578 }
1579
1580 *d = r;
1581 }
1582
1583 #define XMM0 (env->xmm_regs[0])
1584
1585 #if SHIFT == 1
1586 #define SSE_HELPER_V(name, elem, num, F) \
1587 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
1588 { \
1589 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0)); \
1590 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1)); \
1591 if (num > 2) { \
1592 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2)); \
1593 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3)); \
1594 if (num > 4) { \
1595 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4)); \
1596 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5)); \
1597 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6)); \
1598 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7)); \
1599 if (num > 8) { \
1600 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8)); \
1601 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9)); \
1602 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10)); \
1603 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11)); \
1604 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12)); \
1605 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13)); \
1606 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14)); \
1607 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15)); \
1608 } \
1609 } \
1610 } \
1611 }
1612
1613 #define SSE_HELPER_I(name, elem, num, F) \
1614 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t imm) \
1615 { \
1616 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1)); \
1617 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1)); \
1618 if (num > 2) { \
1619 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1)); \
1620 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1)); \
1621 if (num > 4) { \
1622 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1)); \
1623 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1)); \
1624 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1)); \
1625 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1)); \
1626 if (num > 8) { \
1627 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1)); \
1628 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1)); \
1629 d->elem(10) = F(d->elem(10), s->elem(10), \
1630 ((imm >> 10) & 1)); \
1631 d->elem(11) = F(d->elem(11), s->elem(11), \
1632 ((imm >> 11) & 1)); \
1633 d->elem(12) = F(d->elem(12), s->elem(12), \
1634 ((imm >> 12) & 1)); \
1635 d->elem(13) = F(d->elem(13), s->elem(13), \
1636 ((imm >> 13) & 1)); \
1637 d->elem(14) = F(d->elem(14), s->elem(14), \
1638 ((imm >> 14) & 1)); \
1639 d->elem(15) = F(d->elem(15), s->elem(15), \
1640 ((imm >> 15) & 1)); \
1641 } \
1642 } \
1643 } \
1644 }
1645
1646 /* SSE4.1 op helpers */
1647 #define FBLENDVB(d, s, m) ((m & 0x80) ? s : d)
1648 #define FBLENDVPS(d, s, m) ((m & 0x80000000) ? s : d)
1649 #define FBLENDVPD(d, s, m) ((m & 0x8000000000000000LL) ? s : d)
1650 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1651 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1652 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1653
1654 void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1655 {
1656 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1));
1657 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1658
1659 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1660 }
1661
1662 #define SSE_HELPER_F(name, elem, num, F) \
1663 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
1664 { \
1665 if (num > 2) { \
1666 if (num > 4) { \
1667 d->elem(7) = F(7); \
1668 d->elem(6) = F(6); \
1669 d->elem(5) = F(5); \
1670 d->elem(4) = F(4); \
1671 } \
1672 d->elem(3) = F(3); \
1673 d->elem(2) = F(2); \
1674 } \
1675 d->elem(1) = F(1); \
1676 d->elem(0) = F(0); \
1677 }
1678
1679 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1680 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1681 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1682 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1683 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1684 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1685 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1686 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1687 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1688 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1689 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1690 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1691
1692 void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1693 {
1694 d->Q(0) = (int64_t)(int32_t) d->L(0) * (int32_t) s->L(0);
1695 d->Q(1) = (int64_t)(int32_t) d->L(2) * (int32_t) s->L(2);
1696 }
1697
1698 #define FCMPEQQ(d, s) (d == s ? -1 : 0)
1699 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1700
1701 void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1702 {
1703 Reg r;
1704
1705 r.W(0) = satuw((int32_t) d->L(0));
1706 r.W(1) = satuw((int32_t) d->L(1));
1707 r.W(2) = satuw((int32_t) d->L(2));
1708 r.W(3) = satuw((int32_t) d->L(3));
1709 r.W(4) = satuw((int32_t) s->L(0));
1710 r.W(5) = satuw((int32_t) s->L(1));
1711 r.W(6) = satuw((int32_t) s->L(2));
1712 r.W(7) = satuw((int32_t) s->L(3));
1713 *d = r;
1714 }
1715
1716 #define FMINSB(d, s) MIN((int8_t)d, (int8_t)s)
1717 #define FMINSD(d, s) MIN((int32_t)d, (int32_t)s)
1718 #define FMAXSB(d, s) MAX((int8_t)d, (int8_t)s)
1719 #define FMAXSD(d, s) MAX((int32_t)d, (int32_t)s)
1720 SSE_HELPER_B(helper_pminsb, FMINSB)
1721 SSE_HELPER_L(helper_pminsd, FMINSD)
1722 SSE_HELPER_W(helper_pminuw, MIN)
1723 SSE_HELPER_L(helper_pminud, MIN)
1724 SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1725 SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1726 SSE_HELPER_W(helper_pmaxuw, MAX)
1727 SSE_HELPER_L(helper_pmaxud, MAX)
1728
1729 #define FMULLD(d, s) ((int32_t)d * (int32_t)s)
1730 SSE_HELPER_L(helper_pmulld, FMULLD)
1731
1732 void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1733 {
1734 int idx = 0;
1735
1736 if (s->W(1) < s->W(idx)) {
1737 idx = 1;
1738 }
1739 if (s->W(2) < s->W(idx)) {
1740 idx = 2;
1741 }
1742 if (s->W(3) < s->W(idx)) {
1743 idx = 3;
1744 }
1745 if (s->W(4) < s->W(idx)) {
1746 idx = 4;
1747 }
1748 if (s->W(5) < s->W(idx)) {
1749 idx = 5;
1750 }
1751 if (s->W(6) < s->W(idx)) {
1752 idx = 6;
1753 }
1754 if (s->W(7) < s->W(idx)) {
1755 idx = 7;
1756 }
1757
1758 d->W(0) = s->W(idx);
1759 d->W(1) = idx;
1760 d->L(1) = 0;
1761 d->Q(1) = 0;
1762 }
1763
1764 void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1765 uint32_t mode)
1766 {
1767 signed char prev_rounding_mode;
1768
1769 prev_rounding_mode = env->sse_status.float_rounding_mode;
1770 if (!(mode & (1 << 2))) {
1771 switch (mode & 3) {
1772 case 0:
1773 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1774 break;
1775 case 1:
1776 set_float_rounding_mode(float_round_down, &env->sse_status);
1777 break;
1778 case 2:
1779 set_float_rounding_mode(float_round_up, &env->sse_status);
1780 break;
1781 case 3:
1782 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1783 break;
1784 }
1785 }
1786
1787 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status);
1788 d->ZMM_S(1) = float32_round_to_int(s->ZMM_S(1), &env->sse_status);
1789 d->ZMM_S(2) = float32_round_to_int(s->ZMM_S(2), &env->sse_status);
1790 d->ZMM_S(3) = float32_round_to_int(s->ZMM_S(3), &env->sse_status);
1791
1792 #if 0 /* TODO */
1793 if (mode & (1 << 3)) {
1794 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1795 ~float_flag_inexact,
1796 &env->sse_status);
1797 }
1798 #endif
1799 env->sse_status.float_rounding_mode = prev_rounding_mode;
1800 }
1801
1802 void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1803 uint32_t mode)
1804 {
1805 signed char prev_rounding_mode;
1806
1807 prev_rounding_mode = env->sse_status.float_rounding_mode;
1808 if (!(mode & (1 << 2))) {
1809 switch (mode & 3) {
1810 case 0:
1811 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1812 break;
1813 case 1:
1814 set_float_rounding_mode(float_round_down, &env->sse_status);
1815 break;
1816 case 2:
1817 set_float_rounding_mode(float_round_up, &env->sse_status);
1818 break;
1819 case 3:
1820 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1821 break;
1822 }
1823 }
1824
1825 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status);
1826 d->ZMM_D(1) = float64_round_to_int(s->ZMM_D(1), &env->sse_status);
1827
1828 #if 0 /* TODO */
1829 if (mode & (1 << 3)) {
1830 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1831 ~float_flag_inexact,
1832 &env->sse_status);
1833 }
1834 #endif
1835 env->sse_status.float_rounding_mode = prev_rounding_mode;
1836 }
1837
1838 void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1839 uint32_t mode)
1840 {
1841 signed char prev_rounding_mode;
1842
1843 prev_rounding_mode = env->sse_status.float_rounding_mode;
1844 if (!(mode & (1 << 2))) {
1845 switch (mode & 3) {
1846 case 0:
1847 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1848 break;
1849 case 1:
1850 set_float_rounding_mode(float_round_down, &env->sse_status);
1851 break;
1852 case 2:
1853 set_float_rounding_mode(float_round_up, &env->sse_status);
1854 break;
1855 case 3:
1856 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1857 break;
1858 }
1859 }
1860
1861 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status);
1862
1863 #if 0 /* TODO */
1864 if (mode & (1 << 3)) {
1865 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1866 ~float_flag_inexact,
1867 &env->sse_status);
1868 }
1869 #endif
1870 env->sse_status.float_rounding_mode = prev_rounding_mode;
1871 }
1872
1873 void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1874 uint32_t mode)
1875 {
1876 signed char prev_rounding_mode;
1877
1878 prev_rounding_mode = env->sse_status.float_rounding_mode;
1879 if (!(mode & (1 << 2))) {
1880 switch (mode & 3) {
1881 case 0:
1882 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1883 break;
1884 case 1:
1885 set_float_rounding_mode(float_round_down, &env->sse_status);
1886 break;
1887 case 2:
1888 set_float_rounding_mode(float_round_up, &env->sse_status);
1889 break;
1890 case 3:
1891 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1892 break;
1893 }
1894 }
1895
1896 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status);
1897
1898 #if 0 /* TODO */
1899 if (mode & (1 << 3)) {
1900 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1901 ~float_flag_inexact,
1902 &env->sse_status);
1903 }
1904 #endif
1905 env->sse_status.float_rounding_mode = prev_rounding_mode;
1906 }
1907
1908 #define FBLENDP(d, s, m) (m ? s : d)
1909 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1910 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1911 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1912
1913 void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask)
1914 {
1915 float32 iresult = float32_zero;
1916
1917 if (mask & (1 << 4)) {
1918 iresult = float32_add(iresult,
1919 float32_mul(d->ZMM_S(0), s->ZMM_S(0),
1920 &env->sse_status),
1921 &env->sse_status);
1922 }
1923 if (mask & (1 << 5)) {
1924 iresult = float32_add(iresult,
1925 float32_mul(d->ZMM_S(1), s->ZMM_S(1),
1926 &env->sse_status),
1927 &env->sse_status);
1928 }
1929 if (mask & (1 << 6)) {
1930 iresult = float32_add(iresult,
1931 float32_mul(d->ZMM_S(2), s->ZMM_S(2),
1932 &env->sse_status),
1933 &env->sse_status);
1934 }
1935 if (mask & (1 << 7)) {
1936 iresult = float32_add(iresult,
1937 float32_mul(d->ZMM_S(3), s->ZMM_S(3),
1938 &env->sse_status),
1939 &env->sse_status);
1940 }
1941 d->ZMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero;
1942 d->ZMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero;
1943 d->ZMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero;
1944 d->ZMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero;
1945 }
1946
1947 void glue(helper_dppd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask)
1948 {
1949 float64 iresult = float64_zero;
1950
1951 if (mask & (1 << 4)) {
1952 iresult = float64_add(iresult,
1953 float64_mul(d->ZMM_D(0), s->ZMM_D(0),
1954 &env->sse_status),
1955 &env->sse_status);
1956 }
1957 if (mask & (1 << 5)) {
1958 iresult = float64_add(iresult,
1959 float64_mul(d->ZMM_D(1), s->ZMM_D(1),
1960 &env->sse_status),
1961 &env->sse_status);
1962 }
1963 d->ZMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero;
1964 d->ZMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero;
1965 }
1966
1967 void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1968 uint32_t offset)
1969 {
1970 int s0 = (offset & 3) << 2;
1971 int d0 = (offset & 4) << 0;
1972 int i;
1973 Reg r;
1974
1975 for (i = 0; i < 8; i++, d0++) {
1976 r.W(i) = 0;
1977 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1978 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1979 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1980 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1981 }
1982
1983 *d = r;
1984 }
1985
1986 /* SSE4.2 op helpers */
1987 #define FCMPGTQ(d, s) ((int64_t)d > (int64_t)s ? -1 : 0)
1988 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1989
1990 static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl)
1991 {
1992 int val;
1993
1994 /* Presence of REX.W is indicated by a bit higher than 7 set */
1995 if (ctrl >> 8) {
1996 val = abs1((int64_t)env->regs[reg]);
1997 } else {
1998 val = abs1((int32_t)env->regs[reg]);
1999 }
2000
2001 if (ctrl & 1) {
2002 if (val > 8) {
2003 return 8;
2004 }
2005 } else {
2006 if (val > 16) {
2007 return 16;
2008 }
2009 }
2010 return val;
2011 }
2012
2013 static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
2014 {
2015 int val = 0;
2016
2017 if (ctrl & 1) {
2018 while (val < 8 && r->W(val)) {
2019 val++;
2020 }
2021 } else {
2022 while (val < 16 && r->B(val)) {
2023 val++;
2024 }
2025 }
2026
2027 return val;
2028 }
2029
2030 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
2031 {
2032 switch ((ctrl >> 0) & 3) {
2033 case 0:
2034 return r->B(i);
2035 case 1:
2036 return r->W(i);
2037 case 2:
2038 return (int8_t)r->B(i);
2039 case 3:
2040 default:
2041 return (int16_t)r->W(i);
2042 }
2043 }
2044
2045 static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s,
2046 int8_t ctrl, int valids, int validd)
2047 {
2048 unsigned int res = 0;
2049 int v;
2050 int j, i;
2051 int upper = (ctrl & 1) ? 7 : 15;
2052
2053 valids--;
2054 validd--;
2055
2056 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
2057
2058 switch ((ctrl >> 2) & 3) {
2059 case 0:
2060 for (j = valids; j >= 0; j--) {
2061 res <<= 1;
2062 v = pcmp_val(s, ctrl, j);
2063 for (i = validd; i >= 0; i--) {
2064 res |= (v == pcmp_val(d, ctrl, i));
2065 }
2066 }
2067 break;
2068 case 1:
2069 for (j = valids; j >= 0; j--) {
2070 res <<= 1;
2071 v = pcmp_val(s, ctrl, j);
2072 for (i = ((validd - 1) | 1); i >= 0; i -= 2) {
2073 res |= (pcmp_val(d, ctrl, i - 0) >= v &&
2074 pcmp_val(d, ctrl, i - 1) <= v);
2075 }
2076 }
2077 break;
2078 case 2:
2079 res = (1 << (upper - MAX(valids, validd))) - 1;
2080 res <<= MAX(valids, validd) - MIN(valids, validd);
2081 for (i = MIN(valids, validd); i >= 0; i--) {
2082 res <<= 1;
2083 v = pcmp_val(s, ctrl, i);
2084 res |= (v == pcmp_val(d, ctrl, i));
2085 }
2086 break;
2087 case 3:
2088 if (validd == -1) {
2089 res = (2 << upper) - 1;
2090 break;
2091 }
2092 for (j = valids == upper ? valids : valids - validd; j >= 0; j--) {
2093 res <<= 1;
2094 v = 1;
2095 for (i = MIN(valids - j, validd); i >= 0; i--) {
2096 v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
2097 }
2098 res |= v;
2099 }
2100 break;
2101 }
2102
2103 switch ((ctrl >> 4) & 3) {
2104 case 1:
2105 res ^= (2 << upper) - 1;
2106 break;
2107 case 3:
2108 res ^= (1 << (valids + 1)) - 1;
2109 break;
2110 }
2111
2112 if (res) {
2113 CC_SRC |= CC_C;
2114 }
2115 if (res & 1) {
2116 CC_SRC |= CC_O;
2117 }
2118
2119 return res;
2120 }
2121
2122 void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2123 uint32_t ctrl)
2124 {
2125 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2126 pcmp_elen(env, R_EDX, ctrl),
2127 pcmp_elen(env, R_EAX, ctrl));
2128
2129 if (res) {
2130 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2131 } else {
2132 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2133 }
2134 }
2135
2136 void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2137 uint32_t ctrl)
2138 {
2139 int i;
2140 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2141 pcmp_elen(env, R_EDX, ctrl),
2142 pcmp_elen(env, R_EAX, ctrl));
2143
2144 if ((ctrl >> 6) & 1) {
2145 if (ctrl & 1) {
2146 for (i = 0; i < 8; i++, res >>= 1) {
2147 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2148 }
2149 } else {
2150 for (i = 0; i < 16; i++, res >>= 1) {
2151 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2152 }
2153 }
2154 } else {
2155 env->xmm_regs[0].Q(1) = 0;
2156 env->xmm_regs[0].Q(0) = res;
2157 }
2158 }
2159
2160 void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2161 uint32_t ctrl)
2162 {
2163 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2164 pcmp_ilen(s, ctrl),
2165 pcmp_ilen(d, ctrl));
2166
2167 if (res) {
2168 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2169 } else {
2170 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2171 }
2172 }
2173
2174 void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2175 uint32_t ctrl)
2176 {
2177 int i;
2178 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2179 pcmp_ilen(s, ctrl),
2180 pcmp_ilen(d, ctrl));
2181
2182 if ((ctrl >> 6) & 1) {
2183 if (ctrl & 1) {
2184 for (i = 0; i < 8; i++, res >>= 1) {
2185 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2186 }
2187 } else {
2188 for (i = 0; i < 16; i++, res >>= 1) {
2189 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2190 }
2191 }
2192 } else {
2193 env->xmm_regs[0].Q(1) = 0;
2194 env->xmm_regs[0].Q(0) = res;
2195 }
2196 }
2197
2198 #define CRCPOLY 0x1edc6f41
2199 #define CRCPOLY_BITREV 0x82f63b78
2200 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2201 {
2202 target_ulong crc = (msg & ((target_ulong) -1 >>
2203 (TARGET_LONG_BITS - len))) ^ crc1;
2204
2205 while (len--) {
2206 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2207 }
2208
2209 return crc;
2210 }
2211
2212 void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2213 uint32_t ctrl)
2214 {
2215 uint64_t ah, al, b, resh, resl;
2216
2217 ah = 0;
2218 al = d->Q((ctrl & 1) != 0);
2219 b = s->Q((ctrl & 16) != 0);
2220 resh = resl = 0;
2221
2222 while (b) {
2223 if (b & 1) {
2224 resl ^= al;
2225 resh ^= ah;
2226 }
2227 ah = (ah << 1) | (al >> 63);
2228 al <<= 1;
2229 b >>= 1;
2230 }
2231
2232 d->Q(0) = resl;
2233 d->Q(1) = resh;
2234 }
2235
2236 void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2237 {
2238 int i;
2239 Reg st = *d;
2240 Reg rk = *s;
2241
2242 for (i = 0 ; i < 4 ; i++) {
2243 d->L(i) = rk.L(i) ^ bswap32(AES_Td0[st.B(AES_ishifts[4*i+0])] ^
2244 AES_Td1[st.B(AES_ishifts[4*i+1])] ^
2245 AES_Td2[st.B(AES_ishifts[4*i+2])] ^
2246 AES_Td3[st.B(AES_ishifts[4*i+3])]);
2247 }
2248 }
2249
2250 void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2251 {
2252 int i;
2253 Reg st = *d;
2254 Reg rk = *s;
2255
2256 for (i = 0; i < 16; i++) {
2257 d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i])]);
2258 }
2259 }
2260
2261 void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2262 {
2263 int i;
2264 Reg st = *d;
2265 Reg rk = *s;
2266
2267 for (i = 0 ; i < 4 ; i++) {
2268 d->L(i) = rk.L(i) ^ bswap32(AES_Te0[st.B(AES_shifts[4*i+0])] ^
2269 AES_Te1[st.B(AES_shifts[4*i+1])] ^
2270 AES_Te2[st.B(AES_shifts[4*i+2])] ^
2271 AES_Te3[st.B(AES_shifts[4*i+3])]);
2272 }
2273 }
2274
2275 void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2276 {
2277 int i;
2278 Reg st = *d;
2279 Reg rk = *s;
2280
2281 for (i = 0; i < 16; i++) {
2282 d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i])]);
2283 }
2284
2285 }
2286
2287 void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2288 {
2289 int i;
2290 Reg tmp = *s;
2291
2292 for (i = 0 ; i < 4 ; i++) {
2293 d->L(i) = bswap32(AES_imc[tmp.B(4*i+0)][0] ^
2294 AES_imc[tmp.B(4*i+1)][1] ^
2295 AES_imc[tmp.B(4*i+2)][2] ^
2296 AES_imc[tmp.B(4*i+3)][3]);
2297 }
2298 }
2299
2300 void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2301 uint32_t ctrl)
2302 {
2303 int i;
2304 Reg tmp = *s;
2305
2306 for (i = 0 ; i < 4 ; i++) {
2307 d->B(i) = AES_sbox[tmp.B(i + 4)];
2308 d->B(i + 8) = AES_sbox[tmp.B(i + 12)];
2309 }
2310 d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl;
2311 d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl;
2312 }
2313 #endif
2314
2315 #undef SHIFT
2316 #undef XMM_ONLY
2317 #undef Reg
2318 #undef B
2319 #undef W
2320 #undef L
2321 #undef Q
2322 #undef SUFFIX