target/arm: Convert Neon VCVT fixed-point to gvec
[qemu.git] / target / i386 / ops_sse.h
1 /*
2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com>
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "crypto/aes.h"
22
23 #if SHIFT == 0
24 #define Reg MMXReg
25 #define XMM_ONLY(...)
26 #define B(n) MMX_B(n)
27 #define W(n) MMX_W(n)
28 #define L(n) MMX_L(n)
29 #define Q(n) MMX_Q(n)
30 #define SUFFIX _mmx
31 #else
32 #define Reg ZMMReg
33 #define XMM_ONLY(...) __VA_ARGS__
34 #define B(n) ZMM_B(n)
35 #define W(n) ZMM_W(n)
36 #define L(n) ZMM_L(n)
37 #define Q(n) ZMM_Q(n)
38 #define SUFFIX _xmm
39 #endif
40
41 void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
42 {
43 int shift;
44
45 if (s->Q(0) > 15) {
46 d->Q(0) = 0;
47 #if SHIFT == 1
48 d->Q(1) = 0;
49 #endif
50 } else {
51 shift = s->B(0);
52 d->W(0) >>= shift;
53 d->W(1) >>= shift;
54 d->W(2) >>= shift;
55 d->W(3) >>= shift;
56 #if SHIFT == 1
57 d->W(4) >>= shift;
58 d->W(5) >>= shift;
59 d->W(6) >>= shift;
60 d->W(7) >>= shift;
61 #endif
62 }
63 }
64
65 void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
66 {
67 int shift;
68
69 if (s->Q(0) > 15) {
70 shift = 15;
71 } else {
72 shift = s->B(0);
73 }
74 d->W(0) = (int16_t)d->W(0) >> shift;
75 d->W(1) = (int16_t)d->W(1) >> shift;
76 d->W(2) = (int16_t)d->W(2) >> shift;
77 d->W(3) = (int16_t)d->W(3) >> shift;
78 #if SHIFT == 1
79 d->W(4) = (int16_t)d->W(4) >> shift;
80 d->W(5) = (int16_t)d->W(5) >> shift;
81 d->W(6) = (int16_t)d->W(6) >> shift;
82 d->W(7) = (int16_t)d->W(7) >> shift;
83 #endif
84 }
85
86 void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
87 {
88 int shift;
89
90 if (s->Q(0) > 15) {
91 d->Q(0) = 0;
92 #if SHIFT == 1
93 d->Q(1) = 0;
94 #endif
95 } else {
96 shift = s->B(0);
97 d->W(0) <<= shift;
98 d->W(1) <<= shift;
99 d->W(2) <<= shift;
100 d->W(3) <<= shift;
101 #if SHIFT == 1
102 d->W(4) <<= shift;
103 d->W(5) <<= shift;
104 d->W(6) <<= shift;
105 d->W(7) <<= shift;
106 #endif
107 }
108 }
109
110 void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
111 {
112 int shift;
113
114 if (s->Q(0) > 31) {
115 d->Q(0) = 0;
116 #if SHIFT == 1
117 d->Q(1) = 0;
118 #endif
119 } else {
120 shift = s->B(0);
121 d->L(0) >>= shift;
122 d->L(1) >>= shift;
123 #if SHIFT == 1
124 d->L(2) >>= shift;
125 d->L(3) >>= shift;
126 #endif
127 }
128 }
129
130 void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
131 {
132 int shift;
133
134 if (s->Q(0) > 31) {
135 shift = 31;
136 } else {
137 shift = s->B(0);
138 }
139 d->L(0) = (int32_t)d->L(0) >> shift;
140 d->L(1) = (int32_t)d->L(1) >> shift;
141 #if SHIFT == 1
142 d->L(2) = (int32_t)d->L(2) >> shift;
143 d->L(3) = (int32_t)d->L(3) >> shift;
144 #endif
145 }
146
147 void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
148 {
149 int shift;
150
151 if (s->Q(0) > 31) {
152 d->Q(0) = 0;
153 #if SHIFT == 1
154 d->Q(1) = 0;
155 #endif
156 } else {
157 shift = s->B(0);
158 d->L(0) <<= shift;
159 d->L(1) <<= shift;
160 #if SHIFT == 1
161 d->L(2) <<= shift;
162 d->L(3) <<= shift;
163 #endif
164 }
165 }
166
167 void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
168 {
169 int shift;
170
171 if (s->Q(0) > 63) {
172 d->Q(0) = 0;
173 #if SHIFT == 1
174 d->Q(1) = 0;
175 #endif
176 } else {
177 shift = s->B(0);
178 d->Q(0) >>= shift;
179 #if SHIFT == 1
180 d->Q(1) >>= shift;
181 #endif
182 }
183 }
184
185 void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
186 {
187 int shift;
188
189 if (s->Q(0) > 63) {
190 d->Q(0) = 0;
191 #if SHIFT == 1
192 d->Q(1) = 0;
193 #endif
194 } else {
195 shift = s->B(0);
196 d->Q(0) <<= shift;
197 #if SHIFT == 1
198 d->Q(1) <<= shift;
199 #endif
200 }
201 }
202
203 #if SHIFT == 1
204 void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
205 {
206 int shift, i;
207
208 shift = s->L(0);
209 if (shift > 16) {
210 shift = 16;
211 }
212 for (i = 0; i < 16 - shift; i++) {
213 d->B(i) = d->B(i + shift);
214 }
215 for (i = 16 - shift; i < 16; i++) {
216 d->B(i) = 0;
217 }
218 }
219
220 void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
221 {
222 int shift, i;
223
224 shift = s->L(0);
225 if (shift > 16) {
226 shift = 16;
227 }
228 for (i = 15; i >= shift; i--) {
229 d->B(i) = d->B(i - shift);
230 }
231 for (i = 0; i < shift; i++) {
232 d->B(i) = 0;
233 }
234 }
235 #endif
236
237 #define SSE_HELPER_B(name, F) \
238 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
239 { \
240 d->B(0) = F(d->B(0), s->B(0)); \
241 d->B(1) = F(d->B(1), s->B(1)); \
242 d->B(2) = F(d->B(2), s->B(2)); \
243 d->B(3) = F(d->B(3), s->B(3)); \
244 d->B(4) = F(d->B(4), s->B(4)); \
245 d->B(5) = F(d->B(5), s->B(5)); \
246 d->B(6) = F(d->B(6), s->B(6)); \
247 d->B(7) = F(d->B(7), s->B(7)); \
248 XMM_ONLY( \
249 d->B(8) = F(d->B(8), s->B(8)); \
250 d->B(9) = F(d->B(9), s->B(9)); \
251 d->B(10) = F(d->B(10), s->B(10)); \
252 d->B(11) = F(d->B(11), s->B(11)); \
253 d->B(12) = F(d->B(12), s->B(12)); \
254 d->B(13) = F(d->B(13), s->B(13)); \
255 d->B(14) = F(d->B(14), s->B(14)); \
256 d->B(15) = F(d->B(15), s->B(15)); \
257 ) \
258 }
259
260 #define SSE_HELPER_W(name, F) \
261 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
262 { \
263 d->W(0) = F(d->W(0), s->W(0)); \
264 d->W(1) = F(d->W(1), s->W(1)); \
265 d->W(2) = F(d->W(2), s->W(2)); \
266 d->W(3) = F(d->W(3), s->W(3)); \
267 XMM_ONLY( \
268 d->W(4) = F(d->W(4), s->W(4)); \
269 d->W(5) = F(d->W(5), s->W(5)); \
270 d->W(6) = F(d->W(6), s->W(6)); \
271 d->W(7) = F(d->W(7), s->W(7)); \
272 ) \
273 }
274
275 #define SSE_HELPER_L(name, F) \
276 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
277 { \
278 d->L(0) = F(d->L(0), s->L(0)); \
279 d->L(1) = F(d->L(1), s->L(1)); \
280 XMM_ONLY( \
281 d->L(2) = F(d->L(2), s->L(2)); \
282 d->L(3) = F(d->L(3), s->L(3)); \
283 ) \
284 }
285
286 #define SSE_HELPER_Q(name, F) \
287 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
288 { \
289 d->Q(0) = F(d->Q(0), s->Q(0)); \
290 XMM_ONLY( \
291 d->Q(1) = F(d->Q(1), s->Q(1)); \
292 ) \
293 }
294
295 #if SHIFT == 0
296 static inline int satub(int x)
297 {
298 if (x < 0) {
299 return 0;
300 } else if (x > 255) {
301 return 255;
302 } else {
303 return x;
304 }
305 }
306
307 static inline int satuw(int x)
308 {
309 if (x < 0) {
310 return 0;
311 } else if (x > 65535) {
312 return 65535;
313 } else {
314 return x;
315 }
316 }
317
318 static inline int satsb(int x)
319 {
320 if (x < -128) {
321 return -128;
322 } else if (x > 127) {
323 return 127;
324 } else {
325 return x;
326 }
327 }
328
329 static inline int satsw(int x)
330 {
331 if (x < -32768) {
332 return -32768;
333 } else if (x > 32767) {
334 return 32767;
335 } else {
336 return x;
337 }
338 }
339
340 #define FADD(a, b) ((a) + (b))
341 #define FADDUB(a, b) satub((a) + (b))
342 #define FADDUW(a, b) satuw((a) + (b))
343 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
344 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
345
346 #define FSUB(a, b) ((a) - (b))
347 #define FSUBUB(a, b) satub((a) - (b))
348 #define FSUBUW(a, b) satuw((a) - (b))
349 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
350 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
351 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
352 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
353 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
354 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
355
356 #define FAND(a, b) ((a) & (b))
357 #define FANDN(a, b) ((~(a)) & (b))
358 #define FOR(a, b) ((a) | (b))
359 #define FXOR(a, b) ((a) ^ (b))
360
361 #define FCMPGTB(a, b) ((int8_t)(a) > (int8_t)(b) ? -1 : 0)
362 #define FCMPGTW(a, b) ((int16_t)(a) > (int16_t)(b) ? -1 : 0)
363 #define FCMPGTL(a, b) ((int32_t)(a) > (int32_t)(b) ? -1 : 0)
364 #define FCMPEQ(a, b) ((a) == (b) ? -1 : 0)
365
366 #define FMULLW(a, b) ((a) * (b))
367 #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16)
368 #define FMULHUW(a, b) ((a) * (b) >> 16)
369 #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16)
370
371 #define FAVG(a, b) (((a) + (b) + 1) >> 1)
372 #endif
373
374 SSE_HELPER_B(helper_paddb, FADD)
375 SSE_HELPER_W(helper_paddw, FADD)
376 SSE_HELPER_L(helper_paddl, FADD)
377 SSE_HELPER_Q(helper_paddq, FADD)
378
379 SSE_HELPER_B(helper_psubb, FSUB)
380 SSE_HELPER_W(helper_psubw, FSUB)
381 SSE_HELPER_L(helper_psubl, FSUB)
382 SSE_HELPER_Q(helper_psubq, FSUB)
383
384 SSE_HELPER_B(helper_paddusb, FADDUB)
385 SSE_HELPER_B(helper_paddsb, FADDSB)
386 SSE_HELPER_B(helper_psubusb, FSUBUB)
387 SSE_HELPER_B(helper_psubsb, FSUBSB)
388
389 SSE_HELPER_W(helper_paddusw, FADDUW)
390 SSE_HELPER_W(helper_paddsw, FADDSW)
391 SSE_HELPER_W(helper_psubusw, FSUBUW)
392 SSE_HELPER_W(helper_psubsw, FSUBSW)
393
394 SSE_HELPER_B(helper_pminub, FMINUB)
395 SSE_HELPER_B(helper_pmaxub, FMAXUB)
396
397 SSE_HELPER_W(helper_pminsw, FMINSW)
398 SSE_HELPER_W(helper_pmaxsw, FMAXSW)
399
400 SSE_HELPER_Q(helper_pand, FAND)
401 SSE_HELPER_Q(helper_pandn, FANDN)
402 SSE_HELPER_Q(helper_por, FOR)
403 SSE_HELPER_Q(helper_pxor, FXOR)
404
405 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
406 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
407 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
408
409 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
410 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
411 SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
412
413 SSE_HELPER_W(helper_pmullw, FMULLW)
414 #if SHIFT == 0
415 SSE_HELPER_W(helper_pmulhrw, FMULHRW)
416 #endif
417 SSE_HELPER_W(helper_pmulhuw, FMULHUW)
418 SSE_HELPER_W(helper_pmulhw, FMULHW)
419
420 SSE_HELPER_B(helper_pavgb, FAVG)
421 SSE_HELPER_W(helper_pavgw, FAVG)
422
423 void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
424 {
425 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
426 #if SHIFT == 1
427 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
428 #endif
429 }
430
431 void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
432 {
433 int i;
434
435 for (i = 0; i < (2 << SHIFT); i++) {
436 d->L(i) = (int16_t)s->W(2 * i) * (int16_t)d->W(2 * i) +
437 (int16_t)s->W(2 * i + 1) * (int16_t)d->W(2 * i + 1);
438 }
439 }
440
441 #if SHIFT == 0
442 static inline int abs1(int a)
443 {
444 if (a < 0) {
445 return -a;
446 } else {
447 return a;
448 }
449 }
450 #endif
451 void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
452 {
453 unsigned int val;
454
455 val = 0;
456 val += abs1(d->B(0) - s->B(0));
457 val += abs1(d->B(1) - s->B(1));
458 val += abs1(d->B(2) - s->B(2));
459 val += abs1(d->B(3) - s->B(3));
460 val += abs1(d->B(4) - s->B(4));
461 val += abs1(d->B(5) - s->B(5));
462 val += abs1(d->B(6) - s->B(6));
463 val += abs1(d->B(7) - s->B(7));
464 d->Q(0) = val;
465 #if SHIFT == 1
466 val = 0;
467 val += abs1(d->B(8) - s->B(8));
468 val += abs1(d->B(9) - s->B(9));
469 val += abs1(d->B(10) - s->B(10));
470 val += abs1(d->B(11) - s->B(11));
471 val += abs1(d->B(12) - s->B(12));
472 val += abs1(d->B(13) - s->B(13));
473 val += abs1(d->B(14) - s->B(14));
474 val += abs1(d->B(15) - s->B(15));
475 d->Q(1) = val;
476 #endif
477 }
478
479 void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
480 target_ulong a0)
481 {
482 int i;
483
484 for (i = 0; i < (8 << SHIFT); i++) {
485 if (s->B(i) & 0x80) {
486 cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC());
487 }
488 }
489 }
490
491 void glue(helper_movl_mm_T0, SUFFIX)(Reg *d, uint32_t val)
492 {
493 d->L(0) = val;
494 d->L(1) = 0;
495 #if SHIFT == 1
496 d->Q(1) = 0;
497 #endif
498 }
499
500 #ifdef TARGET_X86_64
501 void glue(helper_movq_mm_T0, SUFFIX)(Reg *d, uint64_t val)
502 {
503 d->Q(0) = val;
504 #if SHIFT == 1
505 d->Q(1) = 0;
506 #endif
507 }
508 #endif
509
510 #if SHIFT == 0
511 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order)
512 {
513 Reg r;
514
515 r.W(0) = s->W(order & 3);
516 r.W(1) = s->W((order >> 2) & 3);
517 r.W(2) = s->W((order >> 4) & 3);
518 r.W(3) = s->W((order >> 6) & 3);
519 *d = r;
520 }
521 #else
522 void helper_shufps(Reg *d, Reg *s, int order)
523 {
524 Reg r;
525
526 r.L(0) = d->L(order & 3);
527 r.L(1) = d->L((order >> 2) & 3);
528 r.L(2) = s->L((order >> 4) & 3);
529 r.L(3) = s->L((order >> 6) & 3);
530 *d = r;
531 }
532
533 void helper_shufpd(Reg *d, Reg *s, int order)
534 {
535 Reg r;
536
537 r.Q(0) = d->Q(order & 1);
538 r.Q(1) = s->Q((order >> 1) & 1);
539 *d = r;
540 }
541
542 void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order)
543 {
544 Reg r;
545
546 r.L(0) = s->L(order & 3);
547 r.L(1) = s->L((order >> 2) & 3);
548 r.L(2) = s->L((order >> 4) & 3);
549 r.L(3) = s->L((order >> 6) & 3);
550 *d = r;
551 }
552
553 void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order)
554 {
555 Reg r;
556
557 r.W(0) = s->W(order & 3);
558 r.W(1) = s->W((order >> 2) & 3);
559 r.W(2) = s->W((order >> 4) & 3);
560 r.W(3) = s->W((order >> 6) & 3);
561 r.Q(1) = s->Q(1);
562 *d = r;
563 }
564
565 void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order)
566 {
567 Reg r;
568
569 r.Q(0) = s->Q(0);
570 r.W(4) = s->W(4 + (order & 3));
571 r.W(5) = s->W(4 + ((order >> 2) & 3));
572 r.W(6) = s->W(4 + ((order >> 4) & 3));
573 r.W(7) = s->W(4 + ((order >> 6) & 3));
574 *d = r;
575 }
576 #endif
577
578 #if SHIFT == 1
579 /* FPU ops */
580 /* XXX: not accurate */
581
582 #define SSE_HELPER_S(name, F) \
583 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \
584 { \
585 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
586 d->ZMM_S(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \
587 d->ZMM_S(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \
588 d->ZMM_S(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \
589 } \
590 \
591 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \
592 { \
593 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
594 } \
595 \
596 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \
597 { \
598 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
599 d->ZMM_D(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \
600 } \
601 \
602 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \
603 { \
604 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
605 }
606
607 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
608 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
609 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
610 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
611 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
612
613 /* Note that the choice of comparison op here is important to get the
614 * special cases right: for min and max Intel specifies that (-0,0),
615 * (NaN, anything) and (anything, NaN) return the second argument.
616 */
617 #define FPU_MIN(size, a, b) \
618 (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b))
619 #define FPU_MAX(size, a, b) \
620 (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b))
621
622 SSE_HELPER_S(add, FPU_ADD)
623 SSE_HELPER_S(sub, FPU_SUB)
624 SSE_HELPER_S(mul, FPU_MUL)
625 SSE_HELPER_S(div, FPU_DIV)
626 SSE_HELPER_S(min, FPU_MIN)
627 SSE_HELPER_S(max, FPU_MAX)
628 SSE_HELPER_S(sqrt, FPU_SQRT)
629
630
631 /* float to float conversions */
632 void helper_cvtps2pd(CPUX86State *env, Reg *d, Reg *s)
633 {
634 float32 s0, s1;
635
636 s0 = s->ZMM_S(0);
637 s1 = s->ZMM_S(1);
638 d->ZMM_D(0) = float32_to_float64(s0, &env->sse_status);
639 d->ZMM_D(1) = float32_to_float64(s1, &env->sse_status);
640 }
641
642 void helper_cvtpd2ps(CPUX86State *env, Reg *d, Reg *s)
643 {
644 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status);
645 d->ZMM_S(1) = float64_to_float32(s->ZMM_D(1), &env->sse_status);
646 d->Q(1) = 0;
647 }
648
649 void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *s)
650 {
651 d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status);
652 }
653
654 void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *s)
655 {
656 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status);
657 }
658
659 /* integer to float */
660 void helper_cvtdq2ps(CPUX86State *env, Reg *d, Reg *s)
661 {
662 d->ZMM_S(0) = int32_to_float32(s->ZMM_L(0), &env->sse_status);
663 d->ZMM_S(1) = int32_to_float32(s->ZMM_L(1), &env->sse_status);
664 d->ZMM_S(2) = int32_to_float32(s->ZMM_L(2), &env->sse_status);
665 d->ZMM_S(3) = int32_to_float32(s->ZMM_L(3), &env->sse_status);
666 }
667
668 void helper_cvtdq2pd(CPUX86State *env, Reg *d, Reg *s)
669 {
670 int32_t l0, l1;
671
672 l0 = (int32_t)s->ZMM_L(0);
673 l1 = (int32_t)s->ZMM_L(1);
674 d->ZMM_D(0) = int32_to_float64(l0, &env->sse_status);
675 d->ZMM_D(1) = int32_to_float64(l1, &env->sse_status);
676 }
677
678 void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s)
679 {
680 d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
681 d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
682 }
683
684 void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s)
685 {
686 d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
687 d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
688 }
689
690 void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val)
691 {
692 d->ZMM_S(0) = int32_to_float32(val, &env->sse_status);
693 }
694
695 void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val)
696 {
697 d->ZMM_D(0) = int32_to_float64(val, &env->sse_status);
698 }
699
700 #ifdef TARGET_X86_64
701 void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val)
702 {
703 d->ZMM_S(0) = int64_to_float32(val, &env->sse_status);
704 }
705
706 void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val)
707 {
708 d->ZMM_D(0) = int64_to_float64(val, &env->sse_status);
709 }
710 #endif
711
712 /* float to integer */
713
714 /*
715 * x86 mandates that we return the indefinite integer value for the result
716 * of any float-to-integer conversion that raises the 'invalid' exception.
717 * Wrap the softfloat functions to get this behaviour.
718 */
719 #define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE) \
720 static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s) \
721 { \
722 int oldflags, newflags; \
723 RETTYPE r; \
724 \
725 oldflags = get_float_exception_flags(s); \
726 set_float_exception_flags(0, s); \
727 r = FN(a, s); \
728 newflags = get_float_exception_flags(s); \
729 if (newflags & float_flag_invalid) { \
730 r = INDEFVALUE; \
731 } \
732 set_float_exception_flags(newflags | oldflags, s); \
733 return r; \
734 }
735
736 WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN)
737 WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN)
738 WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN)
739 WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN)
740 WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN)
741 WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN)
742 WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN)
743 WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN)
744
745 void helper_cvtps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
746 {
747 d->ZMM_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
748 d->ZMM_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status);
749 d->ZMM_L(2) = x86_float32_to_int32(s->ZMM_S(2), &env->sse_status);
750 d->ZMM_L(3) = x86_float32_to_int32(s->ZMM_S(3), &env->sse_status);
751 }
752
753 void helper_cvtpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
754 {
755 d->ZMM_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
756 d->ZMM_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status);
757 d->ZMM_Q(1) = 0;
758 }
759
760 void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
761 {
762 d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
763 d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status);
764 }
765
766 void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
767 {
768 d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
769 d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status);
770 }
771
772 int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s)
773 {
774 return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
775 }
776
777 int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s)
778 {
779 return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
780 }
781
782 #ifdef TARGET_X86_64
783 int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s)
784 {
785 return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status);
786 }
787
788 int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s)
789 {
790 return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status);
791 }
792 #endif
793
794 /* float to integer truncated */
795 void helper_cvttps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
796 {
797 d->ZMM_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
798 d->ZMM_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status);
799 d->ZMM_L(2) = x86_float32_to_int32_round_to_zero(s->ZMM_S(2), &env->sse_status);
800 d->ZMM_L(3) = x86_float32_to_int32_round_to_zero(s->ZMM_S(3), &env->sse_status);
801 }
802
803 void helper_cvttpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s)
804 {
805 d->ZMM_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
806 d->ZMM_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status);
807 d->ZMM_Q(1) = 0;
808 }
809
810 void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
811 {
812 d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
813 d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status);
814 }
815
816 void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
817 {
818 d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
819 d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status);
820 }
821
822 int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s)
823 {
824 return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
825 }
826
827 int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s)
828 {
829 return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
830 }
831
832 #ifdef TARGET_X86_64
833 int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s)
834 {
835 return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status);
836 }
837
838 int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s)
839 {
840 return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status);
841 }
842 #endif
843
844 void helper_rsqrtps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
845 {
846 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
847 d->ZMM_S(0) = float32_div(float32_one,
848 float32_sqrt(s->ZMM_S(0), &env->sse_status),
849 &env->sse_status);
850 d->ZMM_S(1) = float32_div(float32_one,
851 float32_sqrt(s->ZMM_S(1), &env->sse_status),
852 &env->sse_status);
853 d->ZMM_S(2) = float32_div(float32_one,
854 float32_sqrt(s->ZMM_S(2), &env->sse_status),
855 &env->sse_status);
856 d->ZMM_S(3) = float32_div(float32_one,
857 float32_sqrt(s->ZMM_S(3), &env->sse_status),
858 &env->sse_status);
859 set_float_exception_flags(old_flags, &env->sse_status);
860 }
861
862 void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *s)
863 {
864 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
865 d->ZMM_S(0) = float32_div(float32_one,
866 float32_sqrt(s->ZMM_S(0), &env->sse_status),
867 &env->sse_status);
868 set_float_exception_flags(old_flags, &env->sse_status);
869 }
870
871 void helper_rcpps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
872 {
873 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
874 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status);
875 d->ZMM_S(1) = float32_div(float32_one, s->ZMM_S(1), &env->sse_status);
876 d->ZMM_S(2) = float32_div(float32_one, s->ZMM_S(2), &env->sse_status);
877 d->ZMM_S(3) = float32_div(float32_one, s->ZMM_S(3), &env->sse_status);
878 set_float_exception_flags(old_flags, &env->sse_status);
879 }
880
881 void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *s)
882 {
883 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
884 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status);
885 set_float_exception_flags(old_flags, &env->sse_status);
886 }
887
888 static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
889 {
890 uint64_t mask;
891
892 if (len == 0) {
893 mask = ~0LL;
894 } else {
895 mask = (1ULL << len) - 1;
896 }
897 return (src >> shift) & mask;
898 }
899
900 void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
901 {
902 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1), s->ZMM_B(0));
903 }
904
905 void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length)
906 {
907 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length);
908 }
909
910 static inline uint64_t helper_insertq(uint64_t src, int shift, int len)
911 {
912 uint64_t mask;
913
914 if (len == 0) {
915 mask = ~0ULL;
916 } else {
917 mask = (1ULL << len) - 1;
918 }
919 return (src & ~(mask << shift)) | ((src & mask) << shift);
920 }
921
922 void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
923 {
924 d->ZMM_Q(0) = helper_insertq(s->ZMM_Q(0), s->ZMM_B(9), s->ZMM_B(8));
925 }
926
927 void helper_insertq_i(CPUX86State *env, ZMMReg *d, int index, int length)
928 {
929 d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), index, length);
930 }
931
932 void helper_haddps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
933 {
934 ZMMReg r;
935
936 r.ZMM_S(0) = float32_add(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status);
937 r.ZMM_S(1) = float32_add(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status);
938 r.ZMM_S(2) = float32_add(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status);
939 r.ZMM_S(3) = float32_add(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status);
940 *d = r;
941 }
942
943 void helper_haddpd(CPUX86State *env, ZMMReg *d, ZMMReg *s)
944 {
945 ZMMReg r;
946
947 r.ZMM_D(0) = float64_add(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status);
948 r.ZMM_D(1) = float64_add(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status);
949 *d = r;
950 }
951
952 void helper_hsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
953 {
954 ZMMReg r;
955
956 r.ZMM_S(0) = float32_sub(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status);
957 r.ZMM_S(1) = float32_sub(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status);
958 r.ZMM_S(2) = float32_sub(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status);
959 r.ZMM_S(3) = float32_sub(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status);
960 *d = r;
961 }
962
963 void helper_hsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s)
964 {
965 ZMMReg r;
966
967 r.ZMM_D(0) = float64_sub(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status);
968 r.ZMM_D(1) = float64_sub(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status);
969 *d = r;
970 }
971
972 void helper_addsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s)
973 {
974 d->ZMM_S(0) = float32_sub(d->ZMM_S(0), s->ZMM_S(0), &env->sse_status);
975 d->ZMM_S(1) = float32_add(d->ZMM_S(1), s->ZMM_S(1), &env->sse_status);
976 d->ZMM_S(2) = float32_sub(d->ZMM_S(2), s->ZMM_S(2), &env->sse_status);
977 d->ZMM_S(3) = float32_add(d->ZMM_S(3), s->ZMM_S(3), &env->sse_status);
978 }
979
980 void helper_addsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s)
981 {
982 d->ZMM_D(0) = float64_sub(d->ZMM_D(0), s->ZMM_D(0), &env->sse_status);
983 d->ZMM_D(1) = float64_add(d->ZMM_D(1), s->ZMM_D(1), &env->sse_status);
984 }
985
986 /* XXX: unordered */
987 #define SSE_HELPER_CMP(name, F) \
988 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \
989 { \
990 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
991 d->ZMM_L(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \
992 d->ZMM_L(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \
993 d->ZMM_L(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \
994 } \
995 \
996 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \
997 { \
998 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \
999 } \
1000 \
1001 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \
1002 { \
1003 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
1004 d->ZMM_Q(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \
1005 } \
1006 \
1007 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \
1008 { \
1009 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \
1010 }
1011
1012 #define FPU_CMPEQ(size, a, b) \
1013 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0)
1014 #define FPU_CMPLT(size, a, b) \
1015 (float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0)
1016 #define FPU_CMPLE(size, a, b) \
1017 (float ## size ## _le(a, b, &env->sse_status) ? -1 : 0)
1018 #define FPU_CMPUNORD(size, a, b) \
1019 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? -1 : 0)
1020 #define FPU_CMPNEQ(size, a, b) \
1021 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1)
1022 #define FPU_CMPNLT(size, a, b) \
1023 (float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1)
1024 #define FPU_CMPNLE(size, a, b) \
1025 (float ## size ## _le(a, b, &env->sse_status) ? 0 : -1)
1026 #define FPU_CMPORD(size, a, b) \
1027 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1)
1028
1029 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
1030 SSE_HELPER_CMP(cmplt, FPU_CMPLT)
1031 SSE_HELPER_CMP(cmple, FPU_CMPLE)
1032 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
1033 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
1034 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
1035 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
1036 SSE_HELPER_CMP(cmpord, FPU_CMPORD)
1037
1038 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
1039
1040 void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s)
1041 {
1042 FloatRelation ret;
1043 float32 s0, s1;
1044
1045 s0 = d->ZMM_S(0);
1046 s1 = s->ZMM_S(0);
1047 ret = float32_compare_quiet(s0, s1, &env->sse_status);
1048 CC_SRC = comis_eflags[ret + 1];
1049 }
1050
1051 void helper_comiss(CPUX86State *env, Reg *d, Reg *s)
1052 {
1053 FloatRelation ret;
1054 float32 s0, s1;
1055
1056 s0 = d->ZMM_S(0);
1057 s1 = s->ZMM_S(0);
1058 ret = float32_compare(s0, s1, &env->sse_status);
1059 CC_SRC = comis_eflags[ret + 1];
1060 }
1061
1062 void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s)
1063 {
1064 FloatRelation ret;
1065 float64 d0, d1;
1066
1067 d0 = d->ZMM_D(0);
1068 d1 = s->ZMM_D(0);
1069 ret = float64_compare_quiet(d0, d1, &env->sse_status);
1070 CC_SRC = comis_eflags[ret + 1];
1071 }
1072
1073 void helper_comisd(CPUX86State *env, Reg *d, Reg *s)
1074 {
1075 FloatRelation ret;
1076 float64 d0, d1;
1077
1078 d0 = d->ZMM_D(0);
1079 d1 = s->ZMM_D(0);
1080 ret = float64_compare(d0, d1, &env->sse_status);
1081 CC_SRC = comis_eflags[ret + 1];
1082 }
1083
1084 uint32_t helper_movmskps(CPUX86State *env, Reg *s)
1085 {
1086 int b0, b1, b2, b3;
1087
1088 b0 = s->ZMM_L(0) >> 31;
1089 b1 = s->ZMM_L(1) >> 31;
1090 b2 = s->ZMM_L(2) >> 31;
1091 b3 = s->ZMM_L(3) >> 31;
1092 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
1093 }
1094
1095 uint32_t helper_movmskpd(CPUX86State *env, Reg *s)
1096 {
1097 int b0, b1;
1098
1099 b0 = s->ZMM_L(1) >> 31;
1100 b1 = s->ZMM_L(3) >> 31;
1101 return b0 | (b1 << 1);
1102 }
1103
1104 #endif
1105
1106 uint32_t glue(helper_pmovmskb, SUFFIX)(CPUX86State *env, Reg *s)
1107 {
1108 uint32_t val;
1109
1110 val = 0;
1111 val |= (s->B(0) >> 7);
1112 val |= (s->B(1) >> 6) & 0x02;
1113 val |= (s->B(2) >> 5) & 0x04;
1114 val |= (s->B(3) >> 4) & 0x08;
1115 val |= (s->B(4) >> 3) & 0x10;
1116 val |= (s->B(5) >> 2) & 0x20;
1117 val |= (s->B(6) >> 1) & 0x40;
1118 val |= (s->B(7)) & 0x80;
1119 #if SHIFT == 1
1120 val |= (s->B(8) << 1) & 0x0100;
1121 val |= (s->B(9) << 2) & 0x0200;
1122 val |= (s->B(10) << 3) & 0x0400;
1123 val |= (s->B(11) << 4) & 0x0800;
1124 val |= (s->B(12) << 5) & 0x1000;
1125 val |= (s->B(13) << 6) & 0x2000;
1126 val |= (s->B(14) << 7) & 0x4000;
1127 val |= (s->B(15) << 8) & 0x8000;
1128 #endif
1129 return val;
1130 }
1131
1132 void glue(helper_packsswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1133 {
1134 Reg r;
1135
1136 r.B(0) = satsb((int16_t)d->W(0));
1137 r.B(1) = satsb((int16_t)d->W(1));
1138 r.B(2) = satsb((int16_t)d->W(2));
1139 r.B(3) = satsb((int16_t)d->W(3));
1140 #if SHIFT == 1
1141 r.B(4) = satsb((int16_t)d->W(4));
1142 r.B(5) = satsb((int16_t)d->W(5));
1143 r.B(6) = satsb((int16_t)d->W(6));
1144 r.B(7) = satsb((int16_t)d->W(7));
1145 #endif
1146 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1147 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1148 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1149 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1150 #if SHIFT == 1
1151 r.B(12) = satsb((int16_t)s->W(4));
1152 r.B(13) = satsb((int16_t)s->W(5));
1153 r.B(14) = satsb((int16_t)s->W(6));
1154 r.B(15) = satsb((int16_t)s->W(7));
1155 #endif
1156 *d = r;
1157 }
1158
1159 void glue(helper_packuswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1160 {
1161 Reg r;
1162
1163 r.B(0) = satub((int16_t)d->W(0));
1164 r.B(1) = satub((int16_t)d->W(1));
1165 r.B(2) = satub((int16_t)d->W(2));
1166 r.B(3) = satub((int16_t)d->W(3));
1167 #if SHIFT == 1
1168 r.B(4) = satub((int16_t)d->W(4));
1169 r.B(5) = satub((int16_t)d->W(5));
1170 r.B(6) = satub((int16_t)d->W(6));
1171 r.B(7) = satub((int16_t)d->W(7));
1172 #endif
1173 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1174 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1175 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1176 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1177 #if SHIFT == 1
1178 r.B(12) = satub((int16_t)s->W(4));
1179 r.B(13) = satub((int16_t)s->W(5));
1180 r.B(14) = satub((int16_t)s->W(6));
1181 r.B(15) = satub((int16_t)s->W(7));
1182 #endif
1183 *d = r;
1184 }
1185
1186 void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1187 {
1188 Reg r;
1189
1190 r.W(0) = satsw(d->L(0));
1191 r.W(1) = satsw(d->L(1));
1192 #if SHIFT == 1
1193 r.W(2) = satsw(d->L(2));
1194 r.W(3) = satsw(d->L(3));
1195 #endif
1196 r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1197 r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1198 #if SHIFT == 1
1199 r.W(6) = satsw(s->L(2));
1200 r.W(7) = satsw(s->L(3));
1201 #endif
1202 *d = r;
1203 }
1204
1205 #define UNPCK_OP(base_name, base) \
1206 \
1207 void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\
1208 Reg *d, Reg *s) \
1209 { \
1210 Reg r; \
1211 \
1212 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \
1213 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \
1214 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \
1215 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \
1216 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \
1217 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \
1218 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \
1219 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \
1220 XMM_ONLY( \
1221 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \
1222 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \
1223 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \
1224 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \
1225 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \
1226 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \
1227 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \
1228 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \
1229 ) \
1230 *d = r; \
1231 } \
1232 \
1233 void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\
1234 Reg *d, Reg *s) \
1235 { \
1236 Reg r; \
1237 \
1238 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \
1239 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \
1240 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \
1241 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \
1242 XMM_ONLY( \
1243 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \
1244 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \
1245 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \
1246 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \
1247 ) \
1248 *d = r; \
1249 } \
1250 \
1251 void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\
1252 Reg *d, Reg *s) \
1253 { \
1254 Reg r; \
1255 \
1256 r.L(0) = d->L((base << SHIFT) + 0); \
1257 r.L(1) = s->L((base << SHIFT) + 0); \
1258 XMM_ONLY( \
1259 r.L(2) = d->L((base << SHIFT) + 1); \
1260 r.L(3) = s->L((base << SHIFT) + 1); \
1261 ) \
1262 *d = r; \
1263 } \
1264 \
1265 XMM_ONLY( \
1266 void glue(helper_punpck ## base_name ## qdq, SUFFIX)(CPUX86State \
1267 *env, \
1268 Reg *d, \
1269 Reg *s) \
1270 { \
1271 Reg r; \
1272 \
1273 r.Q(0) = d->Q(base); \
1274 r.Q(1) = s->Q(base); \
1275 *d = r; \
1276 } \
1277 )
1278
1279 UNPCK_OP(l, 0)
1280 UNPCK_OP(h, 1)
1281
1282 /* 3DNow! float ops */
1283 #if SHIFT == 0
1284 void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s)
1285 {
1286 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1287 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1288 }
1289
1290 void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s)
1291 {
1292 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1293 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1294 }
1295
1296 void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s)
1297 {
1298 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1299 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1300 }
1301
1302 void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s)
1303 {
1304 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0),
1305 &env->mmx_status));
1306 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1),
1307 &env->mmx_status));
1308 }
1309
1310 void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1311 {
1312 MMXReg r;
1313
1314 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1315 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1316 *d = r;
1317 }
1318
1319 void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s)
1320 {
1321 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1322 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1323 }
1324
1325 void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s)
1326 {
1327 d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0),
1328 &env->mmx_status) ? -1 : 0;
1329 d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1),
1330 &env->mmx_status) ? -1 : 0;
1331 }
1332
1333 void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s)
1334 {
1335 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0),
1336 &env->mmx_status) ? -1 : 0;
1337 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1),
1338 &env->mmx_status) ? -1 : 0;
1339 }
1340
1341 void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s)
1342 {
1343 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0),
1344 &env->mmx_status) ? -1 : 0;
1345 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1),
1346 &env->mmx_status) ? -1 : 0;
1347 }
1348
1349 void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s)
1350 {
1351 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) {
1352 d->MMX_S(0) = s->MMX_S(0);
1353 }
1354 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) {
1355 d->MMX_S(1) = s->MMX_S(1);
1356 }
1357 }
1358
1359 void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s)
1360 {
1361 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) {
1362 d->MMX_S(0) = s->MMX_S(0);
1363 }
1364 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) {
1365 d->MMX_S(1) = s->MMX_S(1);
1366 }
1367 }
1368
1369 void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s)
1370 {
1371 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1372 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1373 }
1374
1375 void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1376 {
1377 MMXReg r;
1378
1379 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1380 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1381 *d = r;
1382 }
1383
1384 void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1385 {
1386 MMXReg r;
1387
1388 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1389 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1390 *d = r;
1391 }
1392
1393 void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s)
1394 {
1395 d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status);
1396 d->MMX_S(1) = d->MMX_S(0);
1397 }
1398
1399 void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s)
1400 {
1401 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1402 d->MMX_S(1) = float32_div(float32_one,
1403 float32_sqrt(d->MMX_S(1), &env->mmx_status),
1404 &env->mmx_status);
1405 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1406 d->MMX_L(0) = d->MMX_L(1);
1407 }
1408
1409 void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s)
1410 {
1411 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1412 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1413 }
1414
1415 void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s)
1416 {
1417 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1418 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1419 }
1420
1421 void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s)
1422 {
1423 MMXReg r;
1424
1425 r.MMX_L(0) = s->MMX_L(1);
1426 r.MMX_L(1) = s->MMX_L(0);
1427 *d = r;
1428 }
1429 #endif
1430
1431 /* SSSE3 op helpers */
1432 void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1433 {
1434 int i;
1435 Reg r;
1436
1437 for (i = 0; i < (8 << SHIFT); i++) {
1438 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1439 }
1440
1441 *d = r;
1442 }
1443
1444 void glue(helper_phaddw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1445 {
1446
1447 Reg r;
1448
1449 r.W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1450 r.W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1451 XMM_ONLY(r.W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1452 XMM_ONLY(r.W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1453 r.W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1454 r.W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1455 XMM_ONLY(r.W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1456 XMM_ONLY(r.W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1457
1458 *d = r;
1459 }
1460
1461 void glue(helper_phaddd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1462 {
1463 Reg r;
1464
1465 r.L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1466 XMM_ONLY(r.L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1467 r.L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1468 XMM_ONLY(r.L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1469
1470 *d = r;
1471 }
1472
1473 void glue(helper_phaddsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1474 {
1475 Reg r;
1476
1477 r.W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1478 r.W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1479 XMM_ONLY(r.W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1480 XMM_ONLY(r.W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1481 r.W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1482 r.W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1483 XMM_ONLY(r.W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1484 XMM_ONLY(r.W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1485
1486 *d = r;
1487 }
1488
1489 void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1490 {
1491 d->W(0) = satsw((int8_t)s->B(0) * (uint8_t)d->B(0) +
1492 (int8_t)s->B(1) * (uint8_t)d->B(1));
1493 d->W(1) = satsw((int8_t)s->B(2) * (uint8_t)d->B(2) +
1494 (int8_t)s->B(3) * (uint8_t)d->B(3));
1495 d->W(2) = satsw((int8_t)s->B(4) * (uint8_t)d->B(4) +
1496 (int8_t)s->B(5) * (uint8_t)d->B(5));
1497 d->W(3) = satsw((int8_t)s->B(6) * (uint8_t)d->B(6) +
1498 (int8_t)s->B(7) * (uint8_t)d->B(7));
1499 #if SHIFT == 1
1500 d->W(4) = satsw((int8_t)s->B(8) * (uint8_t)d->B(8) +
1501 (int8_t)s->B(9) * (uint8_t)d->B(9));
1502 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1503 (int8_t)s->B(11) * (uint8_t)d->B(11));
1504 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1505 (int8_t)s->B(13) * (uint8_t)d->B(13));
1506 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1507 (int8_t)s->B(15) * (uint8_t)d->B(15));
1508 #endif
1509 }
1510
1511 void glue(helper_phsubw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1512 {
1513 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1514 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1515 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1516 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1517 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1518 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1519 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1520 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1521 }
1522
1523 void glue(helper_phsubd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1524 {
1525 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1526 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1527 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1528 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1529 }
1530
1531 void glue(helper_phsubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1532 {
1533 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1534 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1535 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1536 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1537 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1538 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1539 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1540 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1541 }
1542
1543 #define FABSB(_, x) (x > INT8_MAX ? -(int8_t)x : x)
1544 #define FABSW(_, x) (x > INT16_MAX ? -(int16_t)x : x)
1545 #define FABSL(_, x) (x > INT32_MAX ? -(int32_t)x : x)
1546 SSE_HELPER_B(helper_pabsb, FABSB)
1547 SSE_HELPER_W(helper_pabsw, FABSW)
1548 SSE_HELPER_L(helper_pabsd, FABSL)
1549
1550 #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15)
1551 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1552
1553 #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d)
1554 #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d)
1555 #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d)
1556 SSE_HELPER_B(helper_psignb, FSIGNB)
1557 SSE_HELPER_W(helper_psignw, FSIGNW)
1558 SSE_HELPER_L(helper_psignd, FSIGNL)
1559
1560 void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1561 int32_t shift)
1562 {
1563 Reg r;
1564
1565 /* XXX could be checked during translation */
1566 if (shift >= (16 << SHIFT)) {
1567 r.Q(0) = 0;
1568 XMM_ONLY(r.Q(1) = 0);
1569 } else {
1570 shift <<= 3;
1571 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1572 #if SHIFT == 0
1573 r.Q(0) = SHR(s->Q(0), shift - 0) |
1574 SHR(d->Q(0), shift - 64);
1575 #else
1576 r.Q(0) = SHR(s->Q(0), shift - 0) |
1577 SHR(s->Q(1), shift - 64) |
1578 SHR(d->Q(0), shift - 128) |
1579 SHR(d->Q(1), shift - 192);
1580 r.Q(1) = SHR(s->Q(0), shift + 64) |
1581 SHR(s->Q(1), shift - 0) |
1582 SHR(d->Q(0), shift - 64) |
1583 SHR(d->Q(1), shift - 128);
1584 #endif
1585 #undef SHR
1586 }
1587
1588 *d = r;
1589 }
1590
1591 #define XMM0 (env->xmm_regs[0])
1592
1593 #if SHIFT == 1
1594 #define SSE_HELPER_V(name, elem, num, F) \
1595 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
1596 { \
1597 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0)); \
1598 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1)); \
1599 if (num > 2) { \
1600 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2)); \
1601 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3)); \
1602 if (num > 4) { \
1603 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4)); \
1604 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5)); \
1605 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6)); \
1606 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7)); \
1607 if (num > 8) { \
1608 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8)); \
1609 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9)); \
1610 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10)); \
1611 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11)); \
1612 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12)); \
1613 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13)); \
1614 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14)); \
1615 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15)); \
1616 } \
1617 } \
1618 } \
1619 }
1620
1621 #define SSE_HELPER_I(name, elem, num, F) \
1622 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t imm) \
1623 { \
1624 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1)); \
1625 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1)); \
1626 if (num > 2) { \
1627 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1)); \
1628 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1)); \
1629 if (num > 4) { \
1630 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1)); \
1631 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1)); \
1632 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1)); \
1633 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1)); \
1634 if (num > 8) { \
1635 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1)); \
1636 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1)); \
1637 d->elem(10) = F(d->elem(10), s->elem(10), \
1638 ((imm >> 10) & 1)); \
1639 d->elem(11) = F(d->elem(11), s->elem(11), \
1640 ((imm >> 11) & 1)); \
1641 d->elem(12) = F(d->elem(12), s->elem(12), \
1642 ((imm >> 12) & 1)); \
1643 d->elem(13) = F(d->elem(13), s->elem(13), \
1644 ((imm >> 13) & 1)); \
1645 d->elem(14) = F(d->elem(14), s->elem(14), \
1646 ((imm >> 14) & 1)); \
1647 d->elem(15) = F(d->elem(15), s->elem(15), \
1648 ((imm >> 15) & 1)); \
1649 } \
1650 } \
1651 } \
1652 }
1653
1654 /* SSE4.1 op helpers */
1655 #define FBLENDVB(d, s, m) ((m & 0x80) ? s : d)
1656 #define FBLENDVPS(d, s, m) ((m & 0x80000000) ? s : d)
1657 #define FBLENDVPD(d, s, m) ((m & 0x8000000000000000LL) ? s : d)
1658 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1659 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1660 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1661
1662 void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1663 {
1664 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1));
1665 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1666
1667 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1668 }
1669
1670 #define SSE_HELPER_F(name, elem, num, F) \
1671 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
1672 { \
1673 if (num > 2) { \
1674 if (num > 4) { \
1675 d->elem(7) = F(7); \
1676 d->elem(6) = F(6); \
1677 d->elem(5) = F(5); \
1678 d->elem(4) = F(4); \
1679 } \
1680 d->elem(3) = F(3); \
1681 d->elem(2) = F(2); \
1682 } \
1683 d->elem(1) = F(1); \
1684 d->elem(0) = F(0); \
1685 }
1686
1687 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1688 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1689 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1690 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1691 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1692 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1693 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1694 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1695 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1696 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1697 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1698 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1699
1700 void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1701 {
1702 d->Q(0) = (int64_t)(int32_t) d->L(0) * (int32_t) s->L(0);
1703 d->Q(1) = (int64_t)(int32_t) d->L(2) * (int32_t) s->L(2);
1704 }
1705
1706 #define FCMPEQQ(d, s) (d == s ? -1 : 0)
1707 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1708
1709 void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1710 {
1711 Reg r;
1712
1713 r.W(0) = satuw((int32_t) d->L(0));
1714 r.W(1) = satuw((int32_t) d->L(1));
1715 r.W(2) = satuw((int32_t) d->L(2));
1716 r.W(3) = satuw((int32_t) d->L(3));
1717 r.W(4) = satuw((int32_t) s->L(0));
1718 r.W(5) = satuw((int32_t) s->L(1));
1719 r.W(6) = satuw((int32_t) s->L(2));
1720 r.W(7) = satuw((int32_t) s->L(3));
1721 *d = r;
1722 }
1723
1724 #define FMINSB(d, s) MIN((int8_t)d, (int8_t)s)
1725 #define FMINSD(d, s) MIN((int32_t)d, (int32_t)s)
1726 #define FMAXSB(d, s) MAX((int8_t)d, (int8_t)s)
1727 #define FMAXSD(d, s) MAX((int32_t)d, (int32_t)s)
1728 SSE_HELPER_B(helper_pminsb, FMINSB)
1729 SSE_HELPER_L(helper_pminsd, FMINSD)
1730 SSE_HELPER_W(helper_pminuw, MIN)
1731 SSE_HELPER_L(helper_pminud, MIN)
1732 SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1733 SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1734 SSE_HELPER_W(helper_pmaxuw, MAX)
1735 SSE_HELPER_L(helper_pmaxud, MAX)
1736
1737 #define FMULLD(d, s) ((int32_t)d * (int32_t)s)
1738 SSE_HELPER_L(helper_pmulld, FMULLD)
1739
1740 void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1741 {
1742 int idx = 0;
1743
1744 if (s->W(1) < s->W(idx)) {
1745 idx = 1;
1746 }
1747 if (s->W(2) < s->W(idx)) {
1748 idx = 2;
1749 }
1750 if (s->W(3) < s->W(idx)) {
1751 idx = 3;
1752 }
1753 if (s->W(4) < s->W(idx)) {
1754 idx = 4;
1755 }
1756 if (s->W(5) < s->W(idx)) {
1757 idx = 5;
1758 }
1759 if (s->W(6) < s->W(idx)) {
1760 idx = 6;
1761 }
1762 if (s->W(7) < s->W(idx)) {
1763 idx = 7;
1764 }
1765
1766 d->W(0) = s->W(idx);
1767 d->W(1) = idx;
1768 d->L(1) = 0;
1769 d->Q(1) = 0;
1770 }
1771
1772 void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1773 uint32_t mode)
1774 {
1775 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1776 signed char prev_rounding_mode;
1777
1778 prev_rounding_mode = env->sse_status.float_rounding_mode;
1779 if (!(mode & (1 << 2))) {
1780 switch (mode & 3) {
1781 case 0:
1782 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1783 break;
1784 case 1:
1785 set_float_rounding_mode(float_round_down, &env->sse_status);
1786 break;
1787 case 2:
1788 set_float_rounding_mode(float_round_up, &env->sse_status);
1789 break;
1790 case 3:
1791 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1792 break;
1793 }
1794 }
1795
1796 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status);
1797 d->ZMM_S(1) = float32_round_to_int(s->ZMM_S(1), &env->sse_status);
1798 d->ZMM_S(2) = float32_round_to_int(s->ZMM_S(2), &env->sse_status);
1799 d->ZMM_S(3) = float32_round_to_int(s->ZMM_S(3), &env->sse_status);
1800
1801 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1802 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1803 ~float_flag_inexact,
1804 &env->sse_status);
1805 }
1806 env->sse_status.float_rounding_mode = prev_rounding_mode;
1807 }
1808
1809 void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1810 uint32_t mode)
1811 {
1812 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1813 signed char prev_rounding_mode;
1814
1815 prev_rounding_mode = env->sse_status.float_rounding_mode;
1816 if (!(mode & (1 << 2))) {
1817 switch (mode & 3) {
1818 case 0:
1819 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1820 break;
1821 case 1:
1822 set_float_rounding_mode(float_round_down, &env->sse_status);
1823 break;
1824 case 2:
1825 set_float_rounding_mode(float_round_up, &env->sse_status);
1826 break;
1827 case 3:
1828 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1829 break;
1830 }
1831 }
1832
1833 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status);
1834 d->ZMM_D(1) = float64_round_to_int(s->ZMM_D(1), &env->sse_status);
1835
1836 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1837 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1838 ~float_flag_inexact,
1839 &env->sse_status);
1840 }
1841 env->sse_status.float_rounding_mode = prev_rounding_mode;
1842 }
1843
1844 void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1845 uint32_t mode)
1846 {
1847 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1848 signed char prev_rounding_mode;
1849
1850 prev_rounding_mode = env->sse_status.float_rounding_mode;
1851 if (!(mode & (1 << 2))) {
1852 switch (mode & 3) {
1853 case 0:
1854 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1855 break;
1856 case 1:
1857 set_float_rounding_mode(float_round_down, &env->sse_status);
1858 break;
1859 case 2:
1860 set_float_rounding_mode(float_round_up, &env->sse_status);
1861 break;
1862 case 3:
1863 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1864 break;
1865 }
1866 }
1867
1868 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status);
1869
1870 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1871 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1872 ~float_flag_inexact,
1873 &env->sse_status);
1874 }
1875 env->sse_status.float_rounding_mode = prev_rounding_mode;
1876 }
1877
1878 void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1879 uint32_t mode)
1880 {
1881 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1882 signed char prev_rounding_mode;
1883
1884 prev_rounding_mode = env->sse_status.float_rounding_mode;
1885 if (!(mode & (1 << 2))) {
1886 switch (mode & 3) {
1887 case 0:
1888 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1889 break;
1890 case 1:
1891 set_float_rounding_mode(float_round_down, &env->sse_status);
1892 break;
1893 case 2:
1894 set_float_rounding_mode(float_round_up, &env->sse_status);
1895 break;
1896 case 3:
1897 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1898 break;
1899 }
1900 }
1901
1902 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status);
1903
1904 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1905 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1906 ~float_flag_inexact,
1907 &env->sse_status);
1908 }
1909 env->sse_status.float_rounding_mode = prev_rounding_mode;
1910 }
1911
1912 #define FBLENDP(d, s, m) (m ? s : d)
1913 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1914 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1915 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1916
1917 void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask)
1918 {
1919 float32 iresult = float32_zero;
1920
1921 if (mask & (1 << 4)) {
1922 iresult = float32_add(iresult,
1923 float32_mul(d->ZMM_S(0), s->ZMM_S(0),
1924 &env->sse_status),
1925 &env->sse_status);
1926 }
1927 if (mask & (1 << 5)) {
1928 iresult = float32_add(iresult,
1929 float32_mul(d->ZMM_S(1), s->ZMM_S(1),
1930 &env->sse_status),
1931 &env->sse_status);
1932 }
1933 if (mask & (1 << 6)) {
1934 iresult = float32_add(iresult,
1935 float32_mul(d->ZMM_S(2), s->ZMM_S(2),
1936 &env->sse_status),
1937 &env->sse_status);
1938 }
1939 if (mask & (1 << 7)) {
1940 iresult = float32_add(iresult,
1941 float32_mul(d->ZMM_S(3), s->ZMM_S(3),
1942 &env->sse_status),
1943 &env->sse_status);
1944 }
1945 d->ZMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero;
1946 d->ZMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero;
1947 d->ZMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero;
1948 d->ZMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero;
1949 }
1950
1951 void glue(helper_dppd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask)
1952 {
1953 float64 iresult = float64_zero;
1954
1955 if (mask & (1 << 4)) {
1956 iresult = float64_add(iresult,
1957 float64_mul(d->ZMM_D(0), s->ZMM_D(0),
1958 &env->sse_status),
1959 &env->sse_status);
1960 }
1961 if (mask & (1 << 5)) {
1962 iresult = float64_add(iresult,
1963 float64_mul(d->ZMM_D(1), s->ZMM_D(1),
1964 &env->sse_status),
1965 &env->sse_status);
1966 }
1967 d->ZMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero;
1968 d->ZMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero;
1969 }
1970
1971 void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1972 uint32_t offset)
1973 {
1974 int s0 = (offset & 3) << 2;
1975 int d0 = (offset & 4) << 0;
1976 int i;
1977 Reg r;
1978
1979 for (i = 0; i < 8; i++, d0++) {
1980 r.W(i) = 0;
1981 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1982 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1983 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1984 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1985 }
1986
1987 *d = r;
1988 }
1989
1990 /* SSE4.2 op helpers */
1991 #define FCMPGTQ(d, s) ((int64_t)d > (int64_t)s ? -1 : 0)
1992 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1993
1994 static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl)
1995 {
1996 int val;
1997
1998 /* Presence of REX.W is indicated by a bit higher than 7 set */
1999 if (ctrl >> 8) {
2000 val = abs1((int64_t)env->regs[reg]);
2001 } else {
2002 val = abs1((int32_t)env->regs[reg]);
2003 }
2004
2005 if (ctrl & 1) {
2006 if (val > 8) {
2007 return 8;
2008 }
2009 } else {
2010 if (val > 16) {
2011 return 16;
2012 }
2013 }
2014 return val;
2015 }
2016
2017 static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
2018 {
2019 int val = 0;
2020
2021 if (ctrl & 1) {
2022 while (val < 8 && r->W(val)) {
2023 val++;
2024 }
2025 } else {
2026 while (val < 16 && r->B(val)) {
2027 val++;
2028 }
2029 }
2030
2031 return val;
2032 }
2033
2034 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
2035 {
2036 switch ((ctrl >> 0) & 3) {
2037 case 0:
2038 return r->B(i);
2039 case 1:
2040 return r->W(i);
2041 case 2:
2042 return (int8_t)r->B(i);
2043 case 3:
2044 default:
2045 return (int16_t)r->W(i);
2046 }
2047 }
2048
2049 static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s,
2050 int8_t ctrl, int valids, int validd)
2051 {
2052 unsigned int res = 0;
2053 int v;
2054 int j, i;
2055 int upper = (ctrl & 1) ? 7 : 15;
2056
2057 valids--;
2058 validd--;
2059
2060 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
2061
2062 switch ((ctrl >> 2) & 3) {
2063 case 0:
2064 for (j = valids; j >= 0; j--) {
2065 res <<= 1;
2066 v = pcmp_val(s, ctrl, j);
2067 for (i = validd; i >= 0; i--) {
2068 res |= (v == pcmp_val(d, ctrl, i));
2069 }
2070 }
2071 break;
2072 case 1:
2073 for (j = valids; j >= 0; j--) {
2074 res <<= 1;
2075 v = pcmp_val(s, ctrl, j);
2076 for (i = ((validd - 1) | 1); i >= 0; i -= 2) {
2077 res |= (pcmp_val(d, ctrl, i - 0) >= v &&
2078 pcmp_val(d, ctrl, i - 1) <= v);
2079 }
2080 }
2081 break;
2082 case 2:
2083 res = (1 << (upper - MAX(valids, validd))) - 1;
2084 res <<= MAX(valids, validd) - MIN(valids, validd);
2085 for (i = MIN(valids, validd); i >= 0; i--) {
2086 res <<= 1;
2087 v = pcmp_val(s, ctrl, i);
2088 res |= (v == pcmp_val(d, ctrl, i));
2089 }
2090 break;
2091 case 3:
2092 if (validd == -1) {
2093 res = (2 << upper) - 1;
2094 break;
2095 }
2096 for (j = valids == upper ? valids : valids - validd; j >= 0; j--) {
2097 res <<= 1;
2098 v = 1;
2099 for (i = MIN(valids - j, validd); i >= 0; i--) {
2100 v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
2101 }
2102 res |= v;
2103 }
2104 break;
2105 }
2106
2107 switch ((ctrl >> 4) & 3) {
2108 case 1:
2109 res ^= (2 << upper) - 1;
2110 break;
2111 case 3:
2112 res ^= (1 << (valids + 1)) - 1;
2113 break;
2114 }
2115
2116 if (res) {
2117 CC_SRC |= CC_C;
2118 }
2119 if (res & 1) {
2120 CC_SRC |= CC_O;
2121 }
2122
2123 return res;
2124 }
2125
2126 void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2127 uint32_t ctrl)
2128 {
2129 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2130 pcmp_elen(env, R_EDX, ctrl),
2131 pcmp_elen(env, R_EAX, ctrl));
2132
2133 if (res) {
2134 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2135 } else {
2136 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2137 }
2138 }
2139
2140 void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2141 uint32_t ctrl)
2142 {
2143 int i;
2144 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2145 pcmp_elen(env, R_EDX, ctrl),
2146 pcmp_elen(env, R_EAX, ctrl));
2147
2148 if ((ctrl >> 6) & 1) {
2149 if (ctrl & 1) {
2150 for (i = 0; i < 8; i++, res >>= 1) {
2151 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2152 }
2153 } else {
2154 for (i = 0; i < 16; i++, res >>= 1) {
2155 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2156 }
2157 }
2158 } else {
2159 env->xmm_regs[0].Q(1) = 0;
2160 env->xmm_regs[0].Q(0) = res;
2161 }
2162 }
2163
2164 void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2165 uint32_t ctrl)
2166 {
2167 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2168 pcmp_ilen(s, ctrl),
2169 pcmp_ilen(d, ctrl));
2170
2171 if (res) {
2172 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2173 } else {
2174 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2175 }
2176 }
2177
2178 void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2179 uint32_t ctrl)
2180 {
2181 int i;
2182 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2183 pcmp_ilen(s, ctrl),
2184 pcmp_ilen(d, ctrl));
2185
2186 if ((ctrl >> 6) & 1) {
2187 if (ctrl & 1) {
2188 for (i = 0; i < 8; i++, res >>= 1) {
2189 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2190 }
2191 } else {
2192 for (i = 0; i < 16; i++, res >>= 1) {
2193 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2194 }
2195 }
2196 } else {
2197 env->xmm_regs[0].Q(1) = 0;
2198 env->xmm_regs[0].Q(0) = res;
2199 }
2200 }
2201
2202 #define CRCPOLY 0x1edc6f41
2203 #define CRCPOLY_BITREV 0x82f63b78
2204 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2205 {
2206 target_ulong crc = (msg & ((target_ulong) -1 >>
2207 (TARGET_LONG_BITS - len))) ^ crc1;
2208
2209 while (len--) {
2210 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2211 }
2212
2213 return crc;
2214 }
2215
2216 void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2217 uint32_t ctrl)
2218 {
2219 uint64_t ah, al, b, resh, resl;
2220
2221 ah = 0;
2222 al = d->Q((ctrl & 1) != 0);
2223 b = s->Q((ctrl & 16) != 0);
2224 resh = resl = 0;
2225
2226 while (b) {
2227 if (b & 1) {
2228 resl ^= al;
2229 resh ^= ah;
2230 }
2231 ah = (ah << 1) | (al >> 63);
2232 al <<= 1;
2233 b >>= 1;
2234 }
2235
2236 d->Q(0) = resl;
2237 d->Q(1) = resh;
2238 }
2239
2240 void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2241 {
2242 int i;
2243 Reg st = *d;
2244 Reg rk = *s;
2245
2246 for (i = 0 ; i < 4 ; i++) {
2247 d->L(i) = rk.L(i) ^ bswap32(AES_Td0[st.B(AES_ishifts[4*i+0])] ^
2248 AES_Td1[st.B(AES_ishifts[4*i+1])] ^
2249 AES_Td2[st.B(AES_ishifts[4*i+2])] ^
2250 AES_Td3[st.B(AES_ishifts[4*i+3])]);
2251 }
2252 }
2253
2254 void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2255 {
2256 int i;
2257 Reg st = *d;
2258 Reg rk = *s;
2259
2260 for (i = 0; i < 16; i++) {
2261 d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i])]);
2262 }
2263 }
2264
2265 void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2266 {
2267 int i;
2268 Reg st = *d;
2269 Reg rk = *s;
2270
2271 for (i = 0 ; i < 4 ; i++) {
2272 d->L(i) = rk.L(i) ^ bswap32(AES_Te0[st.B(AES_shifts[4*i+0])] ^
2273 AES_Te1[st.B(AES_shifts[4*i+1])] ^
2274 AES_Te2[st.B(AES_shifts[4*i+2])] ^
2275 AES_Te3[st.B(AES_shifts[4*i+3])]);
2276 }
2277 }
2278
2279 void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2280 {
2281 int i;
2282 Reg st = *d;
2283 Reg rk = *s;
2284
2285 for (i = 0; i < 16; i++) {
2286 d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i])]);
2287 }
2288
2289 }
2290
2291 void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2292 {
2293 int i;
2294 Reg tmp = *s;
2295
2296 for (i = 0 ; i < 4 ; i++) {
2297 d->L(i) = bswap32(AES_imc[tmp.B(4*i+0)][0] ^
2298 AES_imc[tmp.B(4*i+1)][1] ^
2299 AES_imc[tmp.B(4*i+2)][2] ^
2300 AES_imc[tmp.B(4*i+3)][3]);
2301 }
2302 }
2303
2304 void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2305 uint32_t ctrl)
2306 {
2307 int i;
2308 Reg tmp = *s;
2309
2310 for (i = 0 ; i < 4 ; i++) {
2311 d->B(i) = AES_sbox[tmp.B(i + 4)];
2312 d->B(i + 8) = AES_sbox[tmp.B(i + 12)];
2313 }
2314 d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl;
2315 d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl;
2316 }
2317 #endif
2318
2319 #undef SHIFT
2320 #undef XMM_ONLY
2321 #undef Reg
2322 #undef B
2323 #undef W
2324 #undef L
2325 #undef Q
2326 #undef SUFFIX