hw/arm/virt: Merge VirtBoardInfo and VirtMachineState
[qemu.git] / target / s390x / kvm.c
1 /*
2 * QEMU S390x KVM implementation
3 *
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
19 *
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
26
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
29
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/kvm.h"
36 #include "hw/hw.h"
37 #include "sysemu/device_tree.h"
38 #include "qapi/qmp/qjson.h"
39 #include "exec/gdbstub.h"
40 #include "exec/address-spaces.h"
41 #include "trace.h"
42 #include "qapi-event.h"
43 #include "hw/s390x/s390-pci-inst.h"
44 #include "hw/s390x/s390-pci-bus.h"
45 #include "hw/s390x/ipl.h"
46 #include "hw/s390x/ebcdic.h"
47 #include "exec/memattrs.h"
48 #include "hw/s390x/s390-virtio-ccw.h"
49
50 /* #define DEBUG_KVM */
51
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
59
60 #define kvm_vm_check_mem_attr(s, attr) \
61 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
62
63 #define IPA0_DIAG 0x8300
64 #define IPA0_SIGP 0xae00
65 #define IPA0_B2 0xb200
66 #define IPA0_B9 0xb900
67 #define IPA0_EB 0xeb00
68 #define IPA0_E3 0xe300
69
70 #define PRIV_B2_SCLP_CALL 0x20
71 #define PRIV_B2_CSCH 0x30
72 #define PRIV_B2_HSCH 0x31
73 #define PRIV_B2_MSCH 0x32
74 #define PRIV_B2_SSCH 0x33
75 #define PRIV_B2_STSCH 0x34
76 #define PRIV_B2_TSCH 0x35
77 #define PRIV_B2_TPI 0x36
78 #define PRIV_B2_SAL 0x37
79 #define PRIV_B2_RSCH 0x38
80 #define PRIV_B2_STCRW 0x39
81 #define PRIV_B2_STCPS 0x3a
82 #define PRIV_B2_RCHP 0x3b
83 #define PRIV_B2_SCHM 0x3c
84 #define PRIV_B2_CHSC 0x5f
85 #define PRIV_B2_SIGA 0x74
86 #define PRIV_B2_XSCH 0x76
87
88 #define PRIV_EB_SQBS 0x8a
89 #define PRIV_EB_PCISTB 0xd0
90 #define PRIV_EB_SIC 0xd1
91
92 #define PRIV_B9_EQBS 0x9c
93 #define PRIV_B9_CLP 0xa0
94 #define PRIV_B9_PCISTG 0xd0
95 #define PRIV_B9_PCILG 0xd2
96 #define PRIV_B9_RPCIT 0xd3
97
98 #define PRIV_E3_MPCIFC 0xd0
99 #define PRIV_E3_STPCIFC 0xd4
100
101 #define DIAG_TIMEREVENT 0x288
102 #define DIAG_IPL 0x308
103 #define DIAG_KVM_HYPERCALL 0x500
104 #define DIAG_KVM_BREAKPOINT 0x501
105
106 #define ICPT_INSTRUCTION 0x04
107 #define ICPT_PROGRAM 0x08
108 #define ICPT_EXT_INT 0x14
109 #define ICPT_WAITPSW 0x1c
110 #define ICPT_SOFT_INTERCEPT 0x24
111 #define ICPT_CPU_STOP 0x28
112 #define ICPT_OPEREXC 0x2c
113 #define ICPT_IO 0x40
114
115 #define NR_LOCAL_IRQS 32
116 /*
117 * Needs to be big enough to contain max_cpus emergency signals
118 * and in addition NR_LOCAL_IRQS interrupts
119 */
120 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
121 (max_cpus + NR_LOCAL_IRQS))
122
123 static CPUWatchpoint hw_watchpoint;
124 /*
125 * We don't use a list because this structure is also used to transmit the
126 * hardware breakpoints to the kernel.
127 */
128 static struct kvm_hw_breakpoint *hw_breakpoints;
129 static int nb_hw_breakpoints;
130
131 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
132 KVM_CAP_LAST_INFO
133 };
134
135 static QemuMutex qemu_sigp_mutex;
136
137 static int cap_sync_regs;
138 static int cap_async_pf;
139 static int cap_mem_op;
140 static int cap_s390_irq;
141 static int cap_ri;
142
143 static void *legacy_s390_alloc(size_t size, uint64_t *align);
144
145 static int kvm_s390_query_mem_limit(KVMState *s, uint64_t *memory_limit)
146 {
147 struct kvm_device_attr attr = {
148 .group = KVM_S390_VM_MEM_CTRL,
149 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
150 .addr = (uint64_t) memory_limit,
151 };
152
153 return kvm_vm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
154 }
155
156 int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit)
157 {
158 int rc;
159
160 struct kvm_device_attr attr = {
161 .group = KVM_S390_VM_MEM_CTRL,
162 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
163 .addr = (uint64_t) &new_limit,
164 };
165
166 if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_LIMIT_SIZE)) {
167 return 0;
168 }
169
170 rc = kvm_s390_query_mem_limit(s, hw_limit);
171 if (rc) {
172 return rc;
173 } else if (*hw_limit < new_limit) {
174 return -E2BIG;
175 }
176
177 return kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
178 }
179
180 static bool kvm_s390_cmma_available(void)
181 {
182 static bool initialized, value;
183
184 if (!initialized) {
185 initialized = true;
186 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
187 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
188 }
189 return value;
190 }
191
192 void kvm_s390_cmma_reset(void)
193 {
194 int rc;
195 struct kvm_device_attr attr = {
196 .group = KVM_S390_VM_MEM_CTRL,
197 .attr = KVM_S390_VM_MEM_CLR_CMMA,
198 };
199
200 if (!mem_path || !kvm_s390_cmma_available()) {
201 return;
202 }
203
204 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
205 trace_kvm_clear_cmma(rc);
206 }
207
208 static void kvm_s390_enable_cmma(void)
209 {
210 int rc;
211 struct kvm_device_attr attr = {
212 .group = KVM_S390_VM_MEM_CTRL,
213 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
214 };
215
216 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
217 trace_kvm_enable_cmma(rc);
218 }
219
220 static void kvm_s390_set_attr(uint64_t attr)
221 {
222 struct kvm_device_attr attribute = {
223 .group = KVM_S390_VM_CRYPTO,
224 .attr = attr,
225 };
226
227 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
228
229 if (ret) {
230 error_report("Failed to set crypto device attribute %lu: %s",
231 attr, strerror(-ret));
232 }
233 }
234
235 static void kvm_s390_init_aes_kw(void)
236 {
237 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
238
239 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
240 NULL)) {
241 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
242 }
243
244 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
245 kvm_s390_set_attr(attr);
246 }
247 }
248
249 static void kvm_s390_init_dea_kw(void)
250 {
251 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
252
253 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
254 NULL)) {
255 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
256 }
257
258 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
259 kvm_s390_set_attr(attr);
260 }
261 }
262
263 void kvm_s390_crypto_reset(void)
264 {
265 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
266 kvm_s390_init_aes_kw();
267 kvm_s390_init_dea_kw();
268 }
269 }
270
271 int kvm_arch_init(MachineState *ms, KVMState *s)
272 {
273 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
274 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
275 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
276 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
277
278 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
279 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
280 phys_mem_set_alloc(legacy_s390_alloc);
281 }
282
283 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
284 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
285 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
286 if (ri_allowed()) {
287 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
288 cap_ri = 1;
289 }
290 }
291
292 qemu_mutex_init(&qemu_sigp_mutex);
293
294 return 0;
295 }
296
297 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
298 {
299 return cpu->cpu_index;
300 }
301
302 int kvm_arch_init_vcpu(CPUState *cs)
303 {
304 S390CPU *cpu = S390_CPU(cs);
305 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
306 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
307 return 0;
308 }
309
310 void kvm_s390_reset_vcpu(S390CPU *cpu)
311 {
312 CPUState *cs = CPU(cpu);
313
314 /* The initial reset call is needed here to reset in-kernel
315 * vcpu data that we can't access directly from QEMU
316 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
317 * Before this ioctl cpu_synchronize_state() is called in common kvm
318 * code (kvm-all) */
319 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
320 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
321 }
322 }
323
324 static int can_sync_regs(CPUState *cs, int regs)
325 {
326 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
327 }
328
329 int kvm_arch_put_registers(CPUState *cs, int level)
330 {
331 S390CPU *cpu = S390_CPU(cs);
332 CPUS390XState *env = &cpu->env;
333 struct kvm_sregs sregs;
334 struct kvm_regs regs;
335 struct kvm_fpu fpu = {};
336 int r;
337 int i;
338
339 /* always save the PSW and the GPRS*/
340 cs->kvm_run->psw_addr = env->psw.addr;
341 cs->kvm_run->psw_mask = env->psw.mask;
342
343 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
344 for (i = 0; i < 16; i++) {
345 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
346 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
347 }
348 } else {
349 for (i = 0; i < 16; i++) {
350 regs.gprs[i] = env->regs[i];
351 }
352 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
353 if (r < 0) {
354 return r;
355 }
356 }
357
358 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
359 for (i = 0; i < 32; i++) {
360 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
361 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
362 }
363 cs->kvm_run->s.regs.fpc = env->fpc;
364 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
365 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
366 for (i = 0; i < 16; i++) {
367 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
368 }
369 cs->kvm_run->s.regs.fpc = env->fpc;
370 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
371 } else {
372 /* Floating point */
373 for (i = 0; i < 16; i++) {
374 fpu.fprs[i] = get_freg(env, i)->ll;
375 }
376 fpu.fpc = env->fpc;
377
378 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
379 if (r < 0) {
380 return r;
381 }
382 }
383
384 /* Do we need to save more than that? */
385 if (level == KVM_PUT_RUNTIME_STATE) {
386 return 0;
387 }
388
389 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
390 cs->kvm_run->s.regs.cputm = env->cputm;
391 cs->kvm_run->s.regs.ckc = env->ckc;
392 cs->kvm_run->s.regs.todpr = env->todpr;
393 cs->kvm_run->s.regs.gbea = env->gbea;
394 cs->kvm_run->s.regs.pp = env->pp;
395 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
396 } else {
397 /*
398 * These ONE_REGS are not protected by a capability. As they are only
399 * necessary for migration we just trace a possible error, but don't
400 * return with an error return code.
401 */
402 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
403 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
404 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
405 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
406 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
407 }
408
409 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
410 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
411 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
412 }
413
414 /* pfault parameters */
415 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
416 cs->kvm_run->s.regs.pft = env->pfault_token;
417 cs->kvm_run->s.regs.pfs = env->pfault_select;
418 cs->kvm_run->s.regs.pfc = env->pfault_compare;
419 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
420 } else if (cap_async_pf) {
421 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
422 if (r < 0) {
423 return r;
424 }
425 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
426 if (r < 0) {
427 return r;
428 }
429 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
430 if (r < 0) {
431 return r;
432 }
433 }
434
435 /* access registers and control registers*/
436 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
437 for (i = 0; i < 16; i++) {
438 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
439 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
440 }
441 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
442 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
443 } else {
444 for (i = 0; i < 16; i++) {
445 sregs.acrs[i] = env->aregs[i];
446 sregs.crs[i] = env->cregs[i];
447 }
448 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
449 if (r < 0) {
450 return r;
451 }
452 }
453
454 /* Finally the prefix */
455 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
456 cs->kvm_run->s.regs.prefix = env->psa;
457 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
458 } else {
459 /* prefix is only supported via sync regs */
460 }
461 return 0;
462 }
463
464 int kvm_arch_get_registers(CPUState *cs)
465 {
466 S390CPU *cpu = S390_CPU(cs);
467 CPUS390XState *env = &cpu->env;
468 struct kvm_sregs sregs;
469 struct kvm_regs regs;
470 struct kvm_fpu fpu;
471 int i, r;
472
473 /* get the PSW */
474 env->psw.addr = cs->kvm_run->psw_addr;
475 env->psw.mask = cs->kvm_run->psw_mask;
476
477 /* the GPRS */
478 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
479 for (i = 0; i < 16; i++) {
480 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
481 }
482 } else {
483 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
484 if (r < 0) {
485 return r;
486 }
487 for (i = 0; i < 16; i++) {
488 env->regs[i] = regs.gprs[i];
489 }
490 }
491
492 /* The ACRS and CRS */
493 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
494 for (i = 0; i < 16; i++) {
495 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
496 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
497 }
498 } else {
499 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
500 if (r < 0) {
501 return r;
502 }
503 for (i = 0; i < 16; i++) {
504 env->aregs[i] = sregs.acrs[i];
505 env->cregs[i] = sregs.crs[i];
506 }
507 }
508
509 /* Floating point and vector registers */
510 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
511 for (i = 0; i < 32; i++) {
512 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
513 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
514 }
515 env->fpc = cs->kvm_run->s.regs.fpc;
516 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
517 for (i = 0; i < 16; i++) {
518 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
519 }
520 env->fpc = cs->kvm_run->s.regs.fpc;
521 } else {
522 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
523 if (r < 0) {
524 return r;
525 }
526 for (i = 0; i < 16; i++) {
527 get_freg(env, i)->ll = fpu.fprs[i];
528 }
529 env->fpc = fpu.fpc;
530 }
531
532 /* The prefix */
533 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
534 env->psa = cs->kvm_run->s.regs.prefix;
535 }
536
537 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
538 env->cputm = cs->kvm_run->s.regs.cputm;
539 env->ckc = cs->kvm_run->s.regs.ckc;
540 env->todpr = cs->kvm_run->s.regs.todpr;
541 env->gbea = cs->kvm_run->s.regs.gbea;
542 env->pp = cs->kvm_run->s.regs.pp;
543 } else {
544 /*
545 * These ONE_REGS are not protected by a capability. As they are only
546 * necessary for migration we just trace a possible error, but don't
547 * return with an error return code.
548 */
549 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
550 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
551 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
552 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
553 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
554 }
555
556 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
557 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
558 }
559
560 /* pfault parameters */
561 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
562 env->pfault_token = cs->kvm_run->s.regs.pft;
563 env->pfault_select = cs->kvm_run->s.regs.pfs;
564 env->pfault_compare = cs->kvm_run->s.regs.pfc;
565 } else if (cap_async_pf) {
566 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
567 if (r < 0) {
568 return r;
569 }
570 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
571 if (r < 0) {
572 return r;
573 }
574 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
575 if (r < 0) {
576 return r;
577 }
578 }
579
580 return 0;
581 }
582
583 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
584 {
585 int r;
586 struct kvm_device_attr attr = {
587 .group = KVM_S390_VM_TOD,
588 .attr = KVM_S390_VM_TOD_LOW,
589 .addr = (uint64_t)tod_low,
590 };
591
592 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
593 if (r) {
594 return r;
595 }
596
597 attr.attr = KVM_S390_VM_TOD_HIGH;
598 attr.addr = (uint64_t)tod_high;
599 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
600 }
601
602 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
603 {
604 int r;
605
606 struct kvm_device_attr attr = {
607 .group = KVM_S390_VM_TOD,
608 .attr = KVM_S390_VM_TOD_LOW,
609 .addr = (uint64_t)tod_low,
610 };
611
612 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
613 if (r) {
614 return r;
615 }
616
617 attr.attr = KVM_S390_VM_TOD_HIGH;
618 attr.addr = (uint64_t)tod_high;
619 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
620 }
621
622 /**
623 * kvm_s390_mem_op:
624 * @addr: the logical start address in guest memory
625 * @ar: the access register number
626 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
627 * @len: length that should be transferred
628 * @is_write: true = write, false = read
629 * Returns: 0 on success, non-zero if an exception or error occurred
630 *
631 * Use KVM ioctl to read/write from/to guest memory. An access exception
632 * is injected into the vCPU in case of translation errors.
633 */
634 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
635 int len, bool is_write)
636 {
637 struct kvm_s390_mem_op mem_op = {
638 .gaddr = addr,
639 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
640 .size = len,
641 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
642 : KVM_S390_MEMOP_LOGICAL_READ,
643 .buf = (uint64_t)hostbuf,
644 .ar = ar,
645 };
646 int ret;
647
648 if (!cap_mem_op) {
649 return -ENOSYS;
650 }
651 if (!hostbuf) {
652 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
653 }
654
655 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
656 if (ret < 0) {
657 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
658 }
659 return ret;
660 }
661
662 /*
663 * Legacy layout for s390:
664 * Older S390 KVM requires the topmost vma of the RAM to be
665 * smaller than an system defined value, which is at least 256GB.
666 * Larger systems have larger values. We put the guest between
667 * the end of data segment (system break) and this value. We
668 * use 32GB as a base to have enough room for the system break
669 * to grow. We also have to use MAP parameters that avoid
670 * read-only mapping of guest pages.
671 */
672 static void *legacy_s390_alloc(size_t size, uint64_t *align)
673 {
674 void *mem;
675
676 mem = mmap((void *) 0x800000000ULL, size,
677 PROT_EXEC|PROT_READ|PROT_WRITE,
678 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
679 return mem == MAP_FAILED ? NULL : mem;
680 }
681
682 static uint8_t const *sw_bp_inst;
683 static uint8_t sw_bp_ilen;
684
685 static void determine_sw_breakpoint_instr(void)
686 {
687 /* DIAG 501 is used for sw breakpoints with old kernels */
688 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
689 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
690 static const uint8_t instr_0x0000[] = {0x00, 0x00};
691
692 if (sw_bp_inst) {
693 return;
694 }
695 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
696 sw_bp_inst = diag_501;
697 sw_bp_ilen = sizeof(diag_501);
698 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
699 } else {
700 sw_bp_inst = instr_0x0000;
701 sw_bp_ilen = sizeof(instr_0x0000);
702 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
703 }
704 }
705
706 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
707 {
708 determine_sw_breakpoint_instr();
709
710 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
711 sw_bp_ilen, 0) ||
712 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
713 return -EINVAL;
714 }
715 return 0;
716 }
717
718 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
719 {
720 uint8_t t[MAX_ILEN];
721
722 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
723 return -EINVAL;
724 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
725 return -EINVAL;
726 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
727 sw_bp_ilen, 1)) {
728 return -EINVAL;
729 }
730
731 return 0;
732 }
733
734 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
735 int len, int type)
736 {
737 int n;
738
739 for (n = 0; n < nb_hw_breakpoints; n++) {
740 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
741 (hw_breakpoints[n].len == len || len == -1)) {
742 return &hw_breakpoints[n];
743 }
744 }
745
746 return NULL;
747 }
748
749 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
750 {
751 int size;
752
753 if (find_hw_breakpoint(addr, len, type)) {
754 return -EEXIST;
755 }
756
757 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
758
759 if (!hw_breakpoints) {
760 nb_hw_breakpoints = 0;
761 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
762 } else {
763 hw_breakpoints =
764 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
765 }
766
767 if (!hw_breakpoints) {
768 nb_hw_breakpoints = 0;
769 return -ENOMEM;
770 }
771
772 hw_breakpoints[nb_hw_breakpoints].addr = addr;
773 hw_breakpoints[nb_hw_breakpoints].len = len;
774 hw_breakpoints[nb_hw_breakpoints].type = type;
775
776 nb_hw_breakpoints++;
777
778 return 0;
779 }
780
781 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
782 target_ulong len, int type)
783 {
784 switch (type) {
785 case GDB_BREAKPOINT_HW:
786 type = KVM_HW_BP;
787 break;
788 case GDB_WATCHPOINT_WRITE:
789 if (len < 1) {
790 return -EINVAL;
791 }
792 type = KVM_HW_WP_WRITE;
793 break;
794 default:
795 return -ENOSYS;
796 }
797 return insert_hw_breakpoint(addr, len, type);
798 }
799
800 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
801 target_ulong len, int type)
802 {
803 int size;
804 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
805
806 if (bp == NULL) {
807 return -ENOENT;
808 }
809
810 nb_hw_breakpoints--;
811 if (nb_hw_breakpoints > 0) {
812 /*
813 * In order to trim the array, move the last element to the position to
814 * be removed - if necessary.
815 */
816 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
817 *bp = hw_breakpoints[nb_hw_breakpoints];
818 }
819 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
820 hw_breakpoints =
821 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
822 } else {
823 g_free(hw_breakpoints);
824 hw_breakpoints = NULL;
825 }
826
827 return 0;
828 }
829
830 void kvm_arch_remove_all_hw_breakpoints(void)
831 {
832 nb_hw_breakpoints = 0;
833 g_free(hw_breakpoints);
834 hw_breakpoints = NULL;
835 }
836
837 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
838 {
839 int i;
840
841 if (nb_hw_breakpoints > 0) {
842 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
843 dbg->arch.hw_bp = hw_breakpoints;
844
845 for (i = 0; i < nb_hw_breakpoints; ++i) {
846 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
847 hw_breakpoints[i].addr);
848 }
849 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
850 } else {
851 dbg->arch.nr_hw_bp = 0;
852 dbg->arch.hw_bp = NULL;
853 }
854 }
855
856 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
857 {
858 }
859
860 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
861 {
862 return MEMTXATTRS_UNSPECIFIED;
863 }
864
865 int kvm_arch_process_async_events(CPUState *cs)
866 {
867 return cs->halted;
868 }
869
870 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
871 struct kvm_s390_interrupt *interrupt)
872 {
873 int r = 0;
874
875 interrupt->type = irq->type;
876 switch (irq->type) {
877 case KVM_S390_INT_VIRTIO:
878 interrupt->parm = irq->u.ext.ext_params;
879 /* fall through */
880 case KVM_S390_INT_PFAULT_INIT:
881 case KVM_S390_INT_PFAULT_DONE:
882 interrupt->parm64 = irq->u.ext.ext_params2;
883 break;
884 case KVM_S390_PROGRAM_INT:
885 interrupt->parm = irq->u.pgm.code;
886 break;
887 case KVM_S390_SIGP_SET_PREFIX:
888 interrupt->parm = irq->u.prefix.address;
889 break;
890 case KVM_S390_INT_SERVICE:
891 interrupt->parm = irq->u.ext.ext_params;
892 break;
893 case KVM_S390_MCHK:
894 interrupt->parm = irq->u.mchk.cr14;
895 interrupt->parm64 = irq->u.mchk.mcic;
896 break;
897 case KVM_S390_INT_EXTERNAL_CALL:
898 interrupt->parm = irq->u.extcall.code;
899 break;
900 case KVM_S390_INT_EMERGENCY:
901 interrupt->parm = irq->u.emerg.code;
902 break;
903 case KVM_S390_SIGP_STOP:
904 case KVM_S390_RESTART:
905 break; /* These types have no parameters */
906 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
907 interrupt->parm = irq->u.io.subchannel_id << 16;
908 interrupt->parm |= irq->u.io.subchannel_nr;
909 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
910 interrupt->parm64 |= irq->u.io.io_int_word;
911 break;
912 default:
913 r = -EINVAL;
914 break;
915 }
916 return r;
917 }
918
919 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
920 {
921 struct kvm_s390_interrupt kvmint = {};
922 int r;
923
924 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
925 if (r < 0) {
926 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
927 exit(1);
928 }
929
930 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
931 if (r < 0) {
932 fprintf(stderr, "KVM failed to inject interrupt\n");
933 exit(1);
934 }
935 }
936
937 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
938 {
939 CPUState *cs = CPU(cpu);
940 int r;
941
942 if (cap_s390_irq) {
943 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
944 if (!r) {
945 return;
946 }
947 error_report("KVM failed to inject interrupt %llx", irq->type);
948 exit(1);
949 }
950
951 inject_vcpu_irq_legacy(cs, irq);
952 }
953
954 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
955 {
956 struct kvm_s390_interrupt kvmint = {};
957 int r;
958
959 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
960 if (r < 0) {
961 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
962 exit(1);
963 }
964
965 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
966 if (r < 0) {
967 fprintf(stderr, "KVM failed to inject interrupt\n");
968 exit(1);
969 }
970 }
971
972 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
973 {
974 static bool use_flic = true;
975 int r;
976
977 if (use_flic) {
978 r = kvm_s390_inject_flic(irq);
979 if (r == -ENOSYS) {
980 use_flic = false;
981 }
982 if (!r) {
983 return;
984 }
985 }
986 __kvm_s390_floating_interrupt(irq);
987 }
988
989 void kvm_s390_service_interrupt(uint32_t parm)
990 {
991 struct kvm_s390_irq irq = {
992 .type = KVM_S390_INT_SERVICE,
993 .u.ext.ext_params = parm,
994 };
995
996 kvm_s390_floating_interrupt(&irq);
997 }
998
999 static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
1000 {
1001 struct kvm_s390_irq irq = {
1002 .type = KVM_S390_PROGRAM_INT,
1003 .u.pgm.code = code,
1004 };
1005
1006 kvm_s390_vcpu_interrupt(cpu, &irq);
1007 }
1008
1009 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1010 {
1011 struct kvm_s390_irq irq = {
1012 .type = KVM_S390_PROGRAM_INT,
1013 .u.pgm.code = code,
1014 .u.pgm.trans_exc_code = te_code,
1015 .u.pgm.exc_access_id = te_code & 3,
1016 };
1017
1018 kvm_s390_vcpu_interrupt(cpu, &irq);
1019 }
1020
1021 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1022 uint16_t ipbh0)
1023 {
1024 CPUS390XState *env = &cpu->env;
1025 uint64_t sccb;
1026 uint32_t code;
1027 int r = 0;
1028
1029 cpu_synchronize_state(CPU(cpu));
1030 sccb = env->regs[ipbh0 & 0xf];
1031 code = env->regs[(ipbh0 & 0xf0) >> 4];
1032
1033 r = sclp_service_call(env, sccb, code);
1034 if (r < 0) {
1035 enter_pgmcheck(cpu, -r);
1036 } else {
1037 setcc(cpu, r);
1038 }
1039
1040 return 0;
1041 }
1042
1043 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1044 {
1045 CPUS390XState *env = &cpu->env;
1046 int rc = 0;
1047 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1048
1049 cpu_synchronize_state(CPU(cpu));
1050
1051 switch (ipa1) {
1052 case PRIV_B2_XSCH:
1053 ioinst_handle_xsch(cpu, env->regs[1]);
1054 break;
1055 case PRIV_B2_CSCH:
1056 ioinst_handle_csch(cpu, env->regs[1]);
1057 break;
1058 case PRIV_B2_HSCH:
1059 ioinst_handle_hsch(cpu, env->regs[1]);
1060 break;
1061 case PRIV_B2_MSCH:
1062 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
1063 break;
1064 case PRIV_B2_SSCH:
1065 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
1066 break;
1067 case PRIV_B2_STCRW:
1068 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
1069 break;
1070 case PRIV_B2_STSCH:
1071 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
1072 break;
1073 case PRIV_B2_TSCH:
1074 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1075 fprintf(stderr, "Spurious tsch intercept\n");
1076 break;
1077 case PRIV_B2_CHSC:
1078 ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
1079 break;
1080 case PRIV_B2_TPI:
1081 /* This should have been handled by kvm already. */
1082 fprintf(stderr, "Spurious tpi intercept\n");
1083 break;
1084 case PRIV_B2_SCHM:
1085 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1086 run->s390_sieic.ipb);
1087 break;
1088 case PRIV_B2_RSCH:
1089 ioinst_handle_rsch(cpu, env->regs[1]);
1090 break;
1091 case PRIV_B2_RCHP:
1092 ioinst_handle_rchp(cpu, env->regs[1]);
1093 break;
1094 case PRIV_B2_STCPS:
1095 /* We do not provide this instruction, it is suppressed. */
1096 break;
1097 case PRIV_B2_SAL:
1098 ioinst_handle_sal(cpu, env->regs[1]);
1099 break;
1100 case PRIV_B2_SIGA:
1101 /* Not provided, set CC = 3 for subchannel not operational */
1102 setcc(cpu, 3);
1103 break;
1104 case PRIV_B2_SCLP_CALL:
1105 rc = kvm_sclp_service_call(cpu, run, ipbh0);
1106 break;
1107 default:
1108 rc = -1;
1109 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1110 break;
1111 }
1112
1113 return rc;
1114 }
1115
1116 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1117 uint8_t *ar)
1118 {
1119 CPUS390XState *env = &cpu->env;
1120 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1121 uint32_t base2 = run->s390_sieic.ipb >> 28;
1122 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1123 ((run->s390_sieic.ipb & 0xff00) << 4);
1124
1125 if (disp2 & 0x80000) {
1126 disp2 += 0xfff00000;
1127 }
1128 if (ar) {
1129 *ar = base2;
1130 }
1131
1132 return (base2 ? env->regs[base2] : 0) +
1133 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1134 }
1135
1136 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1137 uint8_t *ar)
1138 {
1139 CPUS390XState *env = &cpu->env;
1140 uint32_t base2 = run->s390_sieic.ipb >> 28;
1141 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1142 ((run->s390_sieic.ipb & 0xff00) << 4);
1143
1144 if (disp2 & 0x80000) {
1145 disp2 += 0xfff00000;
1146 }
1147 if (ar) {
1148 *ar = base2;
1149 }
1150
1151 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1152 }
1153
1154 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1155 {
1156 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1157
1158 return clp_service_call(cpu, r2);
1159 }
1160
1161 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1162 {
1163 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1164 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1165
1166 return pcilg_service_call(cpu, r1, r2);
1167 }
1168
1169 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1170 {
1171 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1172 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1173
1174 return pcistg_service_call(cpu, r1, r2);
1175 }
1176
1177 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1178 {
1179 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1180 uint64_t fiba;
1181 uint8_t ar;
1182
1183 cpu_synchronize_state(CPU(cpu));
1184 fiba = get_base_disp_rxy(cpu, run, &ar);
1185
1186 return stpcifc_service_call(cpu, r1, fiba, ar);
1187 }
1188
1189 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1190 {
1191 /* NOOP */
1192 return 0;
1193 }
1194
1195 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1196 {
1197 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1198 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1199
1200 return rpcit_service_call(cpu, r1, r2);
1201 }
1202
1203 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1204 {
1205 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1206 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1207 uint64_t gaddr;
1208 uint8_t ar;
1209
1210 cpu_synchronize_state(CPU(cpu));
1211 gaddr = get_base_disp_rsy(cpu, run, &ar);
1212
1213 return pcistb_service_call(cpu, r1, r3, gaddr, ar);
1214 }
1215
1216 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1217 {
1218 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1219 uint64_t fiba;
1220 uint8_t ar;
1221
1222 cpu_synchronize_state(CPU(cpu));
1223 fiba = get_base_disp_rxy(cpu, run, &ar);
1224
1225 return mpcifc_service_call(cpu, r1, fiba, ar);
1226 }
1227
1228 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1229 {
1230 int r = 0;
1231
1232 switch (ipa1) {
1233 case PRIV_B9_CLP:
1234 r = kvm_clp_service_call(cpu, run);
1235 break;
1236 case PRIV_B9_PCISTG:
1237 r = kvm_pcistg_service_call(cpu, run);
1238 break;
1239 case PRIV_B9_PCILG:
1240 r = kvm_pcilg_service_call(cpu, run);
1241 break;
1242 case PRIV_B9_RPCIT:
1243 r = kvm_rpcit_service_call(cpu, run);
1244 break;
1245 case PRIV_B9_EQBS:
1246 /* just inject exception */
1247 r = -1;
1248 break;
1249 default:
1250 r = -1;
1251 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1252 break;
1253 }
1254
1255 return r;
1256 }
1257
1258 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1259 {
1260 int r = 0;
1261
1262 switch (ipbl) {
1263 case PRIV_EB_PCISTB:
1264 r = kvm_pcistb_service_call(cpu, run);
1265 break;
1266 case PRIV_EB_SIC:
1267 r = kvm_sic_service_call(cpu, run);
1268 break;
1269 case PRIV_EB_SQBS:
1270 /* just inject exception */
1271 r = -1;
1272 break;
1273 default:
1274 r = -1;
1275 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1276 break;
1277 }
1278
1279 return r;
1280 }
1281
1282 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1283 {
1284 int r = 0;
1285
1286 switch (ipbl) {
1287 case PRIV_E3_MPCIFC:
1288 r = kvm_mpcifc_service_call(cpu, run);
1289 break;
1290 case PRIV_E3_STPCIFC:
1291 r = kvm_stpcifc_service_call(cpu, run);
1292 break;
1293 default:
1294 r = -1;
1295 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1296 break;
1297 }
1298
1299 return r;
1300 }
1301
1302 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1303 {
1304 CPUS390XState *env = &cpu->env;
1305 int ret;
1306
1307 cpu_synchronize_state(CPU(cpu));
1308 ret = s390_virtio_hypercall(env);
1309 if (ret == -EINVAL) {
1310 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1311 return 0;
1312 }
1313
1314 return ret;
1315 }
1316
1317 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1318 {
1319 uint64_t r1, r3;
1320 int rc;
1321
1322 cpu_synchronize_state(CPU(cpu));
1323 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1324 r3 = run->s390_sieic.ipa & 0x000f;
1325 rc = handle_diag_288(&cpu->env, r1, r3);
1326 if (rc) {
1327 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1328 }
1329 }
1330
1331 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1332 {
1333 uint64_t r1, r3;
1334
1335 cpu_synchronize_state(CPU(cpu));
1336 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1337 r3 = run->s390_sieic.ipa & 0x000f;
1338 handle_diag_308(&cpu->env, r1, r3);
1339 }
1340
1341 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1342 {
1343 CPUS390XState *env = &cpu->env;
1344 unsigned long pc;
1345
1346 cpu_synchronize_state(CPU(cpu));
1347
1348 pc = env->psw.addr - sw_bp_ilen;
1349 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1350 env->psw.addr = pc;
1351 return EXCP_DEBUG;
1352 }
1353
1354 return -ENOENT;
1355 }
1356
1357 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1358
1359 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1360 {
1361 int r = 0;
1362 uint16_t func_code;
1363
1364 /*
1365 * For any diagnose call we support, bits 48-63 of the resulting
1366 * address specify the function code; the remainder is ignored.
1367 */
1368 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1369 switch (func_code) {
1370 case DIAG_TIMEREVENT:
1371 kvm_handle_diag_288(cpu, run);
1372 break;
1373 case DIAG_IPL:
1374 kvm_handle_diag_308(cpu, run);
1375 break;
1376 case DIAG_KVM_HYPERCALL:
1377 r = handle_hypercall(cpu, run);
1378 break;
1379 case DIAG_KVM_BREAKPOINT:
1380 r = handle_sw_breakpoint(cpu, run);
1381 break;
1382 default:
1383 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1384 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1385 break;
1386 }
1387
1388 return r;
1389 }
1390
1391 typedef struct SigpInfo {
1392 uint64_t param;
1393 int cc;
1394 uint64_t *status_reg;
1395 } SigpInfo;
1396
1397 static void set_sigp_status(SigpInfo *si, uint64_t status)
1398 {
1399 *si->status_reg &= 0xffffffff00000000ULL;
1400 *si->status_reg |= status;
1401 si->cc = SIGP_CC_STATUS_STORED;
1402 }
1403
1404 static void sigp_start(CPUState *cs, run_on_cpu_data arg)
1405 {
1406 S390CPU *cpu = S390_CPU(cs);
1407 SigpInfo *si = arg.host_ptr;
1408
1409 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1410 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1411 return;
1412 }
1413
1414 s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1415 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1416 }
1417
1418 static void sigp_stop(CPUState *cs, run_on_cpu_data arg)
1419 {
1420 S390CPU *cpu = S390_CPU(cs);
1421 SigpInfo *si = arg.host_ptr;
1422 struct kvm_s390_irq irq = {
1423 .type = KVM_S390_SIGP_STOP,
1424 };
1425
1426 if (s390_cpu_get_state(cpu) != CPU_STATE_OPERATING) {
1427 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1428 return;
1429 }
1430
1431 /* disabled wait - sleeping in user space */
1432 if (cs->halted) {
1433 s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
1434 } else {
1435 /* execute the stop function */
1436 cpu->env.sigp_order = SIGP_STOP;
1437 kvm_s390_vcpu_interrupt(cpu, &irq);
1438 }
1439 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1440 }
1441
1442 #define ADTL_SAVE_AREA_SIZE 1024
1443 static int kvm_s390_store_adtl_status(S390CPU *cpu, hwaddr addr)
1444 {
1445 void *mem;
1446 hwaddr len = ADTL_SAVE_AREA_SIZE;
1447
1448 mem = cpu_physical_memory_map(addr, &len, 1);
1449 if (!mem) {
1450 return -EFAULT;
1451 }
1452 if (len != ADTL_SAVE_AREA_SIZE) {
1453 cpu_physical_memory_unmap(mem, len, 1, 0);
1454 return -EFAULT;
1455 }
1456
1457 memcpy(mem, &cpu->env.vregs, 512);
1458
1459 cpu_physical_memory_unmap(mem, len, 1, len);
1460
1461 return 0;
1462 }
1463
1464 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1465 #define SAVE_AREA_SIZE 512
1466 static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch)
1467 {
1468 static const uint8_t ar_id = 1;
1469 uint64_t ckc = cpu->env.ckc >> 8;
1470 void *mem;
1471 int i;
1472 hwaddr len = SAVE_AREA_SIZE;
1473
1474 mem = cpu_physical_memory_map(addr, &len, 1);
1475 if (!mem) {
1476 return -EFAULT;
1477 }
1478 if (len != SAVE_AREA_SIZE) {
1479 cpu_physical_memory_unmap(mem, len, 1, 0);
1480 return -EFAULT;
1481 }
1482
1483 if (store_arch) {
1484 cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1);
1485 }
1486 for (i = 0; i < 16; ++i) {
1487 *((uint64_t *)mem + i) = get_freg(&cpu->env, i)->ll;
1488 }
1489 memcpy(mem + 128, &cpu->env.regs, 128);
1490 memcpy(mem + 256, &cpu->env.psw, 16);
1491 memcpy(mem + 280, &cpu->env.psa, 4);
1492 memcpy(mem + 284, &cpu->env.fpc, 4);
1493 memcpy(mem + 292, &cpu->env.todpr, 4);
1494 memcpy(mem + 296, &cpu->env.cputm, 8);
1495 memcpy(mem + 304, &ckc, 8);
1496 memcpy(mem + 320, &cpu->env.aregs, 64);
1497 memcpy(mem + 384, &cpu->env.cregs, 128);
1498
1499 cpu_physical_memory_unmap(mem, len, 1, len);
1500
1501 return 0;
1502 }
1503
1504 static void sigp_stop_and_store_status(CPUState *cs, run_on_cpu_data arg)
1505 {
1506 S390CPU *cpu = S390_CPU(cs);
1507 SigpInfo *si = arg.host_ptr;
1508 struct kvm_s390_irq irq = {
1509 .type = KVM_S390_SIGP_STOP,
1510 };
1511
1512 /* disabled wait - sleeping in user space */
1513 if (s390_cpu_get_state(cpu) == CPU_STATE_OPERATING && cs->halted) {
1514 s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
1515 }
1516
1517 switch (s390_cpu_get_state(cpu)) {
1518 case CPU_STATE_OPERATING:
1519 cpu->env.sigp_order = SIGP_STOP_STORE_STATUS;
1520 kvm_s390_vcpu_interrupt(cpu, &irq);
1521 /* store will be performed when handling the stop intercept */
1522 break;
1523 case CPU_STATE_STOPPED:
1524 /* already stopped, just store the status */
1525 cpu_synchronize_state(cs);
1526 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true);
1527 break;
1528 }
1529 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1530 }
1531
1532 static void sigp_store_status_at_address(CPUState *cs, run_on_cpu_data arg)
1533 {
1534 S390CPU *cpu = S390_CPU(cs);
1535 SigpInfo *si = arg.host_ptr;
1536 uint32_t address = si->param & 0x7ffffe00u;
1537
1538 /* cpu has to be stopped */
1539 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1540 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1541 return;
1542 }
1543
1544 cpu_synchronize_state(cs);
1545
1546 if (kvm_s390_store_status(cpu, address, false)) {
1547 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1548 return;
1549 }
1550 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1551 }
1552
1553 static void sigp_store_adtl_status(CPUState *cs, run_on_cpu_data arg)
1554 {
1555 S390CPU *cpu = S390_CPU(cs);
1556 SigpInfo *si = arg.host_ptr;
1557
1558 if (!s390_has_feat(S390_FEAT_VECTOR)) {
1559 set_sigp_status(si, SIGP_STAT_INVALID_ORDER);
1560 return;
1561 }
1562
1563 /* cpu has to be stopped */
1564 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1565 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1566 return;
1567 }
1568
1569 /* parameter must be aligned to 1024-byte boundary */
1570 if (si->param & 0x3ff) {
1571 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1572 return;
1573 }
1574
1575 cpu_synchronize_state(cs);
1576
1577 if (kvm_s390_store_adtl_status(cpu, si->param)) {
1578 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1579 return;
1580 }
1581 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1582 }
1583
1584 static void sigp_restart(CPUState *cs, run_on_cpu_data arg)
1585 {
1586 S390CPU *cpu = S390_CPU(cs);
1587 SigpInfo *si = arg.host_ptr;
1588 struct kvm_s390_irq irq = {
1589 .type = KVM_S390_RESTART,
1590 };
1591
1592 switch (s390_cpu_get_state(cpu)) {
1593 case CPU_STATE_STOPPED:
1594 /* the restart irq has to be delivered prior to any other pending irq */
1595 cpu_synchronize_state(cs);
1596 do_restart_interrupt(&cpu->env);
1597 s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1598 break;
1599 case CPU_STATE_OPERATING:
1600 kvm_s390_vcpu_interrupt(cpu, &irq);
1601 break;
1602 }
1603 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1604 }
1605
1606 int kvm_s390_cpu_restart(S390CPU *cpu)
1607 {
1608 SigpInfo si = {};
1609
1610 run_on_cpu(CPU(cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
1611 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
1612 return 0;
1613 }
1614
1615 static void sigp_initial_cpu_reset(CPUState *cs, run_on_cpu_data arg)
1616 {
1617 S390CPU *cpu = S390_CPU(cs);
1618 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1619 SigpInfo *si = arg.host_ptr;
1620
1621 cpu_synchronize_state(cs);
1622 scc->initial_cpu_reset(cs);
1623 cpu_synchronize_post_reset(cs);
1624 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1625 }
1626
1627 static void sigp_cpu_reset(CPUState *cs, run_on_cpu_data arg)
1628 {
1629 S390CPU *cpu = S390_CPU(cs);
1630 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1631 SigpInfo *si = arg.host_ptr;
1632
1633 cpu_synchronize_state(cs);
1634 scc->cpu_reset(cs);
1635 cpu_synchronize_post_reset(cs);
1636 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1637 }
1638
1639 static void sigp_set_prefix(CPUState *cs, run_on_cpu_data arg)
1640 {
1641 S390CPU *cpu = S390_CPU(cs);
1642 SigpInfo *si = arg.host_ptr;
1643 uint32_t addr = si->param & 0x7fffe000u;
1644
1645 cpu_synchronize_state(cs);
1646
1647 if (!address_space_access_valid(&address_space_memory, addr,
1648 sizeof(struct LowCore), false)) {
1649 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1650 return;
1651 }
1652
1653 /* cpu has to be stopped */
1654 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1655 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1656 return;
1657 }
1658
1659 cpu->env.psa = addr;
1660 cpu_synchronize_post_init(cs);
1661 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1662 }
1663
1664 static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order,
1665 uint64_t param, uint64_t *status_reg)
1666 {
1667 SigpInfo si = {
1668 .param = param,
1669 .status_reg = status_reg,
1670 };
1671
1672 /* cpu available? */
1673 if (dst_cpu == NULL) {
1674 return SIGP_CC_NOT_OPERATIONAL;
1675 }
1676
1677 /* only resets can break pending orders */
1678 if (dst_cpu->env.sigp_order != 0 &&
1679 order != SIGP_CPU_RESET &&
1680 order != SIGP_INITIAL_CPU_RESET) {
1681 return SIGP_CC_BUSY;
1682 }
1683
1684 switch (order) {
1685 case SIGP_START:
1686 run_on_cpu(CPU(dst_cpu), sigp_start, RUN_ON_CPU_HOST_PTR(&si));
1687 break;
1688 case SIGP_STOP:
1689 run_on_cpu(CPU(dst_cpu), sigp_stop, RUN_ON_CPU_HOST_PTR(&si));
1690 break;
1691 case SIGP_RESTART:
1692 run_on_cpu(CPU(dst_cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
1693 break;
1694 case SIGP_STOP_STORE_STATUS:
1695 run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, RUN_ON_CPU_HOST_PTR(&si));
1696 break;
1697 case SIGP_STORE_STATUS_ADDR:
1698 run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, RUN_ON_CPU_HOST_PTR(&si));
1699 break;
1700 case SIGP_STORE_ADTL_STATUS:
1701 run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, RUN_ON_CPU_HOST_PTR(&si));
1702 break;
1703 case SIGP_SET_PREFIX:
1704 run_on_cpu(CPU(dst_cpu), sigp_set_prefix, RUN_ON_CPU_HOST_PTR(&si));
1705 break;
1706 case SIGP_INITIAL_CPU_RESET:
1707 run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
1708 break;
1709 case SIGP_CPU_RESET:
1710 run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
1711 break;
1712 default:
1713 DPRINTF("KVM: unknown SIGP: 0x%x\n", order);
1714 set_sigp_status(&si, SIGP_STAT_INVALID_ORDER);
1715 }
1716
1717 return si.cc;
1718 }
1719
1720 static int sigp_set_architecture(S390CPU *cpu, uint32_t param,
1721 uint64_t *status_reg)
1722 {
1723 CPUState *cur_cs;
1724 S390CPU *cur_cpu;
1725
1726 /* due to the BQL, we are the only active cpu */
1727 CPU_FOREACH(cur_cs) {
1728 cur_cpu = S390_CPU(cur_cs);
1729 if (cur_cpu->env.sigp_order != 0) {
1730 return SIGP_CC_BUSY;
1731 }
1732 cpu_synchronize_state(cur_cs);
1733 /* all but the current one have to be stopped */
1734 if (cur_cpu != cpu &&
1735 s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) {
1736 *status_reg &= 0xffffffff00000000ULL;
1737 *status_reg |= SIGP_STAT_INCORRECT_STATE;
1738 return SIGP_CC_STATUS_STORED;
1739 }
1740 }
1741
1742 switch (param & 0xff) {
1743 case SIGP_MODE_ESA_S390:
1744 /* not supported */
1745 return SIGP_CC_NOT_OPERATIONAL;
1746 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW:
1747 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW:
1748 CPU_FOREACH(cur_cs) {
1749 cur_cpu = S390_CPU(cur_cs);
1750 cur_cpu->env.pfault_token = -1UL;
1751 }
1752 break;
1753 default:
1754 *status_reg &= 0xffffffff00000000ULL;
1755 *status_reg |= SIGP_STAT_INVALID_PARAMETER;
1756 return SIGP_CC_STATUS_STORED;
1757 }
1758
1759 return SIGP_CC_ORDER_CODE_ACCEPTED;
1760 }
1761
1762 #define SIGP_ORDER_MASK 0x000000ff
1763
1764 static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1765 {
1766 CPUS390XState *env = &cpu->env;
1767 const uint8_t r1 = ipa1 >> 4;
1768 const uint8_t r3 = ipa1 & 0x0f;
1769 int ret;
1770 uint8_t order;
1771 uint64_t *status_reg;
1772 uint64_t param;
1773 S390CPU *dst_cpu = NULL;
1774
1775 cpu_synchronize_state(CPU(cpu));
1776
1777 /* get order code */
1778 order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL)
1779 & SIGP_ORDER_MASK;
1780 status_reg = &env->regs[r1];
1781 param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1];
1782
1783 if (qemu_mutex_trylock(&qemu_sigp_mutex)) {
1784 ret = SIGP_CC_BUSY;
1785 goto out;
1786 }
1787
1788 switch (order) {
1789 case SIGP_SET_ARCH:
1790 ret = sigp_set_architecture(cpu, param, status_reg);
1791 break;
1792 default:
1793 /* all other sigp orders target a single vcpu */
1794 dst_cpu = s390_cpu_addr2state(env->regs[r3]);
1795 ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg);
1796 }
1797 qemu_mutex_unlock(&qemu_sigp_mutex);
1798
1799 out:
1800 trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index,
1801 dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret);
1802
1803 if (ret >= 0) {
1804 setcc(cpu, ret);
1805 return 0;
1806 }
1807
1808 return ret;
1809 }
1810
1811 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1812 {
1813 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1814 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1815 int r = -1;
1816
1817 DPRINTF("handle_instruction 0x%x 0x%x\n",
1818 run->s390_sieic.ipa, run->s390_sieic.ipb);
1819 switch (ipa0) {
1820 case IPA0_B2:
1821 r = handle_b2(cpu, run, ipa1);
1822 break;
1823 case IPA0_B9:
1824 r = handle_b9(cpu, run, ipa1);
1825 break;
1826 case IPA0_EB:
1827 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1828 break;
1829 case IPA0_E3:
1830 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1831 break;
1832 case IPA0_DIAG:
1833 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1834 break;
1835 case IPA0_SIGP:
1836 r = handle_sigp(cpu, run, ipa1);
1837 break;
1838 }
1839
1840 if (r < 0) {
1841 r = 0;
1842 enter_pgmcheck(cpu, 0x0001);
1843 }
1844
1845 return r;
1846 }
1847
1848 static bool is_special_wait_psw(CPUState *cs)
1849 {
1850 /* signal quiesce */
1851 return cs->kvm_run->psw_addr == 0xfffUL;
1852 }
1853
1854 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1855 {
1856 CPUState *cs = CPU(cpu);
1857
1858 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1859 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1860 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1861 s390_cpu_halt(cpu);
1862 qemu_system_guest_panicked();
1863 }
1864
1865 static int handle_intercept(S390CPU *cpu)
1866 {
1867 CPUState *cs = CPU(cpu);
1868 struct kvm_run *run = cs->kvm_run;
1869 int icpt_code = run->s390_sieic.icptcode;
1870 int r = 0;
1871
1872 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1873 (long)cs->kvm_run->psw_addr);
1874 switch (icpt_code) {
1875 case ICPT_INSTRUCTION:
1876 r = handle_instruction(cpu, run);
1877 break;
1878 case ICPT_PROGRAM:
1879 unmanageable_intercept(cpu, "program interrupt",
1880 offsetof(LowCore, program_new_psw));
1881 r = EXCP_HALTED;
1882 break;
1883 case ICPT_EXT_INT:
1884 unmanageable_intercept(cpu, "external interrupt",
1885 offsetof(LowCore, external_new_psw));
1886 r = EXCP_HALTED;
1887 break;
1888 case ICPT_WAITPSW:
1889 /* disabled wait, since enabled wait is handled in kernel */
1890 cpu_synchronize_state(cs);
1891 if (s390_cpu_halt(cpu) == 0) {
1892 if (is_special_wait_psw(cs)) {
1893 qemu_system_shutdown_request();
1894 } else {
1895 qemu_system_guest_panicked();
1896 }
1897 }
1898 r = EXCP_HALTED;
1899 break;
1900 case ICPT_CPU_STOP:
1901 if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) {
1902 qemu_system_shutdown_request();
1903 }
1904 if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) {
1905 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR,
1906 true);
1907 }
1908 cpu->env.sigp_order = 0;
1909 r = EXCP_HALTED;
1910 break;
1911 case ICPT_OPEREXC:
1912 /* currently only instr 0x0000 after enabled via capability */
1913 r = handle_sw_breakpoint(cpu, run);
1914 if (r == -ENOENT) {
1915 enter_pgmcheck(cpu, PGM_OPERATION);
1916 r = 0;
1917 }
1918 break;
1919 case ICPT_SOFT_INTERCEPT:
1920 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1921 exit(1);
1922 break;
1923 case ICPT_IO:
1924 fprintf(stderr, "KVM unimplemented icpt IO\n");
1925 exit(1);
1926 break;
1927 default:
1928 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1929 exit(1);
1930 break;
1931 }
1932
1933 return r;
1934 }
1935
1936 static int handle_tsch(S390CPU *cpu)
1937 {
1938 CPUState *cs = CPU(cpu);
1939 struct kvm_run *run = cs->kvm_run;
1940 int ret;
1941
1942 cpu_synchronize_state(cs);
1943
1944 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
1945 if (ret < 0) {
1946 /*
1947 * Failure.
1948 * If an I/O interrupt had been dequeued, we have to reinject it.
1949 */
1950 if (run->s390_tsch.dequeued) {
1951 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
1952 run->s390_tsch.subchannel_nr,
1953 run->s390_tsch.io_int_parm,
1954 run->s390_tsch.io_int_word);
1955 }
1956 ret = 0;
1957 }
1958 return ret;
1959 }
1960
1961 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1962 {
1963 struct sysib_322 sysib;
1964 int del;
1965
1966 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1967 return;
1968 }
1969 /* Shift the stack of Extended Names to prepare for our own data */
1970 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1971 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1972 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1973 * assumed it's not capable of managing Extended Names for lower levels.
1974 */
1975 for (del = 1; del < sysib.count; del++) {
1976 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1977 break;
1978 }
1979 }
1980 if (del < sysib.count) {
1981 memset(sysib.ext_names[del], 0,
1982 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1983 }
1984 /* Insert short machine name in EBCDIC, padded with blanks */
1985 if (qemu_name) {
1986 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1987 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1988 strlen(qemu_name)));
1989 }
1990 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1991 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1992 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1993 * considered by s390 as not capable of providing any Extended Name.
1994 * Therefore if no name was specified on qemu invocation, we go with the
1995 * same "KVMguest" default, which KVM has filled into short name field.
1996 */
1997 if (qemu_name) {
1998 strncpy((char *)sysib.ext_names[0], qemu_name,
1999 sizeof(sysib.ext_names[0]));
2000 } else {
2001 strcpy((char *)sysib.ext_names[0], "KVMguest");
2002 }
2003 /* Insert UUID */
2004 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
2005
2006 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
2007 }
2008
2009 static int handle_stsi(S390CPU *cpu)
2010 {
2011 CPUState *cs = CPU(cpu);
2012 struct kvm_run *run = cs->kvm_run;
2013
2014 switch (run->s390_stsi.fc) {
2015 case 3:
2016 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
2017 return 0;
2018 }
2019 /* Only sysib 3.2.2 needs post-handling for now. */
2020 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
2021 return 0;
2022 default:
2023 return 0;
2024 }
2025 }
2026
2027 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
2028 {
2029 CPUState *cs = CPU(cpu);
2030 struct kvm_run *run = cs->kvm_run;
2031
2032 int ret = 0;
2033 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
2034
2035 switch (arch_info->type) {
2036 case KVM_HW_WP_WRITE:
2037 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2038 cs->watchpoint_hit = &hw_watchpoint;
2039 hw_watchpoint.vaddr = arch_info->addr;
2040 hw_watchpoint.flags = BP_MEM_WRITE;
2041 ret = EXCP_DEBUG;
2042 }
2043 break;
2044 case KVM_HW_BP:
2045 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2046 ret = EXCP_DEBUG;
2047 }
2048 break;
2049 case KVM_SINGLESTEP:
2050 if (cs->singlestep_enabled) {
2051 ret = EXCP_DEBUG;
2052 }
2053 break;
2054 default:
2055 ret = -ENOSYS;
2056 }
2057
2058 return ret;
2059 }
2060
2061 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2062 {
2063 S390CPU *cpu = S390_CPU(cs);
2064 int ret = 0;
2065
2066 qemu_mutex_lock_iothread();
2067
2068 switch (run->exit_reason) {
2069 case KVM_EXIT_S390_SIEIC:
2070 ret = handle_intercept(cpu);
2071 break;
2072 case KVM_EXIT_S390_RESET:
2073 s390_reipl_request();
2074 break;
2075 case KVM_EXIT_S390_TSCH:
2076 ret = handle_tsch(cpu);
2077 break;
2078 case KVM_EXIT_S390_STSI:
2079 ret = handle_stsi(cpu);
2080 break;
2081 case KVM_EXIT_DEBUG:
2082 ret = kvm_arch_handle_debug_exit(cpu);
2083 break;
2084 default:
2085 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
2086 break;
2087 }
2088 qemu_mutex_unlock_iothread();
2089
2090 if (ret == 0) {
2091 ret = EXCP_INTERRUPT;
2092 }
2093 return ret;
2094 }
2095
2096 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2097 {
2098 return true;
2099 }
2100
2101 int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2102 {
2103 return 1;
2104 }
2105
2106 int kvm_arch_on_sigbus(int code, void *addr)
2107 {
2108 return 1;
2109 }
2110
2111 void kvm_s390_io_interrupt(uint16_t subchannel_id,
2112 uint16_t subchannel_nr, uint32_t io_int_parm,
2113 uint32_t io_int_word)
2114 {
2115 struct kvm_s390_irq irq = {
2116 .u.io.subchannel_id = subchannel_id,
2117 .u.io.subchannel_nr = subchannel_nr,
2118 .u.io.io_int_parm = io_int_parm,
2119 .u.io.io_int_word = io_int_word,
2120 };
2121
2122 if (io_int_word & IO_INT_WORD_AI) {
2123 irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
2124 } else {
2125 irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8,
2126 (subchannel_id & 0x0006),
2127 subchannel_nr);
2128 }
2129 kvm_s390_floating_interrupt(&irq);
2130 }
2131
2132 static uint64_t build_channel_report_mcic(void)
2133 {
2134 uint64_t mcic;
2135
2136 /* subclass: indicate channel report pending */
2137 mcic = MCIC_SC_CP |
2138 /* subclass modifiers: none */
2139 /* storage errors: none */
2140 /* validity bits: no damage */
2141 MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP |
2142 MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR |
2143 MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC;
2144 if (s390_has_feat(S390_FEAT_VECTOR)) {
2145 mcic |= MCIC_VB_VR;
2146 }
2147 return mcic;
2148 }
2149
2150 void kvm_s390_crw_mchk(void)
2151 {
2152 struct kvm_s390_irq irq = {
2153 .type = KVM_S390_MCHK,
2154 .u.mchk.cr14 = 1 << 28,
2155 .u.mchk.mcic = build_channel_report_mcic(),
2156 };
2157 kvm_s390_floating_interrupt(&irq);
2158 }
2159
2160 void kvm_s390_enable_css_support(S390CPU *cpu)
2161 {
2162 int r;
2163
2164 /* Activate host kernel channel subsystem support. */
2165 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2166 assert(r == 0);
2167 }
2168
2169 void kvm_arch_init_irq_routing(KVMState *s)
2170 {
2171 /*
2172 * Note that while irqchip capabilities generally imply that cpustates
2173 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2174 * have to override the common code kvm_halt_in_kernel_allowed setting.
2175 */
2176 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2177 kvm_gsi_routing_allowed = true;
2178 kvm_halt_in_kernel_allowed = false;
2179 }
2180 }
2181
2182 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2183 int vq, bool assign)
2184 {
2185 struct kvm_ioeventfd kick = {
2186 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2187 KVM_IOEVENTFD_FLAG_DATAMATCH,
2188 .fd = event_notifier_get_fd(notifier),
2189 .datamatch = vq,
2190 .addr = sch,
2191 .len = 8,
2192 };
2193 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2194 return -ENOSYS;
2195 }
2196 if (!assign) {
2197 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2198 }
2199 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2200 }
2201
2202 int kvm_s390_get_memslot_count(KVMState *s)
2203 {
2204 return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2205 }
2206
2207 int kvm_s390_get_ri(void)
2208 {
2209 return cap_ri;
2210 }
2211
2212 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2213 {
2214 struct kvm_mp_state mp_state = {};
2215 int ret;
2216
2217 /* the kvm part might not have been initialized yet */
2218 if (CPU(cpu)->kvm_state == NULL) {
2219 return 0;
2220 }
2221
2222 switch (cpu_state) {
2223 case CPU_STATE_STOPPED:
2224 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2225 break;
2226 case CPU_STATE_CHECK_STOP:
2227 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2228 break;
2229 case CPU_STATE_OPERATING:
2230 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2231 break;
2232 case CPU_STATE_LOAD:
2233 mp_state.mp_state = KVM_MP_STATE_LOAD;
2234 break;
2235 default:
2236 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2237 cpu_state);
2238 exit(1);
2239 }
2240
2241 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2242 if (ret) {
2243 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2244 strerror(-ret));
2245 }
2246
2247 return ret;
2248 }
2249
2250 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2251 {
2252 struct kvm_s390_irq_state irq_state;
2253 CPUState *cs = CPU(cpu);
2254 int32_t bytes;
2255
2256 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2257 return;
2258 }
2259
2260 irq_state.buf = (uint64_t) cpu->irqstate;
2261 irq_state.len = VCPU_IRQ_BUF_SIZE;
2262
2263 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2264 if (bytes < 0) {
2265 cpu->irqstate_saved_size = 0;
2266 error_report("Migration of interrupt state failed");
2267 return;
2268 }
2269
2270 cpu->irqstate_saved_size = bytes;
2271 }
2272
2273 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2274 {
2275 CPUState *cs = CPU(cpu);
2276 struct kvm_s390_irq_state irq_state;
2277 int r;
2278
2279 if (cpu->irqstate_saved_size == 0) {
2280 return 0;
2281 }
2282
2283 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2284 return -ENOSYS;
2285 }
2286
2287 irq_state.buf = (uint64_t) cpu->irqstate;
2288 irq_state.len = cpu->irqstate_saved_size;
2289
2290 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2291 if (r) {
2292 error_report("Setting interrupt state failed %d", r);
2293 }
2294 return r;
2295 }
2296
2297 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2298 uint64_t address, uint32_t data, PCIDevice *dev)
2299 {
2300 S390PCIBusDevice *pbdev;
2301 uint32_t idx = data >> ZPCI_MSI_VEC_BITS;
2302 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2303
2304 pbdev = s390_pci_find_dev_by_idx(idx);
2305 if (!pbdev) {
2306 DPRINTF("add_msi_route no dev\n");
2307 return -ENODEV;
2308 }
2309
2310 pbdev->routes.adapter.ind_offset = vec;
2311
2312 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2313 route->flags = 0;
2314 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2315 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2316 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2317 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset;
2318 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2319 return 0;
2320 }
2321
2322 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2323 int vector, PCIDevice *dev)
2324 {
2325 return 0;
2326 }
2327
2328 int kvm_arch_release_virq_post(int virq)
2329 {
2330 return 0;
2331 }
2332
2333 int kvm_arch_msi_data_to_gsi(uint32_t data)
2334 {
2335 abort();
2336 }
2337
2338 static inline int test_bit_inv(long nr, const unsigned long *addr)
2339 {
2340 return test_bit(BE_BIT_NR(nr), addr);
2341 }
2342
2343 static inline void set_bit_inv(long nr, unsigned long *addr)
2344 {
2345 set_bit(BE_BIT_NR(nr), addr);
2346 }
2347
2348 static int query_cpu_subfunc(S390FeatBitmap features)
2349 {
2350 struct kvm_s390_vm_cpu_subfunc prop;
2351 struct kvm_device_attr attr = {
2352 .group = KVM_S390_VM_CPU_MODEL,
2353 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2354 .addr = (uint64_t) &prop,
2355 };
2356 int rc;
2357
2358 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2359 if (rc) {
2360 return rc;
2361 }
2362
2363 /*
2364 * We're going to add all subfunctions now, if the corresponding feature
2365 * is available that unlocks the query functions.
2366 */
2367 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2368 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2369 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2370 }
2371 if (test_bit(S390_FEAT_MSA, features)) {
2372 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2373 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2374 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2375 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2376 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2377 }
2378 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2379 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2380 }
2381 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2382 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2383 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2384 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2385 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2386 }
2387 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2388 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2389 }
2390 return 0;
2391 }
2392
2393 static int configure_cpu_subfunc(const S390FeatBitmap features)
2394 {
2395 struct kvm_s390_vm_cpu_subfunc prop = {};
2396 struct kvm_device_attr attr = {
2397 .group = KVM_S390_VM_CPU_MODEL,
2398 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2399 .addr = (uint64_t) &prop,
2400 };
2401
2402 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2403 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2404 /* hardware support might be missing, IBC will handle most of this */
2405 return 0;
2406 }
2407
2408 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2409 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2410 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2411 prop.ptff[0] |= 0x80; /* query is always available */
2412 }
2413 if (test_bit(S390_FEAT_MSA, features)) {
2414 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2415 prop.kmac[0] |= 0x80; /* query is always available */
2416 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2417 prop.kmc[0] |= 0x80; /* query is always available */
2418 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2419 prop.km[0] |= 0x80; /* query is always available */
2420 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2421 prop.kimd[0] |= 0x80; /* query is always available */
2422 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2423 prop.klmd[0] |= 0x80; /* query is always available */
2424 }
2425 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2426 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2427 prop.pckmo[0] |= 0x80; /* query is always available */
2428 }
2429 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2430 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2431 prop.kmctr[0] |= 0x80; /* query is always available */
2432 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2433 prop.kmf[0] |= 0x80; /* query is always available */
2434 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2435 prop.kmo[0] |= 0x80; /* query is always available */
2436 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2437 prop.pcc[0] |= 0x80; /* query is always available */
2438 }
2439 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2440 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2441 prop.ppno[0] |= 0x80; /* query is always available */
2442 }
2443 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2444 }
2445
2446 static int kvm_to_feat[][2] = {
2447 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2448 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2449 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2450 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2451 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2452 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2453 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2454 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2455 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2456 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2457 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2458 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2459 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2460 };
2461
2462 static int query_cpu_feat(S390FeatBitmap features)
2463 {
2464 struct kvm_s390_vm_cpu_feat prop;
2465 struct kvm_device_attr attr = {
2466 .group = KVM_S390_VM_CPU_MODEL,
2467 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2468 .addr = (uint64_t) &prop,
2469 };
2470 int rc;
2471 int i;
2472
2473 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2474 if (rc) {
2475 return rc;
2476 }
2477
2478 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2479 if (test_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat)) {
2480 set_bit(kvm_to_feat[i][1], features);
2481 }
2482 }
2483 return 0;
2484 }
2485
2486 static int configure_cpu_feat(const S390FeatBitmap features)
2487 {
2488 struct kvm_s390_vm_cpu_feat prop = {};
2489 struct kvm_device_attr attr = {
2490 .group = KVM_S390_VM_CPU_MODEL,
2491 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2492 .addr = (uint64_t) &prop,
2493 };
2494 int i;
2495
2496 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2497 if (test_bit(kvm_to_feat[i][1], features)) {
2498 set_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat);
2499 }
2500 }
2501 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2502 }
2503
2504 bool kvm_s390_cpu_models_supported(void)
2505 {
2506 if (!cpu_model_allowed()) {
2507 /* compatibility machines interfere with the cpu model */
2508 return false;
2509 }
2510 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2511 KVM_S390_VM_CPU_MACHINE) &&
2512 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2513 KVM_S390_VM_CPU_PROCESSOR) &&
2514 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2515 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2516 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2517 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2518 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2519 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2520 }
2521
2522 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2523 {
2524 struct kvm_s390_vm_cpu_machine prop = {};
2525 struct kvm_device_attr attr = {
2526 .group = KVM_S390_VM_CPU_MODEL,
2527 .attr = KVM_S390_VM_CPU_MACHINE,
2528 .addr = (uint64_t) &prop,
2529 };
2530 uint16_t unblocked_ibc = 0, cpu_type = 0;
2531 int rc;
2532
2533 memset(model, 0, sizeof(*model));
2534
2535 if (!kvm_s390_cpu_models_supported()) {
2536 error_setg(errp, "KVM doesn't support CPU models");
2537 return;
2538 }
2539
2540 /* query the basic cpu model properties */
2541 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2542 if (rc) {
2543 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2544 return;
2545 }
2546
2547 cpu_type = cpuid_type(prop.cpuid);
2548 if (has_ibc(prop.ibc)) {
2549 model->lowest_ibc = lowest_ibc(prop.ibc);
2550 unblocked_ibc = unblocked_ibc(prop.ibc);
2551 }
2552 model->cpu_id = cpuid_id(prop.cpuid);
2553 model->cpu_ver = 0xff;
2554
2555 /* get supported cpu features indicated via STFL(E) */
2556 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2557 (uint8_t *) prop.fac_mask);
2558 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2559 if (test_bit(S390_FEAT_STFLE, model->features)) {
2560 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2561 }
2562 /* get supported cpu features indicated e.g. via SCLP */
2563 rc = query_cpu_feat(model->features);
2564 if (rc) {
2565 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2566 return;
2567 }
2568 /* get supported cpu subfunctions indicated via query / test bit */
2569 rc = query_cpu_subfunc(model->features);
2570 if (rc) {
2571 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2572 return;
2573 }
2574
2575 /* with cpu model support, CMM is only indicated if really available */
2576 if (kvm_s390_cmma_available()) {
2577 set_bit(S390_FEAT_CMM, model->features);
2578 }
2579
2580 if (s390_known_cpu_type(cpu_type)) {
2581 /* we want the exact model, even if some features are missing */
2582 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2583 ibc_ec_ga(unblocked_ibc), NULL);
2584 } else {
2585 /* model unknown, e.g. too new - search using features */
2586 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2587 ibc_ec_ga(unblocked_ibc),
2588 model->features);
2589 }
2590 if (!model->def) {
2591 error_setg(errp, "KVM: host CPU model could not be identified");
2592 return;
2593 }
2594 /* strip of features that are not part of the maximum model */
2595 bitmap_and(model->features, model->features, model->def->full_feat,
2596 S390_FEAT_MAX);
2597 }
2598
2599 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2600 {
2601 struct kvm_s390_vm_cpu_processor prop = {
2602 .fac_list = { 0 },
2603 };
2604 struct kvm_device_attr attr = {
2605 .group = KVM_S390_VM_CPU_MODEL,
2606 .attr = KVM_S390_VM_CPU_PROCESSOR,
2607 .addr = (uint64_t) &prop,
2608 };
2609 int rc;
2610
2611 if (!model) {
2612 /* compatibility handling if cpu models are disabled */
2613 if (kvm_s390_cmma_available() && !mem_path) {
2614 kvm_s390_enable_cmma();
2615 }
2616 return;
2617 }
2618 if (!kvm_s390_cpu_models_supported()) {
2619 error_setg(errp, "KVM doesn't support CPU models");
2620 return;
2621 }
2622 prop.cpuid = s390_cpuid_from_cpu_model(model);
2623 prop.ibc = s390_ibc_from_cpu_model(model);
2624 /* configure cpu features indicated via STFL(e) */
2625 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2626 (uint8_t *) prop.fac_list);
2627 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2628 if (rc) {
2629 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2630 return;
2631 }
2632 /* configure cpu features indicated e.g. via SCLP */
2633 rc = configure_cpu_feat(model->features);
2634 if (rc) {
2635 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2636 return;
2637 }
2638 /* configure cpu subfunctions indicated via query / test bit */
2639 rc = configure_cpu_subfunc(model->features);
2640 if (rc) {
2641 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2642 return;
2643 }
2644 /* enable CMM via CMMA - disable on hugetlbfs */
2645 if (test_bit(S390_FEAT_CMM, model->features)) {
2646 if (mem_path) {
2647 error_report("Warning: CMM will not be enabled because it is not "
2648 "compatible to hugetlbfs.");
2649 } else {
2650 kvm_s390_enable_cmma();
2651 }
2652 }
2653 }