sparc tcg cpus: Fix Lesser GPL version number
[qemu.git] / target / sparc / ldst_helper.c
1 /*
2 * Helpers for loads and stores
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "tcg/tcg.h"
23 #include "exec/helper-proto.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "asi.h"
27
28 //#define DEBUG_MMU
29 //#define DEBUG_MXCC
30 //#define DEBUG_UNALIGNED
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...) \
37 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...) \
44 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...) \
51 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
56 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
71
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75 * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
77 const SparcV9MMU *mmu, const int idx)
78 {
79 uint64_t tsb_register;
80 int page_size;
81 if (cpu_has_hypervisor(env)) {
82 int tsb_index = 0;
83 int ctx = mmu->tag_access & 0x1fffULL;
84 uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
85 tsb_index = idx;
86 tsb_index |= ctx ? 2 : 0;
87 page_size = idx ? ctx_register >> 8 : ctx_register;
88 page_size &= 7;
89 tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
90 } else {
91 page_size = idx;
92 tsb_register = mmu->tsb;
93 }
94 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95 int tsb_size = tsb_register & 0xf;
96
97 uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
98
99 /* move va bits to correct position,
100 * the context bits will be masked out later */
101 uint64_t va = mmu->tag_access >> (3 * page_size + 9);
102
103 /* calculate tsb_base mask and adjust va if split is in use */
104 if (tsb_split) {
105 if (idx == 0) {
106 va &= ~(1ULL << (13 + tsb_size));
107 } else {
108 va |= (1ULL << (13 + tsb_size));
109 }
110 tsb_base_mask <<= 1;
111 }
112
113 return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
114 }
115
116 /* Calculates tag target register value by reordering bits
117 in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
119 {
120 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
121 }
122
123 static void replace_tlb_entry(SparcTLBEntry *tlb,
124 uint64_t tlb_tag, uint64_t tlb_tte,
125 CPUSPARCState *env)
126 {
127 target_ulong mask, size, va, offset;
128
129 /* flush page range if translation is valid */
130 if (TTE_IS_VALID(tlb->tte)) {
131 CPUState *cs = env_cpu(env);
132
133 size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
134 mask = 1ULL + ~size;
135
136 va = tlb->tag & mask;
137
138 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
139 tlb_flush_page(cs, va + offset);
140 }
141 }
142
143 tlb->tag = tlb_tag;
144 tlb->tte = tlb_tte;
145 }
146
147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
148 const char *strmmu, CPUSPARCState *env1)
149 {
150 unsigned int i;
151 target_ulong mask;
152 uint64_t context;
153
154 int is_demap_context = (demap_addr >> 6) & 1;
155
156 /* demap context */
157 switch ((demap_addr >> 4) & 3) {
158 case 0: /* primary */
159 context = env1->dmmu.mmu_primary_context;
160 break;
161 case 1: /* secondary */
162 context = env1->dmmu.mmu_secondary_context;
163 break;
164 case 2: /* nucleus */
165 context = 0;
166 break;
167 case 3: /* reserved */
168 default:
169 return;
170 }
171
172 for (i = 0; i < 64; i++) {
173 if (TTE_IS_VALID(tlb[i].tte)) {
174
175 if (is_demap_context) {
176 /* will remove non-global entries matching context value */
177 if (TTE_IS_GLOBAL(tlb[i].tte) ||
178 !tlb_compare_context(&tlb[i], context)) {
179 continue;
180 }
181 } else {
182 /* demap page
183 will remove any entry matching VA */
184 mask = 0xffffffffffffe000ULL;
185 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
186
187 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
188 continue;
189 }
190
191 /* entry should be global or matching context value */
192 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
193 !tlb_compare_context(&tlb[i], context)) {
194 continue;
195 }
196 }
197
198 replace_tlb_entry(&tlb[i], 0, 0, env1);
199 #ifdef DEBUG_MMU
200 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
201 dump_mmu(env1);
202 #endif
203 }
204 }
205 }
206
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
208 uint64_t sun4v_tte)
209 {
210 uint64_t sun4u_tte;
211 if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
212 /* is already in the sun4u format */
213 return sun4v_tte;
214 }
215 sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
216 sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
217 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
218 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
219 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
220 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
221 TTE_SIDEEFFECT_BIT);
222 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
223 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
224 return sun4u_tte;
225 }
226
227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
228 uint64_t tlb_tag, uint64_t tlb_tte,
229 const char *strmmu, CPUSPARCState *env1,
230 uint64_t addr)
231 {
232 unsigned int i, replace_used;
233
234 tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
235 if (cpu_has_hypervisor(env1)) {
236 uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
237 uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
238 uint32_t new_ctx = tlb_tag & 0x1fffU;
239 for (i = 0; i < 64; i++) {
240 uint32_t ctx = tlb[i].tag & 0x1fffU;
241 /* check if new mapping overlaps an existing one */
242 if (new_ctx == ctx) {
243 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
244 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
245 if (new_vaddr == vaddr
246 || (new_vaddr < vaddr + size
247 && vaddr < new_vaddr + new_size)) {
248 DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
249 new_vaddr);
250 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
251 return;
252 }
253 }
254
255 }
256 }
257 /* Try replacing invalid entry */
258 for (i = 0; i < 64; i++) {
259 if (!TTE_IS_VALID(tlb[i].tte)) {
260 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
261 #ifdef DEBUG_MMU
262 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
263 dump_mmu(env1);
264 #endif
265 return;
266 }
267 }
268
269 /* All entries are valid, try replacing unlocked entry */
270
271 for (replace_used = 0; replace_used < 2; ++replace_used) {
272
273 /* Used entries are not replaced on first pass */
274
275 for (i = 0; i < 64; i++) {
276 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
277
278 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
279 #ifdef DEBUG_MMU
280 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281 strmmu, (replace_used ? "used" : "unused"), i);
282 dump_mmu(env1);
283 #endif
284 return;
285 }
286 }
287
288 /* Now reset used bit and search for unused entries again */
289
290 for (i = 0; i < 64; i++) {
291 TTE_SET_UNUSED(tlb[i].tte);
292 }
293 }
294
295 #ifdef DEBUG_MMU
296 DPRINTF_MMU("%s lru replacement: no free entries available, "
297 "replacing the last one\n", strmmu);
298 #endif
299 /* corner case: the last entry is replaced anyway */
300 replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
301 }
302
303 #endif
304
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307 otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi)
310 {
311 /* Ultrasparc IIi translating asi
312 - note this list is defined by cpu implementation
313 */
314 switch (asi) {
315 case 0x04 ... 0x11:
316 case 0x16 ... 0x19:
317 case 0x1E ... 0x1F:
318 case 0x24 ... 0x2C:
319 case 0x70 ... 0x73:
320 case 0x78 ... 0x79:
321 case 0x80 ... 0xFF:
322 return 1;
323
324 default:
325 return 0;
326 }
327 }
328
329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
330 {
331 if (AM_CHECK(env1)) {
332 addr &= 0xffffffffULL;
333 }
334 return addr;
335 }
336
337 static inline target_ulong asi_address_mask(CPUSPARCState *env,
338 int asi, target_ulong addr)
339 {
340 if (is_translating_asi(asi)) {
341 addr = address_mask(env, addr);
342 }
343 return addr;
344 }
345
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
348 {
349 /* ASIs >= 0x80 are user mode.
350 * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351 * ASIs <= 0x2f are super mode.
352 */
353 if (asi < 0x80
354 && !cpu_hypervisor_mode(env)
355 && (!cpu_supervisor_mode(env)
356 || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
357 cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
358 }
359 }
360 #endif /* !CONFIG_USER_ONLY */
361 #endif
362
363 static void do_check_align(CPUSPARCState *env, target_ulong addr,
364 uint32_t align, uintptr_t ra)
365 {
366 if (addr & align) {
367 #ifdef DEBUG_UNALIGNED
368 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
369 "\n", addr, env->pc);
370 #endif
371 cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
372 }
373 }
374
375 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
376 {
377 do_check_align(env, addr, align, GETPC());
378 }
379
380 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
381 defined(DEBUG_MXCC)
382 static void dump_mxcc(CPUSPARCState *env)
383 {
384 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
385 "\n",
386 env->mxccdata[0], env->mxccdata[1],
387 env->mxccdata[2], env->mxccdata[3]);
388 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
389 "\n"
390 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
391 "\n",
392 env->mxccregs[0], env->mxccregs[1],
393 env->mxccregs[2], env->mxccregs[3],
394 env->mxccregs[4], env->mxccregs[5],
395 env->mxccregs[6], env->mxccregs[7]);
396 }
397 #endif
398
399 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
400 && defined(DEBUG_ASI)
401 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
402 uint64_t r1)
403 {
404 switch (size) {
405 case 1:
406 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
407 addr, asi, r1 & 0xff);
408 break;
409 case 2:
410 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
411 addr, asi, r1 & 0xffff);
412 break;
413 case 4:
414 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
415 addr, asi, r1 & 0xffffffff);
416 break;
417 case 8:
418 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
419 addr, asi, r1);
420 break;
421 }
422 }
423 #endif
424
425 #ifndef CONFIG_USER_ONLY
426 #ifndef TARGET_SPARC64
427 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
428 bool is_write, bool is_exec, int is_asi,
429 unsigned size, uintptr_t retaddr)
430 {
431 SPARCCPU *cpu = SPARC_CPU(cs);
432 CPUSPARCState *env = &cpu->env;
433 int fault_type;
434
435 #ifdef DEBUG_UNASSIGNED
436 if (is_asi) {
437 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
438 " asi 0x%02x from " TARGET_FMT_lx "\n",
439 is_exec ? "exec" : is_write ? "write" : "read", size,
440 size == 1 ? "" : "s", addr, is_asi, env->pc);
441 } else {
442 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
443 " from " TARGET_FMT_lx "\n",
444 is_exec ? "exec" : is_write ? "write" : "read", size,
445 size == 1 ? "" : "s", addr, env->pc);
446 }
447 #endif
448 /* Don't overwrite translation and access faults */
449 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
450 if ((fault_type > 4) || (fault_type == 0)) {
451 env->mmuregs[3] = 0; /* Fault status register */
452 if (is_asi) {
453 env->mmuregs[3] |= 1 << 16;
454 }
455 if (env->psrs) {
456 env->mmuregs[3] |= 1 << 5;
457 }
458 if (is_exec) {
459 env->mmuregs[3] |= 1 << 6;
460 }
461 if (is_write) {
462 env->mmuregs[3] |= 1 << 7;
463 }
464 env->mmuregs[3] |= (5 << 2) | 2;
465 /* SuperSPARC will never place instruction fault addresses in the FAR */
466 if (!is_exec) {
467 env->mmuregs[4] = addr; /* Fault address register */
468 }
469 }
470 /* overflow (same type fault was not read before another fault) */
471 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
472 env->mmuregs[3] |= 1;
473 }
474
475 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
476 int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
477 cpu_raise_exception_ra(env, tt, retaddr);
478 }
479
480 /*
481 * flush neverland mappings created during no-fault mode,
482 * so the sequential MMU faults report proper fault types
483 */
484 if (env->mmuregs[0] & MMU_NF) {
485 tlb_flush(cs);
486 }
487 }
488 #else
489 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
490 bool is_write, bool is_exec, int is_asi,
491 unsigned size, uintptr_t retaddr)
492 {
493 SPARCCPU *cpu = SPARC_CPU(cs);
494 CPUSPARCState *env = &cpu->env;
495
496 #ifdef DEBUG_UNASSIGNED
497 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
498 "\n", addr, env->pc);
499 #endif
500
501 if (is_exec) { /* XXX has_hypervisor */
502 if (env->lsu & (IMMU_E)) {
503 cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
504 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
505 cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
506 }
507 } else {
508 if (env->lsu & (DMMU_E)) {
509 cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
510 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
511 cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
512 }
513 }
514 }
515 #endif
516 #endif
517
518 #ifndef TARGET_SPARC64
519 #ifndef CONFIG_USER_ONLY
520
521
522 /* Leon3 cache control */
523
524 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
525 uint64_t val, int size)
526 {
527 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
528 addr, val, size);
529
530 if (size != 4) {
531 DPRINTF_CACHE_CONTROL("32bits only\n");
532 return;
533 }
534
535 switch (addr) {
536 case 0x00: /* Cache control */
537
538 /* These values must always be read as zeros */
539 val &= ~CACHE_CTRL_FD;
540 val &= ~CACHE_CTRL_FI;
541 val &= ~CACHE_CTRL_IB;
542 val &= ~CACHE_CTRL_IP;
543 val &= ~CACHE_CTRL_DP;
544
545 env->cache_control = val;
546 break;
547 case 0x04: /* Instruction cache configuration */
548 case 0x08: /* Data cache configuration */
549 /* Read Only */
550 break;
551 default:
552 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
553 break;
554 };
555 }
556
557 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
558 int size)
559 {
560 uint64_t ret = 0;
561
562 if (size != 4) {
563 DPRINTF_CACHE_CONTROL("32bits only\n");
564 return 0;
565 }
566
567 switch (addr) {
568 case 0x00: /* Cache control */
569 ret = env->cache_control;
570 break;
571
572 /* Configuration registers are read and only always keep those
573 predefined values */
574
575 case 0x04: /* Instruction cache configuration */
576 ret = 0x10220000;
577 break;
578 case 0x08: /* Data cache configuration */
579 ret = 0x18220000;
580 break;
581 default:
582 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
583 break;
584 };
585 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
586 addr, ret, size);
587 return ret;
588 }
589
590 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
591 int asi, uint32_t memop)
592 {
593 int size = 1 << (memop & MO_SIZE);
594 int sign = memop & MO_SIGN;
595 CPUState *cs = env_cpu(env);
596 uint64_t ret = 0;
597 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
598 uint32_t last_addr = addr;
599 #endif
600
601 do_check_align(env, addr, size - 1, GETPC());
602 switch (asi) {
603 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
604 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
605 switch (addr) {
606 case 0x00: /* Leon3 Cache Control */
607 case 0x08: /* Leon3 Instruction Cache config */
608 case 0x0C: /* Leon3 Date Cache config */
609 if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
610 ret = leon3_cache_control_ld(env, addr, size);
611 }
612 break;
613 case 0x01c00a00: /* MXCC control register */
614 if (size == 8) {
615 ret = env->mxccregs[3];
616 } else {
617 qemu_log_mask(LOG_UNIMP,
618 "%08x: unimplemented access size: %d\n", addr,
619 size);
620 }
621 break;
622 case 0x01c00a04: /* MXCC control register */
623 if (size == 4) {
624 ret = env->mxccregs[3];
625 } else {
626 qemu_log_mask(LOG_UNIMP,
627 "%08x: unimplemented access size: %d\n", addr,
628 size);
629 }
630 break;
631 case 0x01c00c00: /* Module reset register */
632 if (size == 8) {
633 ret = env->mxccregs[5];
634 /* should we do something here? */
635 } else {
636 qemu_log_mask(LOG_UNIMP,
637 "%08x: unimplemented access size: %d\n", addr,
638 size);
639 }
640 break;
641 case 0x01c00f00: /* MBus port address register */
642 if (size == 8) {
643 ret = env->mxccregs[7];
644 } else {
645 qemu_log_mask(LOG_UNIMP,
646 "%08x: unimplemented access size: %d\n", addr,
647 size);
648 }
649 break;
650 default:
651 qemu_log_mask(LOG_UNIMP,
652 "%08x: unimplemented address, size: %d\n", addr,
653 size);
654 break;
655 }
656 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
657 "addr = %08x -> ret = %" PRIx64 ","
658 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
659 #ifdef DEBUG_MXCC
660 dump_mxcc(env);
661 #endif
662 break;
663 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
664 case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
665 {
666 int mmulev;
667
668 mmulev = (addr >> 8) & 15;
669 if (mmulev > 4) {
670 ret = 0;
671 } else {
672 ret = mmu_probe(env, addr, mmulev);
673 }
674 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
675 addr, mmulev, ret);
676 }
677 break;
678 case ASI_M_MMUREGS: /* SuperSparc MMU regs */
679 case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
680 {
681 int reg = (addr >> 8) & 0x1f;
682
683 ret = env->mmuregs[reg];
684 if (reg == 3) { /* Fault status cleared on read */
685 env->mmuregs[3] = 0;
686 } else if (reg == 0x13) { /* Fault status read */
687 ret = env->mmuregs[3];
688 } else if (reg == 0x14) { /* Fault address read */
689 ret = env->mmuregs[4];
690 }
691 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
692 }
693 break;
694 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
695 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
696 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
697 break;
698 case ASI_KERNELTXT: /* Supervisor code access */
699 switch (size) {
700 case 1:
701 ret = cpu_ldub_code(env, addr);
702 break;
703 case 2:
704 ret = cpu_lduw_code(env, addr);
705 break;
706 default:
707 case 4:
708 ret = cpu_ldl_code(env, addr);
709 break;
710 case 8:
711 ret = cpu_ldq_code(env, addr);
712 break;
713 }
714 break;
715 case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */
716 case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */
717 case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */
718 case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
719 break;
720 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
721 {
722 MemTxResult result;
723 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
724
725 switch (size) {
726 case 1:
727 ret = address_space_ldub(cs->as, access_addr,
728 MEMTXATTRS_UNSPECIFIED, &result);
729 break;
730 case 2:
731 ret = address_space_lduw(cs->as, access_addr,
732 MEMTXATTRS_UNSPECIFIED, &result);
733 break;
734 default:
735 case 4:
736 ret = address_space_ldl(cs->as, access_addr,
737 MEMTXATTRS_UNSPECIFIED, &result);
738 break;
739 case 8:
740 ret = address_space_ldq(cs->as, access_addr,
741 MEMTXATTRS_UNSPECIFIED, &result);
742 break;
743 }
744
745 if (result != MEMTX_OK) {
746 sparc_raise_mmu_fault(cs, access_addr, false, false, false,
747 size, GETPC());
748 }
749 break;
750 }
751 case 0x30: /* Turbosparc secondary cache diagnostic */
752 case 0x31: /* Turbosparc RAM snoop */
753 case 0x32: /* Turbosparc page table descriptor diagnostic */
754 case 0x39: /* data cache diagnostic register */
755 ret = 0;
756 break;
757 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
758 {
759 int reg = (addr >> 8) & 3;
760
761 switch (reg) {
762 case 0: /* Breakpoint Value (Addr) */
763 ret = env->mmubpregs[reg];
764 break;
765 case 1: /* Breakpoint Mask */
766 ret = env->mmubpregs[reg];
767 break;
768 case 2: /* Breakpoint Control */
769 ret = env->mmubpregs[reg];
770 break;
771 case 3: /* Breakpoint Status */
772 ret = env->mmubpregs[reg];
773 env->mmubpregs[reg] = 0ULL;
774 break;
775 }
776 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
777 ret);
778 }
779 break;
780 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
781 ret = env->mmubpctrv;
782 break;
783 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
784 ret = env->mmubpctrc;
785 break;
786 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
787 ret = env->mmubpctrs;
788 break;
789 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
790 ret = env->mmubpaction;
791 break;
792 case ASI_USERTXT: /* User code access, XXX */
793 default:
794 sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
795 ret = 0;
796 break;
797
798 case ASI_USERDATA: /* User data access */
799 case ASI_KERNELDATA: /* Supervisor data access */
800 case ASI_P: /* Implicit primary context data access (v9 only?) */
801 case ASI_M_BYPASS: /* MMU passthrough */
802 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
803 /* These are always handled inline. */
804 g_assert_not_reached();
805 }
806 if (sign) {
807 switch (size) {
808 case 1:
809 ret = (int8_t) ret;
810 break;
811 case 2:
812 ret = (int16_t) ret;
813 break;
814 case 4:
815 ret = (int32_t) ret;
816 break;
817 default:
818 break;
819 }
820 }
821 #ifdef DEBUG_ASI
822 dump_asi("read ", last_addr, asi, size, ret);
823 #endif
824 return ret;
825 }
826
827 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
828 int asi, uint32_t memop)
829 {
830 int size = 1 << (memop & MO_SIZE);
831 CPUState *cs = env_cpu(env);
832
833 do_check_align(env, addr, size - 1, GETPC());
834 switch (asi) {
835 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
836 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
837 switch (addr) {
838 case 0x00: /* Leon3 Cache Control */
839 case 0x08: /* Leon3 Instruction Cache config */
840 case 0x0C: /* Leon3 Date Cache config */
841 if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
842 leon3_cache_control_st(env, addr, val, size);
843 }
844 break;
845
846 case 0x01c00000: /* MXCC stream data register 0 */
847 if (size == 8) {
848 env->mxccdata[0] = val;
849 } else {
850 qemu_log_mask(LOG_UNIMP,
851 "%08x: unimplemented access size: %d\n", addr,
852 size);
853 }
854 break;
855 case 0x01c00008: /* MXCC stream data register 1 */
856 if (size == 8) {
857 env->mxccdata[1] = val;
858 } else {
859 qemu_log_mask(LOG_UNIMP,
860 "%08x: unimplemented access size: %d\n", addr,
861 size);
862 }
863 break;
864 case 0x01c00010: /* MXCC stream data register 2 */
865 if (size == 8) {
866 env->mxccdata[2] = val;
867 } else {
868 qemu_log_mask(LOG_UNIMP,
869 "%08x: unimplemented access size: %d\n", addr,
870 size);
871 }
872 break;
873 case 0x01c00018: /* MXCC stream data register 3 */
874 if (size == 8) {
875 env->mxccdata[3] = val;
876 } else {
877 qemu_log_mask(LOG_UNIMP,
878 "%08x: unimplemented access size: %d\n", addr,
879 size);
880 }
881 break;
882 case 0x01c00100: /* MXCC stream source */
883 {
884 int i;
885
886 if (size == 8) {
887 env->mxccregs[0] = val;
888 } else {
889 qemu_log_mask(LOG_UNIMP,
890 "%08x: unimplemented access size: %d\n", addr,
891 size);
892 }
893
894 for (i = 0; i < 4; i++) {
895 MemTxResult result;
896 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
897
898 env->mxccdata[i] = address_space_ldq(cs->as,
899 access_addr,
900 MEMTXATTRS_UNSPECIFIED,
901 &result);
902 if (result != MEMTX_OK) {
903 /* TODO: investigate whether this is the right behaviour */
904 sparc_raise_mmu_fault(cs, access_addr, false, false,
905 false, size, GETPC());
906 }
907 }
908 break;
909 }
910 case 0x01c00200: /* MXCC stream destination */
911 {
912 int i;
913
914 if (size == 8) {
915 env->mxccregs[1] = val;
916 } else {
917 qemu_log_mask(LOG_UNIMP,
918 "%08x: unimplemented access size: %d\n", addr,
919 size);
920 }
921
922 for (i = 0; i < 4; i++) {
923 MemTxResult result;
924 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
925
926 address_space_stq(cs->as, access_addr, env->mxccdata[i],
927 MEMTXATTRS_UNSPECIFIED, &result);
928
929 if (result != MEMTX_OK) {
930 /* TODO: investigate whether this is the right behaviour */
931 sparc_raise_mmu_fault(cs, access_addr, true, false,
932 false, size, GETPC());
933 }
934 }
935 break;
936 }
937 case 0x01c00a00: /* MXCC control register */
938 if (size == 8) {
939 env->mxccregs[3] = val;
940 } else {
941 qemu_log_mask(LOG_UNIMP,
942 "%08x: unimplemented access size: %d\n", addr,
943 size);
944 }
945 break;
946 case 0x01c00a04: /* MXCC control register */
947 if (size == 4) {
948 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
949 | val;
950 } else {
951 qemu_log_mask(LOG_UNIMP,
952 "%08x: unimplemented access size: %d\n", addr,
953 size);
954 }
955 break;
956 case 0x01c00e00: /* MXCC error register */
957 /* writing a 1 bit clears the error */
958 if (size == 8) {
959 env->mxccregs[6] &= ~val;
960 } else {
961 qemu_log_mask(LOG_UNIMP,
962 "%08x: unimplemented access size: %d\n", addr,
963 size);
964 }
965 break;
966 case 0x01c00f00: /* MBus port address register */
967 if (size == 8) {
968 env->mxccregs[7] = val;
969 } else {
970 qemu_log_mask(LOG_UNIMP,
971 "%08x: unimplemented access size: %d\n", addr,
972 size);
973 }
974 break;
975 default:
976 qemu_log_mask(LOG_UNIMP,
977 "%08x: unimplemented address, size: %d\n", addr,
978 size);
979 break;
980 }
981 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
982 asi, size, addr, val);
983 #ifdef DEBUG_MXCC
984 dump_mxcc(env);
985 #endif
986 break;
987 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
988 case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
989 {
990 int mmulev;
991
992 mmulev = (addr >> 8) & 15;
993 DPRINTF_MMU("mmu flush level %d\n", mmulev);
994 switch (mmulev) {
995 case 0: /* flush page */
996 tlb_flush_page(cs, addr & 0xfffff000);
997 break;
998 case 1: /* flush segment (256k) */
999 case 2: /* flush region (16M) */
1000 case 3: /* flush context (4G) */
1001 case 4: /* flush entire */
1002 tlb_flush(cs);
1003 break;
1004 default:
1005 break;
1006 }
1007 #ifdef DEBUG_MMU
1008 dump_mmu(env);
1009 #endif
1010 }
1011 break;
1012 case ASI_M_MMUREGS: /* write MMU regs */
1013 case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1014 {
1015 int reg = (addr >> 8) & 0x1f;
1016 uint32_t oldreg;
1017
1018 oldreg = env->mmuregs[reg];
1019 switch (reg) {
1020 case 0: /* Control Register */
1021 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1022 (val & 0x00ffffff);
1023 /* Mappings generated during no-fault mode
1024 are invalid in normal mode. */
1025 if ((oldreg ^ env->mmuregs[reg])
1026 & (MMU_NF | env->def.mmu_bm)) {
1027 tlb_flush(cs);
1028 }
1029 break;
1030 case 1: /* Context Table Pointer Register */
1031 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1032 break;
1033 case 2: /* Context Register */
1034 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1035 if (oldreg != env->mmuregs[reg]) {
1036 /* we flush when the MMU context changes because
1037 QEMU has no MMU context support */
1038 tlb_flush(cs);
1039 }
1040 break;
1041 case 3: /* Synchronous Fault Status Register with Clear */
1042 case 4: /* Synchronous Fault Address Register */
1043 break;
1044 case 0x10: /* TLB Replacement Control Register */
1045 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1046 break;
1047 case 0x13: /* Synchronous Fault Status Register with Read
1048 and Clear */
1049 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1050 break;
1051 case 0x14: /* Synchronous Fault Address Register */
1052 env->mmuregs[4] = val;
1053 break;
1054 default:
1055 env->mmuregs[reg] = val;
1056 break;
1057 }
1058 if (oldreg != env->mmuregs[reg]) {
1059 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1060 reg, oldreg, env->mmuregs[reg]);
1061 }
1062 #ifdef DEBUG_MMU
1063 dump_mmu(env);
1064 #endif
1065 }
1066 break;
1067 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1068 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
1069 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
1070 break;
1071 case ASI_M_TXTC_TAG: /* I-cache tag */
1072 case ASI_M_TXTC_DATA: /* I-cache data */
1073 case ASI_M_DATAC_TAG: /* D-cache tag */
1074 case ASI_M_DATAC_DATA: /* D-cache data */
1075 case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */
1076 case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */
1077 case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1078 case ASI_M_FLUSH_CTX: /* I/D-cache flush context */
1079 case ASI_M_FLUSH_USER: /* I/D-cache flush user */
1080 break;
1081 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1082 {
1083 MemTxResult result;
1084 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1085
1086 switch (size) {
1087 case 1:
1088 address_space_stb(cs->as, access_addr, val,
1089 MEMTXATTRS_UNSPECIFIED, &result);
1090 break;
1091 case 2:
1092 address_space_stw(cs->as, access_addr, val,
1093 MEMTXATTRS_UNSPECIFIED, &result);
1094 break;
1095 case 4:
1096 default:
1097 address_space_stl(cs->as, access_addr, val,
1098 MEMTXATTRS_UNSPECIFIED, &result);
1099 break;
1100 case 8:
1101 address_space_stq(cs->as, access_addr, val,
1102 MEMTXATTRS_UNSPECIFIED, &result);
1103 break;
1104 }
1105 if (result != MEMTX_OK) {
1106 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1107 size, GETPC());
1108 }
1109 }
1110 break;
1111 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1112 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1113 Turbosparc snoop RAM */
1114 case 0x32: /* store buffer control or Turbosparc page table
1115 descriptor diagnostic */
1116 case 0x36: /* I-cache flash clear */
1117 case 0x37: /* D-cache flash clear */
1118 break;
1119 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1120 {
1121 int reg = (addr >> 8) & 3;
1122
1123 switch (reg) {
1124 case 0: /* Breakpoint Value (Addr) */
1125 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1126 break;
1127 case 1: /* Breakpoint Mask */
1128 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1129 break;
1130 case 2: /* Breakpoint Control */
1131 env->mmubpregs[reg] = (val & 0x7fULL);
1132 break;
1133 case 3: /* Breakpoint Status */
1134 env->mmubpregs[reg] = (val & 0xfULL);
1135 break;
1136 }
1137 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1138 env->mmuregs[reg]);
1139 }
1140 break;
1141 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1142 env->mmubpctrv = val & 0xffffffff;
1143 break;
1144 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1145 env->mmubpctrc = val & 0x3;
1146 break;
1147 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1148 env->mmubpctrs = val & 0x3;
1149 break;
1150 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1151 env->mmubpaction = val & 0x1fff;
1152 break;
1153 case ASI_USERTXT: /* User code access, XXX */
1154 case ASI_KERNELTXT: /* Supervisor code access, XXX */
1155 default:
1156 sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1157 break;
1158
1159 case ASI_USERDATA: /* User data access */
1160 case ASI_KERNELDATA: /* Supervisor data access */
1161 case ASI_P:
1162 case ASI_M_BYPASS: /* MMU passthrough */
1163 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1164 case ASI_M_BCOPY: /* Block copy, sta access */
1165 case ASI_M_BFILL: /* Block fill, stda access */
1166 /* These are always handled inline. */
1167 g_assert_not_reached();
1168 }
1169 #ifdef DEBUG_ASI
1170 dump_asi("write", addr, asi, size, val);
1171 #endif
1172 }
1173
1174 #endif /* CONFIG_USER_ONLY */
1175 #else /* TARGET_SPARC64 */
1176
1177 #ifdef CONFIG_USER_ONLY
1178 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1179 int asi, uint32_t memop)
1180 {
1181 int size = 1 << (memop & MO_SIZE);
1182 int sign = memop & MO_SIGN;
1183 uint64_t ret = 0;
1184
1185 if (asi < 0x80) {
1186 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1187 }
1188 do_check_align(env, addr, size - 1, GETPC());
1189 addr = asi_address_mask(env, asi, addr);
1190
1191 switch (asi) {
1192 case ASI_PNF: /* Primary no-fault */
1193 case ASI_PNFL: /* Primary no-fault LE */
1194 case ASI_SNF: /* Secondary no-fault */
1195 case ASI_SNFL: /* Secondary no-fault LE */
1196 if (page_check_range(addr, size, PAGE_READ) == -1) {
1197 ret = 0;
1198 break;
1199 }
1200 switch (size) {
1201 case 1:
1202 ret = cpu_ldub_data(env, addr);
1203 break;
1204 case 2:
1205 ret = cpu_lduw_data(env, addr);
1206 break;
1207 case 4:
1208 ret = cpu_ldl_data(env, addr);
1209 break;
1210 case 8:
1211 ret = cpu_ldq_data(env, addr);
1212 break;
1213 default:
1214 g_assert_not_reached();
1215 }
1216 break;
1217 break;
1218
1219 case ASI_P: /* Primary */
1220 case ASI_PL: /* Primary LE */
1221 case ASI_S: /* Secondary */
1222 case ASI_SL: /* Secondary LE */
1223 /* These are always handled inline. */
1224 g_assert_not_reached();
1225
1226 default:
1227 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1228 }
1229
1230 /* Convert from little endian */
1231 switch (asi) {
1232 case ASI_PNFL: /* Primary no-fault LE */
1233 case ASI_SNFL: /* Secondary no-fault LE */
1234 switch (size) {
1235 case 2:
1236 ret = bswap16(ret);
1237 break;
1238 case 4:
1239 ret = bswap32(ret);
1240 break;
1241 case 8:
1242 ret = bswap64(ret);
1243 break;
1244 }
1245 }
1246
1247 /* Convert to signed number */
1248 if (sign) {
1249 switch (size) {
1250 case 1:
1251 ret = (int8_t) ret;
1252 break;
1253 case 2:
1254 ret = (int16_t) ret;
1255 break;
1256 case 4:
1257 ret = (int32_t) ret;
1258 break;
1259 }
1260 }
1261 #ifdef DEBUG_ASI
1262 dump_asi("read", addr, asi, size, ret);
1263 #endif
1264 return ret;
1265 }
1266
1267 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1268 int asi, uint32_t memop)
1269 {
1270 int size = 1 << (memop & MO_SIZE);
1271 #ifdef DEBUG_ASI
1272 dump_asi("write", addr, asi, size, val);
1273 #endif
1274 if (asi < 0x80) {
1275 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1276 }
1277 do_check_align(env, addr, size - 1, GETPC());
1278
1279 switch (asi) {
1280 case ASI_P: /* Primary */
1281 case ASI_PL: /* Primary LE */
1282 case ASI_S: /* Secondary */
1283 case ASI_SL: /* Secondary LE */
1284 /* These are always handled inline. */
1285 g_assert_not_reached();
1286
1287 case ASI_PNF: /* Primary no-fault, RO */
1288 case ASI_SNF: /* Secondary no-fault, RO */
1289 case ASI_PNFL: /* Primary no-fault LE, RO */
1290 case ASI_SNFL: /* Secondary no-fault LE, RO */
1291 default:
1292 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1293 }
1294 }
1295
1296 #else /* CONFIG_USER_ONLY */
1297
1298 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1299 int asi, uint32_t memop)
1300 {
1301 int size = 1 << (memop & MO_SIZE);
1302 int sign = memop & MO_SIGN;
1303 CPUState *cs = env_cpu(env);
1304 uint64_t ret = 0;
1305 #if defined(DEBUG_ASI)
1306 target_ulong last_addr = addr;
1307 #endif
1308
1309 asi &= 0xff;
1310
1311 do_check_asi(env, asi, GETPC());
1312 do_check_align(env, addr, size - 1, GETPC());
1313 addr = asi_address_mask(env, asi, addr);
1314
1315 switch (asi) {
1316 case ASI_PNF:
1317 case ASI_PNFL:
1318 case ASI_SNF:
1319 case ASI_SNFL:
1320 {
1321 TCGMemOpIdx oi;
1322 int idx = (env->pstate & PS_PRIV
1323 ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1324 : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1325
1326 if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1327 #ifdef DEBUG_ASI
1328 dump_asi("read ", last_addr, asi, size, ret);
1329 #endif
1330 /* exception_index is set in get_physical_address_data. */
1331 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1332 }
1333 oi = make_memop_idx(memop, idx);
1334 switch (size) {
1335 case 1:
1336 ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
1337 break;
1338 case 2:
1339 if (asi & 8) {
1340 ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
1341 } else {
1342 ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
1343 }
1344 break;
1345 case 4:
1346 if (asi & 8) {
1347 ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
1348 } else {
1349 ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
1350 }
1351 break;
1352 case 8:
1353 if (asi & 8) {
1354 ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
1355 } else {
1356 ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
1357 }
1358 break;
1359 default:
1360 g_assert_not_reached();
1361 }
1362 }
1363 break;
1364
1365 case ASI_AIUP: /* As if user primary */
1366 case ASI_AIUS: /* As if user secondary */
1367 case ASI_AIUPL: /* As if user primary LE */
1368 case ASI_AIUSL: /* As if user secondary LE */
1369 case ASI_P: /* Primary */
1370 case ASI_S: /* Secondary */
1371 case ASI_PL: /* Primary LE */
1372 case ASI_SL: /* Secondary LE */
1373 case ASI_REAL: /* Bypass */
1374 case ASI_REAL_IO: /* Bypass, non-cacheable */
1375 case ASI_REAL_L: /* Bypass LE */
1376 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1377 case ASI_N: /* Nucleus */
1378 case ASI_NL: /* Nucleus Little Endian (LE) */
1379 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1380 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1381 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1382 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1383 case ASI_TWINX_REAL: /* Real address, twinx */
1384 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1385 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1386 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1387 case ASI_TWINX_N: /* Nucleus, twinx */
1388 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1389 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1390 case ASI_TWINX_P: /* Primary, twinx */
1391 case ASI_TWINX_PL: /* Primary, twinx, LE */
1392 case ASI_TWINX_S: /* Secondary, twinx */
1393 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1394 /* These are always handled inline. */
1395 g_assert_not_reached();
1396
1397 case ASI_UPA_CONFIG: /* UPA config */
1398 /* XXX */
1399 break;
1400 case ASI_LSU_CONTROL: /* LSU */
1401 ret = env->lsu;
1402 break;
1403 case ASI_IMMU: /* I-MMU regs */
1404 {
1405 int reg = (addr >> 3) & 0xf;
1406 switch (reg) {
1407 case 0:
1408 /* 0x00 I-TSB Tag Target register */
1409 ret = ultrasparc_tag_target(env->immu.tag_access);
1410 break;
1411 case 3: /* SFSR */
1412 ret = env->immu.sfsr;
1413 break;
1414 case 5: /* TSB access */
1415 ret = env->immu.tsb;
1416 break;
1417 case 6:
1418 /* 0x30 I-TSB Tag Access register */
1419 ret = env->immu.tag_access;
1420 break;
1421 default:
1422 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1423 ret = 0;
1424 }
1425 break;
1426 }
1427 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1428 {
1429 /* env->immuregs[5] holds I-MMU TSB register value
1430 env->immuregs[6] holds I-MMU Tag Access register value */
1431 ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1432 break;
1433 }
1434 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1435 {
1436 /* env->immuregs[5] holds I-MMU TSB register value
1437 env->immuregs[6] holds I-MMU Tag Access register value */
1438 ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1439 break;
1440 }
1441 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1442 {
1443 int reg = (addr >> 3) & 0x3f;
1444
1445 ret = env->itlb[reg].tte;
1446 break;
1447 }
1448 case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1449 {
1450 int reg = (addr >> 3) & 0x3f;
1451
1452 ret = env->itlb[reg].tag;
1453 break;
1454 }
1455 case ASI_DMMU: /* D-MMU regs */
1456 {
1457 int reg = (addr >> 3) & 0xf;
1458 switch (reg) {
1459 case 0:
1460 /* 0x00 D-TSB Tag Target register */
1461 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1462 break;
1463 case 1: /* 0x08 Primary Context */
1464 ret = env->dmmu.mmu_primary_context;
1465 break;
1466 case 2: /* 0x10 Secondary Context */
1467 ret = env->dmmu.mmu_secondary_context;
1468 break;
1469 case 3: /* SFSR */
1470 ret = env->dmmu.sfsr;
1471 break;
1472 case 4: /* 0x20 SFAR */
1473 ret = env->dmmu.sfar;
1474 break;
1475 case 5: /* 0x28 TSB access */
1476 ret = env->dmmu.tsb;
1477 break;
1478 case 6: /* 0x30 D-TSB Tag Access register */
1479 ret = env->dmmu.tag_access;
1480 break;
1481 case 7:
1482 ret = env->dmmu.virtual_watchpoint;
1483 break;
1484 case 8:
1485 ret = env->dmmu.physical_watchpoint;
1486 break;
1487 default:
1488 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1489 ret = 0;
1490 }
1491 break;
1492 }
1493 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1494 {
1495 /* env->dmmuregs[5] holds D-MMU TSB register value
1496 env->dmmuregs[6] holds D-MMU Tag Access register value */
1497 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1498 break;
1499 }
1500 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1501 {
1502 /* env->dmmuregs[5] holds D-MMU TSB register value
1503 env->dmmuregs[6] holds D-MMU Tag Access register value */
1504 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1505 break;
1506 }
1507 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1508 {
1509 int reg = (addr >> 3) & 0x3f;
1510
1511 ret = env->dtlb[reg].tte;
1512 break;
1513 }
1514 case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1515 {
1516 int reg = (addr >> 3) & 0x3f;
1517
1518 ret = env->dtlb[reg].tag;
1519 break;
1520 }
1521 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1522 break;
1523 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1524 ret = env->ivec_status;
1525 break;
1526 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1527 {
1528 int reg = (addr >> 4) & 0x3;
1529 if (reg < 3) {
1530 ret = env->ivec_data[reg];
1531 }
1532 break;
1533 }
1534 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1535 if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1536 /* Hyperprivileged access only */
1537 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1538 }
1539 /* fall through */
1540 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1541 {
1542 unsigned int i = (addr >> 3) & 0x7;
1543 ret = env->scratch[i];
1544 break;
1545 }
1546 case ASI_MMU: /* UA2005 Context ID registers */
1547 switch ((addr >> 3) & 0x3) {
1548 case 1:
1549 ret = env->dmmu.mmu_primary_context;
1550 break;
1551 case 2:
1552 ret = env->dmmu.mmu_secondary_context;
1553 break;
1554 default:
1555 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1556 }
1557 break;
1558 case ASI_DCACHE_DATA: /* D-cache data */
1559 case ASI_DCACHE_TAG: /* D-cache tag access */
1560 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1561 case ASI_AFSR: /* E-cache asynchronous fault status */
1562 case ASI_AFAR: /* E-cache asynchronous fault address */
1563 case ASI_EC_TAG_DATA: /* E-cache tag data */
1564 case ASI_IC_INSTR: /* I-cache instruction access */
1565 case ASI_IC_TAG: /* I-cache tag access */
1566 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1567 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1568 case ASI_EC_W: /* E-cache tag */
1569 case ASI_EC_R: /* E-cache tag */
1570 break;
1571 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1572 case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */
1573 case ASI_IMMU_DEMAP: /* I-MMU demap, WO */
1574 case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */
1575 case ASI_DMMU_DEMAP: /* D-MMU demap, WO */
1576 case ASI_INTR_W: /* Interrupt vector, WO */
1577 default:
1578 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1579 ret = 0;
1580 break;
1581 }
1582
1583 /* Convert to signed number */
1584 if (sign) {
1585 switch (size) {
1586 case 1:
1587 ret = (int8_t) ret;
1588 break;
1589 case 2:
1590 ret = (int16_t) ret;
1591 break;
1592 case 4:
1593 ret = (int32_t) ret;
1594 break;
1595 default:
1596 break;
1597 }
1598 }
1599 #ifdef DEBUG_ASI
1600 dump_asi("read ", last_addr, asi, size, ret);
1601 #endif
1602 return ret;
1603 }
1604
1605 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1606 int asi, uint32_t memop)
1607 {
1608 int size = 1 << (memop & MO_SIZE);
1609 CPUState *cs = env_cpu(env);
1610
1611 #ifdef DEBUG_ASI
1612 dump_asi("write", addr, asi, size, val);
1613 #endif
1614
1615 asi &= 0xff;
1616
1617 do_check_asi(env, asi, GETPC());
1618 do_check_align(env, addr, size - 1, GETPC());
1619 addr = asi_address_mask(env, asi, addr);
1620
1621 switch (asi) {
1622 case ASI_AIUP: /* As if user primary */
1623 case ASI_AIUS: /* As if user secondary */
1624 case ASI_AIUPL: /* As if user primary LE */
1625 case ASI_AIUSL: /* As if user secondary LE */
1626 case ASI_P: /* Primary */
1627 case ASI_S: /* Secondary */
1628 case ASI_PL: /* Primary LE */
1629 case ASI_SL: /* Secondary LE */
1630 case ASI_REAL: /* Bypass */
1631 case ASI_REAL_IO: /* Bypass, non-cacheable */
1632 case ASI_REAL_L: /* Bypass LE */
1633 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1634 case ASI_N: /* Nucleus */
1635 case ASI_NL: /* Nucleus Little Endian (LE) */
1636 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1637 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1638 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1639 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1640 case ASI_TWINX_REAL: /* Real address, twinx */
1641 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1642 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1643 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1644 case ASI_TWINX_N: /* Nucleus, twinx */
1645 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1646 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1647 case ASI_TWINX_P: /* Primary, twinx */
1648 case ASI_TWINX_PL: /* Primary, twinx, LE */
1649 case ASI_TWINX_S: /* Secondary, twinx */
1650 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1651 /* These are always handled inline. */
1652 g_assert_not_reached();
1653 /* these ASIs have different functions on UltraSPARC-IIIi
1654 * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1655 */
1656 case 0x31:
1657 case 0x32:
1658 case 0x39:
1659 case 0x3a:
1660 if (cpu_has_hypervisor(env)) {
1661 /* UA2005
1662 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1663 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1664 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1665 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1666 */
1667 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1668 env->dmmu.sun4v_tsb_pointers[idx] = val;
1669 } else {
1670 helper_raise_exception(env, TT_ILL_INSN);
1671 }
1672 break;
1673 case 0x33:
1674 case 0x3b:
1675 if (cpu_has_hypervisor(env)) {
1676 /* UA2005
1677 * ASI_DMMU_CTX_ZERO_CONFIG
1678 * ASI_DMMU_CTX_NONZERO_CONFIG
1679 */
1680 env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1681 } else {
1682 helper_raise_exception(env, TT_ILL_INSN);
1683 }
1684 break;
1685 case 0x35:
1686 case 0x36:
1687 case 0x3d:
1688 case 0x3e:
1689 if (cpu_has_hypervisor(env)) {
1690 /* UA2005
1691 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1692 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1693 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1694 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1695 */
1696 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1697 env->immu.sun4v_tsb_pointers[idx] = val;
1698 } else {
1699 helper_raise_exception(env, TT_ILL_INSN);
1700 }
1701 break;
1702 case 0x37:
1703 case 0x3f:
1704 if (cpu_has_hypervisor(env)) {
1705 /* UA2005
1706 * ASI_IMMU_CTX_ZERO_CONFIG
1707 * ASI_IMMU_CTX_NONZERO_CONFIG
1708 */
1709 env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1710 } else {
1711 helper_raise_exception(env, TT_ILL_INSN);
1712 }
1713 break;
1714 case ASI_UPA_CONFIG: /* UPA config */
1715 /* XXX */
1716 return;
1717 case ASI_LSU_CONTROL: /* LSU */
1718 env->lsu = val & (DMMU_E | IMMU_E);
1719 return;
1720 case ASI_IMMU: /* I-MMU regs */
1721 {
1722 int reg = (addr >> 3) & 0xf;
1723 uint64_t oldreg;
1724
1725 oldreg = env->immu.mmuregs[reg];
1726 switch (reg) {
1727 case 0: /* RO */
1728 return;
1729 case 1: /* Not in I-MMU */
1730 case 2:
1731 return;
1732 case 3: /* SFSR */
1733 if ((val & 1) == 0) {
1734 val = 0; /* Clear SFSR */
1735 }
1736 env->immu.sfsr = val;
1737 break;
1738 case 4: /* RO */
1739 return;
1740 case 5: /* TSB access */
1741 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1742 PRIx64 "\n", env->immu.tsb, val);
1743 env->immu.tsb = val;
1744 break;
1745 case 6: /* Tag access */
1746 env->immu.tag_access = val;
1747 break;
1748 case 7:
1749 case 8:
1750 return;
1751 default:
1752 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1753 break;
1754 }
1755
1756 if (oldreg != env->immu.mmuregs[reg]) {
1757 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1758 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1759 }
1760 #ifdef DEBUG_MMU
1761 dump_mmu(env);
1762 #endif
1763 return;
1764 }
1765 case ASI_ITLB_DATA_IN: /* I-MMU data in */
1766 /* ignore real translation entries */
1767 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1768 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1769 val, "immu", env, addr);
1770 }
1771 return;
1772 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1773 {
1774 /* TODO: auto demap */
1775
1776 unsigned int i = (addr >> 3) & 0x3f;
1777
1778 /* ignore real translation entries */
1779 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1780 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1781 sun4v_tte_to_sun4u(env, addr, val), env);
1782 }
1783 #ifdef DEBUG_MMU
1784 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1785 dump_mmu(env);
1786 #endif
1787 return;
1788 }
1789 case ASI_IMMU_DEMAP: /* I-MMU demap */
1790 demap_tlb(env->itlb, addr, "immu", env);
1791 return;
1792 case ASI_DMMU: /* D-MMU regs */
1793 {
1794 int reg = (addr >> 3) & 0xf;
1795 uint64_t oldreg;
1796
1797 oldreg = env->dmmu.mmuregs[reg];
1798 switch (reg) {
1799 case 0: /* RO */
1800 case 4:
1801 return;
1802 case 3: /* SFSR */
1803 if ((val & 1) == 0) {
1804 val = 0; /* Clear SFSR, Fault address */
1805 env->dmmu.sfar = 0;
1806 }
1807 env->dmmu.sfsr = val;
1808 break;
1809 case 1: /* Primary context */
1810 env->dmmu.mmu_primary_context = val;
1811 /* can be optimized to only flush MMU_USER_IDX
1812 and MMU_KERNEL_IDX entries */
1813 tlb_flush(cs);
1814 break;
1815 case 2: /* Secondary context */
1816 env->dmmu.mmu_secondary_context = val;
1817 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1818 and MMU_KERNEL_SECONDARY_IDX entries */
1819 tlb_flush(cs);
1820 break;
1821 case 5: /* TSB access */
1822 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1823 PRIx64 "\n", env->dmmu.tsb, val);
1824 env->dmmu.tsb = val;
1825 break;
1826 case 6: /* Tag access */
1827 env->dmmu.tag_access = val;
1828 break;
1829 case 7: /* Virtual Watchpoint */
1830 env->dmmu.virtual_watchpoint = val;
1831 break;
1832 case 8: /* Physical Watchpoint */
1833 env->dmmu.physical_watchpoint = val;
1834 break;
1835 default:
1836 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1837 break;
1838 }
1839
1840 if (oldreg != env->dmmu.mmuregs[reg]) {
1841 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1842 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1843 }
1844 #ifdef DEBUG_MMU
1845 dump_mmu(env);
1846 #endif
1847 return;
1848 }
1849 case ASI_DTLB_DATA_IN: /* D-MMU data in */
1850 /* ignore real translation entries */
1851 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1852 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1853 val, "dmmu", env, addr);
1854 }
1855 return;
1856 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1857 {
1858 unsigned int i = (addr >> 3) & 0x3f;
1859
1860 /* ignore real translation entries */
1861 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1862 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1863 sun4v_tte_to_sun4u(env, addr, val), env);
1864 }
1865 #ifdef DEBUG_MMU
1866 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1867 dump_mmu(env);
1868 #endif
1869 return;
1870 }
1871 case ASI_DMMU_DEMAP: /* D-MMU demap */
1872 demap_tlb(env->dtlb, addr, "dmmu", env);
1873 return;
1874 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1875 env->ivec_status = val & 0x20;
1876 return;
1877 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1878 if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1879 /* Hyperprivileged access only */
1880 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1881 }
1882 /* fall through */
1883 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1884 {
1885 unsigned int i = (addr >> 3) & 0x7;
1886 env->scratch[i] = val;
1887 return;
1888 }
1889 case ASI_MMU: /* UA2005 Context ID registers */
1890 {
1891 switch ((addr >> 3) & 0x3) {
1892 case 1:
1893 env->dmmu.mmu_primary_context = val;
1894 env->immu.mmu_primary_context = val;
1895 tlb_flush_by_mmuidx(cs,
1896 (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1897 break;
1898 case 2:
1899 env->dmmu.mmu_secondary_context = val;
1900 env->immu.mmu_secondary_context = val;
1901 tlb_flush_by_mmuidx(cs,
1902 (1 << MMU_USER_SECONDARY_IDX) |
1903 (1 << MMU_KERNEL_SECONDARY_IDX));
1904 break;
1905 default:
1906 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1907 }
1908 }
1909 return;
1910 case ASI_QUEUE: /* UA2005 CPU mondo queue */
1911 case ASI_DCACHE_DATA: /* D-cache data */
1912 case ASI_DCACHE_TAG: /* D-cache tag access */
1913 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1914 case ASI_AFSR: /* E-cache asynchronous fault status */
1915 case ASI_AFAR: /* E-cache asynchronous fault address */
1916 case ASI_EC_TAG_DATA: /* E-cache tag data */
1917 case ASI_IC_INSTR: /* I-cache instruction access */
1918 case ASI_IC_TAG: /* I-cache tag access */
1919 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1920 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1921 case ASI_EC_W: /* E-cache tag */
1922 case ASI_EC_R: /* E-cache tag */
1923 return;
1924 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1925 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1926 case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1927 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1928 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1929 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1930 case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1931 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1932 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1933 case ASI_PNF: /* Primary no-fault, RO */
1934 case ASI_SNF: /* Secondary no-fault, RO */
1935 case ASI_PNFL: /* Primary no-fault LE, RO */
1936 case ASI_SNFL: /* Secondary no-fault LE, RO */
1937 default:
1938 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1939 return;
1940 }
1941 }
1942 #endif /* CONFIG_USER_ONLY */
1943 #endif /* TARGET_SPARC64 */
1944
1945 #if !defined(CONFIG_USER_ONLY)
1946
1947 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1948 vaddr addr, unsigned size,
1949 MMUAccessType access_type,
1950 int mmu_idx, MemTxAttrs attrs,
1951 MemTxResult response, uintptr_t retaddr)
1952 {
1953 bool is_write = access_type == MMU_DATA_STORE;
1954 bool is_exec = access_type == MMU_INST_FETCH;
1955 bool is_asi = false;
1956
1957 sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1958 is_asi, size, retaddr);
1959 }
1960 #endif
1961
1962 #if !defined(CONFIG_USER_ONLY)
1963 void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1964 MMUAccessType access_type,
1965 int mmu_idx,
1966 uintptr_t retaddr)
1967 {
1968 SPARCCPU *cpu = SPARC_CPU(cs);
1969 CPUSPARCState *env = &cpu->env;
1970
1971 #ifdef DEBUG_UNALIGNED
1972 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
1973 "\n", addr, env->pc);
1974 #endif
1975 cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
1976 }
1977 #endif