tests: virtio-9p: rename PCI configuration test
[qemu.git] / target / tricore / op_helper.c
1 /*
2 * Copyright (c) 2012-2014 Bastian Koppelmann C-Lab/University Paderborn
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
16 */
17 #include "qemu/osdep.h"
18 #include "cpu.h"
19 #include "qemu/host-utils.h"
20 #include "exec/helper-proto.h"
21 #include "exec/exec-all.h"
22 #include "exec/cpu_ldst.h"
23 #include <zlib.h> /* for crc32 */
24
25
26 /* Exception helpers */
27
28 static void QEMU_NORETURN
29 raise_exception_sync_internal(CPUTriCoreState *env, uint32_t class, int tin,
30 uintptr_t pc, uint32_t fcd_pc)
31 {
32 CPUState *cs = CPU(tricore_env_get_cpu(env));
33 /* in case we come from a helper-call we need to restore the PC */
34 if (pc) {
35 cpu_restore_state(cs, pc);
36 }
37
38 /* Tin is loaded into d[15] */
39 env->gpr_d[15] = tin;
40
41 if (class == TRAPC_CTX_MNG && tin == TIN3_FCU) {
42 /* upper context cannot be saved, if the context list is empty */
43 } else {
44 helper_svucx(env);
45 }
46
47 /* The return address in a[11] is updated */
48 if (class == TRAPC_CTX_MNG && tin == TIN3_FCD) {
49 env->SYSCON |= MASK_SYSCON_FCD_SF;
50 /* when we run out of CSAs after saving a context a FCD trap is taken
51 and the return address is the start of the trap handler which used
52 the last CSA */
53 env->gpr_a[11] = fcd_pc;
54 } else if (class == TRAPC_SYSCALL) {
55 env->gpr_a[11] = env->PC + 4;
56 } else {
57 env->gpr_a[11] = env->PC;
58 }
59 /* The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP)
60 when the processor was not previously using the interrupt stack
61 (in case of PSW.IS = 0). The stack pointer bit is set for using the
62 interrupt stack: PSW.IS = 1. */
63 if ((env->PSW & MASK_PSW_IS) == 0) {
64 env->gpr_a[10] = env->ISP;
65 }
66 env->PSW |= MASK_PSW_IS;
67 /* The I/O mode is set to Supervisor mode, which means all permissions
68 are enabled: PSW.IO = 10 B .*/
69 env->PSW |= (2 << 10);
70
71 /*The current Protection Register Set is set to 0: PSW.PRS = 00 B .*/
72 env->PSW &= ~MASK_PSW_PRS;
73
74 /* The Call Depth Counter (CDC) is cleared, and the call depth limit is
75 set for 64: PSW.CDC = 0000000 B .*/
76 env->PSW &= ~MASK_PSW_CDC;
77
78 /* Call Depth Counter is enabled, PSW.CDE = 1. */
79 env->PSW |= MASK_PSW_CDE;
80
81 /* Write permission to global registers A[0], A[1], A[8], A[9] is
82 disabled: PSW.GW = 0. */
83 env->PSW &= ~MASK_PSW_GW;
84
85 /*The interrupt system is globally disabled: ICR.IE = 0. The ‘old’
86 ICR.IE and ICR.CCPN are saved */
87
88 /* PCXI.PIE = ICR.IE */
89 env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) +
90 ((env->ICR & MASK_ICR_IE) << 15));
91 /* PCXI.PCPN = ICR.CCPN */
92 env->PCXI = (env->PCXI & 0xffffff) +
93 ((env->ICR & MASK_ICR_CCPN) << 24);
94 /* Update PC using the trap vector table */
95 env->PC = env->BTV | (class << 5);
96
97 cpu_loop_exit(cs);
98 }
99
100 void helper_raise_exception_sync(CPUTriCoreState *env, uint32_t class,
101 uint32_t tin)
102 {
103 raise_exception_sync_internal(env, class, tin, 0, 0);
104 }
105
106 static void raise_exception_sync_helper(CPUTriCoreState *env, uint32_t class,
107 uint32_t tin, uintptr_t pc)
108 {
109 raise_exception_sync_internal(env, class, tin, pc, 0);
110 }
111
112 /* Addressing mode helper */
113
114 static uint16_t reverse16(uint16_t val)
115 {
116 uint8_t high = (uint8_t)(val >> 8);
117 uint8_t low = (uint8_t)(val & 0xff);
118
119 uint16_t rh, rl;
120
121 rl = (uint16_t)((high * 0x0202020202ULL & 0x010884422010ULL) % 1023);
122 rh = (uint16_t)((low * 0x0202020202ULL & 0x010884422010ULL) % 1023);
123
124 return (rh << 8) | rl;
125 }
126
127 uint32_t helper_br_update(uint32_t reg)
128 {
129 uint32_t index = reg & 0xffff;
130 uint32_t incr = reg >> 16;
131 uint32_t new_index = reverse16(reverse16(index) + reverse16(incr));
132 return reg - index + new_index;
133 }
134
135 uint32_t helper_circ_update(uint32_t reg, uint32_t off)
136 {
137 uint32_t index = reg & 0xffff;
138 uint32_t length = reg >> 16;
139 int32_t new_index = index + off;
140 if (new_index < 0) {
141 new_index += length;
142 } else {
143 new_index %= length;
144 }
145 return reg - index + new_index;
146 }
147
148 static uint32_t ssov32(CPUTriCoreState *env, int64_t arg)
149 {
150 uint32_t ret;
151 int64_t max_pos = INT32_MAX;
152 int64_t max_neg = INT32_MIN;
153 if (arg > max_pos) {
154 env->PSW_USB_V = (1 << 31);
155 env->PSW_USB_SV = (1 << 31);
156 ret = (target_ulong)max_pos;
157 } else {
158 if (arg < max_neg) {
159 env->PSW_USB_V = (1 << 31);
160 env->PSW_USB_SV = (1 << 31);
161 ret = (target_ulong)max_neg;
162 } else {
163 env->PSW_USB_V = 0;
164 ret = (target_ulong)arg;
165 }
166 }
167 env->PSW_USB_AV = arg ^ arg * 2u;
168 env->PSW_USB_SAV |= env->PSW_USB_AV;
169 return ret;
170 }
171
172 static uint32_t suov32_pos(CPUTriCoreState *env, uint64_t arg)
173 {
174 uint32_t ret;
175 uint64_t max_pos = UINT32_MAX;
176 if (arg > max_pos) {
177 env->PSW_USB_V = (1 << 31);
178 env->PSW_USB_SV = (1 << 31);
179 ret = (target_ulong)max_pos;
180 } else {
181 env->PSW_USB_V = 0;
182 ret = (target_ulong)arg;
183 }
184 env->PSW_USB_AV = arg ^ arg * 2u;
185 env->PSW_USB_SAV |= env->PSW_USB_AV;
186 return ret;
187 }
188
189 static uint32_t suov32_neg(CPUTriCoreState *env, int64_t arg)
190 {
191 uint32_t ret;
192
193 if (arg < 0) {
194 env->PSW_USB_V = (1 << 31);
195 env->PSW_USB_SV = (1 << 31);
196 ret = 0;
197 } else {
198 env->PSW_USB_V = 0;
199 ret = (target_ulong)arg;
200 }
201 env->PSW_USB_AV = arg ^ arg * 2u;
202 env->PSW_USB_SAV |= env->PSW_USB_AV;
203 return ret;
204 }
205
206 static uint32_t ssov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1)
207 {
208 int32_t max_pos = INT16_MAX;
209 int32_t max_neg = INT16_MIN;
210 int32_t av0, av1;
211
212 env->PSW_USB_V = 0;
213 av0 = hw0 ^ hw0 * 2u;
214 if (hw0 > max_pos) {
215 env->PSW_USB_V = (1 << 31);
216 hw0 = max_pos;
217 } else if (hw0 < max_neg) {
218 env->PSW_USB_V = (1 << 31);
219 hw0 = max_neg;
220 }
221
222 av1 = hw1 ^ hw1 * 2u;
223 if (hw1 > max_pos) {
224 env->PSW_USB_V = (1 << 31);
225 hw1 = max_pos;
226 } else if (hw1 < max_neg) {
227 env->PSW_USB_V = (1 << 31);
228 hw1 = max_neg;
229 }
230
231 env->PSW_USB_SV |= env->PSW_USB_V;
232 env->PSW_USB_AV = (av0 | av1) << 16;
233 env->PSW_USB_SAV |= env->PSW_USB_AV;
234 return (hw0 & 0xffff) | (hw1 << 16);
235 }
236
237 static uint32_t suov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1)
238 {
239 int32_t max_pos = UINT16_MAX;
240 int32_t av0, av1;
241
242 env->PSW_USB_V = 0;
243 av0 = hw0 ^ hw0 * 2u;
244 if (hw0 > max_pos) {
245 env->PSW_USB_V = (1 << 31);
246 hw0 = max_pos;
247 } else if (hw0 < 0) {
248 env->PSW_USB_V = (1 << 31);
249 hw0 = 0;
250 }
251
252 av1 = hw1 ^ hw1 * 2u;
253 if (hw1 > max_pos) {
254 env->PSW_USB_V = (1 << 31);
255 hw1 = max_pos;
256 } else if (hw1 < 0) {
257 env->PSW_USB_V = (1 << 31);
258 hw1 = 0;
259 }
260
261 env->PSW_USB_SV |= env->PSW_USB_V;
262 env->PSW_USB_AV = (av0 | av1) << 16;
263 env->PSW_USB_SAV |= env->PSW_USB_AV;
264 return (hw0 & 0xffff) | (hw1 << 16);
265 }
266
267 target_ulong helper_add_ssov(CPUTriCoreState *env, target_ulong r1,
268 target_ulong r2)
269 {
270 int64_t t1 = sextract64(r1, 0, 32);
271 int64_t t2 = sextract64(r2, 0, 32);
272 int64_t result = t1 + t2;
273 return ssov32(env, result);
274 }
275
276 uint64_t helper_add64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
277 {
278 uint64_t result;
279 int64_t ovf;
280
281 result = r1 + r2;
282 ovf = (result ^ r1) & ~(r1 ^ r2);
283 env->PSW_USB_AV = (result ^ result * 2u) >> 32;
284 env->PSW_USB_SAV |= env->PSW_USB_AV;
285 if (ovf < 0) {
286 env->PSW_USB_V = (1 << 31);
287 env->PSW_USB_SV = (1 << 31);
288 /* ext_ret > MAX_INT */
289 if ((int64_t)r1 >= 0) {
290 result = INT64_MAX;
291 /* ext_ret < MIN_INT */
292 } else {
293 result = INT64_MIN;
294 }
295 } else {
296 env->PSW_USB_V = 0;
297 }
298 return result;
299 }
300
301 target_ulong helper_add_h_ssov(CPUTriCoreState *env, target_ulong r1,
302 target_ulong r2)
303 {
304 int32_t ret_hw0, ret_hw1;
305
306 ret_hw0 = sextract32(r1, 0, 16) + sextract32(r2, 0, 16);
307 ret_hw1 = sextract32(r1, 16, 16) + sextract32(r2, 16, 16);
308 return ssov16(env, ret_hw0, ret_hw1);
309 }
310
311 uint32_t helper_addr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
312 uint32_t r2_h)
313 {
314 int64_t mul_res0 = sextract64(r1, 0, 32);
315 int64_t mul_res1 = sextract64(r1, 32, 32);
316 int64_t r2_low = sextract64(r2_l, 0, 32);
317 int64_t r2_high = sextract64(r2_h, 0, 32);
318 int64_t result0, result1;
319 uint32_t ovf0, ovf1;
320 uint32_t avf0, avf1;
321
322 ovf0 = ovf1 = 0;
323
324 result0 = r2_low + mul_res0 + 0x8000;
325 result1 = r2_high + mul_res1 + 0x8000;
326
327 avf0 = result0 * 2u;
328 avf0 = result0 ^ avf0;
329 avf1 = result1 * 2u;
330 avf1 = result1 ^ avf1;
331
332 if (result0 > INT32_MAX) {
333 ovf0 = (1 << 31);
334 result0 = INT32_MAX;
335 } else if (result0 < INT32_MIN) {
336 ovf0 = (1 << 31);
337 result0 = INT32_MIN;
338 }
339
340 if (result1 > INT32_MAX) {
341 ovf1 = (1 << 31);
342 result1 = INT32_MAX;
343 } else if (result1 < INT32_MIN) {
344 ovf1 = (1 << 31);
345 result1 = INT32_MIN;
346 }
347
348 env->PSW_USB_V = ovf0 | ovf1;
349 env->PSW_USB_SV |= env->PSW_USB_V;
350
351 env->PSW_USB_AV = avf0 | avf1;
352 env->PSW_USB_SAV |= env->PSW_USB_AV;
353
354 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
355 }
356
357 uint32_t helper_addsur_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
358 uint32_t r2_h)
359 {
360 int64_t mul_res0 = sextract64(r1, 0, 32);
361 int64_t mul_res1 = sextract64(r1, 32, 32);
362 int64_t r2_low = sextract64(r2_l, 0, 32);
363 int64_t r2_high = sextract64(r2_h, 0, 32);
364 int64_t result0, result1;
365 uint32_t ovf0, ovf1;
366 uint32_t avf0, avf1;
367
368 ovf0 = ovf1 = 0;
369
370 result0 = r2_low - mul_res0 + 0x8000;
371 result1 = r2_high + mul_res1 + 0x8000;
372
373 avf0 = result0 * 2u;
374 avf0 = result0 ^ avf0;
375 avf1 = result1 * 2u;
376 avf1 = result1 ^ avf1;
377
378 if (result0 > INT32_MAX) {
379 ovf0 = (1 << 31);
380 result0 = INT32_MAX;
381 } else if (result0 < INT32_MIN) {
382 ovf0 = (1 << 31);
383 result0 = INT32_MIN;
384 }
385
386 if (result1 > INT32_MAX) {
387 ovf1 = (1 << 31);
388 result1 = INT32_MAX;
389 } else if (result1 < INT32_MIN) {
390 ovf1 = (1 << 31);
391 result1 = INT32_MIN;
392 }
393
394 env->PSW_USB_V = ovf0 | ovf1;
395 env->PSW_USB_SV |= env->PSW_USB_V;
396
397 env->PSW_USB_AV = avf0 | avf1;
398 env->PSW_USB_SAV |= env->PSW_USB_AV;
399
400 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
401 }
402
403
404 target_ulong helper_add_suov(CPUTriCoreState *env, target_ulong r1,
405 target_ulong r2)
406 {
407 int64_t t1 = extract64(r1, 0, 32);
408 int64_t t2 = extract64(r2, 0, 32);
409 int64_t result = t1 + t2;
410 return suov32_pos(env, result);
411 }
412
413 target_ulong helper_add_h_suov(CPUTriCoreState *env, target_ulong r1,
414 target_ulong r2)
415 {
416 int32_t ret_hw0, ret_hw1;
417
418 ret_hw0 = extract32(r1, 0, 16) + extract32(r2, 0, 16);
419 ret_hw1 = extract32(r1, 16, 16) + extract32(r2, 16, 16);
420 return suov16(env, ret_hw0, ret_hw1);
421 }
422
423 target_ulong helper_sub_ssov(CPUTriCoreState *env, target_ulong r1,
424 target_ulong r2)
425 {
426 int64_t t1 = sextract64(r1, 0, 32);
427 int64_t t2 = sextract64(r2, 0, 32);
428 int64_t result = t1 - t2;
429 return ssov32(env, result);
430 }
431
432 uint64_t helper_sub64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
433 {
434 uint64_t result;
435 int64_t ovf;
436
437 result = r1 - r2;
438 ovf = (result ^ r1) & (r1 ^ r2);
439 env->PSW_USB_AV = (result ^ result * 2u) >> 32;
440 env->PSW_USB_SAV |= env->PSW_USB_AV;
441 if (ovf < 0) {
442 env->PSW_USB_V = (1 << 31);
443 env->PSW_USB_SV = (1 << 31);
444 /* ext_ret > MAX_INT */
445 if ((int64_t)r1 >= 0) {
446 result = INT64_MAX;
447 /* ext_ret < MIN_INT */
448 } else {
449 result = INT64_MIN;
450 }
451 } else {
452 env->PSW_USB_V = 0;
453 }
454 return result;
455 }
456
457 target_ulong helper_sub_h_ssov(CPUTriCoreState *env, target_ulong r1,
458 target_ulong r2)
459 {
460 int32_t ret_hw0, ret_hw1;
461
462 ret_hw0 = sextract32(r1, 0, 16) - sextract32(r2, 0, 16);
463 ret_hw1 = sextract32(r1, 16, 16) - sextract32(r2, 16, 16);
464 return ssov16(env, ret_hw0, ret_hw1);
465 }
466
467 uint32_t helper_subr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
468 uint32_t r2_h)
469 {
470 int64_t mul_res0 = sextract64(r1, 0, 32);
471 int64_t mul_res1 = sextract64(r1, 32, 32);
472 int64_t r2_low = sextract64(r2_l, 0, 32);
473 int64_t r2_high = sextract64(r2_h, 0, 32);
474 int64_t result0, result1;
475 uint32_t ovf0, ovf1;
476 uint32_t avf0, avf1;
477
478 ovf0 = ovf1 = 0;
479
480 result0 = r2_low - mul_res0 + 0x8000;
481 result1 = r2_high - mul_res1 + 0x8000;
482
483 avf0 = result0 * 2u;
484 avf0 = result0 ^ avf0;
485 avf1 = result1 * 2u;
486 avf1 = result1 ^ avf1;
487
488 if (result0 > INT32_MAX) {
489 ovf0 = (1 << 31);
490 result0 = INT32_MAX;
491 } else if (result0 < INT32_MIN) {
492 ovf0 = (1 << 31);
493 result0 = INT32_MIN;
494 }
495
496 if (result1 > INT32_MAX) {
497 ovf1 = (1 << 31);
498 result1 = INT32_MAX;
499 } else if (result1 < INT32_MIN) {
500 ovf1 = (1 << 31);
501 result1 = INT32_MIN;
502 }
503
504 env->PSW_USB_V = ovf0 | ovf1;
505 env->PSW_USB_SV |= env->PSW_USB_V;
506
507 env->PSW_USB_AV = avf0 | avf1;
508 env->PSW_USB_SAV |= env->PSW_USB_AV;
509
510 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
511 }
512
513 uint32_t helper_subadr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
514 uint32_t r2_h)
515 {
516 int64_t mul_res0 = sextract64(r1, 0, 32);
517 int64_t mul_res1 = sextract64(r1, 32, 32);
518 int64_t r2_low = sextract64(r2_l, 0, 32);
519 int64_t r2_high = sextract64(r2_h, 0, 32);
520 int64_t result0, result1;
521 uint32_t ovf0, ovf1;
522 uint32_t avf0, avf1;
523
524 ovf0 = ovf1 = 0;
525
526 result0 = r2_low + mul_res0 + 0x8000;
527 result1 = r2_high - mul_res1 + 0x8000;
528
529 avf0 = result0 * 2u;
530 avf0 = result0 ^ avf0;
531 avf1 = result1 * 2u;
532 avf1 = result1 ^ avf1;
533
534 if (result0 > INT32_MAX) {
535 ovf0 = (1 << 31);
536 result0 = INT32_MAX;
537 } else if (result0 < INT32_MIN) {
538 ovf0 = (1 << 31);
539 result0 = INT32_MIN;
540 }
541
542 if (result1 > INT32_MAX) {
543 ovf1 = (1 << 31);
544 result1 = INT32_MAX;
545 } else if (result1 < INT32_MIN) {
546 ovf1 = (1 << 31);
547 result1 = INT32_MIN;
548 }
549
550 env->PSW_USB_V = ovf0 | ovf1;
551 env->PSW_USB_SV |= env->PSW_USB_V;
552
553 env->PSW_USB_AV = avf0 | avf1;
554 env->PSW_USB_SAV |= env->PSW_USB_AV;
555
556 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
557 }
558
559 target_ulong helper_sub_suov(CPUTriCoreState *env, target_ulong r1,
560 target_ulong r2)
561 {
562 int64_t t1 = extract64(r1, 0, 32);
563 int64_t t2 = extract64(r2, 0, 32);
564 int64_t result = t1 - t2;
565 return suov32_neg(env, result);
566 }
567
568 target_ulong helper_sub_h_suov(CPUTriCoreState *env, target_ulong r1,
569 target_ulong r2)
570 {
571 int32_t ret_hw0, ret_hw1;
572
573 ret_hw0 = extract32(r1, 0, 16) - extract32(r2, 0, 16);
574 ret_hw1 = extract32(r1, 16, 16) - extract32(r2, 16, 16);
575 return suov16(env, ret_hw0, ret_hw1);
576 }
577
578 target_ulong helper_mul_ssov(CPUTriCoreState *env, target_ulong r1,
579 target_ulong r2)
580 {
581 int64_t t1 = sextract64(r1, 0, 32);
582 int64_t t2 = sextract64(r2, 0, 32);
583 int64_t result = t1 * t2;
584 return ssov32(env, result);
585 }
586
587 target_ulong helper_mul_suov(CPUTriCoreState *env, target_ulong r1,
588 target_ulong r2)
589 {
590 int64_t t1 = extract64(r1, 0, 32);
591 int64_t t2 = extract64(r2, 0, 32);
592 int64_t result = t1 * t2;
593
594 return suov32_pos(env, result);
595 }
596
597 target_ulong helper_sha_ssov(CPUTriCoreState *env, target_ulong r1,
598 target_ulong r2)
599 {
600 int64_t t1 = sextract64(r1, 0, 32);
601 int32_t t2 = sextract64(r2, 0, 6);
602 int64_t result;
603 if (t2 == 0) {
604 result = t1;
605 } else if (t2 > 0) {
606 result = t1 << t2;
607 } else {
608 result = t1 >> -t2;
609 }
610 return ssov32(env, result);
611 }
612
613 uint32_t helper_abs_ssov(CPUTriCoreState *env, target_ulong r1)
614 {
615 target_ulong result;
616 result = ((int32_t)r1 >= 0) ? r1 : (0 - r1);
617 return ssov32(env, result);
618 }
619
620 uint32_t helper_abs_h_ssov(CPUTriCoreState *env, target_ulong r1)
621 {
622 int32_t ret_h0, ret_h1;
623
624 ret_h0 = sextract32(r1, 0, 16);
625 ret_h0 = (ret_h0 >= 0) ? ret_h0 : (0 - ret_h0);
626
627 ret_h1 = sextract32(r1, 16, 16);
628 ret_h1 = (ret_h1 >= 0) ? ret_h1 : (0 - ret_h1);
629
630 return ssov16(env, ret_h0, ret_h1);
631 }
632
633 target_ulong helper_absdif_ssov(CPUTriCoreState *env, target_ulong r1,
634 target_ulong r2)
635 {
636 int64_t t1 = sextract64(r1, 0, 32);
637 int64_t t2 = sextract64(r2, 0, 32);
638 int64_t result;
639
640 if (t1 > t2) {
641 result = t1 - t2;
642 } else {
643 result = t2 - t1;
644 }
645 return ssov32(env, result);
646 }
647
648 uint32_t helper_absdif_h_ssov(CPUTriCoreState *env, target_ulong r1,
649 target_ulong r2)
650 {
651 int32_t t1, t2;
652 int32_t ret_h0, ret_h1;
653
654 t1 = sextract32(r1, 0, 16);
655 t2 = sextract32(r2, 0, 16);
656 if (t1 > t2) {
657 ret_h0 = t1 - t2;
658 } else {
659 ret_h0 = t2 - t1;
660 }
661
662 t1 = sextract32(r1, 16, 16);
663 t2 = sextract32(r2, 16, 16);
664 if (t1 > t2) {
665 ret_h1 = t1 - t2;
666 } else {
667 ret_h1 = t2 - t1;
668 }
669
670 return ssov16(env, ret_h0, ret_h1);
671 }
672
673 target_ulong helper_madd32_ssov(CPUTriCoreState *env, target_ulong r1,
674 target_ulong r2, target_ulong r3)
675 {
676 int64_t t1 = sextract64(r1, 0, 32);
677 int64_t t2 = sextract64(r2, 0, 32);
678 int64_t t3 = sextract64(r3, 0, 32);
679 int64_t result;
680
681 result = t2 + (t1 * t3);
682 return ssov32(env, result);
683 }
684
685 target_ulong helper_madd32_suov(CPUTriCoreState *env, target_ulong r1,
686 target_ulong r2, target_ulong r3)
687 {
688 uint64_t t1 = extract64(r1, 0, 32);
689 uint64_t t2 = extract64(r2, 0, 32);
690 uint64_t t3 = extract64(r3, 0, 32);
691 int64_t result;
692
693 result = t2 + (t1 * t3);
694 return suov32_pos(env, result);
695 }
696
697 uint64_t helper_madd64_ssov(CPUTriCoreState *env, target_ulong r1,
698 uint64_t r2, target_ulong r3)
699 {
700 uint64_t ret, ovf;
701 int64_t t1 = sextract64(r1, 0, 32);
702 int64_t t3 = sextract64(r3, 0, 32);
703 int64_t mul;
704
705 mul = t1 * t3;
706 ret = mul + r2;
707 ovf = (ret ^ mul) & ~(mul ^ r2);
708
709 t1 = ret >> 32;
710 env->PSW_USB_AV = t1 ^ t1 * 2u;
711 env->PSW_USB_SAV |= env->PSW_USB_AV;
712
713 if ((int64_t)ovf < 0) {
714 env->PSW_USB_V = (1 << 31);
715 env->PSW_USB_SV = (1 << 31);
716 /* ext_ret > MAX_INT */
717 if (mul >= 0) {
718 ret = INT64_MAX;
719 /* ext_ret < MIN_INT */
720 } else {
721 ret = INT64_MIN;
722 }
723 } else {
724 env->PSW_USB_V = 0;
725 }
726
727 return ret;
728 }
729
730 uint32_t
731 helper_madd32_q_add_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
732 {
733 int64_t result;
734
735 result = (r1 + r2);
736
737 env->PSW_USB_AV = (result ^ result * 2u);
738 env->PSW_USB_SAV |= env->PSW_USB_AV;
739
740 /* we do the saturation by hand, since we produce an overflow on the host
741 if the mul before was (0x80000000 * 0x80000000) << 1). If this is the
742 case, we flip the saturated value. */
743 if (r2 == 0x8000000000000000LL) {
744 if (result > 0x7fffffffLL) {
745 env->PSW_USB_V = (1 << 31);
746 env->PSW_USB_SV = (1 << 31);
747 result = INT32_MIN;
748 } else if (result < -0x80000000LL) {
749 env->PSW_USB_V = (1 << 31);
750 env->PSW_USB_SV = (1 << 31);
751 result = INT32_MAX;
752 } else {
753 env->PSW_USB_V = 0;
754 }
755 } else {
756 if (result > 0x7fffffffLL) {
757 env->PSW_USB_V = (1 << 31);
758 env->PSW_USB_SV = (1 << 31);
759 result = INT32_MAX;
760 } else if (result < -0x80000000LL) {
761 env->PSW_USB_V = (1 << 31);
762 env->PSW_USB_SV = (1 << 31);
763 result = INT32_MIN;
764 } else {
765 env->PSW_USB_V = 0;
766 }
767 }
768 return (uint32_t)result;
769 }
770
771 uint64_t helper_madd64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2,
772 uint32_t r3, uint32_t n)
773 {
774 int64_t t1 = (int64_t)r1;
775 int64_t t2 = sextract64(r2, 0, 32);
776 int64_t t3 = sextract64(r3, 0, 32);
777 int64_t result, mul;
778 int64_t ovf;
779
780 mul = (t2 * t3) << n;
781 result = mul + t1;
782
783 env->PSW_USB_AV = (result ^ result * 2u) >> 32;
784 env->PSW_USB_SAV |= env->PSW_USB_AV;
785
786 ovf = (result ^ mul) & ~(mul ^ t1);
787 /* we do the saturation by hand, since we produce an overflow on the host
788 if the mul was (0x80000000 * 0x80000000) << 1). If this is the
789 case, we flip the saturated value. */
790 if ((r2 == 0x80000000) && (r3 == 0x80000000) && (n == 1)) {
791 if (ovf >= 0) {
792 env->PSW_USB_V = (1 << 31);
793 env->PSW_USB_SV = (1 << 31);
794 /* ext_ret > MAX_INT */
795 if (mul < 0) {
796 result = INT64_MAX;
797 /* ext_ret < MIN_INT */
798 } else {
799 result = INT64_MIN;
800 }
801 } else {
802 env->PSW_USB_V = 0;
803 }
804 } else {
805 if (ovf < 0) {
806 env->PSW_USB_V = (1 << 31);
807 env->PSW_USB_SV = (1 << 31);
808 /* ext_ret > MAX_INT */
809 if (mul >= 0) {
810 result = INT64_MAX;
811 /* ext_ret < MIN_INT */
812 } else {
813 result = INT64_MIN;
814 }
815 } else {
816 env->PSW_USB_V = 0;
817 }
818 }
819 return (uint64_t)result;
820 }
821
822 uint32_t helper_maddr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
823 uint32_t r3, uint32_t n)
824 {
825 int64_t t1 = sextract64(r1, 0, 32);
826 int64_t t2 = sextract64(r2, 0, 32);
827 int64_t t3 = sextract64(r3, 0, 32);
828 int64_t mul, ret;
829
830 if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
831 mul = 0x7fffffff;
832 } else {
833 mul = (t2 * t3) << n;
834 }
835
836 ret = t1 + mul + 0x8000;
837
838 env->PSW_USB_AV = ret ^ ret * 2u;
839 env->PSW_USB_SAV |= env->PSW_USB_AV;
840
841 if (ret > 0x7fffffffll) {
842 env->PSW_USB_V = (1 << 31);
843 env->PSW_USB_SV |= env->PSW_USB_V;
844 ret = INT32_MAX;
845 } else if (ret < -0x80000000ll) {
846 env->PSW_USB_V = (1 << 31);
847 env->PSW_USB_SV |= env->PSW_USB_V;
848 ret = INT32_MIN;
849 } else {
850 env->PSW_USB_V = 0;
851 }
852 return ret & 0xffff0000ll;
853 }
854
855 uint64_t helper_madd64_suov(CPUTriCoreState *env, target_ulong r1,
856 uint64_t r2, target_ulong r3)
857 {
858 uint64_t ret, mul;
859 uint64_t t1 = extract64(r1, 0, 32);
860 uint64_t t3 = extract64(r3, 0, 32);
861
862 mul = t1 * t3;
863 ret = mul + r2;
864
865 t1 = ret >> 32;
866 env->PSW_USB_AV = t1 ^ t1 * 2u;
867 env->PSW_USB_SAV |= env->PSW_USB_AV;
868
869 if (ret < r2) {
870 env->PSW_USB_V = (1 << 31);
871 env->PSW_USB_SV = (1 << 31);
872 /* saturate */
873 ret = UINT64_MAX;
874 } else {
875 env->PSW_USB_V = 0;
876 }
877 return ret;
878 }
879
880 target_ulong helper_msub32_ssov(CPUTriCoreState *env, target_ulong r1,
881 target_ulong r2, target_ulong r3)
882 {
883 int64_t t1 = sextract64(r1, 0, 32);
884 int64_t t2 = sextract64(r2, 0, 32);
885 int64_t t3 = sextract64(r3, 0, 32);
886 int64_t result;
887
888 result = t2 - (t1 * t3);
889 return ssov32(env, result);
890 }
891
892 target_ulong helper_msub32_suov(CPUTriCoreState *env, target_ulong r1,
893 target_ulong r2, target_ulong r3)
894 {
895 uint64_t t1 = extract64(r1, 0, 32);
896 uint64_t t2 = extract64(r2, 0, 32);
897 uint64_t t3 = extract64(r3, 0, 32);
898 uint64_t result;
899 uint64_t mul;
900
901 mul = (t1 * t3);
902 result = t2 - mul;
903
904 env->PSW_USB_AV = result ^ result * 2u;
905 env->PSW_USB_SAV |= env->PSW_USB_AV;
906 /* we calculate ovf by hand here, because the multiplication can overflow on
907 the host, which would give false results if we compare to less than
908 zero */
909 if (mul > t2) {
910 env->PSW_USB_V = (1 << 31);
911 env->PSW_USB_SV = (1 << 31);
912 result = 0;
913 } else {
914 env->PSW_USB_V = 0;
915 }
916 return result;
917 }
918
919 uint64_t helper_msub64_ssov(CPUTriCoreState *env, target_ulong r1,
920 uint64_t r2, target_ulong r3)
921 {
922 uint64_t ret, ovf;
923 int64_t t1 = sextract64(r1, 0, 32);
924 int64_t t3 = sextract64(r3, 0, 32);
925 int64_t mul;
926
927 mul = t1 * t3;
928 ret = r2 - mul;
929 ovf = (ret ^ r2) & (mul ^ r2);
930
931 t1 = ret >> 32;
932 env->PSW_USB_AV = t1 ^ t1 * 2u;
933 env->PSW_USB_SAV |= env->PSW_USB_AV;
934
935 if ((int64_t)ovf < 0) {
936 env->PSW_USB_V = (1 << 31);
937 env->PSW_USB_SV = (1 << 31);
938 /* ext_ret > MAX_INT */
939 if (mul < 0) {
940 ret = INT64_MAX;
941 /* ext_ret < MIN_INT */
942 } else {
943 ret = INT64_MIN;
944 }
945 } else {
946 env->PSW_USB_V = 0;
947 }
948 return ret;
949 }
950
951 uint64_t helper_msub64_suov(CPUTriCoreState *env, target_ulong r1,
952 uint64_t r2, target_ulong r3)
953 {
954 uint64_t ret, mul;
955 uint64_t t1 = extract64(r1, 0, 32);
956 uint64_t t3 = extract64(r3, 0, 32);
957
958 mul = t1 * t3;
959 ret = r2 - mul;
960
961 t1 = ret >> 32;
962 env->PSW_USB_AV = t1 ^ t1 * 2u;
963 env->PSW_USB_SAV |= env->PSW_USB_AV;
964
965 if (ret > r2) {
966 env->PSW_USB_V = (1 << 31);
967 env->PSW_USB_SV = (1 << 31);
968 /* saturate */
969 ret = 0;
970 } else {
971 env->PSW_USB_V = 0;
972 }
973 return ret;
974 }
975
976 uint32_t
977 helper_msub32_q_sub_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2)
978 {
979 int64_t result;
980 int64_t t1 = (int64_t)r1;
981 int64_t t2 = (int64_t)r2;
982
983 result = t1 - t2;
984
985 env->PSW_USB_AV = (result ^ result * 2u);
986 env->PSW_USB_SAV |= env->PSW_USB_AV;
987
988 /* we do the saturation by hand, since we produce an overflow on the host
989 if the mul before was (0x80000000 * 0x80000000) << 1). If this is the
990 case, we flip the saturated value. */
991 if (r2 == 0x8000000000000000LL) {
992 if (result > 0x7fffffffLL) {
993 env->PSW_USB_V = (1 << 31);
994 env->PSW_USB_SV = (1 << 31);
995 result = INT32_MIN;
996 } else if (result < -0x80000000LL) {
997 env->PSW_USB_V = (1 << 31);
998 env->PSW_USB_SV = (1 << 31);
999 result = INT32_MAX;
1000 } else {
1001 env->PSW_USB_V = 0;
1002 }
1003 } else {
1004 if (result > 0x7fffffffLL) {
1005 env->PSW_USB_V = (1 << 31);
1006 env->PSW_USB_SV = (1 << 31);
1007 result = INT32_MAX;
1008 } else if (result < -0x80000000LL) {
1009 env->PSW_USB_V = (1 << 31);
1010 env->PSW_USB_SV = (1 << 31);
1011 result = INT32_MIN;
1012 } else {
1013 env->PSW_USB_V = 0;
1014 }
1015 }
1016 return (uint32_t)result;
1017 }
1018
1019 uint64_t helper_msub64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2,
1020 uint32_t r3, uint32_t n)
1021 {
1022 int64_t t1 = (int64_t)r1;
1023 int64_t t2 = sextract64(r2, 0, 32);
1024 int64_t t3 = sextract64(r3, 0, 32);
1025 int64_t result, mul;
1026 int64_t ovf;
1027
1028 mul = (t2 * t3) << n;
1029 result = t1 - mul;
1030
1031 env->PSW_USB_AV = (result ^ result * 2u) >> 32;
1032 env->PSW_USB_SAV |= env->PSW_USB_AV;
1033
1034 ovf = (result ^ t1) & (t1 ^ mul);
1035 /* we do the saturation by hand, since we produce an overflow on the host
1036 if the mul before was (0x80000000 * 0x80000000) << 1). If this is the
1037 case, we flip the saturated value. */
1038 if (mul == 0x8000000000000000LL) {
1039 if (ovf >= 0) {
1040 env->PSW_USB_V = (1 << 31);
1041 env->PSW_USB_SV = (1 << 31);
1042 /* ext_ret > MAX_INT */
1043 if (mul >= 0) {
1044 result = INT64_MAX;
1045 /* ext_ret < MIN_INT */
1046 } else {
1047 result = INT64_MIN;
1048 }
1049 } else {
1050 env->PSW_USB_V = 0;
1051 }
1052 } else {
1053 if (ovf < 0) {
1054 env->PSW_USB_V = (1 << 31);
1055 env->PSW_USB_SV = (1 << 31);
1056 /* ext_ret > MAX_INT */
1057 if (mul < 0) {
1058 result = INT64_MAX;
1059 /* ext_ret < MIN_INT */
1060 } else {
1061 result = INT64_MIN;
1062 }
1063 } else {
1064 env->PSW_USB_V = 0;
1065 }
1066 }
1067
1068 return (uint64_t)result;
1069 }
1070
1071 uint32_t helper_msubr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
1072 uint32_t r3, uint32_t n)
1073 {
1074 int64_t t1 = sextract64(r1, 0, 32);
1075 int64_t t2 = sextract64(r2, 0, 32);
1076 int64_t t3 = sextract64(r3, 0, 32);
1077 int64_t mul, ret;
1078
1079 if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
1080 mul = 0x7fffffff;
1081 } else {
1082 mul = (t2 * t3) << n;
1083 }
1084
1085 ret = t1 - mul + 0x8000;
1086
1087 env->PSW_USB_AV = ret ^ ret * 2u;
1088 env->PSW_USB_SAV |= env->PSW_USB_AV;
1089
1090 if (ret > 0x7fffffffll) {
1091 env->PSW_USB_V = (1 << 31);
1092 env->PSW_USB_SV |= env->PSW_USB_V;
1093 ret = INT32_MAX;
1094 } else if (ret < -0x80000000ll) {
1095 env->PSW_USB_V = (1 << 31);
1096 env->PSW_USB_SV |= env->PSW_USB_V;
1097 ret = INT32_MIN;
1098 } else {
1099 env->PSW_USB_V = 0;
1100 }
1101 return ret & 0xffff0000ll;
1102 }
1103
1104 uint32_t helper_abs_b(CPUTriCoreState *env, target_ulong arg)
1105 {
1106 int32_t b, i;
1107 int32_t ovf = 0;
1108 int32_t avf = 0;
1109 int32_t ret = 0;
1110
1111 for (i = 0; i < 4; i++) {
1112 b = sextract32(arg, i * 8, 8);
1113 b = (b >= 0) ? b : (0 - b);
1114 ovf |= (b > 0x7F) || (b < -0x80);
1115 avf |= b ^ b * 2u;
1116 ret |= (b & 0xff) << (i * 8);
1117 }
1118
1119 env->PSW_USB_V = ovf << 31;
1120 env->PSW_USB_SV |= env->PSW_USB_V;
1121 env->PSW_USB_AV = avf << 24;
1122 env->PSW_USB_SAV |= env->PSW_USB_AV;
1123
1124 return ret;
1125 }
1126
1127 uint32_t helper_abs_h(CPUTriCoreState *env, target_ulong arg)
1128 {
1129 int32_t h, i;
1130 int32_t ovf = 0;
1131 int32_t avf = 0;
1132 int32_t ret = 0;
1133
1134 for (i = 0; i < 2; i++) {
1135 h = sextract32(arg, i * 16, 16);
1136 h = (h >= 0) ? h : (0 - h);
1137 ovf |= (h > 0x7FFF) || (h < -0x8000);
1138 avf |= h ^ h * 2u;
1139 ret |= (h & 0xffff) << (i * 16);
1140 }
1141
1142 env->PSW_USB_V = ovf << 31;
1143 env->PSW_USB_SV |= env->PSW_USB_V;
1144 env->PSW_USB_AV = avf << 16;
1145 env->PSW_USB_SAV |= env->PSW_USB_AV;
1146
1147 return ret;
1148 }
1149
1150 uint32_t helper_absdif_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1151 {
1152 int32_t b, i;
1153 int32_t extr_r2;
1154 int32_t ovf = 0;
1155 int32_t avf = 0;
1156 int32_t ret = 0;
1157
1158 for (i = 0; i < 4; i++) {
1159 extr_r2 = sextract32(r2, i * 8, 8);
1160 b = sextract32(r1, i * 8, 8);
1161 b = (b > extr_r2) ? (b - extr_r2) : (extr_r2 - b);
1162 ovf |= (b > 0x7F) || (b < -0x80);
1163 avf |= b ^ b * 2u;
1164 ret |= (b & 0xff) << (i * 8);
1165 }
1166
1167 env->PSW_USB_V = ovf << 31;
1168 env->PSW_USB_SV |= env->PSW_USB_V;
1169 env->PSW_USB_AV = avf << 24;
1170 env->PSW_USB_SAV |= env->PSW_USB_AV;
1171 return ret;
1172 }
1173
1174 uint32_t helper_absdif_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1175 {
1176 int32_t h, i;
1177 int32_t extr_r2;
1178 int32_t ovf = 0;
1179 int32_t avf = 0;
1180 int32_t ret = 0;
1181
1182 for (i = 0; i < 2; i++) {
1183 extr_r2 = sextract32(r2, i * 16, 16);
1184 h = sextract32(r1, i * 16, 16);
1185 h = (h > extr_r2) ? (h - extr_r2) : (extr_r2 - h);
1186 ovf |= (h > 0x7FFF) || (h < -0x8000);
1187 avf |= h ^ h * 2u;
1188 ret |= (h & 0xffff) << (i * 16);
1189 }
1190
1191 env->PSW_USB_V = ovf << 31;
1192 env->PSW_USB_SV |= env->PSW_USB_V;
1193 env->PSW_USB_AV = avf << 16;
1194 env->PSW_USB_SAV |= env->PSW_USB_AV;
1195
1196 return ret;
1197 }
1198
1199 uint32_t helper_addr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
1200 uint32_t r2_h)
1201 {
1202 int64_t mul_res0 = sextract64(r1, 0, 32);
1203 int64_t mul_res1 = sextract64(r1, 32, 32);
1204 int64_t r2_low = sextract64(r2_l, 0, 32);
1205 int64_t r2_high = sextract64(r2_h, 0, 32);
1206 int64_t result0, result1;
1207 uint32_t ovf0, ovf1;
1208 uint32_t avf0, avf1;
1209
1210 ovf0 = ovf1 = 0;
1211
1212 result0 = r2_low + mul_res0 + 0x8000;
1213 result1 = r2_high + mul_res1 + 0x8000;
1214
1215 if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
1216 ovf0 = (1 << 31);
1217 }
1218
1219 if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
1220 ovf1 = (1 << 31);
1221 }
1222
1223 env->PSW_USB_V = ovf0 | ovf1;
1224 env->PSW_USB_SV |= env->PSW_USB_V;
1225
1226 avf0 = result0 * 2u;
1227 avf0 = result0 ^ avf0;
1228 avf1 = result1 * 2u;
1229 avf1 = result1 ^ avf1;
1230
1231 env->PSW_USB_AV = avf0 | avf1;
1232 env->PSW_USB_SAV |= env->PSW_USB_AV;
1233
1234 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
1235 }
1236
1237 uint32_t helper_addsur_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
1238 uint32_t r2_h)
1239 {
1240 int64_t mul_res0 = sextract64(r1, 0, 32);
1241 int64_t mul_res1 = sextract64(r1, 32, 32);
1242 int64_t r2_low = sextract64(r2_l, 0, 32);
1243 int64_t r2_high = sextract64(r2_h, 0, 32);
1244 int64_t result0, result1;
1245 uint32_t ovf0, ovf1;
1246 uint32_t avf0, avf1;
1247
1248 ovf0 = ovf1 = 0;
1249
1250 result0 = r2_low - mul_res0 + 0x8000;
1251 result1 = r2_high + mul_res1 + 0x8000;
1252
1253 if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
1254 ovf0 = (1 << 31);
1255 }
1256
1257 if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
1258 ovf1 = (1 << 31);
1259 }
1260
1261 env->PSW_USB_V = ovf0 | ovf1;
1262 env->PSW_USB_SV |= env->PSW_USB_V;
1263
1264 avf0 = result0 * 2u;
1265 avf0 = result0 ^ avf0;
1266 avf1 = result1 * 2u;
1267 avf1 = result1 ^ avf1;
1268
1269 env->PSW_USB_AV = avf0 | avf1;
1270 env->PSW_USB_SAV |= env->PSW_USB_AV;
1271
1272 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
1273 }
1274
1275 uint32_t helper_maddr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
1276 uint32_t r3, uint32_t n)
1277 {
1278 int64_t t1 = sextract64(r1, 0, 32);
1279 int64_t t2 = sextract64(r2, 0, 32);
1280 int64_t t3 = sextract64(r3, 0, 32);
1281 int64_t mul, ret;
1282
1283 if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
1284 mul = 0x7fffffff;
1285 } else {
1286 mul = (t2 * t3) << n;
1287 }
1288
1289 ret = t1 + mul + 0x8000;
1290
1291 if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) {
1292 env->PSW_USB_V = (1 << 31);
1293 env->PSW_USB_SV |= env->PSW_USB_V;
1294 } else {
1295 env->PSW_USB_V = 0;
1296 }
1297 env->PSW_USB_AV = ret ^ ret * 2u;
1298 env->PSW_USB_SAV |= env->PSW_USB_AV;
1299
1300 return ret & 0xffff0000ll;
1301 }
1302
1303 uint32_t helper_add_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1304 {
1305 int32_t b, i;
1306 int32_t extr_r1, extr_r2;
1307 int32_t ovf = 0;
1308 int32_t avf = 0;
1309 uint32_t ret = 0;
1310
1311 for (i = 0; i < 4; i++) {
1312 extr_r1 = sextract32(r1, i * 8, 8);
1313 extr_r2 = sextract32(r2, i * 8, 8);
1314
1315 b = extr_r1 + extr_r2;
1316 ovf |= ((b > 0x7f) || (b < -0x80));
1317 avf |= b ^ b * 2u;
1318 ret |= ((b & 0xff) << (i*8));
1319 }
1320
1321 env->PSW_USB_V = (ovf << 31);
1322 env->PSW_USB_SV |= env->PSW_USB_V;
1323 env->PSW_USB_AV = avf << 24;
1324 env->PSW_USB_SAV |= env->PSW_USB_AV;
1325
1326 return ret;
1327 }
1328
1329 uint32_t helper_add_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1330 {
1331 int32_t h, i;
1332 int32_t extr_r1, extr_r2;
1333 int32_t ovf = 0;
1334 int32_t avf = 0;
1335 int32_t ret = 0;
1336
1337 for (i = 0; i < 2; i++) {
1338 extr_r1 = sextract32(r1, i * 16, 16);
1339 extr_r2 = sextract32(r2, i * 16, 16);
1340 h = extr_r1 + extr_r2;
1341 ovf |= ((h > 0x7fff) || (h < -0x8000));
1342 avf |= h ^ h * 2u;
1343 ret |= (h & 0xffff) << (i * 16);
1344 }
1345
1346 env->PSW_USB_V = (ovf << 31);
1347 env->PSW_USB_SV |= env->PSW_USB_V;
1348 env->PSW_USB_AV = (avf << 16);
1349 env->PSW_USB_SAV |= env->PSW_USB_AV;
1350
1351 return ret;
1352 }
1353
1354 uint32_t helper_subr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
1355 uint32_t r2_h)
1356 {
1357 int64_t mul_res0 = sextract64(r1, 0, 32);
1358 int64_t mul_res1 = sextract64(r1, 32, 32);
1359 int64_t r2_low = sextract64(r2_l, 0, 32);
1360 int64_t r2_high = sextract64(r2_h, 0, 32);
1361 int64_t result0, result1;
1362 uint32_t ovf0, ovf1;
1363 uint32_t avf0, avf1;
1364
1365 ovf0 = ovf1 = 0;
1366
1367 result0 = r2_low - mul_res0 + 0x8000;
1368 result1 = r2_high - mul_res1 + 0x8000;
1369
1370 if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
1371 ovf0 = (1 << 31);
1372 }
1373
1374 if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
1375 ovf1 = (1 << 31);
1376 }
1377
1378 env->PSW_USB_V = ovf0 | ovf1;
1379 env->PSW_USB_SV |= env->PSW_USB_V;
1380
1381 avf0 = result0 * 2u;
1382 avf0 = result0 ^ avf0;
1383 avf1 = result1 * 2u;
1384 avf1 = result1 ^ avf1;
1385
1386 env->PSW_USB_AV = avf0 | avf1;
1387 env->PSW_USB_SAV |= env->PSW_USB_AV;
1388
1389 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
1390 }
1391
1392 uint32_t helper_subadr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l,
1393 uint32_t r2_h)
1394 {
1395 int64_t mul_res0 = sextract64(r1, 0, 32);
1396 int64_t mul_res1 = sextract64(r1, 32, 32);
1397 int64_t r2_low = sextract64(r2_l, 0, 32);
1398 int64_t r2_high = sextract64(r2_h, 0, 32);
1399 int64_t result0, result1;
1400 uint32_t ovf0, ovf1;
1401 uint32_t avf0, avf1;
1402
1403 ovf0 = ovf1 = 0;
1404
1405 result0 = r2_low + mul_res0 + 0x8000;
1406 result1 = r2_high - mul_res1 + 0x8000;
1407
1408 if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) {
1409 ovf0 = (1 << 31);
1410 }
1411
1412 if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) {
1413 ovf1 = (1 << 31);
1414 }
1415
1416 env->PSW_USB_V = ovf0 | ovf1;
1417 env->PSW_USB_SV |= env->PSW_USB_V;
1418
1419 avf0 = result0 * 2u;
1420 avf0 = result0 ^ avf0;
1421 avf1 = result1 * 2u;
1422 avf1 = result1 ^ avf1;
1423
1424 env->PSW_USB_AV = avf0 | avf1;
1425 env->PSW_USB_SAV |= env->PSW_USB_AV;
1426
1427 return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL);
1428 }
1429
1430 uint32_t helper_msubr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2,
1431 uint32_t r3, uint32_t n)
1432 {
1433 int64_t t1 = sextract64(r1, 0, 32);
1434 int64_t t2 = sextract64(r2, 0, 32);
1435 int64_t t3 = sextract64(r3, 0, 32);
1436 int64_t mul, ret;
1437
1438 if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) {
1439 mul = 0x7fffffff;
1440 } else {
1441 mul = (t2 * t3) << n;
1442 }
1443
1444 ret = t1 - mul + 0x8000;
1445
1446 if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) {
1447 env->PSW_USB_V = (1 << 31);
1448 env->PSW_USB_SV |= env->PSW_USB_V;
1449 } else {
1450 env->PSW_USB_V = 0;
1451 }
1452 env->PSW_USB_AV = ret ^ ret * 2u;
1453 env->PSW_USB_SAV |= env->PSW_USB_AV;
1454
1455 return ret & 0xffff0000ll;
1456 }
1457
1458 uint32_t helper_sub_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1459 {
1460 int32_t b, i;
1461 int32_t extr_r1, extr_r2;
1462 int32_t ovf = 0;
1463 int32_t avf = 0;
1464 uint32_t ret = 0;
1465
1466 for (i = 0; i < 4; i++) {
1467 extr_r1 = sextract32(r1, i * 8, 8);
1468 extr_r2 = sextract32(r2, i * 8, 8);
1469
1470 b = extr_r1 - extr_r2;
1471 ovf |= ((b > 0x7f) || (b < -0x80));
1472 avf |= b ^ b * 2u;
1473 ret |= ((b & 0xff) << (i*8));
1474 }
1475
1476 env->PSW_USB_V = (ovf << 31);
1477 env->PSW_USB_SV |= env->PSW_USB_V;
1478 env->PSW_USB_AV = avf << 24;
1479 env->PSW_USB_SAV |= env->PSW_USB_AV;
1480
1481 return ret;
1482 }
1483
1484 uint32_t helper_sub_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1485 {
1486 int32_t h, i;
1487 int32_t extr_r1, extr_r2;
1488 int32_t ovf = 0;
1489 int32_t avf = 0;
1490 int32_t ret = 0;
1491
1492 for (i = 0; i < 2; i++) {
1493 extr_r1 = sextract32(r1, i * 16, 16);
1494 extr_r2 = sextract32(r2, i * 16, 16);
1495 h = extr_r1 - extr_r2;
1496 ovf |= ((h > 0x7fff) || (h < -0x8000));
1497 avf |= h ^ h * 2u;
1498 ret |= (h & 0xffff) << (i * 16);
1499 }
1500
1501 env->PSW_USB_V = (ovf << 31);
1502 env->PSW_USB_SV |= env->PSW_USB_V;
1503 env->PSW_USB_AV = avf << 16;
1504 env->PSW_USB_SAV |= env->PSW_USB_AV;
1505
1506 return ret;
1507 }
1508
1509 uint32_t helper_eq_b(target_ulong r1, target_ulong r2)
1510 {
1511 int32_t ret;
1512 int32_t i, msk;
1513
1514 ret = 0;
1515 msk = 0xff;
1516 for (i = 0; i < 4; i++) {
1517 if ((r1 & msk) == (r2 & msk)) {
1518 ret |= msk;
1519 }
1520 msk = msk << 8;
1521 }
1522
1523 return ret;
1524 }
1525
1526 uint32_t helper_eq_h(target_ulong r1, target_ulong r2)
1527 {
1528 int32_t ret = 0;
1529
1530 if ((r1 & 0xffff) == (r2 & 0xffff)) {
1531 ret = 0xffff;
1532 }
1533
1534 if ((r1 & 0xffff0000) == (r2 & 0xffff0000)) {
1535 ret |= 0xffff0000;
1536 }
1537
1538 return ret;
1539 }
1540
1541 uint32_t helper_eqany_b(target_ulong r1, target_ulong r2)
1542 {
1543 int32_t i;
1544 uint32_t ret = 0;
1545
1546 for (i = 0; i < 4; i++) {
1547 ret |= (sextract32(r1, i * 8, 8) == sextract32(r2, i * 8, 8));
1548 }
1549
1550 return ret;
1551 }
1552
1553 uint32_t helper_eqany_h(target_ulong r1, target_ulong r2)
1554 {
1555 uint32_t ret;
1556
1557 ret = (sextract32(r1, 0, 16) == sextract32(r2, 0, 16));
1558 ret |= (sextract32(r1, 16, 16) == sextract32(r2, 16, 16));
1559
1560 return ret;
1561 }
1562
1563 uint32_t helper_lt_b(target_ulong r1, target_ulong r2)
1564 {
1565 int32_t i;
1566 uint32_t ret = 0;
1567
1568 for (i = 0; i < 4; i++) {
1569 if (sextract32(r1, i * 8, 8) < sextract32(r2, i * 8, 8)) {
1570 ret |= (0xff << (i * 8));
1571 }
1572 }
1573
1574 return ret;
1575 }
1576
1577 uint32_t helper_lt_bu(target_ulong r1, target_ulong r2)
1578 {
1579 int32_t i;
1580 uint32_t ret = 0;
1581
1582 for (i = 0; i < 4; i++) {
1583 if (extract32(r1, i * 8, 8) < extract32(r2, i * 8, 8)) {
1584 ret |= (0xff << (i * 8));
1585 }
1586 }
1587
1588 return ret;
1589 }
1590
1591 uint32_t helper_lt_h(target_ulong r1, target_ulong r2)
1592 {
1593 uint32_t ret = 0;
1594
1595 if (sextract32(r1, 0, 16) < sextract32(r2, 0, 16)) {
1596 ret |= 0xffff;
1597 }
1598
1599 if (sextract32(r1, 16, 16) < sextract32(r2, 16, 16)) {
1600 ret |= 0xffff0000;
1601 }
1602
1603 return ret;
1604 }
1605
1606 uint32_t helper_lt_hu(target_ulong r1, target_ulong r2)
1607 {
1608 uint32_t ret = 0;
1609
1610 if (extract32(r1, 0, 16) < extract32(r2, 0, 16)) {
1611 ret |= 0xffff;
1612 }
1613
1614 if (extract32(r1, 16, 16) < extract32(r2, 16, 16)) {
1615 ret |= 0xffff0000;
1616 }
1617
1618 return ret;
1619 }
1620
1621 #define EXTREMA_H_B(name, op) \
1622 uint32_t helper_##name ##_b(target_ulong r1, target_ulong r2) \
1623 { \
1624 int32_t i, extr_r1, extr_r2; \
1625 uint32_t ret = 0; \
1626 \
1627 for (i = 0; i < 4; i++) { \
1628 extr_r1 = sextract32(r1, i * 8, 8); \
1629 extr_r2 = sextract32(r2, i * 8, 8); \
1630 extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1631 ret |= (extr_r1 & 0xff) << (i * 8); \
1632 } \
1633 return ret; \
1634 } \
1635 \
1636 uint32_t helper_##name ##_bu(target_ulong r1, target_ulong r2)\
1637 { \
1638 int32_t i; \
1639 uint32_t extr_r1, extr_r2; \
1640 uint32_t ret = 0; \
1641 \
1642 for (i = 0; i < 4; i++) { \
1643 extr_r1 = extract32(r1, i * 8, 8); \
1644 extr_r2 = extract32(r2, i * 8, 8); \
1645 extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1646 ret |= (extr_r1 & 0xff) << (i * 8); \
1647 } \
1648 return ret; \
1649 } \
1650 \
1651 uint32_t helper_##name ##_h(target_ulong r1, target_ulong r2) \
1652 { \
1653 int32_t extr_r1, extr_r2; \
1654 uint32_t ret = 0; \
1655 \
1656 extr_r1 = sextract32(r1, 0, 16); \
1657 extr_r2 = sextract32(r2, 0, 16); \
1658 ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1659 ret = ret & 0xffff; \
1660 \
1661 extr_r1 = sextract32(r1, 16, 16); \
1662 extr_r2 = sextract32(r2, 16, 16); \
1663 extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1664 ret |= extr_r1 << 16; \
1665 \
1666 return ret; \
1667 } \
1668 \
1669 uint32_t helper_##name ##_hu(target_ulong r1, target_ulong r2)\
1670 { \
1671 uint32_t extr_r1, extr_r2; \
1672 uint32_t ret = 0; \
1673 \
1674 extr_r1 = extract32(r1, 0, 16); \
1675 extr_r2 = extract32(r2, 0, 16); \
1676 ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1677 ret = ret & 0xffff; \
1678 \
1679 extr_r1 = extract32(r1, 16, 16); \
1680 extr_r2 = extract32(r2, 16, 16); \
1681 extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \
1682 ret |= extr_r1 << (16); \
1683 \
1684 return ret; \
1685 } \
1686 \
1687 uint64_t helper_ix##name(uint64_t r1, uint32_t r2) \
1688 { \
1689 int64_t r2l, r2h, r1hl; \
1690 uint64_t ret = 0; \
1691 \
1692 ret = ((r1 + 2) & 0xffff); \
1693 r2l = sextract64(r2, 0, 16); \
1694 r2h = sextract64(r2, 16, 16); \
1695 r1hl = sextract64(r1, 32, 16); \
1696 \
1697 if ((r2l op ## = r2h) && (r2l op r1hl)) { \
1698 ret |= (r2l & 0xffff) << 32; \
1699 ret |= extract64(r1, 0, 16) << 16; \
1700 } else if ((r2h op r2l) && (r2h op r1hl)) { \
1701 ret |= extract64(r2, 16, 16) << 32; \
1702 ret |= extract64(r1 + 1, 0, 16) << 16; \
1703 } else { \
1704 ret |= r1 & 0xffffffff0000ull; \
1705 } \
1706 return ret; \
1707 } \
1708 \
1709 uint64_t helper_ix##name ##_u(uint64_t r1, uint32_t r2) \
1710 { \
1711 int64_t r2l, r2h, r1hl; \
1712 uint64_t ret = 0; \
1713 \
1714 ret = ((r1 + 2) & 0xffff); \
1715 r2l = extract64(r2, 0, 16); \
1716 r2h = extract64(r2, 16, 16); \
1717 r1hl = extract64(r1, 32, 16); \
1718 \
1719 if ((r2l op ## = r2h) && (r2l op r1hl)) { \
1720 ret |= (r2l & 0xffff) << 32; \
1721 ret |= extract64(r1, 0, 16) << 16; \
1722 } else if ((r2h op r2l) && (r2h op r1hl)) { \
1723 ret |= extract64(r2, 16, 16) << 32; \
1724 ret |= extract64(r1 + 1, 0, 16) << 16; \
1725 } else { \
1726 ret |= r1 & 0xffffffff0000ull; \
1727 } \
1728 return ret; \
1729 }
1730
1731 EXTREMA_H_B(max, >)
1732 EXTREMA_H_B(min, <)
1733
1734 #undef EXTREMA_H_B
1735
1736 uint32_t helper_clo(target_ulong r1)
1737 {
1738 return clo32(r1);
1739 }
1740
1741 uint32_t helper_clo_h(target_ulong r1)
1742 {
1743 uint32_t ret_hw0 = extract32(r1, 0, 16);
1744 uint32_t ret_hw1 = extract32(r1, 16, 16);
1745
1746 ret_hw0 = clo32(ret_hw0 << 16);
1747 ret_hw1 = clo32(ret_hw1 << 16);
1748
1749 if (ret_hw0 > 16) {
1750 ret_hw0 = 16;
1751 }
1752 if (ret_hw1 > 16) {
1753 ret_hw1 = 16;
1754 }
1755
1756 return ret_hw0 | (ret_hw1 << 16);
1757 }
1758
1759 uint32_t helper_clz(target_ulong r1)
1760 {
1761 return clz32(r1);
1762 }
1763
1764 uint32_t helper_clz_h(target_ulong r1)
1765 {
1766 uint32_t ret_hw0 = extract32(r1, 0, 16);
1767 uint32_t ret_hw1 = extract32(r1, 16, 16);
1768
1769 ret_hw0 = clz32(ret_hw0 << 16);
1770 ret_hw1 = clz32(ret_hw1 << 16);
1771
1772 if (ret_hw0 > 16) {
1773 ret_hw0 = 16;
1774 }
1775 if (ret_hw1 > 16) {
1776 ret_hw1 = 16;
1777 }
1778
1779 return ret_hw0 | (ret_hw1 << 16);
1780 }
1781
1782 uint32_t helper_cls(target_ulong r1)
1783 {
1784 return clrsb32(r1);
1785 }
1786
1787 uint32_t helper_cls_h(target_ulong r1)
1788 {
1789 uint32_t ret_hw0 = extract32(r1, 0, 16);
1790 uint32_t ret_hw1 = extract32(r1, 16, 16);
1791
1792 ret_hw0 = clrsb32(ret_hw0 << 16);
1793 ret_hw1 = clrsb32(ret_hw1 << 16);
1794
1795 if (ret_hw0 > 15) {
1796 ret_hw0 = 15;
1797 }
1798 if (ret_hw1 > 15) {
1799 ret_hw1 = 15;
1800 }
1801
1802 return ret_hw0 | (ret_hw1 << 16);
1803 }
1804
1805 uint32_t helper_sh(target_ulong r1, target_ulong r2)
1806 {
1807 int32_t shift_count = sextract32(r2, 0, 6);
1808
1809 if (shift_count == -32) {
1810 return 0;
1811 } else if (shift_count < 0) {
1812 return r1 >> -shift_count;
1813 } else {
1814 return r1 << shift_count;
1815 }
1816 }
1817
1818 uint32_t helper_sh_h(target_ulong r1, target_ulong r2)
1819 {
1820 int32_t ret_hw0, ret_hw1;
1821 int32_t shift_count;
1822
1823 shift_count = sextract32(r2, 0, 5);
1824
1825 if (shift_count == -16) {
1826 return 0;
1827 } else if (shift_count < 0) {
1828 ret_hw0 = extract32(r1, 0, 16) >> -shift_count;
1829 ret_hw1 = extract32(r1, 16, 16) >> -shift_count;
1830 return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
1831 } else {
1832 ret_hw0 = extract32(r1, 0, 16) << shift_count;
1833 ret_hw1 = extract32(r1, 16, 16) << shift_count;
1834 return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
1835 }
1836 }
1837
1838 uint32_t helper_sha(CPUTriCoreState *env, target_ulong r1, target_ulong r2)
1839 {
1840 int32_t shift_count;
1841 int64_t result, t1;
1842 uint32_t ret;
1843
1844 shift_count = sextract32(r2, 0, 6);
1845 t1 = sextract32(r1, 0, 32);
1846
1847 if (shift_count == 0) {
1848 env->PSW_USB_C = env->PSW_USB_V = 0;
1849 ret = r1;
1850 } else if (shift_count == -32) {
1851 env->PSW_USB_C = r1;
1852 env->PSW_USB_V = 0;
1853 ret = t1 >> 31;
1854 } else if (shift_count > 0) {
1855 result = t1 << shift_count;
1856 /* calc carry */
1857 env->PSW_USB_C = ((result & 0xffffffff00000000ULL) != 0);
1858 /* calc v */
1859 env->PSW_USB_V = (((result > 0x7fffffffLL) ||
1860 (result < -0x80000000LL)) << 31);
1861 /* calc sv */
1862 env->PSW_USB_SV |= env->PSW_USB_V;
1863 ret = (uint32_t)result;
1864 } else {
1865 env->PSW_USB_V = 0;
1866 env->PSW_USB_C = (r1 & ((1 << -shift_count) - 1));
1867 ret = t1 >> -shift_count;
1868 }
1869
1870 env->PSW_USB_AV = ret ^ ret * 2u;
1871 env->PSW_USB_SAV |= env->PSW_USB_AV;
1872
1873 return ret;
1874 }
1875
1876 uint32_t helper_sha_h(target_ulong r1, target_ulong r2)
1877 {
1878 int32_t shift_count;
1879 int32_t ret_hw0, ret_hw1;
1880
1881 shift_count = sextract32(r2, 0, 5);
1882
1883 if (shift_count == 0) {
1884 return r1;
1885 } else if (shift_count < 0) {
1886 ret_hw0 = sextract32(r1, 0, 16) >> -shift_count;
1887 ret_hw1 = sextract32(r1, 16, 16) >> -shift_count;
1888 return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
1889 } else {
1890 ret_hw0 = sextract32(r1, 0, 16) << shift_count;
1891 ret_hw1 = sextract32(r1, 16, 16) << shift_count;
1892 return (ret_hw0 & 0xffff) | (ret_hw1 << 16);
1893 }
1894 }
1895
1896 uint32_t helper_bmerge(target_ulong r1, target_ulong r2)
1897 {
1898 uint32_t i, ret;
1899
1900 ret = 0;
1901 for (i = 0; i < 16; i++) {
1902 ret |= (r1 & 1) << (2 * i + 1);
1903 ret |= (r2 & 1) << (2 * i);
1904 r1 = r1 >> 1;
1905 r2 = r2 >> 1;
1906 }
1907 return ret;
1908 }
1909
1910 uint64_t helper_bsplit(uint32_t r1)
1911 {
1912 int32_t i;
1913 uint64_t ret;
1914
1915 ret = 0;
1916 for (i = 0; i < 32; i = i + 2) {
1917 /* even */
1918 ret |= (r1 & 1) << (i/2);
1919 r1 = r1 >> 1;
1920 /* odd */
1921 ret |= (uint64_t)(r1 & 1) << (i/2 + 32);
1922 r1 = r1 >> 1;
1923 }
1924 return ret;
1925 }
1926
1927 uint32_t helper_parity(target_ulong r1)
1928 {
1929 uint32_t ret;
1930 uint32_t nOnes, i;
1931
1932 ret = 0;
1933 nOnes = 0;
1934 for (i = 0; i < 8; i++) {
1935 ret ^= (r1 & 1);
1936 r1 = r1 >> 1;
1937 }
1938 /* second byte */
1939 nOnes = 0;
1940 for (i = 0; i < 8; i++) {
1941 nOnes ^= (r1 & 1);
1942 r1 = r1 >> 1;
1943 }
1944 ret |= nOnes << 8;
1945 /* third byte */
1946 nOnes = 0;
1947 for (i = 0; i < 8; i++) {
1948 nOnes ^= (r1 & 1);
1949 r1 = r1 >> 1;
1950 }
1951 ret |= nOnes << 16;
1952 /* fourth byte */
1953 nOnes = 0;
1954 for (i = 0; i < 8; i++) {
1955 nOnes ^= (r1 & 1);
1956 r1 = r1 >> 1;
1957 }
1958 ret |= nOnes << 24;
1959
1960 return ret;
1961 }
1962
1963 uint32_t helper_pack(uint32_t carry, uint32_t r1_low, uint32_t r1_high,
1964 target_ulong r2)
1965 {
1966 uint32_t ret;
1967 int32_t fp_exp, fp_frac, temp_exp, fp_exp_frac;
1968 int32_t int_exp = r1_high;
1969 int32_t int_mant = r1_low;
1970 uint32_t flag_rnd = (int_mant & (1 << 7)) && (
1971 (int_mant & (1 << 8)) ||
1972 (int_mant & 0x7f) ||
1973 (carry != 0));
1974 if (((int_mant & (1<<31)) == 0) && (int_exp == 255)) {
1975 fp_exp = 255;
1976 fp_frac = extract32(int_mant, 8, 23);
1977 } else if ((int_mant & (1<<31)) && (int_exp >= 127)) {
1978 fp_exp = 255;
1979 fp_frac = 0;
1980 } else if ((int_mant & (1<<31)) && (int_exp <= -128)) {
1981 fp_exp = 0;
1982 fp_frac = 0;
1983 } else if (int_mant == 0) {
1984 fp_exp = 0;
1985 fp_frac = 0;
1986 } else {
1987 if (((int_mant & (1 << 31)) == 0)) {
1988 temp_exp = 0;
1989 } else {
1990 temp_exp = int_exp + 128;
1991 }
1992 fp_exp_frac = (((temp_exp & 0xff) << 23) |
1993 extract32(int_mant, 8, 23))
1994 + flag_rnd;
1995 fp_exp = extract32(fp_exp_frac, 23, 8);
1996 fp_frac = extract32(fp_exp_frac, 0, 23);
1997 }
1998 ret = r2 & (1 << 31);
1999 ret = ret + (fp_exp << 23);
2000 ret = ret + (fp_frac & 0x7fffff);
2001
2002 return ret;
2003 }
2004
2005 uint64_t helper_unpack(target_ulong arg1)
2006 {
2007 int32_t fp_exp = extract32(arg1, 23, 8);
2008 int32_t fp_frac = extract32(arg1, 0, 23);
2009 uint64_t ret;
2010 int32_t int_exp, int_mant;
2011
2012 if (fp_exp == 255) {
2013 int_exp = 255;
2014 int_mant = (fp_frac << 7);
2015 } else if ((fp_exp == 0) && (fp_frac == 0)) {
2016 int_exp = -127;
2017 int_mant = 0;
2018 } else if ((fp_exp == 0) && (fp_frac != 0)) {
2019 int_exp = -126;
2020 int_mant = (fp_frac << 7);
2021 } else {
2022 int_exp = fp_exp - 127;
2023 int_mant = (fp_frac << 7);
2024 int_mant |= (1 << 30);
2025 }
2026 ret = int_exp;
2027 ret = ret << 32;
2028 ret |= int_mant;
2029
2030 return ret;
2031 }
2032
2033 uint64_t helper_dvinit_b_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2034 {
2035 uint64_t ret;
2036 int32_t abs_sig_dividend, abs_divisor;
2037
2038 ret = sextract32(r1, 0, 32);
2039 ret = ret << 24;
2040 if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
2041 ret |= 0xffffff;
2042 }
2043
2044 abs_sig_dividend = abs((int32_t)r1) >> 8;
2045 abs_divisor = abs((int32_t)r2);
2046 /* calc overflow
2047 ofv if (a/b >= 255) <=> (a/255 >= b) */
2048 env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31;
2049 env->PSW_USB_V = env->PSW_USB_V << 31;
2050 env->PSW_USB_SV |= env->PSW_USB_V;
2051 env->PSW_USB_AV = 0;
2052
2053 return ret;
2054 }
2055
2056 uint64_t helper_dvinit_b_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2057 {
2058 uint64_t ret = sextract32(r1, 0, 32);
2059
2060 ret = ret << 24;
2061 if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
2062 ret |= 0xffffff;
2063 }
2064 /* calc overflow */
2065 env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffffff80)));
2066 env->PSW_USB_V = env->PSW_USB_V << 31;
2067 env->PSW_USB_SV |= env->PSW_USB_V;
2068 env->PSW_USB_AV = 0;
2069
2070 return ret;
2071 }
2072
2073 uint64_t helper_dvinit_h_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2074 {
2075 uint64_t ret;
2076 int32_t abs_sig_dividend, abs_divisor;
2077
2078 ret = sextract32(r1, 0, 32);
2079 ret = ret << 16;
2080 if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
2081 ret |= 0xffff;
2082 }
2083
2084 abs_sig_dividend = abs((int32_t)r1) >> 16;
2085 abs_divisor = abs((int32_t)r2);
2086 /* calc overflow
2087 ofv if (a/b >= 0xffff) <=> (a/0xffff >= b) */
2088 env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31;
2089 env->PSW_USB_V = env->PSW_USB_V << 31;
2090 env->PSW_USB_SV |= env->PSW_USB_V;
2091 env->PSW_USB_AV = 0;
2092
2093 return ret;
2094 }
2095
2096 uint64_t helper_dvinit_h_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2097 {
2098 uint64_t ret = sextract32(r1, 0, 32);
2099
2100 ret = ret << 16;
2101 if (!((r1 & 0x80000000) == (r2 & 0x80000000))) {
2102 ret |= 0xffff;
2103 }
2104 /* calc overflow */
2105 env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffff8000)));
2106 env->PSW_USB_V = env->PSW_USB_V << 31;
2107 env->PSW_USB_SV |= env->PSW_USB_V;
2108 env->PSW_USB_AV = 0;
2109
2110 return ret;
2111 }
2112
2113 uint64_t helper_dvadj(uint64_t r1, uint32_t r2)
2114 {
2115 int32_t x_sign = (r1 >> 63);
2116 int32_t q_sign = x_sign ^ (r2 >> 31);
2117 int32_t eq_pos = x_sign & ((r1 >> 32) == r2);
2118 int32_t eq_neg = x_sign & ((r1 >> 32) == -r2);
2119 uint32_t quotient;
2120 uint64_t remainder;
2121
2122 if ((q_sign & ~eq_neg) | eq_pos) {
2123 quotient = (r1 + 1) & 0xffffffff;
2124 } else {
2125 quotient = r1 & 0xffffffff;
2126 }
2127
2128 if (eq_pos | eq_neg) {
2129 remainder = 0;
2130 } else {
2131 remainder = (r1 & 0xffffffff00000000ull);
2132 }
2133 return remainder | quotient;
2134 }
2135
2136 uint64_t helper_dvstep(uint64_t r1, uint32_t r2)
2137 {
2138 int32_t dividend_sign = extract64(r1, 63, 1);
2139 int32_t divisor_sign = extract32(r2, 31, 1);
2140 int32_t quotient_sign = (dividend_sign != divisor_sign);
2141 int32_t addend, dividend_quotient, remainder;
2142 int32_t i, temp;
2143
2144 if (quotient_sign) {
2145 addend = r2;
2146 } else {
2147 addend = -r2;
2148 }
2149 dividend_quotient = (int32_t)r1;
2150 remainder = (int32_t)(r1 >> 32);
2151
2152 for (i = 0; i < 8; i++) {
2153 remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1);
2154 dividend_quotient <<= 1;
2155 temp = remainder + addend;
2156 if ((temp < 0) == dividend_sign) {
2157 remainder = temp;
2158 }
2159 if (((temp < 0) == dividend_sign)) {
2160 dividend_quotient = dividend_quotient | !quotient_sign;
2161 } else {
2162 dividend_quotient = dividend_quotient | quotient_sign;
2163 }
2164 }
2165 return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient;
2166 }
2167
2168 uint64_t helper_dvstep_u(uint64_t r1, uint32_t r2)
2169 {
2170 int32_t dividend_quotient = extract64(r1, 0, 32);
2171 int64_t remainder = extract64(r1, 32, 32);
2172 int32_t i;
2173 int64_t temp;
2174 for (i = 0; i < 8; i++) {
2175 remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1);
2176 dividend_quotient <<= 1;
2177 temp = (remainder & 0xffffffff) - r2;
2178 if (temp >= 0) {
2179 remainder = temp;
2180 }
2181 dividend_quotient = dividend_quotient | !(temp < 0);
2182 }
2183 return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient;
2184 }
2185
2186 uint64_t helper_divide(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2187 {
2188 int32_t quotient, remainder;
2189 int32_t dividend = (int32_t)r1;
2190 int32_t divisor = (int32_t)r2;
2191
2192 if (divisor == 0) {
2193 if (dividend >= 0) {
2194 quotient = 0x7fffffff;
2195 remainder = 0;
2196 } else {
2197 quotient = 0x80000000;
2198 remainder = 0;
2199 }
2200 env->PSW_USB_V = (1 << 31);
2201 } else if ((divisor == 0xffffffff) && (dividend == 0x80000000)) {
2202 quotient = 0x7fffffff;
2203 remainder = 0;
2204 env->PSW_USB_V = (1 << 31);
2205 } else {
2206 remainder = dividend % divisor;
2207 quotient = (dividend - remainder)/divisor;
2208 env->PSW_USB_V = 0;
2209 }
2210 env->PSW_USB_SV |= env->PSW_USB_V;
2211 env->PSW_USB_AV = 0;
2212 return ((uint64_t)remainder << 32) | (uint32_t)quotient;
2213 }
2214
2215 uint64_t helper_divide_u(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
2216 {
2217 uint32_t quotient, remainder;
2218 uint32_t dividend = r1;
2219 uint32_t divisor = r2;
2220
2221 if (divisor == 0) {
2222 quotient = 0xffffffff;
2223 remainder = 0;
2224 env->PSW_USB_V = (1 << 31);
2225 } else {
2226 remainder = dividend % divisor;
2227 quotient = (dividend - remainder)/divisor;
2228 env->PSW_USB_V = 0;
2229 }
2230 env->PSW_USB_SV |= env->PSW_USB_V;
2231 env->PSW_USB_AV = 0;
2232 return ((uint64_t)remainder << 32) | quotient;
2233 }
2234
2235 uint64_t helper_mul_h(uint32_t arg00, uint32_t arg01,
2236 uint32_t arg10, uint32_t arg11, uint32_t n)
2237 {
2238 uint32_t result0, result1;
2239
2240 int32_t sc1 = ((arg00 & 0xffff) == 0x8000) &&
2241 ((arg10 & 0xffff) == 0x8000) && (n == 1);
2242 int32_t sc0 = ((arg01 & 0xffff) == 0x8000) &&
2243 ((arg11 & 0xffff) == 0x8000) && (n == 1);
2244 if (sc1) {
2245 result1 = 0x7fffffff;
2246 } else {
2247 result1 = (((uint32_t)(arg00 * arg10)) << n);
2248 }
2249 if (sc0) {
2250 result0 = 0x7fffffff;
2251 } else {
2252 result0 = (((uint32_t)(arg01 * arg11)) << n);
2253 }
2254 return (((uint64_t)result1 << 32)) | result0;
2255 }
2256
2257 uint64_t helper_mulm_h(uint32_t arg00, uint32_t arg01,
2258 uint32_t arg10, uint32_t arg11, uint32_t n)
2259 {
2260 uint64_t ret;
2261 int64_t result0, result1;
2262
2263 int32_t sc1 = ((arg00 & 0xffff) == 0x8000) &&
2264 ((arg10 & 0xffff) == 0x8000) && (n == 1);
2265 int32_t sc0 = ((arg01 & 0xffff) == 0x8000) &&
2266 ((arg11 & 0xffff) == 0x8000) && (n == 1);
2267
2268 if (sc1) {
2269 result1 = 0x7fffffff;
2270 } else {
2271 result1 = (((int32_t)arg00 * (int32_t)arg10) << n);
2272 }
2273 if (sc0) {
2274 result0 = 0x7fffffff;
2275 } else {
2276 result0 = (((int32_t)arg01 * (int32_t)arg11) << n);
2277 }
2278 ret = (result1 + result0);
2279 ret = ret << 16;
2280 return ret;
2281 }
2282 uint32_t helper_mulr_h(uint32_t arg00, uint32_t arg01,
2283 uint32_t arg10, uint32_t arg11, uint32_t n)
2284 {
2285 uint32_t result0, result1;
2286
2287 int32_t sc1 = ((arg00 & 0xffff) == 0x8000) &&
2288 ((arg10 & 0xffff) == 0x8000) && (n == 1);
2289 int32_t sc0 = ((arg01 & 0xffff) == 0x8000) &&
2290 ((arg11 & 0xffff) == 0x8000) && (n == 1);
2291
2292 if (sc1) {
2293 result1 = 0x7fffffff;
2294 } else {
2295 result1 = ((arg00 * arg10) << n) + 0x8000;
2296 }
2297 if (sc0) {
2298 result0 = 0x7fffffff;
2299 } else {
2300 result0 = ((arg01 * arg11) << n) + 0x8000;
2301 }
2302 return (result1 & 0xffff0000) | (result0 >> 16);
2303 }
2304
2305 uint32_t helper_crc32(uint32_t arg0, uint32_t arg1)
2306 {
2307 uint8_t buf[4];
2308 stl_be_p(buf, arg0);
2309
2310 return crc32(arg1, buf, 4);
2311 }
2312
2313 /* context save area (CSA) related helpers */
2314
2315 static int cdc_increment(target_ulong *psw)
2316 {
2317 if ((*psw & MASK_PSW_CDC) == 0x7f) {
2318 return 0;
2319 }
2320
2321 (*psw)++;
2322 /* check for overflow */
2323 int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7));
2324 int mask = (1u << (7 - lo)) - 1;
2325 int count = *psw & mask;
2326 if (count == 0) {
2327 (*psw)--;
2328 return 1;
2329 }
2330 return 0;
2331 }
2332
2333 static int cdc_decrement(target_ulong *psw)
2334 {
2335 if ((*psw & MASK_PSW_CDC) == 0x7f) {
2336 return 0;
2337 }
2338 /* check for underflow */
2339 int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7));
2340 int mask = (1u << (7 - lo)) - 1;
2341 int count = *psw & mask;
2342 if (count == 0) {
2343 return 1;
2344 }
2345 (*psw)--;
2346 return 0;
2347 }
2348
2349 static bool cdc_zero(target_ulong *psw)
2350 {
2351 int cdc = *psw & MASK_PSW_CDC;
2352 /* Returns TRUE if PSW.CDC.COUNT == 0 or if PSW.CDC ==
2353 7'b1111111, otherwise returns FALSE. */
2354 if (cdc == 0x7f) {
2355 return true;
2356 }
2357 /* find CDC.COUNT */
2358 int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7));
2359 int mask = (1u << (7 - lo)) - 1;
2360 int count = *psw & mask;
2361 return count == 0;
2362 }
2363
2364 static void save_context_upper(CPUTriCoreState *env, int ea)
2365 {
2366 cpu_stl_data(env, ea, env->PCXI);
2367 cpu_stl_data(env, ea+4, psw_read(env));
2368 cpu_stl_data(env, ea+8, env->gpr_a[10]);
2369 cpu_stl_data(env, ea+12, env->gpr_a[11]);
2370 cpu_stl_data(env, ea+16, env->gpr_d[8]);
2371 cpu_stl_data(env, ea+20, env->gpr_d[9]);
2372 cpu_stl_data(env, ea+24, env->gpr_d[10]);
2373 cpu_stl_data(env, ea+28, env->gpr_d[11]);
2374 cpu_stl_data(env, ea+32, env->gpr_a[12]);
2375 cpu_stl_data(env, ea+36, env->gpr_a[13]);
2376 cpu_stl_data(env, ea+40, env->gpr_a[14]);
2377 cpu_stl_data(env, ea+44, env->gpr_a[15]);
2378 cpu_stl_data(env, ea+48, env->gpr_d[12]);
2379 cpu_stl_data(env, ea+52, env->gpr_d[13]);
2380 cpu_stl_data(env, ea+56, env->gpr_d[14]);
2381 cpu_stl_data(env, ea+60, env->gpr_d[15]);
2382 }
2383
2384 static void save_context_lower(CPUTriCoreState *env, int ea)
2385 {
2386 cpu_stl_data(env, ea, env->PCXI);
2387 cpu_stl_data(env, ea+4, env->gpr_a[11]);
2388 cpu_stl_data(env, ea+8, env->gpr_a[2]);
2389 cpu_stl_data(env, ea+12, env->gpr_a[3]);
2390 cpu_stl_data(env, ea+16, env->gpr_d[0]);
2391 cpu_stl_data(env, ea+20, env->gpr_d[1]);
2392 cpu_stl_data(env, ea+24, env->gpr_d[2]);
2393 cpu_stl_data(env, ea+28, env->gpr_d[3]);
2394 cpu_stl_data(env, ea+32, env->gpr_a[4]);
2395 cpu_stl_data(env, ea+36, env->gpr_a[5]);
2396 cpu_stl_data(env, ea+40, env->gpr_a[6]);
2397 cpu_stl_data(env, ea+44, env->gpr_a[7]);
2398 cpu_stl_data(env, ea+48, env->gpr_d[4]);
2399 cpu_stl_data(env, ea+52, env->gpr_d[5]);
2400 cpu_stl_data(env, ea+56, env->gpr_d[6]);
2401 cpu_stl_data(env, ea+60, env->gpr_d[7]);
2402 }
2403
2404 static void restore_context_upper(CPUTriCoreState *env, int ea,
2405 target_ulong *new_PCXI, target_ulong *new_PSW)
2406 {
2407 *new_PCXI = cpu_ldl_data(env, ea);
2408 *new_PSW = cpu_ldl_data(env, ea+4);
2409 env->gpr_a[10] = cpu_ldl_data(env, ea+8);
2410 env->gpr_a[11] = cpu_ldl_data(env, ea+12);
2411 env->gpr_d[8] = cpu_ldl_data(env, ea+16);
2412 env->gpr_d[9] = cpu_ldl_data(env, ea+20);
2413 env->gpr_d[10] = cpu_ldl_data(env, ea+24);
2414 env->gpr_d[11] = cpu_ldl_data(env, ea+28);
2415 env->gpr_a[12] = cpu_ldl_data(env, ea+32);
2416 env->gpr_a[13] = cpu_ldl_data(env, ea+36);
2417 env->gpr_a[14] = cpu_ldl_data(env, ea+40);
2418 env->gpr_a[15] = cpu_ldl_data(env, ea+44);
2419 env->gpr_d[12] = cpu_ldl_data(env, ea+48);
2420 env->gpr_d[13] = cpu_ldl_data(env, ea+52);
2421 env->gpr_d[14] = cpu_ldl_data(env, ea+56);
2422 env->gpr_d[15] = cpu_ldl_data(env, ea+60);
2423 }
2424
2425 static void restore_context_lower(CPUTriCoreState *env, int ea,
2426 target_ulong *ra, target_ulong *pcxi)
2427 {
2428 *pcxi = cpu_ldl_data(env, ea);
2429 *ra = cpu_ldl_data(env, ea+4);
2430 env->gpr_a[2] = cpu_ldl_data(env, ea+8);
2431 env->gpr_a[3] = cpu_ldl_data(env, ea+12);
2432 env->gpr_d[0] = cpu_ldl_data(env, ea+16);
2433 env->gpr_d[1] = cpu_ldl_data(env, ea+20);
2434 env->gpr_d[2] = cpu_ldl_data(env, ea+24);
2435 env->gpr_d[3] = cpu_ldl_data(env, ea+28);
2436 env->gpr_a[4] = cpu_ldl_data(env, ea+32);
2437 env->gpr_a[5] = cpu_ldl_data(env, ea+36);
2438 env->gpr_a[6] = cpu_ldl_data(env, ea+40);
2439 env->gpr_a[7] = cpu_ldl_data(env, ea+44);
2440 env->gpr_d[4] = cpu_ldl_data(env, ea+48);
2441 env->gpr_d[5] = cpu_ldl_data(env, ea+52);
2442 env->gpr_d[6] = cpu_ldl_data(env, ea+56);
2443 env->gpr_d[7] = cpu_ldl_data(env, ea+60);
2444 }
2445
2446 void helper_call(CPUTriCoreState *env, uint32_t next_pc)
2447 {
2448 target_ulong tmp_FCX;
2449 target_ulong ea;
2450 target_ulong new_FCX;
2451 target_ulong psw;
2452
2453 psw = psw_read(env);
2454 /* if (FCX == 0) trap(FCU); */
2455 if (env->FCX == 0) {
2456 /* FCU trap */
2457 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC());
2458 }
2459 /* if (PSW.CDE) then if (cdc_increment()) then trap(CDO); */
2460 if (psw & MASK_PSW_CDE) {
2461 if (cdc_increment(&psw)) {
2462 /* CDO trap */
2463 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CDO, GETPC());
2464 }
2465 }
2466 /* PSW.CDE = 1;*/
2467 psw |= MASK_PSW_CDE;
2468 /* tmp_FCX = FCX; */
2469 tmp_FCX = env->FCX;
2470 /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */
2471 ea = ((env->FCX & MASK_FCX_FCXS) << 12) +
2472 ((env->FCX & MASK_FCX_FCXO) << 6);
2473 /* new_FCX = M(EA, word); */
2474 new_FCX = cpu_ldl_data(env, ea);
2475 /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11],
2476 A[12], A[13], A[14], A[15], D[12], D[13], D[14],
2477 D[15]}; */
2478 save_context_upper(env, ea);
2479
2480 /* PCXI.PCPN = ICR.CCPN; */
2481 env->PCXI = (env->PCXI & 0xffffff) +
2482 ((env->ICR & MASK_ICR_CCPN) << 24);
2483 /* PCXI.PIE = ICR.IE; */
2484 env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) +
2485 ((env->ICR & MASK_ICR_IE) << 15));
2486 /* PCXI.UL = 1; */
2487 env->PCXI |= MASK_PCXI_UL;
2488
2489 /* PCXI[19: 0] = FCX[19: 0]; */
2490 env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
2491 /* FCX[19: 0] = new_FCX[19: 0]; */
2492 env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
2493 /* A[11] = next_pc[31: 0]; */
2494 env->gpr_a[11] = next_pc;
2495
2496 /* if (tmp_FCX == LCX) trap(FCD);*/
2497 if (tmp_FCX == env->LCX) {
2498 /* FCD trap */
2499 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC());
2500 }
2501 psw_write(env, psw);
2502 }
2503
2504 void helper_ret(CPUTriCoreState *env)
2505 {
2506 target_ulong ea;
2507 target_ulong new_PCXI;
2508 target_ulong new_PSW, psw;
2509
2510 psw = psw_read(env);
2511 /* if (PSW.CDE) then if (cdc_decrement()) then trap(CDU);*/
2512 if (psw & MASK_PSW_CDE) {
2513 if (cdc_decrement(&psw)) {
2514 /* CDU trap */
2515 psw_write(env, psw);
2516 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CDU, GETPC());
2517 }
2518 }
2519 /* if (PCXI[19: 0] == 0) then trap(CSU); */
2520 if ((env->PCXI & 0xfffff) == 0) {
2521 /* CSU trap */
2522 psw_write(env, psw);
2523 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC());
2524 }
2525 /* if (PCXI.UL == 0) then trap(CTYP); */
2526 if ((env->PCXI & MASK_PCXI_UL) == 0) {
2527 /* CTYP trap */
2528 cdc_increment(&psw); /* restore to the start of helper */
2529 psw_write(env, psw);
2530 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC());
2531 }
2532 /* PC = {A11 [31: 1], 1’b0}; */
2533 env->PC = env->gpr_a[11] & 0xfffffffe;
2534
2535 /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */
2536 ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) +
2537 ((env->PCXI & MASK_PCXI_PCXO) << 6);
2538 /* {new_PCXI, new_PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12],
2539 A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */
2540 restore_context_upper(env, ea, &new_PCXI, &new_PSW);
2541 /* M(EA, word) = FCX; */
2542 cpu_stl_data(env, ea, env->FCX);
2543 /* FCX[19: 0] = PCXI[19: 0]; */
2544 env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff);
2545 /* PCXI = new_PCXI; */
2546 env->PCXI = new_PCXI;
2547
2548 if (tricore_feature(env, TRICORE_FEATURE_13)) {
2549 /* PSW = new_PSW */
2550 psw_write(env, new_PSW);
2551 } else {
2552 /* PSW = {new_PSW[31:26], PSW[25:24], new_PSW[23:0]}; */
2553 psw_write(env, (new_PSW & ~(0x3000000)) + (psw & (0x3000000)));
2554 }
2555 }
2556
2557 void helper_bisr(CPUTriCoreState *env, uint32_t const9)
2558 {
2559 target_ulong tmp_FCX;
2560 target_ulong ea;
2561 target_ulong new_FCX;
2562
2563 if (env->FCX == 0) {
2564 /* FCU trap */
2565 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC());
2566 }
2567
2568 tmp_FCX = env->FCX;
2569 ea = ((env->FCX & 0xf0000) << 12) + ((env->FCX & 0xffff) << 6);
2570
2571 /* new_FCX = M(EA, word); */
2572 new_FCX = cpu_ldl_data(env, ea);
2573 /* M(EA, 16 * word) = {PCXI, A[11], A[2], A[3], D[0], D[1], D[2], D[3], A[4]
2574 , A[5], A[6], A[7], D[4], D[5], D[6], D[7]}; */
2575 save_context_lower(env, ea);
2576
2577
2578 /* PCXI.PCPN = ICR.CCPN */
2579 env->PCXI = (env->PCXI & 0xffffff) +
2580 ((env->ICR & MASK_ICR_CCPN) << 24);
2581 /* PCXI.PIE = ICR.IE */
2582 env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) +
2583 ((env->ICR & MASK_ICR_IE) << 15));
2584 /* PCXI.UL = 0 */
2585 env->PCXI &= ~(MASK_PCXI_UL);
2586 /* PCXI[19: 0] = FCX[19: 0] */
2587 env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
2588 /* FXC[19: 0] = new_FCX[19: 0] */
2589 env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
2590 /* ICR.IE = 1 */
2591 env->ICR |= MASK_ICR_IE;
2592
2593 env->ICR |= const9; /* ICR.CCPN = const9[7: 0];*/
2594
2595 if (tmp_FCX == env->LCX) {
2596 /* FCD trap */
2597 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC());
2598 }
2599 }
2600
2601 void helper_rfe(CPUTriCoreState *env)
2602 {
2603 target_ulong ea;
2604 target_ulong new_PCXI;
2605 target_ulong new_PSW;
2606 /* if (PCXI[19: 0] == 0) then trap(CSU); */
2607 if ((env->PCXI & 0xfffff) == 0) {
2608 /* raise csu trap */
2609 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC());
2610 }
2611 /* if (PCXI.UL == 0) then trap(CTYP); */
2612 if ((env->PCXI & MASK_PCXI_UL) == 0) {
2613 /* raise CTYP trap */
2614 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC());
2615 }
2616 /* if (!cdc_zero() AND PSW.CDE) then trap(NEST); */
2617 if (!cdc_zero(&(env->PSW)) && (env->PSW & MASK_PSW_CDE)) {
2618 /* raise NEST trap */
2619 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_NEST, GETPC());
2620 }
2621 env->PC = env->gpr_a[11] & ~0x1;
2622 /* ICR.IE = PCXI.PIE; */
2623 env->ICR = (env->ICR & ~MASK_ICR_IE) + ((env->PCXI & MASK_PCXI_PIE) >> 15);
2624 /* ICR.CCPN = PCXI.PCPN; */
2625 env->ICR = (env->ICR & ~MASK_ICR_CCPN) +
2626 ((env->PCXI & MASK_PCXI_PCPN) >> 24);
2627 /*EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0};*/
2628 ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) +
2629 ((env->PCXI & MASK_PCXI_PCXO) << 6);
2630 /*{new_PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12],
2631 A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */
2632 restore_context_upper(env, ea, &new_PCXI, &new_PSW);
2633 /* M(EA, word) = FCX;*/
2634 cpu_stl_data(env, ea, env->FCX);
2635 /* FCX[19: 0] = PCXI[19: 0]; */
2636 env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff);
2637 /* PCXI = new_PCXI; */
2638 env->PCXI = new_PCXI;
2639 /* write psw */
2640 psw_write(env, new_PSW);
2641 }
2642
2643 void helper_rfm(CPUTriCoreState *env)
2644 {
2645 env->PC = (env->gpr_a[11] & ~0x1);
2646 /* ICR.IE = PCXI.PIE; */
2647 env->ICR = (env->ICR & ~MASK_ICR_IE) |
2648 ((env->PCXI & MASK_PCXI_PIE) >> 15);
2649 /* ICR.CCPN = PCXI.PCPN; */
2650 env->ICR = (env->ICR & ~MASK_ICR_CCPN) |
2651 ((env->PCXI & MASK_PCXI_PCPN) >> 24);
2652 /* {PCXI, PSW, A[10], A[11]} = M(DCX, 4 * word); */
2653 env->PCXI = cpu_ldl_data(env, env->DCX);
2654 psw_write(env, cpu_ldl_data(env, env->DCX+4));
2655 env->gpr_a[10] = cpu_ldl_data(env, env->DCX+8);
2656 env->gpr_a[11] = cpu_ldl_data(env, env->DCX+12);
2657
2658 if (tricore_feature(env, TRICORE_FEATURE_131)) {
2659 env->DBGTCR = 0;
2660 }
2661 }
2662
2663 void helper_ldlcx(CPUTriCoreState *env, uint32_t ea)
2664 {
2665 uint32_t dummy;
2666 /* insn doesn't load PCXI and RA */
2667 restore_context_lower(env, ea, &dummy, &dummy);
2668 }
2669
2670 void helper_lducx(CPUTriCoreState *env, uint32_t ea)
2671 {
2672 uint32_t dummy;
2673 /* insn doesn't load PCXI and PSW */
2674 restore_context_upper(env, ea, &dummy, &dummy);
2675 }
2676
2677 void helper_stlcx(CPUTriCoreState *env, uint32_t ea)
2678 {
2679 save_context_lower(env, ea);
2680 }
2681
2682 void helper_stucx(CPUTriCoreState *env, uint32_t ea)
2683 {
2684 save_context_upper(env, ea);
2685 }
2686
2687 void helper_svlcx(CPUTriCoreState *env)
2688 {
2689 target_ulong tmp_FCX;
2690 target_ulong ea;
2691 target_ulong new_FCX;
2692
2693 if (env->FCX == 0) {
2694 /* FCU trap */
2695 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC());
2696 }
2697 /* tmp_FCX = FCX; */
2698 tmp_FCX = env->FCX;
2699 /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */
2700 ea = ((env->FCX & MASK_FCX_FCXS) << 12) +
2701 ((env->FCX & MASK_FCX_FCXO) << 6);
2702 /* new_FCX = M(EA, word); */
2703 new_FCX = cpu_ldl_data(env, ea);
2704 /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11],
2705 A[12], A[13], A[14], A[15], D[12], D[13], D[14],
2706 D[15]}; */
2707 save_context_lower(env, ea);
2708
2709 /* PCXI.PCPN = ICR.CCPN; */
2710 env->PCXI = (env->PCXI & 0xffffff) +
2711 ((env->ICR & MASK_ICR_CCPN) << 24);
2712 /* PCXI.PIE = ICR.IE; */
2713 env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) +
2714 ((env->ICR & MASK_ICR_IE) << 15));
2715 /* PCXI.UL = 0; */
2716 env->PCXI &= ~MASK_PCXI_UL;
2717
2718 /* PCXI[19: 0] = FCX[19: 0]; */
2719 env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
2720 /* FCX[19: 0] = new_FCX[19: 0]; */
2721 env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
2722
2723 /* if (tmp_FCX == LCX) trap(FCD);*/
2724 if (tmp_FCX == env->LCX) {
2725 /* FCD trap */
2726 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC());
2727 }
2728 }
2729
2730 void helper_svucx(CPUTriCoreState *env)
2731 {
2732 target_ulong tmp_FCX;
2733 target_ulong ea;
2734 target_ulong new_FCX;
2735
2736 if (env->FCX == 0) {
2737 /* FCU trap */
2738 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC());
2739 }
2740 /* tmp_FCX = FCX; */
2741 tmp_FCX = env->FCX;
2742 /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */
2743 ea = ((env->FCX & MASK_FCX_FCXS) << 12) +
2744 ((env->FCX & MASK_FCX_FCXO) << 6);
2745 /* new_FCX = M(EA, word); */
2746 new_FCX = cpu_ldl_data(env, ea);
2747 /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11],
2748 A[12], A[13], A[14], A[15], D[12], D[13], D[14],
2749 D[15]}; */
2750 save_context_upper(env, ea);
2751
2752 /* PCXI.PCPN = ICR.CCPN; */
2753 env->PCXI = (env->PCXI & 0xffffff) +
2754 ((env->ICR & MASK_ICR_CCPN) << 24);
2755 /* PCXI.PIE = ICR.IE; */
2756 env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) +
2757 ((env->ICR & MASK_ICR_IE) << 15));
2758 /* PCXI.UL = 1; */
2759 env->PCXI |= MASK_PCXI_UL;
2760
2761 /* PCXI[19: 0] = FCX[19: 0]; */
2762 env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff);
2763 /* FCX[19: 0] = new_FCX[19: 0]; */
2764 env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff);
2765
2766 /* if (tmp_FCX == LCX) trap(FCD);*/
2767 if (tmp_FCX == env->LCX) {
2768 /* FCD trap */
2769 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC());
2770 }
2771 }
2772
2773 void helper_rslcx(CPUTriCoreState *env)
2774 {
2775 target_ulong ea;
2776 target_ulong new_PCXI;
2777 /* if (PCXI[19: 0] == 0) then trap(CSU); */
2778 if ((env->PCXI & 0xfffff) == 0) {
2779 /* CSU trap */
2780 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC());
2781 }
2782 /* if (PCXI.UL == 1) then trap(CTYP); */
2783 if ((env->PCXI & MASK_PCXI_UL) != 0) {
2784 /* CTYP trap */
2785 raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC());
2786 }
2787 /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */
2788 ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) +
2789 ((env->PCXI & MASK_PCXI_PCXO) << 6);
2790 /* {new_PCXI, A[11], A[10], A[11], D[8], D[9], D[10], D[11], A[12],
2791 A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */
2792 restore_context_lower(env, ea, &env->gpr_a[11], &new_PCXI);
2793 /* M(EA, word) = FCX; */
2794 cpu_stl_data(env, ea, env->FCX);
2795 /* M(EA, word) = FCX; */
2796 cpu_stl_data(env, ea, env->FCX);
2797 /* FCX[19: 0] = PCXI[19: 0]; */
2798 env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff);
2799 /* PCXI = new_PCXI; */
2800 env->PCXI = new_PCXI;
2801 }
2802
2803 void helper_psw_write(CPUTriCoreState *env, uint32_t arg)
2804 {
2805 psw_write(env, arg);
2806 }
2807
2808 uint32_t helper_psw_read(CPUTriCoreState *env)
2809 {
2810 return psw_read(env);
2811 }
2812
2813
2814 static inline void QEMU_NORETURN do_raise_exception_err(CPUTriCoreState *env,
2815 uint32_t exception,
2816 int error_code,
2817 uintptr_t pc)
2818 {
2819 CPUState *cs = CPU(tricore_env_get_cpu(env));
2820 cs->exception_index = exception;
2821 env->error_code = error_code;
2822
2823 if (pc) {
2824 /* now we have a real cpu fault */
2825 cpu_restore_state(cs, pc);
2826 }
2827
2828 cpu_loop_exit(cs);
2829 }
2830
2831 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
2832 int mmu_idx, uintptr_t retaddr)
2833 {
2834 int ret;
2835 ret = cpu_tricore_handle_mmu_fault(cs, addr, access_type, mmu_idx);
2836 if (ret) {
2837 TriCoreCPU *cpu = TRICORE_CPU(cs);
2838 CPUTriCoreState *env = &cpu->env;
2839 do_raise_exception_err(env, cs->exception_index,
2840 env->error_code, retaddr);
2841 }
2842 }