gitlab: add acceptance testing to system builds
[qemu.git] / tcg / ppc / tcg-target.inc.c
1 /*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "elf.h"
26 #include "../tcg-pool.inc.c"
27
28 #if defined _CALL_DARWIN || defined __APPLE__
29 #define TCG_TARGET_CALL_DARWIN
30 #endif
31 #ifdef _CALL_SYSV
32 # define TCG_TARGET_CALL_ALIGN_ARGS 1
33 #endif
34
35 /* For some memory operations, we need a scratch that isn't R0. For the AIX
36 calling convention, we can re-use the TOC register since we'll be reloading
37 it at every call. Otherwise R12 will do nicely as neither a call-saved
38 register nor a parameter register. */
39 #ifdef _CALL_AIX
40 # define TCG_REG_TMP1 TCG_REG_R2
41 #else
42 # define TCG_REG_TMP1 TCG_REG_R12
43 #endif
44
45 #define TCG_VEC_TMP1 TCG_REG_V0
46 #define TCG_VEC_TMP2 TCG_REG_V1
47
48 #define TCG_REG_TB TCG_REG_R31
49 #define USE_REG_TB (TCG_TARGET_REG_BITS == 64)
50
51 /* Shorthand for size of a pointer. Avoid promotion to unsigned. */
52 #define SZP ((int)sizeof(void *))
53
54 /* Shorthand for size of a register. */
55 #define SZR (TCG_TARGET_REG_BITS / 8)
56
57 #define TCG_CT_CONST_S16 0x100
58 #define TCG_CT_CONST_U16 0x200
59 #define TCG_CT_CONST_S32 0x400
60 #define TCG_CT_CONST_U32 0x800
61 #define TCG_CT_CONST_ZERO 0x1000
62 #define TCG_CT_CONST_MONE 0x2000
63 #define TCG_CT_CONST_WSZ 0x4000
64
65 static tcg_insn_unit *tb_ret_addr;
66
67 TCGPowerISA have_isa;
68 static bool have_isel;
69 bool have_altivec;
70 bool have_vsx;
71
72 #ifndef CONFIG_SOFTMMU
73 #define TCG_GUEST_BASE_REG 30
74 #endif
75
76 #ifdef CONFIG_DEBUG_TCG
77 static const char tcg_target_reg_names[TCG_TARGET_NB_REGS][4] = {
78 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
79 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
80 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
81 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
82 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
83 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
84 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
85 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
86 };
87 #endif
88
89 static const int tcg_target_reg_alloc_order[] = {
90 TCG_REG_R14, /* call saved registers */
91 TCG_REG_R15,
92 TCG_REG_R16,
93 TCG_REG_R17,
94 TCG_REG_R18,
95 TCG_REG_R19,
96 TCG_REG_R20,
97 TCG_REG_R21,
98 TCG_REG_R22,
99 TCG_REG_R23,
100 TCG_REG_R24,
101 TCG_REG_R25,
102 TCG_REG_R26,
103 TCG_REG_R27,
104 TCG_REG_R28,
105 TCG_REG_R29,
106 TCG_REG_R30,
107 TCG_REG_R31,
108 TCG_REG_R12, /* call clobbered, non-arguments */
109 TCG_REG_R11,
110 TCG_REG_R2,
111 TCG_REG_R13,
112 TCG_REG_R10, /* call clobbered, arguments */
113 TCG_REG_R9,
114 TCG_REG_R8,
115 TCG_REG_R7,
116 TCG_REG_R6,
117 TCG_REG_R5,
118 TCG_REG_R4,
119 TCG_REG_R3,
120
121 /* V0 and V1 reserved as temporaries; V20 - V31 are call-saved */
122 TCG_REG_V2, /* call clobbered, vectors */
123 TCG_REG_V3,
124 TCG_REG_V4,
125 TCG_REG_V5,
126 TCG_REG_V6,
127 TCG_REG_V7,
128 TCG_REG_V8,
129 TCG_REG_V9,
130 TCG_REG_V10,
131 TCG_REG_V11,
132 TCG_REG_V12,
133 TCG_REG_V13,
134 TCG_REG_V14,
135 TCG_REG_V15,
136 TCG_REG_V16,
137 TCG_REG_V17,
138 TCG_REG_V18,
139 TCG_REG_V19,
140 };
141
142 static const int tcg_target_call_iarg_regs[] = {
143 TCG_REG_R3,
144 TCG_REG_R4,
145 TCG_REG_R5,
146 TCG_REG_R6,
147 TCG_REG_R7,
148 TCG_REG_R8,
149 TCG_REG_R9,
150 TCG_REG_R10
151 };
152
153 static const int tcg_target_call_oarg_regs[] = {
154 TCG_REG_R3,
155 TCG_REG_R4
156 };
157
158 static const int tcg_target_callee_save_regs[] = {
159 #ifdef TCG_TARGET_CALL_DARWIN
160 TCG_REG_R11,
161 #endif
162 TCG_REG_R14,
163 TCG_REG_R15,
164 TCG_REG_R16,
165 TCG_REG_R17,
166 TCG_REG_R18,
167 TCG_REG_R19,
168 TCG_REG_R20,
169 TCG_REG_R21,
170 TCG_REG_R22,
171 TCG_REG_R23,
172 TCG_REG_R24,
173 TCG_REG_R25,
174 TCG_REG_R26,
175 TCG_REG_R27, /* currently used for the global env */
176 TCG_REG_R28,
177 TCG_REG_R29,
178 TCG_REG_R30,
179 TCG_REG_R31
180 };
181
182 static inline bool in_range_b(tcg_target_long target)
183 {
184 return target == sextract64(target, 0, 26);
185 }
186
187 static uint32_t reloc_pc24_val(tcg_insn_unit *pc, tcg_insn_unit *target)
188 {
189 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
190 tcg_debug_assert(in_range_b(disp));
191 return disp & 0x3fffffc;
192 }
193
194 static bool reloc_pc24(tcg_insn_unit *pc, tcg_insn_unit *target)
195 {
196 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
197 if (in_range_b(disp)) {
198 *pc = (*pc & ~0x3fffffc) | (disp & 0x3fffffc);
199 return true;
200 }
201 return false;
202 }
203
204 static uint16_t reloc_pc14_val(tcg_insn_unit *pc, tcg_insn_unit *target)
205 {
206 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
207 tcg_debug_assert(disp == (int16_t) disp);
208 return disp & 0xfffc;
209 }
210
211 static bool reloc_pc14(tcg_insn_unit *pc, tcg_insn_unit *target)
212 {
213 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
214 if (disp == (int16_t) disp) {
215 *pc = (*pc & ~0xfffc) | (disp & 0xfffc);
216 return true;
217 }
218 return false;
219 }
220
221 /* parse target specific constraints */
222 static const char *target_parse_constraint(TCGArgConstraint *ct,
223 const char *ct_str, TCGType type)
224 {
225 switch (*ct_str++) {
226 case 'A': case 'B': case 'C': case 'D':
227 ct->ct |= TCG_CT_REG;
228 tcg_regset_set_reg(ct->u.regs, 3 + ct_str[0] - 'A');
229 break;
230 case 'r':
231 ct->ct |= TCG_CT_REG;
232 ct->u.regs = 0xffffffff;
233 break;
234 case 'v':
235 ct->ct |= TCG_CT_REG;
236 ct->u.regs = 0xffffffff00000000ull;
237 break;
238 case 'L': /* qemu_ld constraint */
239 ct->ct |= TCG_CT_REG;
240 ct->u.regs = 0xffffffff;
241 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R3);
242 #ifdef CONFIG_SOFTMMU
243 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R4);
244 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R5);
245 #endif
246 break;
247 case 'S': /* qemu_st constraint */
248 ct->ct |= TCG_CT_REG;
249 ct->u.regs = 0xffffffff;
250 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R3);
251 #ifdef CONFIG_SOFTMMU
252 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R4);
253 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R5);
254 tcg_regset_reset_reg(ct->u.regs, TCG_REG_R6);
255 #endif
256 break;
257 case 'I':
258 ct->ct |= TCG_CT_CONST_S16;
259 break;
260 case 'J':
261 ct->ct |= TCG_CT_CONST_U16;
262 break;
263 case 'M':
264 ct->ct |= TCG_CT_CONST_MONE;
265 break;
266 case 'T':
267 ct->ct |= TCG_CT_CONST_S32;
268 break;
269 case 'U':
270 ct->ct |= TCG_CT_CONST_U32;
271 break;
272 case 'W':
273 ct->ct |= TCG_CT_CONST_WSZ;
274 break;
275 case 'Z':
276 ct->ct |= TCG_CT_CONST_ZERO;
277 break;
278 default:
279 return NULL;
280 }
281 return ct_str;
282 }
283
284 /* test if a constant matches the constraint */
285 static int tcg_target_const_match(tcg_target_long val, TCGType type,
286 const TCGArgConstraint *arg_ct)
287 {
288 int ct = arg_ct->ct;
289 if (ct & TCG_CT_CONST) {
290 return 1;
291 }
292
293 /* The only 32-bit constraint we use aside from
294 TCG_CT_CONST is TCG_CT_CONST_S16. */
295 if (type == TCG_TYPE_I32) {
296 val = (int32_t)val;
297 }
298
299 if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) {
300 return 1;
301 } else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) {
302 return 1;
303 } else if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
304 return 1;
305 } else if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
306 return 1;
307 } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
308 return 1;
309 } else if ((ct & TCG_CT_CONST_MONE) && val == -1) {
310 return 1;
311 } else if ((ct & TCG_CT_CONST_WSZ)
312 && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
313 return 1;
314 }
315 return 0;
316 }
317
318 #define OPCD(opc) ((opc)<<26)
319 #define XO19(opc) (OPCD(19)|((opc)<<1))
320 #define MD30(opc) (OPCD(30)|((opc)<<2))
321 #define MDS30(opc) (OPCD(30)|((opc)<<1))
322 #define XO31(opc) (OPCD(31)|((opc)<<1))
323 #define XO58(opc) (OPCD(58)|(opc))
324 #define XO62(opc) (OPCD(62)|(opc))
325 #define VX4(opc) (OPCD(4)|(opc))
326
327 #define B OPCD( 18)
328 #define BC OPCD( 16)
329 #define LBZ OPCD( 34)
330 #define LHZ OPCD( 40)
331 #define LHA OPCD( 42)
332 #define LWZ OPCD( 32)
333 #define LWZUX XO31( 55)
334 #define STB OPCD( 38)
335 #define STH OPCD( 44)
336 #define STW OPCD( 36)
337
338 #define STD XO62( 0)
339 #define STDU XO62( 1)
340 #define STDX XO31(149)
341
342 #define LD XO58( 0)
343 #define LDX XO31( 21)
344 #define LDU XO58( 1)
345 #define LDUX XO31( 53)
346 #define LWA XO58( 2)
347 #define LWAX XO31(341)
348
349 #define ADDIC OPCD( 12)
350 #define ADDI OPCD( 14)
351 #define ADDIS OPCD( 15)
352 #define ORI OPCD( 24)
353 #define ORIS OPCD( 25)
354 #define XORI OPCD( 26)
355 #define XORIS OPCD( 27)
356 #define ANDI OPCD( 28)
357 #define ANDIS OPCD( 29)
358 #define MULLI OPCD( 7)
359 #define CMPLI OPCD( 10)
360 #define CMPI OPCD( 11)
361 #define SUBFIC OPCD( 8)
362
363 #define LWZU OPCD( 33)
364 #define STWU OPCD( 37)
365
366 #define RLWIMI OPCD( 20)
367 #define RLWINM OPCD( 21)
368 #define RLWNM OPCD( 23)
369
370 #define RLDICL MD30( 0)
371 #define RLDICR MD30( 1)
372 #define RLDIMI MD30( 3)
373 #define RLDCL MDS30( 8)
374
375 #define BCLR XO19( 16)
376 #define BCCTR XO19(528)
377 #define CRAND XO19(257)
378 #define CRANDC XO19(129)
379 #define CRNAND XO19(225)
380 #define CROR XO19(449)
381 #define CRNOR XO19( 33)
382
383 #define EXTSB XO31(954)
384 #define EXTSH XO31(922)
385 #define EXTSW XO31(986)
386 #define ADD XO31(266)
387 #define ADDE XO31(138)
388 #define ADDME XO31(234)
389 #define ADDZE XO31(202)
390 #define ADDC XO31( 10)
391 #define AND XO31( 28)
392 #define SUBF XO31( 40)
393 #define SUBFC XO31( 8)
394 #define SUBFE XO31(136)
395 #define SUBFME XO31(232)
396 #define SUBFZE XO31(200)
397 #define OR XO31(444)
398 #define XOR XO31(316)
399 #define MULLW XO31(235)
400 #define MULHW XO31( 75)
401 #define MULHWU XO31( 11)
402 #define DIVW XO31(491)
403 #define DIVWU XO31(459)
404 #define CMP XO31( 0)
405 #define CMPL XO31( 32)
406 #define LHBRX XO31(790)
407 #define LWBRX XO31(534)
408 #define LDBRX XO31(532)
409 #define STHBRX XO31(918)
410 #define STWBRX XO31(662)
411 #define STDBRX XO31(660)
412 #define MFSPR XO31(339)
413 #define MTSPR XO31(467)
414 #define SRAWI XO31(824)
415 #define NEG XO31(104)
416 #define MFCR XO31( 19)
417 #define MFOCRF (MFCR | (1u << 20))
418 #define NOR XO31(124)
419 #define CNTLZW XO31( 26)
420 #define CNTLZD XO31( 58)
421 #define CNTTZW XO31(538)
422 #define CNTTZD XO31(570)
423 #define CNTPOPW XO31(378)
424 #define CNTPOPD XO31(506)
425 #define ANDC XO31( 60)
426 #define ORC XO31(412)
427 #define EQV XO31(284)
428 #define NAND XO31(476)
429 #define ISEL XO31( 15)
430
431 #define MULLD XO31(233)
432 #define MULHD XO31( 73)
433 #define MULHDU XO31( 9)
434 #define DIVD XO31(489)
435 #define DIVDU XO31(457)
436
437 #define LBZX XO31( 87)
438 #define LHZX XO31(279)
439 #define LHAX XO31(343)
440 #define LWZX XO31( 23)
441 #define STBX XO31(215)
442 #define STHX XO31(407)
443 #define STWX XO31(151)
444
445 #define EIEIO XO31(854)
446 #define HWSYNC XO31(598)
447 #define LWSYNC (HWSYNC | (1u << 21))
448
449 #define SPR(a, b) ((((a)<<5)|(b))<<11)
450 #define LR SPR(8, 0)
451 #define CTR SPR(9, 0)
452
453 #define SLW XO31( 24)
454 #define SRW XO31(536)
455 #define SRAW XO31(792)
456
457 #define SLD XO31( 27)
458 #define SRD XO31(539)
459 #define SRAD XO31(794)
460 #define SRADI XO31(413<<1)
461
462 #define TW XO31( 4)
463 #define TRAP (TW | TO(31))
464
465 #define NOP ORI /* ori 0,0,0 */
466
467 #define LVX XO31(103)
468 #define LVEBX XO31(7)
469 #define LVEHX XO31(39)
470 #define LVEWX XO31(71)
471 #define LXSDX (XO31(588) | 1) /* v2.06, force tx=1 */
472 #define LXVDSX (XO31(332) | 1) /* v2.06, force tx=1 */
473 #define LXSIWZX (XO31(12) | 1) /* v2.07, force tx=1 */
474 #define LXV (OPCD(61) | 8 | 1) /* v3.00, force tx=1 */
475 #define LXSD (OPCD(57) | 2) /* v3.00 */
476 #define LXVWSX (XO31(364) | 1) /* v3.00, force tx=1 */
477
478 #define STVX XO31(231)
479 #define STVEWX XO31(199)
480 #define STXSDX (XO31(716) | 1) /* v2.06, force sx=1 */
481 #define STXSIWX (XO31(140) | 1) /* v2.07, force sx=1 */
482 #define STXV (OPCD(61) | 8 | 5) /* v3.00, force sx=1 */
483 #define STXSD (OPCD(61) | 2) /* v3.00 */
484
485 #define VADDSBS VX4(768)
486 #define VADDUBS VX4(512)
487 #define VADDUBM VX4(0)
488 #define VADDSHS VX4(832)
489 #define VADDUHS VX4(576)
490 #define VADDUHM VX4(64)
491 #define VADDSWS VX4(896)
492 #define VADDUWS VX4(640)
493 #define VADDUWM VX4(128)
494 #define VADDUDM VX4(192) /* v2.07 */
495
496 #define VSUBSBS VX4(1792)
497 #define VSUBUBS VX4(1536)
498 #define VSUBUBM VX4(1024)
499 #define VSUBSHS VX4(1856)
500 #define VSUBUHS VX4(1600)
501 #define VSUBUHM VX4(1088)
502 #define VSUBSWS VX4(1920)
503 #define VSUBUWS VX4(1664)
504 #define VSUBUWM VX4(1152)
505 #define VSUBUDM VX4(1216) /* v2.07 */
506
507 #define VNEGW (VX4(1538) | (6 << 16)) /* v3.00 */
508 #define VNEGD (VX4(1538) | (7 << 16)) /* v3.00 */
509
510 #define VMAXSB VX4(258)
511 #define VMAXSH VX4(322)
512 #define VMAXSW VX4(386)
513 #define VMAXSD VX4(450) /* v2.07 */
514 #define VMAXUB VX4(2)
515 #define VMAXUH VX4(66)
516 #define VMAXUW VX4(130)
517 #define VMAXUD VX4(194) /* v2.07 */
518 #define VMINSB VX4(770)
519 #define VMINSH VX4(834)
520 #define VMINSW VX4(898)
521 #define VMINSD VX4(962) /* v2.07 */
522 #define VMINUB VX4(514)
523 #define VMINUH VX4(578)
524 #define VMINUW VX4(642)
525 #define VMINUD VX4(706) /* v2.07 */
526
527 #define VCMPEQUB VX4(6)
528 #define VCMPEQUH VX4(70)
529 #define VCMPEQUW VX4(134)
530 #define VCMPEQUD VX4(199) /* v2.07 */
531 #define VCMPGTSB VX4(774)
532 #define VCMPGTSH VX4(838)
533 #define VCMPGTSW VX4(902)
534 #define VCMPGTSD VX4(967) /* v2.07 */
535 #define VCMPGTUB VX4(518)
536 #define VCMPGTUH VX4(582)
537 #define VCMPGTUW VX4(646)
538 #define VCMPGTUD VX4(711) /* v2.07 */
539 #define VCMPNEB VX4(7) /* v3.00 */
540 #define VCMPNEH VX4(71) /* v3.00 */
541 #define VCMPNEW VX4(135) /* v3.00 */
542
543 #define VSLB VX4(260)
544 #define VSLH VX4(324)
545 #define VSLW VX4(388)
546 #define VSLD VX4(1476) /* v2.07 */
547 #define VSRB VX4(516)
548 #define VSRH VX4(580)
549 #define VSRW VX4(644)
550 #define VSRD VX4(1732) /* v2.07 */
551 #define VSRAB VX4(772)
552 #define VSRAH VX4(836)
553 #define VSRAW VX4(900)
554 #define VSRAD VX4(964) /* v2.07 */
555 #define VRLB VX4(4)
556 #define VRLH VX4(68)
557 #define VRLW VX4(132)
558 #define VRLD VX4(196) /* v2.07 */
559
560 #define VMULEUB VX4(520)
561 #define VMULEUH VX4(584)
562 #define VMULEUW VX4(648) /* v2.07 */
563 #define VMULOUB VX4(8)
564 #define VMULOUH VX4(72)
565 #define VMULOUW VX4(136) /* v2.07 */
566 #define VMULUWM VX4(137) /* v2.07 */
567 #define VMSUMUHM VX4(38)
568
569 #define VMRGHB VX4(12)
570 #define VMRGHH VX4(76)
571 #define VMRGHW VX4(140)
572 #define VMRGLB VX4(268)
573 #define VMRGLH VX4(332)
574 #define VMRGLW VX4(396)
575
576 #define VPKUHUM VX4(14)
577 #define VPKUWUM VX4(78)
578
579 #define VAND VX4(1028)
580 #define VANDC VX4(1092)
581 #define VNOR VX4(1284)
582 #define VOR VX4(1156)
583 #define VXOR VX4(1220)
584 #define VEQV VX4(1668) /* v2.07 */
585 #define VNAND VX4(1412) /* v2.07 */
586 #define VORC VX4(1348) /* v2.07 */
587
588 #define VSPLTB VX4(524)
589 #define VSPLTH VX4(588)
590 #define VSPLTW VX4(652)
591 #define VSPLTISB VX4(780)
592 #define VSPLTISH VX4(844)
593 #define VSPLTISW VX4(908)
594
595 #define VSLDOI VX4(44)
596
597 #define XXPERMDI (OPCD(60) | (10 << 3) | 7) /* v2.06, force ax=bx=tx=1 */
598 #define XXSEL (OPCD(60) | (3 << 4) | 0xf) /* v2.06, force ax=bx=cx=tx=1 */
599 #define XXSPLTIB (OPCD(60) | (360 << 1) | 1) /* v3.00, force tx=1 */
600
601 #define MFVSRD (XO31(51) | 1) /* v2.07, force sx=1 */
602 #define MFVSRWZ (XO31(115) | 1) /* v2.07, force sx=1 */
603 #define MTVSRD (XO31(179) | 1) /* v2.07, force tx=1 */
604 #define MTVSRWZ (XO31(243) | 1) /* v2.07, force tx=1 */
605 #define MTVSRDD (XO31(435) | 1) /* v3.00, force tx=1 */
606 #define MTVSRWS (XO31(403) | 1) /* v3.00, force tx=1 */
607
608 #define RT(r) ((r)<<21)
609 #define RS(r) ((r)<<21)
610 #define RA(r) ((r)<<16)
611 #define RB(r) ((r)<<11)
612 #define TO(t) ((t)<<21)
613 #define SH(s) ((s)<<11)
614 #define MB(b) ((b)<<6)
615 #define ME(e) ((e)<<1)
616 #define BO(o) ((o)<<21)
617 #define MB64(b) ((b)<<5)
618 #define FXM(b) (1 << (19 - (b)))
619
620 #define VRT(r) (((r) & 31) << 21)
621 #define VRA(r) (((r) & 31) << 16)
622 #define VRB(r) (((r) & 31) << 11)
623 #define VRC(r) (((r) & 31) << 6)
624
625 #define LK 1
626
627 #define TAB(t, a, b) (RT(t) | RA(a) | RB(b))
628 #define SAB(s, a, b) (RS(s) | RA(a) | RB(b))
629 #define TAI(s, a, i) (RT(s) | RA(a) | ((i) & 0xffff))
630 #define SAI(s, a, i) (RS(s) | RA(a) | ((i) & 0xffff))
631
632 #define BF(n) ((n)<<23)
633 #define BI(n, c) (((c)+((n)*4))<<16)
634 #define BT(n, c) (((c)+((n)*4))<<21)
635 #define BA(n, c) (((c)+((n)*4))<<16)
636 #define BB(n, c) (((c)+((n)*4))<<11)
637 #define BC_(n, c) (((c)+((n)*4))<<6)
638
639 #define BO_COND_TRUE BO(12)
640 #define BO_COND_FALSE BO( 4)
641 #define BO_ALWAYS BO(20)
642
643 enum {
644 CR_LT,
645 CR_GT,
646 CR_EQ,
647 CR_SO
648 };
649
650 static const uint32_t tcg_to_bc[] = {
651 [TCG_COND_EQ] = BC | BI(7, CR_EQ) | BO_COND_TRUE,
652 [TCG_COND_NE] = BC | BI(7, CR_EQ) | BO_COND_FALSE,
653 [TCG_COND_LT] = BC | BI(7, CR_LT) | BO_COND_TRUE,
654 [TCG_COND_GE] = BC | BI(7, CR_LT) | BO_COND_FALSE,
655 [TCG_COND_LE] = BC | BI(7, CR_GT) | BO_COND_FALSE,
656 [TCG_COND_GT] = BC | BI(7, CR_GT) | BO_COND_TRUE,
657 [TCG_COND_LTU] = BC | BI(7, CR_LT) | BO_COND_TRUE,
658 [TCG_COND_GEU] = BC | BI(7, CR_LT) | BO_COND_FALSE,
659 [TCG_COND_LEU] = BC | BI(7, CR_GT) | BO_COND_FALSE,
660 [TCG_COND_GTU] = BC | BI(7, CR_GT) | BO_COND_TRUE,
661 };
662
663 /* The low bit here is set if the RA and RB fields must be inverted. */
664 static const uint32_t tcg_to_isel[] = {
665 [TCG_COND_EQ] = ISEL | BC_(7, CR_EQ),
666 [TCG_COND_NE] = ISEL | BC_(7, CR_EQ) | 1,
667 [TCG_COND_LT] = ISEL | BC_(7, CR_LT),
668 [TCG_COND_GE] = ISEL | BC_(7, CR_LT) | 1,
669 [TCG_COND_LE] = ISEL | BC_(7, CR_GT) | 1,
670 [TCG_COND_GT] = ISEL | BC_(7, CR_GT),
671 [TCG_COND_LTU] = ISEL | BC_(7, CR_LT),
672 [TCG_COND_GEU] = ISEL | BC_(7, CR_LT) | 1,
673 [TCG_COND_LEU] = ISEL | BC_(7, CR_GT) | 1,
674 [TCG_COND_GTU] = ISEL | BC_(7, CR_GT),
675 };
676
677 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
678 intptr_t value, intptr_t addend)
679 {
680 tcg_insn_unit *target;
681 int16_t lo;
682 int32_t hi;
683
684 value += addend;
685 target = (tcg_insn_unit *)value;
686
687 switch (type) {
688 case R_PPC_REL14:
689 return reloc_pc14(code_ptr, target);
690 case R_PPC_REL24:
691 return reloc_pc24(code_ptr, target);
692 case R_PPC_ADDR16:
693 /*
694 * We are (slightly) abusing this relocation type. In particular,
695 * assert that the low 2 bits are zero, and do not modify them.
696 * That way we can use this with LD et al that have opcode bits
697 * in the low 2 bits of the insn.
698 */
699 if ((value & 3) || value != (int16_t)value) {
700 return false;
701 }
702 *code_ptr = (*code_ptr & ~0xfffc) | (value & 0xfffc);
703 break;
704 case R_PPC_ADDR32:
705 /*
706 * We are abusing this relocation type. Again, this points to
707 * a pair of insns, lis + load. This is an absolute address
708 * relocation for PPC32 so the lis cannot be removed.
709 */
710 lo = value;
711 hi = value - lo;
712 if (hi + lo != value) {
713 return false;
714 }
715 code_ptr[0] = deposit32(code_ptr[0], 0, 16, hi >> 16);
716 code_ptr[1] = deposit32(code_ptr[1], 0, 16, lo);
717 break;
718 default:
719 g_assert_not_reached();
720 }
721 return true;
722 }
723
724 static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
725 TCGReg base, tcg_target_long offset);
726
727 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
728 {
729 if (ret == arg) {
730 return true;
731 }
732 switch (type) {
733 case TCG_TYPE_I64:
734 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
735 /* fallthru */
736 case TCG_TYPE_I32:
737 if (ret < TCG_REG_V0) {
738 if (arg < TCG_REG_V0) {
739 tcg_out32(s, OR | SAB(arg, ret, arg));
740 break;
741 } else if (have_isa_2_07) {
742 tcg_out32(s, (type == TCG_TYPE_I32 ? MFVSRWZ : MFVSRD)
743 | VRT(arg) | RA(ret));
744 break;
745 } else {
746 /* Altivec does not support vector->integer moves. */
747 return false;
748 }
749 } else if (arg < TCG_REG_V0) {
750 if (have_isa_2_07) {
751 tcg_out32(s, (type == TCG_TYPE_I32 ? MTVSRWZ : MTVSRD)
752 | VRT(ret) | RA(arg));
753 break;
754 } else {
755 /* Altivec does not support integer->vector moves. */
756 return false;
757 }
758 }
759 /* fallthru */
760 case TCG_TYPE_V64:
761 case TCG_TYPE_V128:
762 tcg_debug_assert(ret >= TCG_REG_V0 && arg >= TCG_REG_V0);
763 tcg_out32(s, VOR | VRT(ret) | VRA(arg) | VRB(arg));
764 break;
765 default:
766 g_assert_not_reached();
767 }
768 return true;
769 }
770
771 static inline void tcg_out_rld(TCGContext *s, int op, TCGReg ra, TCGReg rs,
772 int sh, int mb)
773 {
774 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
775 sh = SH(sh & 0x1f) | (((sh >> 5) & 1) << 1);
776 mb = MB64((mb >> 5) | ((mb << 1) & 0x3f));
777 tcg_out32(s, op | RA(ra) | RS(rs) | sh | mb);
778 }
779
780 static inline void tcg_out_rlw(TCGContext *s, int op, TCGReg ra, TCGReg rs,
781 int sh, int mb, int me)
782 {
783 tcg_out32(s, op | RA(ra) | RS(rs) | SH(sh) | MB(mb) | ME(me));
784 }
785
786 static inline void tcg_out_ext32u(TCGContext *s, TCGReg dst, TCGReg src)
787 {
788 tcg_out_rld(s, RLDICL, dst, src, 0, 32);
789 }
790
791 static inline void tcg_out_shli32(TCGContext *s, TCGReg dst, TCGReg src, int c)
792 {
793 tcg_out_rlw(s, RLWINM, dst, src, c, 0, 31 - c);
794 }
795
796 static inline void tcg_out_shli64(TCGContext *s, TCGReg dst, TCGReg src, int c)
797 {
798 tcg_out_rld(s, RLDICR, dst, src, c, 63 - c);
799 }
800
801 static inline void tcg_out_shri32(TCGContext *s, TCGReg dst, TCGReg src, int c)
802 {
803 tcg_out_rlw(s, RLWINM, dst, src, 32 - c, c, 31);
804 }
805
806 static inline void tcg_out_shri64(TCGContext *s, TCGReg dst, TCGReg src, int c)
807 {
808 tcg_out_rld(s, RLDICL, dst, src, 64 - c, c);
809 }
810
811 /* Emit a move into ret of arg, if it can be done in one insn. */
812 static bool tcg_out_movi_one(TCGContext *s, TCGReg ret, tcg_target_long arg)
813 {
814 if (arg == (int16_t)arg) {
815 tcg_out32(s, ADDI | TAI(ret, 0, arg));
816 return true;
817 }
818 if (arg == (int32_t)arg && (arg & 0xffff) == 0) {
819 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
820 return true;
821 }
822 return false;
823 }
824
825 static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
826 tcg_target_long arg, bool in_prologue)
827 {
828 intptr_t tb_diff;
829 tcg_target_long tmp;
830 int shift;
831
832 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
833
834 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
835 arg = (int32_t)arg;
836 }
837
838 /* Load 16-bit immediates with one insn. */
839 if (tcg_out_movi_one(s, ret, arg)) {
840 return;
841 }
842
843 /* Load addresses within the TB with one insn. */
844 tb_diff = arg - (intptr_t)s->code_gen_ptr;
845 if (!in_prologue && USE_REG_TB && tb_diff == (int16_t)tb_diff) {
846 tcg_out32(s, ADDI | TAI(ret, TCG_REG_TB, tb_diff));
847 return;
848 }
849
850 /* Load 32-bit immediates with two insns. Note that we've already
851 eliminated bare ADDIS, so we know both insns are required. */
852 if (TCG_TARGET_REG_BITS == 32 || arg == (int32_t)arg) {
853 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
854 tcg_out32(s, ORI | SAI(ret, ret, arg));
855 return;
856 }
857 if (arg == (uint32_t)arg && !(arg & 0x8000)) {
858 tcg_out32(s, ADDI | TAI(ret, 0, arg));
859 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
860 return;
861 }
862
863 /* Load masked 16-bit value. */
864 if (arg > 0 && (arg & 0x8000)) {
865 tmp = arg | 0x7fff;
866 if ((tmp & (tmp + 1)) == 0) {
867 int mb = clz64(tmp + 1) + 1;
868 tcg_out32(s, ADDI | TAI(ret, 0, arg));
869 tcg_out_rld(s, RLDICL, ret, ret, 0, mb);
870 return;
871 }
872 }
873
874 /* Load common masks with 2 insns. */
875 shift = ctz64(arg);
876 tmp = arg >> shift;
877 if (tmp == (int16_t)tmp) {
878 tcg_out32(s, ADDI | TAI(ret, 0, tmp));
879 tcg_out_shli64(s, ret, ret, shift);
880 return;
881 }
882 shift = clz64(arg);
883 if (tcg_out_movi_one(s, ret, arg << shift)) {
884 tcg_out_shri64(s, ret, ret, shift);
885 return;
886 }
887
888 /* Load addresses within 2GB of TB with 2 (or rarely 3) insns. */
889 if (!in_prologue && USE_REG_TB && tb_diff == (int32_t)tb_diff) {
890 tcg_out_mem_long(s, ADDI, ADD, ret, TCG_REG_TB, tb_diff);
891 return;
892 }
893
894 /* Use the constant pool, if possible. */
895 if (!in_prologue && USE_REG_TB) {
896 new_pool_label(s, arg, R_PPC_ADDR16, s->code_ptr,
897 -(intptr_t)s->code_gen_ptr);
898 tcg_out32(s, LD | TAI(ret, TCG_REG_TB, 0));
899 return;
900 }
901
902 tmp = arg >> 31 >> 1;
903 tcg_out_movi(s, TCG_TYPE_I32, ret, tmp);
904 if (tmp) {
905 tcg_out_shli64(s, ret, ret, 32);
906 }
907 if (arg & 0xffff0000) {
908 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
909 }
910 if (arg & 0xffff) {
911 tcg_out32(s, ORI | SAI(ret, ret, arg));
912 }
913 }
914
915 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, TCGReg ret,
916 tcg_target_long val)
917 {
918 uint32_t load_insn;
919 int rel, low;
920 intptr_t add;
921
922 low = (int8_t)val;
923 if (low >= -16 && low < 16) {
924 if (val == (tcg_target_long)dup_const(MO_8, low)) {
925 tcg_out32(s, VSPLTISB | VRT(ret) | ((val & 31) << 16));
926 return;
927 }
928 if (val == (tcg_target_long)dup_const(MO_16, low)) {
929 tcg_out32(s, VSPLTISH | VRT(ret) | ((val & 31) << 16));
930 return;
931 }
932 if (val == (tcg_target_long)dup_const(MO_32, low)) {
933 tcg_out32(s, VSPLTISW | VRT(ret) | ((val & 31) << 16));
934 return;
935 }
936 }
937 if (have_isa_3_00 && val == (tcg_target_long)dup_const(MO_8, val)) {
938 tcg_out32(s, XXSPLTIB | VRT(ret) | ((val & 0xff) << 11));
939 return;
940 }
941
942 /*
943 * Otherwise we must load the value from the constant pool.
944 */
945 if (USE_REG_TB) {
946 rel = R_PPC_ADDR16;
947 add = -(intptr_t)s->code_gen_ptr;
948 } else {
949 rel = R_PPC_ADDR32;
950 add = 0;
951 }
952
953 if (have_vsx) {
954 load_insn = type == TCG_TYPE_V64 ? LXSDX : LXVDSX;
955 load_insn |= VRT(ret) | RB(TCG_REG_TMP1);
956 if (TCG_TARGET_REG_BITS == 64) {
957 new_pool_label(s, val, rel, s->code_ptr, add);
958 } else {
959 new_pool_l2(s, rel, s->code_ptr, add, val, val);
960 }
961 } else {
962 load_insn = LVX | VRT(ret) | RB(TCG_REG_TMP1);
963 if (TCG_TARGET_REG_BITS == 64) {
964 new_pool_l2(s, rel, s->code_ptr, add, val, val);
965 } else {
966 new_pool_l4(s, rel, s->code_ptr, add, val, val, val, val);
967 }
968 }
969
970 if (USE_REG_TB) {
971 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, 0, 0));
972 load_insn |= RA(TCG_REG_TB);
973 } else {
974 tcg_out32(s, ADDIS | TAI(TCG_REG_TMP1, 0, 0));
975 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, TCG_REG_TMP1, 0));
976 }
977 tcg_out32(s, load_insn);
978 }
979
980 static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret,
981 tcg_target_long arg)
982 {
983 switch (type) {
984 case TCG_TYPE_I32:
985 case TCG_TYPE_I64:
986 tcg_debug_assert(ret < TCG_REG_V0);
987 tcg_out_movi_int(s, type, ret, arg, false);
988 break;
989
990 case TCG_TYPE_V64:
991 case TCG_TYPE_V128:
992 tcg_debug_assert(ret >= TCG_REG_V0);
993 tcg_out_dupi_vec(s, type, ret, arg);
994 break;
995
996 default:
997 g_assert_not_reached();
998 }
999 }
1000
1001 static bool mask_operand(uint32_t c, int *mb, int *me)
1002 {
1003 uint32_t lsb, test;
1004
1005 /* Accept a bit pattern like:
1006 0....01....1
1007 1....10....0
1008 0..01..10..0
1009 Keep track of the transitions. */
1010 if (c == 0 || c == -1) {
1011 return false;
1012 }
1013 test = c;
1014 lsb = test & -test;
1015 test += lsb;
1016 if (test & (test - 1)) {
1017 return false;
1018 }
1019
1020 *me = clz32(lsb);
1021 *mb = test ? clz32(test & -test) + 1 : 0;
1022 return true;
1023 }
1024
1025 static bool mask64_operand(uint64_t c, int *mb, int *me)
1026 {
1027 uint64_t lsb;
1028
1029 if (c == 0) {
1030 return false;
1031 }
1032
1033 lsb = c & -c;
1034 /* Accept 1..10..0. */
1035 if (c == -lsb) {
1036 *mb = 0;
1037 *me = clz64(lsb);
1038 return true;
1039 }
1040 /* Accept 0..01..1. */
1041 if (lsb == 1 && (c & (c + 1)) == 0) {
1042 *mb = clz64(c + 1) + 1;
1043 *me = 63;
1044 return true;
1045 }
1046 return false;
1047 }
1048
1049 static void tcg_out_andi32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1050 {
1051 int mb, me;
1052
1053 if (mask_operand(c, &mb, &me)) {
1054 tcg_out_rlw(s, RLWINM, dst, src, 0, mb, me);
1055 } else if ((c & 0xffff) == c) {
1056 tcg_out32(s, ANDI | SAI(src, dst, c));
1057 return;
1058 } else if ((c & 0xffff0000) == c) {
1059 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
1060 return;
1061 } else {
1062 tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R0, c);
1063 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
1064 }
1065 }
1066
1067 static void tcg_out_andi64(TCGContext *s, TCGReg dst, TCGReg src, uint64_t c)
1068 {
1069 int mb, me;
1070
1071 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1072 if (mask64_operand(c, &mb, &me)) {
1073 if (mb == 0) {
1074 tcg_out_rld(s, RLDICR, dst, src, 0, me);
1075 } else {
1076 tcg_out_rld(s, RLDICL, dst, src, 0, mb);
1077 }
1078 } else if ((c & 0xffff) == c) {
1079 tcg_out32(s, ANDI | SAI(src, dst, c));
1080 return;
1081 } else if ((c & 0xffff0000) == c) {
1082 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
1083 return;
1084 } else {
1085 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, c);
1086 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
1087 }
1088 }
1089
1090 static void tcg_out_zori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c,
1091 int op_lo, int op_hi)
1092 {
1093 if (c >> 16) {
1094 tcg_out32(s, op_hi | SAI(src, dst, c >> 16));
1095 src = dst;
1096 }
1097 if (c & 0xffff) {
1098 tcg_out32(s, op_lo | SAI(src, dst, c));
1099 src = dst;
1100 }
1101 }
1102
1103 static void tcg_out_ori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1104 {
1105 tcg_out_zori32(s, dst, src, c, ORI, ORIS);
1106 }
1107
1108 static void tcg_out_xori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1109 {
1110 tcg_out_zori32(s, dst, src, c, XORI, XORIS);
1111 }
1112
1113 static void tcg_out_b(TCGContext *s, int mask, tcg_insn_unit *target)
1114 {
1115 ptrdiff_t disp = tcg_pcrel_diff(s, target);
1116 if (in_range_b(disp)) {
1117 tcg_out32(s, B | (disp & 0x3fffffc) | mask);
1118 } else {
1119 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, (uintptr_t)target);
1120 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | CTR);
1121 tcg_out32(s, BCCTR | BO_ALWAYS | mask);
1122 }
1123 }
1124
1125 static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
1126 TCGReg base, tcg_target_long offset)
1127 {
1128 tcg_target_long orig = offset, l0, l1, extra = 0, align = 0;
1129 bool is_int_store = false;
1130 TCGReg rs = TCG_REG_TMP1;
1131
1132 switch (opi) {
1133 case LD: case LWA:
1134 align = 3;
1135 /* FALLTHRU */
1136 default:
1137 if (rt > TCG_REG_R0 && rt < TCG_REG_V0) {
1138 rs = rt;
1139 break;
1140 }
1141 break;
1142 case LXSD:
1143 case STXSD:
1144 align = 3;
1145 break;
1146 case LXV:
1147 case STXV:
1148 align = 15;
1149 break;
1150 case STD:
1151 align = 3;
1152 /* FALLTHRU */
1153 case STB: case STH: case STW:
1154 is_int_store = true;
1155 break;
1156 }
1157
1158 /* For unaligned, or very large offsets, use the indexed form. */
1159 if (offset & align || offset != (int32_t)offset || opi == 0) {
1160 if (rs == base) {
1161 rs = TCG_REG_R0;
1162 }
1163 tcg_debug_assert(!is_int_store || rs != rt);
1164 tcg_out_movi(s, TCG_TYPE_PTR, rs, orig);
1165 tcg_out32(s, opx | TAB(rt & 31, base, rs));
1166 return;
1167 }
1168
1169 l0 = (int16_t)offset;
1170 offset = (offset - l0) >> 16;
1171 l1 = (int16_t)offset;
1172
1173 if (l1 < 0 && orig >= 0) {
1174 extra = 0x4000;
1175 l1 = (int16_t)(offset - 0x4000);
1176 }
1177 if (l1) {
1178 tcg_out32(s, ADDIS | TAI(rs, base, l1));
1179 base = rs;
1180 }
1181 if (extra) {
1182 tcg_out32(s, ADDIS | TAI(rs, base, extra));
1183 base = rs;
1184 }
1185 if (opi != ADDI || base != rt || l0 != 0) {
1186 tcg_out32(s, opi | TAI(rt & 31, base, l0));
1187 }
1188 }
1189
1190 static void tcg_out_vsldoi(TCGContext *s, TCGReg ret,
1191 TCGReg va, TCGReg vb, int shb)
1192 {
1193 tcg_out32(s, VSLDOI | VRT(ret) | VRA(va) | VRB(vb) | (shb << 6));
1194 }
1195
1196 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1197 TCGReg base, intptr_t offset)
1198 {
1199 int shift;
1200
1201 switch (type) {
1202 case TCG_TYPE_I32:
1203 if (ret < TCG_REG_V0) {
1204 tcg_out_mem_long(s, LWZ, LWZX, ret, base, offset);
1205 break;
1206 }
1207 if (have_isa_2_07 && have_vsx) {
1208 tcg_out_mem_long(s, 0, LXSIWZX, ret, base, offset);
1209 break;
1210 }
1211 tcg_debug_assert((offset & 3) == 0);
1212 tcg_out_mem_long(s, 0, LVEWX, ret, base, offset);
1213 shift = (offset - 4) & 0xc;
1214 if (shift) {
1215 tcg_out_vsldoi(s, ret, ret, ret, shift);
1216 }
1217 break;
1218 case TCG_TYPE_I64:
1219 if (ret < TCG_REG_V0) {
1220 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1221 tcg_out_mem_long(s, LD, LDX, ret, base, offset);
1222 break;
1223 }
1224 /* fallthru */
1225 case TCG_TYPE_V64:
1226 tcg_debug_assert(ret >= TCG_REG_V0);
1227 if (have_vsx) {
1228 tcg_out_mem_long(s, have_isa_3_00 ? LXSD : 0, LXSDX,
1229 ret, base, offset);
1230 break;
1231 }
1232 tcg_debug_assert((offset & 7) == 0);
1233 tcg_out_mem_long(s, 0, LVX, ret, base, offset & -16);
1234 if (offset & 8) {
1235 tcg_out_vsldoi(s, ret, ret, ret, 8);
1236 }
1237 break;
1238 case TCG_TYPE_V128:
1239 tcg_debug_assert(ret >= TCG_REG_V0);
1240 tcg_debug_assert((offset & 15) == 0);
1241 tcg_out_mem_long(s, have_isa_3_00 ? LXV : 0,
1242 LVX, ret, base, offset);
1243 break;
1244 default:
1245 g_assert_not_reached();
1246 }
1247 }
1248
1249 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1250 TCGReg base, intptr_t offset)
1251 {
1252 int shift;
1253
1254 switch (type) {
1255 case TCG_TYPE_I32:
1256 if (arg < TCG_REG_V0) {
1257 tcg_out_mem_long(s, STW, STWX, arg, base, offset);
1258 break;
1259 }
1260 if (have_isa_2_07 && have_vsx) {
1261 tcg_out_mem_long(s, 0, STXSIWX, arg, base, offset);
1262 break;
1263 }
1264 assert((offset & 3) == 0);
1265 tcg_debug_assert((offset & 3) == 0);
1266 shift = (offset - 4) & 0xc;
1267 if (shift) {
1268 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, shift);
1269 arg = TCG_VEC_TMP1;
1270 }
1271 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
1272 break;
1273 case TCG_TYPE_I64:
1274 if (arg < TCG_REG_V0) {
1275 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1276 tcg_out_mem_long(s, STD, STDX, arg, base, offset);
1277 break;
1278 }
1279 /* fallthru */
1280 case TCG_TYPE_V64:
1281 tcg_debug_assert(arg >= TCG_REG_V0);
1282 if (have_vsx) {
1283 tcg_out_mem_long(s, have_isa_3_00 ? STXSD : 0,
1284 STXSDX, arg, base, offset);
1285 break;
1286 }
1287 tcg_debug_assert((offset & 7) == 0);
1288 if (offset & 8) {
1289 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, 8);
1290 arg = TCG_VEC_TMP1;
1291 }
1292 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
1293 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset + 4);
1294 break;
1295 case TCG_TYPE_V128:
1296 tcg_debug_assert(arg >= TCG_REG_V0);
1297 tcg_out_mem_long(s, have_isa_3_00 ? STXV : 0,
1298 STVX, arg, base, offset);
1299 break;
1300 default:
1301 g_assert_not_reached();
1302 }
1303 }
1304
1305 static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1306 TCGReg base, intptr_t ofs)
1307 {
1308 return false;
1309 }
1310
1311 static void tcg_out_cmp(TCGContext *s, int cond, TCGArg arg1, TCGArg arg2,
1312 int const_arg2, int cr, TCGType type)
1313 {
1314 int imm;
1315 uint32_t op;
1316
1317 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
1318
1319 /* Simplify the comparisons below wrt CMPI. */
1320 if (type == TCG_TYPE_I32) {
1321 arg2 = (int32_t)arg2;
1322 }
1323
1324 switch (cond) {
1325 case TCG_COND_EQ:
1326 case TCG_COND_NE:
1327 if (const_arg2) {
1328 if ((int16_t) arg2 == arg2) {
1329 op = CMPI;
1330 imm = 1;
1331 break;
1332 } else if ((uint16_t) arg2 == arg2) {
1333 op = CMPLI;
1334 imm = 1;
1335 break;
1336 }
1337 }
1338 op = CMPL;
1339 imm = 0;
1340 break;
1341
1342 case TCG_COND_LT:
1343 case TCG_COND_GE:
1344 case TCG_COND_LE:
1345 case TCG_COND_GT:
1346 if (const_arg2) {
1347 if ((int16_t) arg2 == arg2) {
1348 op = CMPI;
1349 imm = 1;
1350 break;
1351 }
1352 }
1353 op = CMP;
1354 imm = 0;
1355 break;
1356
1357 case TCG_COND_LTU:
1358 case TCG_COND_GEU:
1359 case TCG_COND_LEU:
1360 case TCG_COND_GTU:
1361 if (const_arg2) {
1362 if ((uint16_t) arg2 == arg2) {
1363 op = CMPLI;
1364 imm = 1;
1365 break;
1366 }
1367 }
1368 op = CMPL;
1369 imm = 0;
1370 break;
1371
1372 default:
1373 tcg_abort();
1374 }
1375 op |= BF(cr) | ((type == TCG_TYPE_I64) << 21);
1376
1377 if (imm) {
1378 tcg_out32(s, op | RA(arg1) | (arg2 & 0xffff));
1379 } else {
1380 if (const_arg2) {
1381 tcg_out_movi(s, type, TCG_REG_R0, arg2);
1382 arg2 = TCG_REG_R0;
1383 }
1384 tcg_out32(s, op | RA(arg1) | RB(arg2));
1385 }
1386 }
1387
1388 static void tcg_out_setcond_eq0(TCGContext *s, TCGType type,
1389 TCGReg dst, TCGReg src)
1390 {
1391 if (type == TCG_TYPE_I32) {
1392 tcg_out32(s, CNTLZW | RS(src) | RA(dst));
1393 tcg_out_shri32(s, dst, dst, 5);
1394 } else {
1395 tcg_out32(s, CNTLZD | RS(src) | RA(dst));
1396 tcg_out_shri64(s, dst, dst, 6);
1397 }
1398 }
1399
1400 static void tcg_out_setcond_ne0(TCGContext *s, TCGReg dst, TCGReg src)
1401 {
1402 /* X != 0 implies X + -1 generates a carry. Extra addition
1403 trickery means: R = X-1 + ~X + C = X-1 + (-X+1) + C = C. */
1404 if (dst != src) {
1405 tcg_out32(s, ADDIC | TAI(dst, src, -1));
1406 tcg_out32(s, SUBFE | TAB(dst, dst, src));
1407 } else {
1408 tcg_out32(s, ADDIC | TAI(TCG_REG_R0, src, -1));
1409 tcg_out32(s, SUBFE | TAB(dst, TCG_REG_R0, src));
1410 }
1411 }
1412
1413 static TCGReg tcg_gen_setcond_xor(TCGContext *s, TCGReg arg1, TCGArg arg2,
1414 bool const_arg2)
1415 {
1416 if (const_arg2) {
1417 if ((uint32_t)arg2 == arg2) {
1418 tcg_out_xori32(s, TCG_REG_R0, arg1, arg2);
1419 } else {
1420 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, arg2);
1421 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, TCG_REG_R0));
1422 }
1423 } else {
1424 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, arg2));
1425 }
1426 return TCG_REG_R0;
1427 }
1428
1429 static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond,
1430 TCGArg arg0, TCGArg arg1, TCGArg arg2,
1431 int const_arg2)
1432 {
1433 int crop, sh;
1434
1435 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
1436
1437 /* Ignore high bits of a potential constant arg2. */
1438 if (type == TCG_TYPE_I32) {
1439 arg2 = (uint32_t)arg2;
1440 }
1441
1442 /* Handle common and trivial cases before handling anything else. */
1443 if (arg2 == 0) {
1444 switch (cond) {
1445 case TCG_COND_EQ:
1446 tcg_out_setcond_eq0(s, type, arg0, arg1);
1447 return;
1448 case TCG_COND_NE:
1449 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
1450 tcg_out_ext32u(s, TCG_REG_R0, arg1);
1451 arg1 = TCG_REG_R0;
1452 }
1453 tcg_out_setcond_ne0(s, arg0, arg1);
1454 return;
1455 case TCG_COND_GE:
1456 tcg_out32(s, NOR | SAB(arg1, arg0, arg1));
1457 arg1 = arg0;
1458 /* FALLTHRU */
1459 case TCG_COND_LT:
1460 /* Extract the sign bit. */
1461 if (type == TCG_TYPE_I32) {
1462 tcg_out_shri32(s, arg0, arg1, 31);
1463 } else {
1464 tcg_out_shri64(s, arg0, arg1, 63);
1465 }
1466 return;
1467 default:
1468 break;
1469 }
1470 }
1471
1472 /* If we have ISEL, we can implement everything with 3 or 4 insns.
1473 All other cases below are also at least 3 insns, so speed up the
1474 code generator by not considering them and always using ISEL. */
1475 if (have_isel) {
1476 int isel, tab;
1477
1478 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1479
1480 isel = tcg_to_isel[cond];
1481
1482 tcg_out_movi(s, type, arg0, 1);
1483 if (isel & 1) {
1484 /* arg0 = (bc ? 0 : 1) */
1485 tab = TAB(arg0, 0, arg0);
1486 isel &= ~1;
1487 } else {
1488 /* arg0 = (bc ? 1 : 0) */
1489 tcg_out_movi(s, type, TCG_REG_R0, 0);
1490 tab = TAB(arg0, arg0, TCG_REG_R0);
1491 }
1492 tcg_out32(s, isel | tab);
1493 return;
1494 }
1495
1496 switch (cond) {
1497 case TCG_COND_EQ:
1498 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
1499 tcg_out_setcond_eq0(s, type, arg0, arg1);
1500 return;
1501
1502 case TCG_COND_NE:
1503 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
1504 /* Discard the high bits only once, rather than both inputs. */
1505 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
1506 tcg_out_ext32u(s, TCG_REG_R0, arg1);
1507 arg1 = TCG_REG_R0;
1508 }
1509 tcg_out_setcond_ne0(s, arg0, arg1);
1510 return;
1511
1512 case TCG_COND_GT:
1513 case TCG_COND_GTU:
1514 sh = 30;
1515 crop = 0;
1516 goto crtest;
1517
1518 case TCG_COND_LT:
1519 case TCG_COND_LTU:
1520 sh = 29;
1521 crop = 0;
1522 goto crtest;
1523
1524 case TCG_COND_GE:
1525 case TCG_COND_GEU:
1526 sh = 31;
1527 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_LT) | BB(7, CR_LT);
1528 goto crtest;
1529
1530 case TCG_COND_LE:
1531 case TCG_COND_LEU:
1532 sh = 31;
1533 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_GT) | BB(7, CR_GT);
1534 crtest:
1535 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1536 if (crop) {
1537 tcg_out32(s, crop);
1538 }
1539 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
1540 tcg_out_rlw(s, RLWINM, arg0, TCG_REG_R0, sh, 31, 31);
1541 break;
1542
1543 default:
1544 tcg_abort();
1545 }
1546 }
1547
1548 static void tcg_out_bc(TCGContext *s, int bc, TCGLabel *l)
1549 {
1550 if (l->has_value) {
1551 bc |= reloc_pc14_val(s->code_ptr, l->u.value_ptr);
1552 } else {
1553 tcg_out_reloc(s, s->code_ptr, R_PPC_REL14, l, 0);
1554 }
1555 tcg_out32(s, bc);
1556 }
1557
1558 static void tcg_out_brcond(TCGContext *s, TCGCond cond,
1559 TCGArg arg1, TCGArg arg2, int const_arg2,
1560 TCGLabel *l, TCGType type)
1561 {
1562 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1563 tcg_out_bc(s, tcg_to_bc[cond], l);
1564 }
1565
1566 static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond,
1567 TCGArg dest, TCGArg c1, TCGArg c2, TCGArg v1,
1568 TCGArg v2, bool const_c2)
1569 {
1570 /* If for some reason both inputs are zero, don't produce bad code. */
1571 if (v1 == 0 && v2 == 0) {
1572 tcg_out_movi(s, type, dest, 0);
1573 return;
1574 }
1575
1576 tcg_out_cmp(s, cond, c1, c2, const_c2, 7, type);
1577
1578 if (have_isel) {
1579 int isel = tcg_to_isel[cond];
1580
1581 /* Swap the V operands if the operation indicates inversion. */
1582 if (isel & 1) {
1583 int t = v1;
1584 v1 = v2;
1585 v2 = t;
1586 isel &= ~1;
1587 }
1588 /* V1 == 0 is handled by isel; V2 == 0 must be handled by hand. */
1589 if (v2 == 0) {
1590 tcg_out_movi(s, type, TCG_REG_R0, 0);
1591 }
1592 tcg_out32(s, isel | TAB(dest, v1, v2));
1593 } else {
1594 if (dest == v2) {
1595 cond = tcg_invert_cond(cond);
1596 v2 = v1;
1597 } else if (dest != v1) {
1598 if (v1 == 0) {
1599 tcg_out_movi(s, type, dest, 0);
1600 } else {
1601 tcg_out_mov(s, type, dest, v1);
1602 }
1603 }
1604 /* Branch forward over one insn */
1605 tcg_out32(s, tcg_to_bc[cond] | 8);
1606 if (v2 == 0) {
1607 tcg_out_movi(s, type, dest, 0);
1608 } else {
1609 tcg_out_mov(s, type, dest, v2);
1610 }
1611 }
1612 }
1613
1614 static void tcg_out_cntxz(TCGContext *s, TCGType type, uint32_t opc,
1615 TCGArg a0, TCGArg a1, TCGArg a2, bool const_a2)
1616 {
1617 if (const_a2 && a2 == (type == TCG_TYPE_I32 ? 32 : 64)) {
1618 tcg_out32(s, opc | RA(a0) | RS(a1));
1619 } else {
1620 tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, 7, type);
1621 /* Note that the only other valid constant for a2 is 0. */
1622 if (have_isel) {
1623 tcg_out32(s, opc | RA(TCG_REG_R0) | RS(a1));
1624 tcg_out32(s, tcg_to_isel[TCG_COND_EQ] | TAB(a0, a2, TCG_REG_R0));
1625 } else if (!const_a2 && a0 == a2) {
1626 tcg_out32(s, tcg_to_bc[TCG_COND_EQ] | 8);
1627 tcg_out32(s, opc | RA(a0) | RS(a1));
1628 } else {
1629 tcg_out32(s, opc | RA(a0) | RS(a1));
1630 tcg_out32(s, tcg_to_bc[TCG_COND_NE] | 8);
1631 if (const_a2) {
1632 tcg_out_movi(s, type, a0, 0);
1633 } else {
1634 tcg_out_mov(s, type, a0, a2);
1635 }
1636 }
1637 }
1638 }
1639
1640 static void tcg_out_cmp2(TCGContext *s, const TCGArg *args,
1641 const int *const_args)
1642 {
1643 static const struct { uint8_t bit1, bit2; } bits[] = {
1644 [TCG_COND_LT ] = { CR_LT, CR_LT },
1645 [TCG_COND_LE ] = { CR_LT, CR_GT },
1646 [TCG_COND_GT ] = { CR_GT, CR_GT },
1647 [TCG_COND_GE ] = { CR_GT, CR_LT },
1648 [TCG_COND_LTU] = { CR_LT, CR_LT },
1649 [TCG_COND_LEU] = { CR_LT, CR_GT },
1650 [TCG_COND_GTU] = { CR_GT, CR_GT },
1651 [TCG_COND_GEU] = { CR_GT, CR_LT },
1652 };
1653
1654 TCGCond cond = args[4], cond2;
1655 TCGArg al, ah, bl, bh;
1656 int blconst, bhconst;
1657 int op, bit1, bit2;
1658
1659 al = args[0];
1660 ah = args[1];
1661 bl = args[2];
1662 bh = args[3];
1663 blconst = const_args[2];
1664 bhconst = const_args[3];
1665
1666 switch (cond) {
1667 case TCG_COND_EQ:
1668 op = CRAND;
1669 goto do_equality;
1670 case TCG_COND_NE:
1671 op = CRNAND;
1672 do_equality:
1673 tcg_out_cmp(s, cond, al, bl, blconst, 6, TCG_TYPE_I32);
1674 tcg_out_cmp(s, cond, ah, bh, bhconst, 7, TCG_TYPE_I32);
1675 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
1676 break;
1677
1678 case TCG_COND_LT:
1679 case TCG_COND_LE:
1680 case TCG_COND_GT:
1681 case TCG_COND_GE:
1682 case TCG_COND_LTU:
1683 case TCG_COND_LEU:
1684 case TCG_COND_GTU:
1685 case TCG_COND_GEU:
1686 bit1 = bits[cond].bit1;
1687 bit2 = bits[cond].bit2;
1688 op = (bit1 != bit2 ? CRANDC : CRAND);
1689 cond2 = tcg_unsigned_cond(cond);
1690
1691 tcg_out_cmp(s, cond, ah, bh, bhconst, 6, TCG_TYPE_I32);
1692 tcg_out_cmp(s, cond2, al, bl, blconst, 7, TCG_TYPE_I32);
1693 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, bit2));
1694 tcg_out32(s, CROR | BT(7, CR_EQ) | BA(6, bit1) | BB(7, CR_EQ));
1695 break;
1696
1697 default:
1698 tcg_abort();
1699 }
1700 }
1701
1702 static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1703 const int *const_args)
1704 {
1705 tcg_out_cmp2(s, args + 1, const_args + 1);
1706 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
1707 tcg_out_rlw(s, RLWINM, args[0], TCG_REG_R0, 31, 31, 31);
1708 }
1709
1710 static void tcg_out_brcond2 (TCGContext *s, const TCGArg *args,
1711 const int *const_args)
1712 {
1713 tcg_out_cmp2(s, args, const_args);
1714 tcg_out_bc(s, BC | BI(7, CR_EQ) | BO_COND_TRUE, arg_label(args[5]));
1715 }
1716
1717 static void tcg_out_mb(TCGContext *s, TCGArg a0)
1718 {
1719 uint32_t insn = HWSYNC;
1720 a0 &= TCG_MO_ALL;
1721 if (a0 == TCG_MO_LD_LD) {
1722 insn = LWSYNC;
1723 } else if (a0 == TCG_MO_ST_ST) {
1724 insn = EIEIO;
1725 }
1726 tcg_out32(s, insn);
1727 }
1728
1729 void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_addr,
1730 uintptr_t addr)
1731 {
1732 if (TCG_TARGET_REG_BITS == 64) {
1733 tcg_insn_unit i1, i2;
1734 intptr_t tb_diff = addr - tc_ptr;
1735 intptr_t br_diff = addr - (jmp_addr + 4);
1736 uint64_t pair;
1737
1738 /* This does not exercise the range of the branch, but we do
1739 still need to be able to load the new value of TCG_REG_TB.
1740 But this does still happen quite often. */
1741 if (tb_diff == (int16_t)tb_diff) {
1742 i1 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, tb_diff);
1743 i2 = B | (br_diff & 0x3fffffc);
1744 } else {
1745 intptr_t lo = (int16_t)tb_diff;
1746 intptr_t hi = (int32_t)(tb_diff - lo);
1747 assert(tb_diff == hi + lo);
1748 i1 = ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, hi >> 16);
1749 i2 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, lo);
1750 }
1751 #ifdef HOST_WORDS_BIGENDIAN
1752 pair = (uint64_t)i1 << 32 | i2;
1753 #else
1754 pair = (uint64_t)i2 << 32 | i1;
1755 #endif
1756
1757 /* As per the enclosing if, this is ppc64. Avoid the _Static_assert
1758 within atomic_set that would fail to build a ppc32 host. */
1759 atomic_set__nocheck((uint64_t *)jmp_addr, pair);
1760 flush_icache_range(jmp_addr, jmp_addr + 8);
1761 } else {
1762 intptr_t diff = addr - jmp_addr;
1763 tcg_debug_assert(in_range_b(diff));
1764 atomic_set((uint32_t *)jmp_addr, B | (diff & 0x3fffffc));
1765 flush_icache_range(jmp_addr, jmp_addr + 4);
1766 }
1767 }
1768
1769 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target)
1770 {
1771 #ifdef _CALL_AIX
1772 /* Look through the descriptor. If the branch is in range, and we
1773 don't have to spend too much effort on building the toc. */
1774 void *tgt = ((void **)target)[0];
1775 uintptr_t toc = ((uintptr_t *)target)[1];
1776 intptr_t diff = tcg_pcrel_diff(s, tgt);
1777
1778 if (in_range_b(diff) && toc == (uint32_t)toc) {
1779 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, toc);
1780 tcg_out_b(s, LK, tgt);
1781 } else {
1782 /* Fold the low bits of the constant into the addresses below. */
1783 intptr_t arg = (intptr_t)target;
1784 int ofs = (int16_t)arg;
1785
1786 if (ofs + 8 < 0x8000) {
1787 arg -= ofs;
1788 } else {
1789 ofs = 0;
1790 }
1791 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, arg);
1792 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_TMP1, ofs);
1793 tcg_out32(s, MTSPR | RA(TCG_REG_R0) | CTR);
1794 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R2, TCG_REG_TMP1, ofs + SZP);
1795 tcg_out32(s, BCCTR | BO_ALWAYS | LK);
1796 }
1797 #elif defined(_CALL_ELF) && _CALL_ELF == 2
1798 intptr_t diff;
1799
1800 /* In the ELFv2 ABI, we have to set up r12 to contain the destination
1801 address, which the callee uses to compute its TOC address. */
1802 /* FIXME: when the branch is in range, we could avoid r12 load if we
1803 knew that the destination uses the same TOC, and what its local
1804 entry point offset is. */
1805 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R12, (intptr_t)target);
1806
1807 diff = tcg_pcrel_diff(s, target);
1808 if (in_range_b(diff)) {
1809 tcg_out_b(s, LK, target);
1810 } else {
1811 tcg_out32(s, MTSPR | RS(TCG_REG_R12) | CTR);
1812 tcg_out32(s, BCCTR | BO_ALWAYS | LK);
1813 }
1814 #else
1815 tcg_out_b(s, LK, target);
1816 #endif
1817 }
1818
1819 static const uint32_t qemu_ldx_opc[16] = {
1820 [MO_UB] = LBZX,
1821 [MO_UW] = LHZX,
1822 [MO_UL] = LWZX,
1823 [MO_Q] = LDX,
1824 [MO_SW] = LHAX,
1825 [MO_SL] = LWAX,
1826 [MO_BSWAP | MO_UB] = LBZX,
1827 [MO_BSWAP | MO_UW] = LHBRX,
1828 [MO_BSWAP | MO_UL] = LWBRX,
1829 [MO_BSWAP | MO_Q] = LDBRX,
1830 };
1831
1832 static const uint32_t qemu_stx_opc[16] = {
1833 [MO_UB] = STBX,
1834 [MO_UW] = STHX,
1835 [MO_UL] = STWX,
1836 [MO_Q] = STDX,
1837 [MO_BSWAP | MO_UB] = STBX,
1838 [MO_BSWAP | MO_UW] = STHBRX,
1839 [MO_BSWAP | MO_UL] = STWBRX,
1840 [MO_BSWAP | MO_Q] = STDBRX,
1841 };
1842
1843 static const uint32_t qemu_exts_opc[4] = {
1844 EXTSB, EXTSH, EXTSW, 0
1845 };
1846
1847 #if defined (CONFIG_SOFTMMU)
1848 #include "../tcg-ldst.inc.c"
1849
1850 /* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr,
1851 * int mmu_idx, uintptr_t ra)
1852 */
1853 static void * const qemu_ld_helpers[16] = {
1854 [MO_UB] = helper_ret_ldub_mmu,
1855 [MO_LEUW] = helper_le_lduw_mmu,
1856 [MO_LEUL] = helper_le_ldul_mmu,
1857 [MO_LEQ] = helper_le_ldq_mmu,
1858 [MO_BEUW] = helper_be_lduw_mmu,
1859 [MO_BEUL] = helper_be_ldul_mmu,
1860 [MO_BEQ] = helper_be_ldq_mmu,
1861 };
1862
1863 /* helper signature: helper_st_mmu(CPUState *env, target_ulong addr,
1864 * uintxx_t val, int mmu_idx, uintptr_t ra)
1865 */
1866 static void * const qemu_st_helpers[16] = {
1867 [MO_UB] = helper_ret_stb_mmu,
1868 [MO_LEUW] = helper_le_stw_mmu,
1869 [MO_LEUL] = helper_le_stl_mmu,
1870 [MO_LEQ] = helper_le_stq_mmu,
1871 [MO_BEUW] = helper_be_stw_mmu,
1872 [MO_BEUL] = helper_be_stl_mmu,
1873 [MO_BEQ] = helper_be_stq_mmu,
1874 };
1875
1876 /* We expect to use a 16-bit negative offset from ENV. */
1877 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
1878 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -32768);
1879
1880 /* Perform the TLB load and compare. Places the result of the comparison
1881 in CR7, loads the addend of the TLB into R3, and returns the register
1882 containing the guest address (zero-extended into R4). Clobbers R0 and R2. */
1883
1884 static TCGReg tcg_out_tlb_read(TCGContext *s, MemOp opc,
1885 TCGReg addrlo, TCGReg addrhi,
1886 int mem_index, bool is_read)
1887 {
1888 int cmp_off
1889 = (is_read
1890 ? offsetof(CPUTLBEntry, addr_read)
1891 : offsetof(CPUTLBEntry, addr_write));
1892 int fast_off = TLB_MASK_TABLE_OFS(mem_index);
1893 int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
1894 int table_off = fast_off + offsetof(CPUTLBDescFast, table);
1895 unsigned s_bits = opc & MO_SIZE;
1896 unsigned a_bits = get_alignment_bits(opc);
1897
1898 /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
1899 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_AREG0, mask_off);
1900 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R4, TCG_AREG0, table_off);
1901
1902 /* Extract the page index, shifted into place for tlb index. */
1903 if (TCG_TARGET_REG_BITS == 32) {
1904 tcg_out_shri32(s, TCG_REG_TMP1, addrlo,
1905 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1906 } else {
1907 tcg_out_shri64(s, TCG_REG_TMP1, addrlo,
1908 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1909 }
1910 tcg_out32(s, AND | SAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_TMP1));
1911
1912 /* Load the TLB comparator. */
1913 if (cmp_off == 0 && TCG_TARGET_REG_BITS >= TARGET_LONG_BITS) {
1914 uint32_t lxu = (TCG_TARGET_REG_BITS == 32 || TARGET_LONG_BITS == 32
1915 ? LWZUX : LDUX);
1916 tcg_out32(s, lxu | TAB(TCG_REG_TMP1, TCG_REG_R3, TCG_REG_R4));
1917 } else {
1918 tcg_out32(s, ADD | TAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_R4));
1919 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
1920 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_TMP1, TCG_REG_R3, cmp_off + 4);
1921 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_R4, TCG_REG_R3, cmp_off);
1922 } else {
1923 tcg_out_ld(s, TCG_TYPE_TL, TCG_REG_TMP1, TCG_REG_R3, cmp_off);
1924 }
1925 }
1926
1927 /* Load the TLB addend for use on the fast path. Do this asap
1928 to minimize any load use delay. */
1929 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_REG_R3,
1930 offsetof(CPUTLBEntry, addend));
1931
1932 /* Clear the non-page, non-alignment bits from the address */
1933 if (TCG_TARGET_REG_BITS == 32) {
1934 /* We don't support unaligned accesses on 32-bits.
1935 * Preserve the bottom bits and thus trigger a comparison
1936 * failure on unaligned accesses.
1937 */
1938 if (a_bits < s_bits) {
1939 a_bits = s_bits;
1940 }
1941 tcg_out_rlw(s, RLWINM, TCG_REG_R0, addrlo, 0,
1942 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS);
1943 } else {
1944 TCGReg t = addrlo;
1945
1946 /* If the access is unaligned, we need to make sure we fail if we
1947 * cross a page boundary. The trick is to add the access size-1
1948 * to the address before masking the low bits. That will make the
1949 * address overflow to the next page if we cross a page boundary,
1950 * which will then force a mismatch of the TLB compare.
1951 */
1952 if (a_bits < s_bits) {
1953 unsigned a_mask = (1 << a_bits) - 1;
1954 unsigned s_mask = (1 << s_bits) - 1;
1955 tcg_out32(s, ADDI | TAI(TCG_REG_R0, t, s_mask - a_mask));
1956 t = TCG_REG_R0;
1957 }
1958
1959 /* Mask the address for the requested alignment. */
1960 if (TARGET_LONG_BITS == 32) {
1961 tcg_out_rlw(s, RLWINM, TCG_REG_R0, t, 0,
1962 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS);
1963 /* Zero-extend the address for use in the final address. */
1964 tcg_out_ext32u(s, TCG_REG_R4, addrlo);
1965 addrlo = TCG_REG_R4;
1966 } else if (a_bits == 0) {
1967 tcg_out_rld(s, RLDICR, TCG_REG_R0, t, 0, 63 - TARGET_PAGE_BITS);
1968 } else {
1969 tcg_out_rld(s, RLDICL, TCG_REG_R0, t,
1970 64 - TARGET_PAGE_BITS, TARGET_PAGE_BITS - a_bits);
1971 tcg_out_rld(s, RLDICL, TCG_REG_R0, TCG_REG_R0, TARGET_PAGE_BITS, 0);
1972 }
1973 }
1974
1975 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
1976 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1,
1977 0, 7, TCG_TYPE_I32);
1978 tcg_out_cmp(s, TCG_COND_EQ, addrhi, TCG_REG_R4, 0, 6, TCG_TYPE_I32);
1979 tcg_out32(s, CRAND | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
1980 } else {
1981 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1,
1982 0, 7, TCG_TYPE_TL);
1983 }
1984
1985 return addrlo;
1986 }
1987
1988 /* Record the context of a call to the out of line helper code for the slow
1989 path for a load or store, so that we can later generate the correct
1990 helper code. */
1991 static void add_qemu_ldst_label(TCGContext *s, bool is_ld, TCGMemOpIdx oi,
1992 TCGReg datalo_reg, TCGReg datahi_reg,
1993 TCGReg addrlo_reg, TCGReg addrhi_reg,
1994 tcg_insn_unit *raddr, tcg_insn_unit *lptr)
1995 {
1996 TCGLabelQemuLdst *label = new_ldst_label(s);
1997
1998 label->is_ld = is_ld;
1999 label->oi = oi;
2000 label->datalo_reg = datalo_reg;
2001 label->datahi_reg = datahi_reg;
2002 label->addrlo_reg = addrlo_reg;
2003 label->addrhi_reg = addrhi_reg;
2004 label->raddr = raddr;
2005 label->label_ptr[0] = lptr;
2006 }
2007
2008 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
2009 {
2010 TCGMemOpIdx oi = lb->oi;
2011 MemOp opc = get_memop(oi);
2012 TCGReg hi, lo, arg = TCG_REG_R3;
2013
2014 if (!reloc_pc14(lb->label_ptr[0], s->code_ptr)) {
2015 return false;
2016 }
2017
2018 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0);
2019
2020 lo = lb->addrlo_reg;
2021 hi = lb->addrhi_reg;
2022 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2023 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
2024 arg |= 1;
2025 #endif
2026 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2027 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2028 } else {
2029 /* If the address needed to be zero-extended, we'll have already
2030 placed it in R4. The only remaining case is 64-bit guest. */
2031 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo);
2032 }
2033
2034 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi);
2035 tcg_out32(s, MFSPR | RT(arg) | LR);
2036
2037 tcg_out_call(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2038
2039 lo = lb->datalo_reg;
2040 hi = lb->datahi_reg;
2041 if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) {
2042 tcg_out_mov(s, TCG_TYPE_I32, lo, TCG_REG_R4);
2043 tcg_out_mov(s, TCG_TYPE_I32, hi, TCG_REG_R3);
2044 } else if (opc & MO_SIGN) {
2045 uint32_t insn = qemu_exts_opc[opc & MO_SIZE];
2046 tcg_out32(s, insn | RA(lo) | RS(TCG_REG_R3));
2047 } else {
2048 tcg_out_mov(s, TCG_TYPE_REG, lo, TCG_REG_R3);
2049 }
2050
2051 tcg_out_b(s, 0, lb->raddr);
2052 return true;
2053 }
2054
2055 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
2056 {
2057 TCGMemOpIdx oi = lb->oi;
2058 MemOp opc = get_memop(oi);
2059 MemOp s_bits = opc & MO_SIZE;
2060 TCGReg hi, lo, arg = TCG_REG_R3;
2061
2062 if (!reloc_pc14(lb->label_ptr[0], s->code_ptr)) {
2063 return false;
2064 }
2065
2066 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0);
2067
2068 lo = lb->addrlo_reg;
2069 hi = lb->addrhi_reg;
2070 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2071 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
2072 arg |= 1;
2073 #endif
2074 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2075 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2076 } else {
2077 /* If the address needed to be zero-extended, we'll have already
2078 placed it in R4. The only remaining case is 64-bit guest. */
2079 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo);
2080 }
2081
2082 lo = lb->datalo_reg;
2083 hi = lb->datahi_reg;
2084 if (TCG_TARGET_REG_BITS == 32) {
2085 switch (s_bits) {
2086 case MO_64:
2087 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
2088 arg |= 1;
2089 #endif
2090 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2091 /* FALLTHRU */
2092 case MO_32:
2093 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2094 break;
2095 default:
2096 tcg_out_rlw(s, RLWINM, arg++, lo, 0, 32 - (8 << s_bits), 31);
2097 break;
2098 }
2099 } else {
2100 if (s_bits == MO_64) {
2101 tcg_out_mov(s, TCG_TYPE_I64, arg++, lo);
2102 } else {
2103 tcg_out_rld(s, RLDICL, arg++, lo, 0, 64 - (8 << s_bits));
2104 }
2105 }
2106
2107 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi);
2108 tcg_out32(s, MFSPR | RT(arg) | LR);
2109
2110 tcg_out_call(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2111
2112 tcg_out_b(s, 0, lb->raddr);
2113 return true;
2114 }
2115 #endif /* SOFTMMU */
2116
2117 static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is_64)
2118 {
2119 TCGReg datalo, datahi, addrlo, rbase;
2120 TCGReg addrhi __attribute__((unused));
2121 TCGMemOpIdx oi;
2122 MemOp opc, s_bits;
2123 #ifdef CONFIG_SOFTMMU
2124 int mem_index;
2125 tcg_insn_unit *label_ptr;
2126 #endif
2127
2128 datalo = *args++;
2129 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0);
2130 addrlo = *args++;
2131 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0);
2132 oi = *args++;
2133 opc = get_memop(oi);
2134 s_bits = opc & MO_SIZE;
2135
2136 #ifdef CONFIG_SOFTMMU
2137 mem_index = get_mmuidx(oi);
2138 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, true);
2139
2140 /* Load a pointer into the current opcode w/conditional branch-link. */
2141 label_ptr = s->code_ptr;
2142 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
2143
2144 rbase = TCG_REG_R3;
2145 #else /* !CONFIG_SOFTMMU */
2146 rbase = guest_base ? TCG_GUEST_BASE_REG : 0;
2147 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
2148 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo);
2149 addrlo = TCG_REG_TMP1;
2150 }
2151 #endif
2152
2153 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) {
2154 if (opc & MO_BSWAP) {
2155 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2156 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
2157 tcg_out32(s, LWBRX | TAB(datahi, rbase, TCG_REG_R0));
2158 } else if (rbase != 0) {
2159 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2160 tcg_out32(s, LWZX | TAB(datahi, rbase, addrlo));
2161 tcg_out32(s, LWZX | TAB(datalo, rbase, TCG_REG_R0));
2162 } else if (addrlo == datahi) {
2163 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4));
2164 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0));
2165 } else {
2166 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0));
2167 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4));
2168 }
2169 } else {
2170 uint32_t insn = qemu_ldx_opc[opc & (MO_BSWAP | MO_SSIZE)];
2171 if (!have_isa_2_06 && insn == LDBRX) {
2172 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2173 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
2174 tcg_out32(s, LWBRX | TAB(TCG_REG_R0, rbase, TCG_REG_R0));
2175 tcg_out_rld(s, RLDIMI, datalo, TCG_REG_R0, 32, 0);
2176 } else if (insn) {
2177 tcg_out32(s, insn | TAB(datalo, rbase, addrlo));
2178 } else {
2179 insn = qemu_ldx_opc[opc & (MO_SIZE | MO_BSWAP)];
2180 tcg_out32(s, insn | TAB(datalo, rbase, addrlo));
2181 insn = qemu_exts_opc[s_bits];
2182 tcg_out32(s, insn | RA(datalo) | RS(datalo));
2183 }
2184 }
2185
2186 #ifdef CONFIG_SOFTMMU
2187 add_qemu_ldst_label(s, true, oi, datalo, datahi, addrlo, addrhi,
2188 s->code_ptr, label_ptr);
2189 #endif
2190 }
2191
2192 static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is_64)
2193 {
2194 TCGReg datalo, datahi, addrlo, rbase;
2195 TCGReg addrhi __attribute__((unused));
2196 TCGMemOpIdx oi;
2197 MemOp opc, s_bits;
2198 #ifdef CONFIG_SOFTMMU
2199 int mem_index;
2200 tcg_insn_unit *label_ptr;
2201 #endif
2202
2203 datalo = *args++;
2204 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0);
2205 addrlo = *args++;
2206 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0);
2207 oi = *args++;
2208 opc = get_memop(oi);
2209 s_bits = opc & MO_SIZE;
2210
2211 #ifdef CONFIG_SOFTMMU
2212 mem_index = get_mmuidx(oi);
2213 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, false);
2214
2215 /* Load a pointer into the current opcode w/conditional branch-link. */
2216 label_ptr = s->code_ptr;
2217 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
2218
2219 rbase = TCG_REG_R3;
2220 #else /* !CONFIG_SOFTMMU */
2221 rbase = guest_base ? TCG_GUEST_BASE_REG : 0;
2222 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
2223 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo);
2224 addrlo = TCG_REG_TMP1;
2225 }
2226 #endif
2227
2228 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) {
2229 if (opc & MO_BSWAP) {
2230 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2231 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
2232 tcg_out32(s, STWBRX | SAB(datahi, rbase, TCG_REG_R0));
2233 } else if (rbase != 0) {
2234 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2235 tcg_out32(s, STWX | SAB(datahi, rbase, addrlo));
2236 tcg_out32(s, STWX | SAB(datalo, rbase, TCG_REG_R0));
2237 } else {
2238 tcg_out32(s, STW | TAI(datahi, addrlo, 0));
2239 tcg_out32(s, STW | TAI(datalo, addrlo, 4));
2240 }
2241 } else {
2242 uint32_t insn = qemu_stx_opc[opc & (MO_BSWAP | MO_SIZE)];
2243 if (!have_isa_2_06 && insn == STDBRX) {
2244 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
2245 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, addrlo, 4));
2246 tcg_out_shri64(s, TCG_REG_R0, datalo, 32);
2247 tcg_out32(s, STWBRX | SAB(TCG_REG_R0, rbase, TCG_REG_TMP1));
2248 } else {
2249 tcg_out32(s, insn | SAB(datalo, rbase, addrlo));
2250 }
2251 }
2252
2253 #ifdef CONFIG_SOFTMMU
2254 add_qemu_ldst_label(s, false, oi, datalo, datahi, addrlo, addrhi,
2255 s->code_ptr, label_ptr);
2256 #endif
2257 }
2258
2259 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
2260 {
2261 int i;
2262 for (i = 0; i < count; ++i) {
2263 p[i] = NOP;
2264 }
2265 }
2266
2267 /* Parameters for function call generation, used in tcg.c. */
2268 #define TCG_TARGET_STACK_ALIGN 16
2269 #define TCG_TARGET_EXTEND_ARGS 1
2270
2271 #ifdef _CALL_AIX
2272 # define LINK_AREA_SIZE (6 * SZR)
2273 # define LR_OFFSET (1 * SZR)
2274 # define TCG_TARGET_CALL_STACK_OFFSET (LINK_AREA_SIZE + 8 * SZR)
2275 #elif defined(TCG_TARGET_CALL_DARWIN)
2276 # define LINK_AREA_SIZE (6 * SZR)
2277 # define LR_OFFSET (2 * SZR)
2278 #elif TCG_TARGET_REG_BITS == 64
2279 # if defined(_CALL_ELF) && _CALL_ELF == 2
2280 # define LINK_AREA_SIZE (4 * SZR)
2281 # define LR_OFFSET (1 * SZR)
2282 # endif
2283 #else /* TCG_TARGET_REG_BITS == 32 */
2284 # if defined(_CALL_SYSV)
2285 # define LINK_AREA_SIZE (2 * SZR)
2286 # define LR_OFFSET (1 * SZR)
2287 # endif
2288 #endif
2289 #ifndef LR_OFFSET
2290 # error "Unhandled abi"
2291 #endif
2292 #ifndef TCG_TARGET_CALL_STACK_OFFSET
2293 # define TCG_TARGET_CALL_STACK_OFFSET LINK_AREA_SIZE
2294 #endif
2295
2296 #define CPU_TEMP_BUF_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long))
2297 #define REG_SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * SZR)
2298
2299 #define FRAME_SIZE ((TCG_TARGET_CALL_STACK_OFFSET \
2300 + TCG_STATIC_CALL_ARGS_SIZE \
2301 + CPU_TEMP_BUF_SIZE \
2302 + REG_SAVE_SIZE \
2303 + TCG_TARGET_STACK_ALIGN - 1) \
2304 & -TCG_TARGET_STACK_ALIGN)
2305
2306 #define REG_SAVE_BOT (FRAME_SIZE - REG_SAVE_SIZE)
2307
2308 static void tcg_target_qemu_prologue(TCGContext *s)
2309 {
2310 int i;
2311
2312 #ifdef _CALL_AIX
2313 void **desc = (void **)s->code_ptr;
2314 desc[0] = desc + 2; /* entry point */
2315 desc[1] = 0; /* environment pointer */
2316 s->code_ptr = (void *)(desc + 2); /* skip over descriptor */
2317 #endif
2318
2319 tcg_set_frame(s, TCG_REG_CALL_STACK, REG_SAVE_BOT - CPU_TEMP_BUF_SIZE,
2320 CPU_TEMP_BUF_SIZE);
2321
2322 /* Prologue */
2323 tcg_out32(s, MFSPR | RT(TCG_REG_R0) | LR);
2324 tcg_out32(s, (SZR == 8 ? STDU : STWU)
2325 | SAI(TCG_REG_R1, TCG_REG_R1, -FRAME_SIZE));
2326
2327 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
2328 tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
2329 TCG_REG_R1, REG_SAVE_BOT + i * SZR);
2330 }
2331 tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
2332
2333 #ifndef CONFIG_SOFTMMU
2334 if (guest_base) {
2335 tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true);
2336 tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
2337 }
2338 #endif
2339
2340 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
2341 tcg_out32(s, MTSPR | RS(tcg_target_call_iarg_regs[1]) | CTR);
2342 if (USE_REG_TB) {
2343 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, tcg_target_call_iarg_regs[1]);
2344 }
2345 tcg_out32(s, BCCTR | BO_ALWAYS);
2346
2347 /* Epilogue */
2348 s->code_gen_epilogue = tb_ret_addr = s->code_ptr;
2349
2350 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
2351 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
2352 tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
2353 TCG_REG_R1, REG_SAVE_BOT + i * SZR);
2354 }
2355 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | LR);
2356 tcg_out32(s, ADDI | TAI(TCG_REG_R1, TCG_REG_R1, FRAME_SIZE));
2357 tcg_out32(s, BCLR | BO_ALWAYS);
2358 }
2359
2360 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
2361 const int *const_args)
2362 {
2363 TCGArg a0, a1, a2;
2364 int c;
2365
2366 switch (opc) {
2367 case INDEX_op_exit_tb:
2368 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R3, args[0]);
2369 tcg_out_b(s, 0, tb_ret_addr);
2370 break;
2371 case INDEX_op_goto_tb:
2372 if (s->tb_jmp_insn_offset) {
2373 /* Direct jump. */
2374 if (TCG_TARGET_REG_BITS == 64) {
2375 /* Ensure the next insns are 8-byte aligned. */
2376 if ((uintptr_t)s->code_ptr & 7) {
2377 tcg_out32(s, NOP);
2378 }
2379 s->tb_jmp_insn_offset[args[0]] = tcg_current_code_size(s);
2380 tcg_out32(s, ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, 0));
2381 tcg_out32(s, ADDI | TAI(TCG_REG_TB, TCG_REG_TB, 0));
2382 } else {
2383 s->tb_jmp_insn_offset[args[0]] = tcg_current_code_size(s);
2384 tcg_out32(s, B);
2385 s->tb_jmp_reset_offset[args[0]] = tcg_current_code_size(s);
2386 break;
2387 }
2388 } else {
2389 /* Indirect jump. */
2390 tcg_debug_assert(s->tb_jmp_insn_offset == NULL);
2391 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TB, 0,
2392 (intptr_t)(s->tb_jmp_insn_offset + args[0]));
2393 }
2394 tcg_out32(s, MTSPR | RS(TCG_REG_TB) | CTR);
2395 tcg_out32(s, BCCTR | BO_ALWAYS);
2396 set_jmp_reset_offset(s, args[0]);
2397 if (USE_REG_TB) {
2398 /* For the unlinked case, need to reset TCG_REG_TB. */
2399 c = -tcg_current_code_size(s);
2400 assert(c == (int16_t)c);
2401 tcg_out32(s, ADDI | TAI(TCG_REG_TB, TCG_REG_TB, c));
2402 }
2403 break;
2404 case INDEX_op_goto_ptr:
2405 tcg_out32(s, MTSPR | RS(args[0]) | CTR);
2406 if (USE_REG_TB) {
2407 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, args[0]);
2408 }
2409 tcg_out32(s, ADDI | TAI(TCG_REG_R3, 0, 0));
2410 tcg_out32(s, BCCTR | BO_ALWAYS);
2411 break;
2412 case INDEX_op_br:
2413 {
2414 TCGLabel *l = arg_label(args[0]);
2415 uint32_t insn = B;
2416
2417 if (l->has_value) {
2418 insn |= reloc_pc24_val(s->code_ptr, l->u.value_ptr);
2419 } else {
2420 tcg_out_reloc(s, s->code_ptr, R_PPC_REL24, l, 0);
2421 }
2422 tcg_out32(s, insn);
2423 }
2424 break;
2425 case INDEX_op_ld8u_i32:
2426 case INDEX_op_ld8u_i64:
2427 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
2428 break;
2429 case INDEX_op_ld8s_i32:
2430 case INDEX_op_ld8s_i64:
2431 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
2432 tcg_out32(s, EXTSB | RS(args[0]) | RA(args[0]));
2433 break;
2434 case INDEX_op_ld16u_i32:
2435 case INDEX_op_ld16u_i64:
2436 tcg_out_mem_long(s, LHZ, LHZX, args[0], args[1], args[2]);
2437 break;
2438 case INDEX_op_ld16s_i32:
2439 case INDEX_op_ld16s_i64:
2440 tcg_out_mem_long(s, LHA, LHAX, args[0], args[1], args[2]);
2441 break;
2442 case INDEX_op_ld_i32:
2443 case INDEX_op_ld32u_i64:
2444 tcg_out_mem_long(s, LWZ, LWZX, args[0], args[1], args[2]);
2445 break;
2446 case INDEX_op_ld32s_i64:
2447 tcg_out_mem_long(s, LWA, LWAX, args[0], args[1], args[2]);
2448 break;
2449 case INDEX_op_ld_i64:
2450 tcg_out_mem_long(s, LD, LDX, args[0], args[1], args[2]);
2451 break;
2452 case INDEX_op_st8_i32:
2453 case INDEX_op_st8_i64:
2454 tcg_out_mem_long(s, STB, STBX, args[0], args[1], args[2]);
2455 break;
2456 case INDEX_op_st16_i32:
2457 case INDEX_op_st16_i64:
2458 tcg_out_mem_long(s, STH, STHX, args[0], args[1], args[2]);
2459 break;
2460 case INDEX_op_st_i32:
2461 case INDEX_op_st32_i64:
2462 tcg_out_mem_long(s, STW, STWX, args[0], args[1], args[2]);
2463 break;
2464 case INDEX_op_st_i64:
2465 tcg_out_mem_long(s, STD, STDX, args[0], args[1], args[2]);
2466 break;
2467
2468 case INDEX_op_add_i32:
2469 a0 = args[0], a1 = args[1], a2 = args[2];
2470 if (const_args[2]) {
2471 do_addi_32:
2472 tcg_out_mem_long(s, ADDI, ADD, a0, a1, (int32_t)a2);
2473 } else {
2474 tcg_out32(s, ADD | TAB(a0, a1, a2));
2475 }
2476 break;
2477 case INDEX_op_sub_i32:
2478 a0 = args[0], a1 = args[1], a2 = args[2];
2479 if (const_args[1]) {
2480 if (const_args[2]) {
2481 tcg_out_movi(s, TCG_TYPE_I32, a0, a1 - a2);
2482 } else {
2483 tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
2484 }
2485 } else if (const_args[2]) {
2486 a2 = -a2;
2487 goto do_addi_32;
2488 } else {
2489 tcg_out32(s, SUBF | TAB(a0, a2, a1));
2490 }
2491 break;
2492
2493 case INDEX_op_and_i32:
2494 a0 = args[0], a1 = args[1], a2 = args[2];
2495 if (const_args[2]) {
2496 tcg_out_andi32(s, a0, a1, a2);
2497 } else {
2498 tcg_out32(s, AND | SAB(a1, a0, a2));
2499 }
2500 break;
2501 case INDEX_op_and_i64:
2502 a0 = args[0], a1 = args[1], a2 = args[2];
2503 if (const_args[2]) {
2504 tcg_out_andi64(s, a0, a1, a2);
2505 } else {
2506 tcg_out32(s, AND | SAB(a1, a0, a2));
2507 }
2508 break;
2509 case INDEX_op_or_i64:
2510 case INDEX_op_or_i32:
2511 a0 = args[0], a1 = args[1], a2 = args[2];
2512 if (const_args[2]) {
2513 tcg_out_ori32(s, a0, a1, a2);
2514 } else {
2515 tcg_out32(s, OR | SAB(a1, a0, a2));
2516 }
2517 break;
2518 case INDEX_op_xor_i64:
2519 case INDEX_op_xor_i32:
2520 a0 = args[0], a1 = args[1], a2 = args[2];
2521 if (const_args[2]) {
2522 tcg_out_xori32(s, a0, a1, a2);
2523 } else {
2524 tcg_out32(s, XOR | SAB(a1, a0, a2));
2525 }
2526 break;
2527 case INDEX_op_andc_i32:
2528 a0 = args[0], a1 = args[1], a2 = args[2];
2529 if (const_args[2]) {
2530 tcg_out_andi32(s, a0, a1, ~a2);
2531 } else {
2532 tcg_out32(s, ANDC | SAB(a1, a0, a2));
2533 }
2534 break;
2535 case INDEX_op_andc_i64:
2536 a0 = args[0], a1 = args[1], a2 = args[2];
2537 if (const_args[2]) {
2538 tcg_out_andi64(s, a0, a1, ~a2);
2539 } else {
2540 tcg_out32(s, ANDC | SAB(a1, a0, a2));
2541 }
2542 break;
2543 case INDEX_op_orc_i32:
2544 if (const_args[2]) {
2545 tcg_out_ori32(s, args[0], args[1], ~args[2]);
2546 break;
2547 }
2548 /* FALLTHRU */
2549 case INDEX_op_orc_i64:
2550 tcg_out32(s, ORC | SAB(args[1], args[0], args[2]));
2551 break;
2552 case INDEX_op_eqv_i32:
2553 if (const_args[2]) {
2554 tcg_out_xori32(s, args[0], args[1], ~args[2]);
2555 break;
2556 }
2557 /* FALLTHRU */
2558 case INDEX_op_eqv_i64:
2559 tcg_out32(s, EQV | SAB(args[1], args[0], args[2]));
2560 break;
2561 case INDEX_op_nand_i32:
2562 case INDEX_op_nand_i64:
2563 tcg_out32(s, NAND | SAB(args[1], args[0], args[2]));
2564 break;
2565 case INDEX_op_nor_i32:
2566 case INDEX_op_nor_i64:
2567 tcg_out32(s, NOR | SAB(args[1], args[0], args[2]));
2568 break;
2569
2570 case INDEX_op_clz_i32:
2571 tcg_out_cntxz(s, TCG_TYPE_I32, CNTLZW, args[0], args[1],
2572 args[2], const_args[2]);
2573 break;
2574 case INDEX_op_ctz_i32:
2575 tcg_out_cntxz(s, TCG_TYPE_I32, CNTTZW, args[0], args[1],
2576 args[2], const_args[2]);
2577 break;
2578 case INDEX_op_ctpop_i32:
2579 tcg_out32(s, CNTPOPW | SAB(args[1], args[0], 0));
2580 break;
2581
2582 case INDEX_op_clz_i64:
2583 tcg_out_cntxz(s, TCG_TYPE_I64, CNTLZD, args[0], args[1],
2584 args[2], const_args[2]);
2585 break;
2586 case INDEX_op_ctz_i64:
2587 tcg_out_cntxz(s, TCG_TYPE_I64, CNTTZD, args[0], args[1],
2588 args[2], const_args[2]);
2589 break;
2590 case INDEX_op_ctpop_i64:
2591 tcg_out32(s, CNTPOPD | SAB(args[1], args[0], 0));
2592 break;
2593
2594 case INDEX_op_mul_i32:
2595 a0 = args[0], a1 = args[1], a2 = args[2];
2596 if (const_args[2]) {
2597 tcg_out32(s, MULLI | TAI(a0, a1, a2));
2598 } else {
2599 tcg_out32(s, MULLW | TAB(a0, a1, a2));
2600 }
2601 break;
2602
2603 case INDEX_op_div_i32:
2604 tcg_out32(s, DIVW | TAB(args[0], args[1], args[2]));
2605 break;
2606
2607 case INDEX_op_divu_i32:
2608 tcg_out32(s, DIVWU | TAB(args[0], args[1], args[2]));
2609 break;
2610
2611 case INDEX_op_shl_i32:
2612 if (const_args[2]) {
2613 /* Limit immediate shift count lest we create an illegal insn. */
2614 tcg_out_shli32(s, args[0], args[1], args[2] & 31);
2615 } else {
2616 tcg_out32(s, SLW | SAB(args[1], args[0], args[2]));
2617 }
2618 break;
2619 case INDEX_op_shr_i32:
2620 if (const_args[2]) {
2621 /* Limit immediate shift count lest we create an illegal insn. */
2622 tcg_out_shri32(s, args[0], args[1], args[2] & 31);
2623 } else {
2624 tcg_out32(s, SRW | SAB(args[1], args[0], args[2]));
2625 }
2626 break;
2627 case INDEX_op_sar_i32:
2628 if (const_args[2]) {
2629 /* Limit immediate shift count lest we create an illegal insn. */
2630 tcg_out32(s, SRAWI | RS(args[1]) | RA(args[0]) | SH(args[2] & 31));
2631 } else {
2632 tcg_out32(s, SRAW | SAB(args[1], args[0], args[2]));
2633 }
2634 break;
2635 case INDEX_op_rotl_i32:
2636 if (const_args[2]) {
2637 tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31);
2638 } else {
2639 tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2])
2640 | MB(0) | ME(31));
2641 }
2642 break;
2643 case INDEX_op_rotr_i32:
2644 if (const_args[2]) {
2645 tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 0, 31);
2646 } else {
2647 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 32));
2648 tcg_out32(s, RLWNM | SAB(args[1], args[0], TCG_REG_R0)
2649 | MB(0) | ME(31));
2650 }
2651 break;
2652
2653 case INDEX_op_brcond_i32:
2654 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
2655 arg_label(args[3]), TCG_TYPE_I32);
2656 break;
2657 case INDEX_op_brcond_i64:
2658 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
2659 arg_label(args[3]), TCG_TYPE_I64);
2660 break;
2661 case INDEX_op_brcond2_i32:
2662 tcg_out_brcond2(s, args, const_args);
2663 break;
2664
2665 case INDEX_op_neg_i32:
2666 case INDEX_op_neg_i64:
2667 tcg_out32(s, NEG | RT(args[0]) | RA(args[1]));
2668 break;
2669
2670 case INDEX_op_not_i32:
2671 case INDEX_op_not_i64:
2672 tcg_out32(s, NOR | SAB(args[1], args[0], args[1]));
2673 break;
2674
2675 case INDEX_op_add_i64:
2676 a0 = args[0], a1 = args[1], a2 = args[2];
2677 if (const_args[2]) {
2678 do_addi_64:
2679 tcg_out_mem_long(s, ADDI, ADD, a0, a1, a2);
2680 } else {
2681 tcg_out32(s, ADD | TAB(a0, a1, a2));
2682 }
2683 break;
2684 case INDEX_op_sub_i64:
2685 a0 = args[0], a1 = args[1], a2 = args[2];
2686 if (const_args[1]) {
2687 if (const_args[2]) {
2688 tcg_out_movi(s, TCG_TYPE_I64, a0, a1 - a2);
2689 } else {
2690 tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
2691 }
2692 } else if (const_args[2]) {
2693 a2 = -a2;
2694 goto do_addi_64;
2695 } else {
2696 tcg_out32(s, SUBF | TAB(a0, a2, a1));
2697 }
2698 break;
2699
2700 case INDEX_op_shl_i64:
2701 if (const_args[2]) {
2702 /* Limit immediate shift count lest we create an illegal insn. */
2703 tcg_out_shli64(s, args[0], args[1], args[2] & 63);
2704 } else {
2705 tcg_out32(s, SLD | SAB(args[1], args[0], args[2]));
2706 }
2707 break;
2708 case INDEX_op_shr_i64:
2709 if (const_args[2]) {
2710 /* Limit immediate shift count lest we create an illegal insn. */
2711 tcg_out_shri64(s, args[0], args[1], args[2] & 63);
2712 } else {
2713 tcg_out32(s, SRD | SAB(args[1], args[0], args[2]));
2714 }
2715 break;
2716 case INDEX_op_sar_i64:
2717 if (const_args[2]) {
2718 int sh = SH(args[2] & 0x1f) | (((args[2] >> 5) & 1) << 1);
2719 tcg_out32(s, SRADI | RA(args[0]) | RS(args[1]) | sh);
2720 } else {
2721 tcg_out32(s, SRAD | SAB(args[1], args[0], args[2]));
2722 }
2723 break;
2724 case INDEX_op_rotl_i64:
2725 if (const_args[2]) {
2726 tcg_out_rld(s, RLDICL, args[0], args[1], args[2], 0);
2727 } else {
2728 tcg_out32(s, RLDCL | SAB(args[1], args[0], args[2]) | MB64(0));
2729 }
2730 break;
2731 case INDEX_op_rotr_i64:
2732 if (const_args[2]) {
2733 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 0);
2734 } else {
2735 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 64));
2736 tcg_out32(s, RLDCL | SAB(args[1], args[0], TCG_REG_R0) | MB64(0));
2737 }
2738 break;
2739
2740 case INDEX_op_mul_i64:
2741 a0 = args[0], a1 = args[1], a2 = args[2];
2742 if (const_args[2]) {
2743 tcg_out32(s, MULLI | TAI(a0, a1, a2));
2744 } else {
2745 tcg_out32(s, MULLD | TAB(a0, a1, a2));
2746 }
2747 break;
2748 case INDEX_op_div_i64:
2749 tcg_out32(s, DIVD | TAB(args[0], args[1], args[2]));
2750 break;
2751 case INDEX_op_divu_i64:
2752 tcg_out32(s, DIVDU | TAB(args[0], args[1], args[2]));
2753 break;
2754
2755 case INDEX_op_qemu_ld_i32:
2756 tcg_out_qemu_ld(s, args, false);
2757 break;
2758 case INDEX_op_qemu_ld_i64:
2759 tcg_out_qemu_ld(s, args, true);
2760 break;
2761 case INDEX_op_qemu_st_i32:
2762 tcg_out_qemu_st(s, args, false);
2763 break;
2764 case INDEX_op_qemu_st_i64:
2765 tcg_out_qemu_st(s, args, true);
2766 break;
2767
2768 case INDEX_op_ext8s_i32:
2769 case INDEX_op_ext8s_i64:
2770 c = EXTSB;
2771 goto gen_ext;
2772 case INDEX_op_ext16s_i32:
2773 case INDEX_op_ext16s_i64:
2774 c = EXTSH;
2775 goto gen_ext;
2776 case INDEX_op_ext_i32_i64:
2777 case INDEX_op_ext32s_i64:
2778 c = EXTSW;
2779 goto gen_ext;
2780 gen_ext:
2781 tcg_out32(s, c | RS(args[1]) | RA(args[0]));
2782 break;
2783 case INDEX_op_extu_i32_i64:
2784 tcg_out_ext32u(s, args[0], args[1]);
2785 break;
2786
2787 case INDEX_op_setcond_i32:
2788 tcg_out_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], args[2],
2789 const_args[2]);
2790 break;
2791 case INDEX_op_setcond_i64:
2792 tcg_out_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], args[2],
2793 const_args[2]);
2794 break;
2795 case INDEX_op_setcond2_i32:
2796 tcg_out_setcond2(s, args, const_args);
2797 break;
2798
2799 case INDEX_op_bswap16_i32:
2800 case INDEX_op_bswap16_i64:
2801 a0 = args[0], a1 = args[1];
2802 /* a1 = abcd */
2803 if (a0 != a1) {
2804 /* a0 = (a1 r<< 24) & 0xff # 000c */
2805 tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31);
2806 /* a0 = (a0 & ~0xff00) | (a1 r<< 8) & 0xff00 # 00dc */
2807 tcg_out_rlw(s, RLWIMI, a0, a1, 8, 16, 23);
2808 } else {
2809 /* r0 = (a1 r<< 8) & 0xff00 # 00d0 */
2810 tcg_out_rlw(s, RLWINM, TCG_REG_R0, a1, 8, 16, 23);
2811 /* a0 = (a1 r<< 24) & 0xff # 000c */
2812 tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31);
2813 /* a0 = a0 | r0 # 00dc */
2814 tcg_out32(s, OR | SAB(TCG_REG_R0, a0, a0));
2815 }
2816 break;
2817
2818 case INDEX_op_bswap32_i32:
2819 case INDEX_op_bswap32_i64:
2820 /* Stolen from gcc's builtin_bswap32 */
2821 a1 = args[1];
2822 a0 = args[0] == a1 ? TCG_REG_R0 : args[0];
2823
2824 /* a1 = args[1] # abcd */
2825 /* a0 = rotate_left (a1, 8) # bcda */
2826 tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31);
2827 /* a0 = (a0 & ~0xff000000) | ((a1 r<< 24) & 0xff000000) # dcda */
2828 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7);
2829 /* a0 = (a0 & ~0x0000ff00) | ((a1 r<< 24) & 0x0000ff00) # dcba */
2830 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23);
2831
2832 if (a0 == TCG_REG_R0) {
2833 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2834 }
2835 break;
2836
2837 case INDEX_op_bswap64_i64:
2838 a0 = args[0], a1 = args[1], a2 = TCG_REG_R0;
2839 if (a0 == a1) {
2840 a0 = TCG_REG_R0;
2841 a2 = a1;
2842 }
2843
2844 /* a1 = # abcd efgh */
2845 /* a0 = rl32(a1, 8) # 0000 fghe */
2846 tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31);
2847 /* a0 = dep(a0, rl32(a1, 24), 0xff000000) # 0000 hghe */
2848 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7);
2849 /* a0 = dep(a0, rl32(a1, 24), 0x0000ff00) # 0000 hgfe */
2850 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23);
2851
2852 /* a0 = rl64(a0, 32) # hgfe 0000 */
2853 /* a2 = rl64(a1, 32) # efgh abcd */
2854 tcg_out_rld(s, RLDICL, a0, a0, 32, 0);
2855 tcg_out_rld(s, RLDICL, a2, a1, 32, 0);
2856
2857 /* a0 = dep(a0, rl32(a2, 8), 0xffffffff) # hgfe bcda */
2858 tcg_out_rlw(s, RLWIMI, a0, a2, 8, 0, 31);
2859 /* a0 = dep(a0, rl32(a2, 24), 0xff000000) # hgfe dcda */
2860 tcg_out_rlw(s, RLWIMI, a0, a2, 24, 0, 7);
2861 /* a0 = dep(a0, rl32(a2, 24), 0x0000ff00) # hgfe dcba */
2862 tcg_out_rlw(s, RLWIMI, a0, a2, 24, 16, 23);
2863
2864 if (a0 == 0) {
2865 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2866 }
2867 break;
2868
2869 case INDEX_op_deposit_i32:
2870 if (const_args[2]) {
2871 uint32_t mask = ((2u << (args[4] - 1)) - 1) << args[3];
2872 tcg_out_andi32(s, args[0], args[0], ~mask);
2873 } else {
2874 tcg_out_rlw(s, RLWIMI, args[0], args[2], args[3],
2875 32 - args[3] - args[4], 31 - args[3]);
2876 }
2877 break;
2878 case INDEX_op_deposit_i64:
2879 if (const_args[2]) {
2880 uint64_t mask = ((2ull << (args[4] - 1)) - 1) << args[3];
2881 tcg_out_andi64(s, args[0], args[0], ~mask);
2882 } else {
2883 tcg_out_rld(s, RLDIMI, args[0], args[2], args[3],
2884 64 - args[3] - args[4]);
2885 }
2886 break;
2887
2888 case INDEX_op_extract_i32:
2889 tcg_out_rlw(s, RLWINM, args[0], args[1],
2890 32 - args[2], 32 - args[3], 31);
2891 break;
2892 case INDEX_op_extract_i64:
2893 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 64 - args[3]);
2894 break;
2895
2896 case INDEX_op_movcond_i32:
2897 tcg_out_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1], args[2],
2898 args[3], args[4], const_args[2]);
2899 break;
2900 case INDEX_op_movcond_i64:
2901 tcg_out_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1], args[2],
2902 args[3], args[4], const_args[2]);
2903 break;
2904
2905 #if TCG_TARGET_REG_BITS == 64
2906 case INDEX_op_add2_i64:
2907 #else
2908 case INDEX_op_add2_i32:
2909 #endif
2910 /* Note that the CA bit is defined based on the word size of the
2911 environment. So in 64-bit mode it's always carry-out of bit 63.
2912 The fallback code using deposit works just as well for 32-bit. */
2913 a0 = args[0], a1 = args[1];
2914 if (a0 == args[3] || (!const_args[5] && a0 == args[5])) {
2915 a0 = TCG_REG_R0;
2916 }
2917 if (const_args[4]) {
2918 tcg_out32(s, ADDIC | TAI(a0, args[2], args[4]));
2919 } else {
2920 tcg_out32(s, ADDC | TAB(a0, args[2], args[4]));
2921 }
2922 if (const_args[5]) {
2923 tcg_out32(s, (args[5] ? ADDME : ADDZE) | RT(a1) | RA(args[3]));
2924 } else {
2925 tcg_out32(s, ADDE | TAB(a1, args[3], args[5]));
2926 }
2927 if (a0 != args[0]) {
2928 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2929 }
2930 break;
2931
2932 #if TCG_TARGET_REG_BITS == 64
2933 case INDEX_op_sub2_i64:
2934 #else
2935 case INDEX_op_sub2_i32:
2936 #endif
2937 a0 = args[0], a1 = args[1];
2938 if (a0 == args[5] || (!const_args[3] && a0 == args[3])) {
2939 a0 = TCG_REG_R0;
2940 }
2941 if (const_args[2]) {
2942 tcg_out32(s, SUBFIC | TAI(a0, args[4], args[2]));
2943 } else {
2944 tcg_out32(s, SUBFC | TAB(a0, args[4], args[2]));
2945 }
2946 if (const_args[3]) {
2947 tcg_out32(s, (args[3] ? SUBFME : SUBFZE) | RT(a1) | RA(args[5]));
2948 } else {
2949 tcg_out32(s, SUBFE | TAB(a1, args[5], args[3]));
2950 }
2951 if (a0 != args[0]) {
2952 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2953 }
2954 break;
2955
2956 case INDEX_op_muluh_i32:
2957 tcg_out32(s, MULHWU | TAB(args[0], args[1], args[2]));
2958 break;
2959 case INDEX_op_mulsh_i32:
2960 tcg_out32(s, MULHW | TAB(args[0], args[1], args[2]));
2961 break;
2962 case INDEX_op_muluh_i64:
2963 tcg_out32(s, MULHDU | TAB(args[0], args[1], args[2]));
2964 break;
2965 case INDEX_op_mulsh_i64:
2966 tcg_out32(s, MULHD | TAB(args[0], args[1], args[2]));
2967 break;
2968
2969 case INDEX_op_mb:
2970 tcg_out_mb(s, args[0]);
2971 break;
2972
2973 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
2974 case INDEX_op_mov_i64:
2975 case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */
2976 case INDEX_op_movi_i64:
2977 case INDEX_op_call: /* Always emitted via tcg_out_call. */
2978 default:
2979 tcg_abort();
2980 }
2981 }
2982
2983 int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
2984 {
2985 switch (opc) {
2986 case INDEX_op_and_vec:
2987 case INDEX_op_or_vec:
2988 case INDEX_op_xor_vec:
2989 case INDEX_op_andc_vec:
2990 case INDEX_op_not_vec:
2991 return 1;
2992 case INDEX_op_orc_vec:
2993 return have_isa_2_07;
2994 case INDEX_op_add_vec:
2995 case INDEX_op_sub_vec:
2996 case INDEX_op_smax_vec:
2997 case INDEX_op_smin_vec:
2998 case INDEX_op_umax_vec:
2999 case INDEX_op_umin_vec:
3000 case INDEX_op_shlv_vec:
3001 case INDEX_op_shrv_vec:
3002 case INDEX_op_sarv_vec:
3003 case INDEX_op_rotlv_vec:
3004 return vece <= MO_32 || have_isa_2_07;
3005 case INDEX_op_ssadd_vec:
3006 case INDEX_op_sssub_vec:
3007 case INDEX_op_usadd_vec:
3008 case INDEX_op_ussub_vec:
3009 return vece <= MO_32;
3010 case INDEX_op_cmp_vec:
3011 case INDEX_op_shli_vec:
3012 case INDEX_op_shri_vec:
3013 case INDEX_op_sari_vec:
3014 case INDEX_op_rotli_vec:
3015 return vece <= MO_32 || have_isa_2_07 ? -1 : 0;
3016 case INDEX_op_neg_vec:
3017 return vece >= MO_32 && have_isa_3_00;
3018 case INDEX_op_mul_vec:
3019 switch (vece) {
3020 case MO_8:
3021 case MO_16:
3022 return -1;
3023 case MO_32:
3024 return have_isa_2_07 ? 1 : -1;
3025 }
3026 return 0;
3027 case INDEX_op_bitsel_vec:
3028 return have_vsx;
3029 case INDEX_op_rotrv_vec:
3030 return -1;
3031 default:
3032 return 0;
3033 }
3034 }
3035
3036 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
3037 TCGReg dst, TCGReg src)
3038 {
3039 tcg_debug_assert(dst >= TCG_REG_V0);
3040
3041 /* Splat from integer reg allowed via constraints for v3.00. */
3042 if (src < TCG_REG_V0) {
3043 tcg_debug_assert(have_isa_3_00);
3044 switch (vece) {
3045 case MO_64:
3046 tcg_out32(s, MTVSRDD | VRT(dst) | RA(src) | RB(src));
3047 return true;
3048 case MO_32:
3049 tcg_out32(s, MTVSRWS | VRT(dst) | RA(src));
3050 return true;
3051 default:
3052 /* Fail, so that we fall back on either dupm or mov+dup. */
3053 return false;
3054 }
3055 }
3056
3057 /*
3058 * Recall we use (or emulate) VSX integer loads, so the integer is
3059 * right justified within the left (zero-index) double-word.
3060 */
3061 switch (vece) {
3062 case MO_8:
3063 tcg_out32(s, VSPLTB | VRT(dst) | VRB(src) | (7 << 16));
3064 break;
3065 case MO_16:
3066 tcg_out32(s, VSPLTH | VRT(dst) | VRB(src) | (3 << 16));
3067 break;
3068 case MO_32:
3069 tcg_out32(s, VSPLTW | VRT(dst) | VRB(src) | (1 << 16));
3070 break;
3071 case MO_64:
3072 if (have_vsx) {
3073 tcg_out32(s, XXPERMDI | VRT(dst) | VRA(src) | VRB(src));
3074 break;
3075 }
3076 tcg_out_vsldoi(s, TCG_VEC_TMP1, src, src, 8);
3077 tcg_out_vsldoi(s, dst, TCG_VEC_TMP1, src, 8);
3078 break;
3079 default:
3080 g_assert_not_reached();
3081 }
3082 return true;
3083 }
3084
3085 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
3086 TCGReg out, TCGReg base, intptr_t offset)
3087 {
3088 int elt;
3089
3090 tcg_debug_assert(out >= TCG_REG_V0);
3091 switch (vece) {
3092 case MO_8:
3093 if (have_isa_3_00) {
3094 tcg_out_mem_long(s, LXV, LVX, out, base, offset & -16);
3095 } else {
3096 tcg_out_mem_long(s, 0, LVEBX, out, base, offset);
3097 }
3098 elt = extract32(offset, 0, 4);
3099 #ifndef HOST_WORDS_BIGENDIAN
3100 elt ^= 15;
3101 #endif
3102 tcg_out32(s, VSPLTB | VRT(out) | VRB(out) | (elt << 16));
3103 break;
3104 case MO_16:
3105 tcg_debug_assert((offset & 1) == 0);
3106 if (have_isa_3_00) {
3107 tcg_out_mem_long(s, LXV | 8, LVX, out, base, offset & -16);
3108 } else {