target/arm: Convert Neon VCVT fixed-point to gvec
[qemu.git] / tcg / tcg-op-gvec.c
1 /*
2 * Generic vector operation expansion
3 *
4 * Copyright (c) 2018 Linaro
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
26
27 #define MAX_UNROLL 4
28
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
34
35
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
39 {
40 uint32_t opr_align = oprsz >= 16 ? 15 : 7;
41 uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7;
42 tcg_debug_assert(oprsz > 0);
43 tcg_debug_assert(oprsz <= maxsz);
44 tcg_debug_assert((oprsz & opr_align) == 0);
45 tcg_debug_assert((maxsz & max_align) == 0);
46 tcg_debug_assert((ofs & max_align) == 0);
47 }
48
49 /* Verify vector overlap rules for two operands. */
50 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
51 {
52 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
53 }
54
55 /* Verify vector overlap rules for three operands. */
56 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
57 {
58 check_overlap_2(d, a, s);
59 check_overlap_2(d, b, s);
60 check_overlap_2(a, b, s);
61 }
62
63 /* Verify vector overlap rules for four operands. */
64 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
65 uint32_t c, uint32_t s)
66 {
67 check_overlap_2(d, a, s);
68 check_overlap_2(d, b, s);
69 check_overlap_2(d, c, s);
70 check_overlap_2(a, b, s);
71 check_overlap_2(a, c, s);
72 check_overlap_2(b, c, s);
73 }
74
75 /* Create a descriptor from components. */
76 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
77 {
78 uint32_t desc = 0;
79
80 assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS));
81 assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS));
82 assert(data == sextract32(data, 0, SIMD_DATA_BITS));
83
84 oprsz = (oprsz / 8) - 1;
85 maxsz = (maxsz / 8) - 1;
86 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
87 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
88 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
89
90 return desc;
91 }
92
93 /* Generate a call to a gvec-style helper with two vector operands. */
94 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
95 uint32_t oprsz, uint32_t maxsz, int32_t data,
96 gen_helper_gvec_2 *fn)
97 {
98 TCGv_ptr a0, a1;
99 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
100
101 a0 = tcg_temp_new_ptr();
102 a1 = tcg_temp_new_ptr();
103
104 tcg_gen_addi_ptr(a0, cpu_env, dofs);
105 tcg_gen_addi_ptr(a1, cpu_env, aofs);
106
107 fn(a0, a1, desc);
108
109 tcg_temp_free_ptr(a0);
110 tcg_temp_free_ptr(a1);
111 tcg_temp_free_i32(desc);
112 }
113
114 /* Generate a call to a gvec-style helper with two vector operands
115 and one scalar operand. */
116 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
117 uint32_t oprsz, uint32_t maxsz, int32_t data,
118 gen_helper_gvec_2i *fn)
119 {
120 TCGv_ptr a0, a1;
121 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
122
123 a0 = tcg_temp_new_ptr();
124 a1 = tcg_temp_new_ptr();
125
126 tcg_gen_addi_ptr(a0, cpu_env, dofs);
127 tcg_gen_addi_ptr(a1, cpu_env, aofs);
128
129 fn(a0, a1, c, desc);
130
131 tcg_temp_free_ptr(a0);
132 tcg_temp_free_ptr(a1);
133 tcg_temp_free_i32(desc);
134 }
135
136 /* Generate a call to a gvec-style helper with three vector operands. */
137 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
138 uint32_t oprsz, uint32_t maxsz, int32_t data,
139 gen_helper_gvec_3 *fn)
140 {
141 TCGv_ptr a0, a1, a2;
142 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
143
144 a0 = tcg_temp_new_ptr();
145 a1 = tcg_temp_new_ptr();
146 a2 = tcg_temp_new_ptr();
147
148 tcg_gen_addi_ptr(a0, cpu_env, dofs);
149 tcg_gen_addi_ptr(a1, cpu_env, aofs);
150 tcg_gen_addi_ptr(a2, cpu_env, bofs);
151
152 fn(a0, a1, a2, desc);
153
154 tcg_temp_free_ptr(a0);
155 tcg_temp_free_ptr(a1);
156 tcg_temp_free_ptr(a2);
157 tcg_temp_free_i32(desc);
158 }
159
160 /* Generate a call to a gvec-style helper with four vector operands. */
161 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
162 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
163 int32_t data, gen_helper_gvec_4 *fn)
164 {
165 TCGv_ptr a0, a1, a2, a3;
166 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
167
168 a0 = tcg_temp_new_ptr();
169 a1 = tcg_temp_new_ptr();
170 a2 = tcg_temp_new_ptr();
171 a3 = tcg_temp_new_ptr();
172
173 tcg_gen_addi_ptr(a0, cpu_env, dofs);
174 tcg_gen_addi_ptr(a1, cpu_env, aofs);
175 tcg_gen_addi_ptr(a2, cpu_env, bofs);
176 tcg_gen_addi_ptr(a3, cpu_env, cofs);
177
178 fn(a0, a1, a2, a3, desc);
179
180 tcg_temp_free_ptr(a0);
181 tcg_temp_free_ptr(a1);
182 tcg_temp_free_ptr(a2);
183 tcg_temp_free_ptr(a3);
184 tcg_temp_free_i32(desc);
185 }
186
187 /* Generate a call to a gvec-style helper with five vector operands. */
188 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
189 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
190 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
191 {
192 TCGv_ptr a0, a1, a2, a3, a4;
193 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
194
195 a0 = tcg_temp_new_ptr();
196 a1 = tcg_temp_new_ptr();
197 a2 = tcg_temp_new_ptr();
198 a3 = tcg_temp_new_ptr();
199 a4 = tcg_temp_new_ptr();
200
201 tcg_gen_addi_ptr(a0, cpu_env, dofs);
202 tcg_gen_addi_ptr(a1, cpu_env, aofs);
203 tcg_gen_addi_ptr(a2, cpu_env, bofs);
204 tcg_gen_addi_ptr(a3, cpu_env, cofs);
205 tcg_gen_addi_ptr(a4, cpu_env, xofs);
206
207 fn(a0, a1, a2, a3, a4, desc);
208
209 tcg_temp_free_ptr(a0);
210 tcg_temp_free_ptr(a1);
211 tcg_temp_free_ptr(a2);
212 tcg_temp_free_ptr(a3);
213 tcg_temp_free_ptr(a4);
214 tcg_temp_free_i32(desc);
215 }
216
217 /* Generate a call to a gvec-style helper with three vector operands
218 and an extra pointer operand. */
219 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
220 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
221 int32_t data, gen_helper_gvec_2_ptr *fn)
222 {
223 TCGv_ptr a0, a1;
224 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
225
226 a0 = tcg_temp_new_ptr();
227 a1 = tcg_temp_new_ptr();
228
229 tcg_gen_addi_ptr(a0, cpu_env, dofs);
230 tcg_gen_addi_ptr(a1, cpu_env, aofs);
231
232 fn(a0, a1, ptr, desc);
233
234 tcg_temp_free_ptr(a0);
235 tcg_temp_free_ptr(a1);
236 tcg_temp_free_i32(desc);
237 }
238
239 /* Generate a call to a gvec-style helper with three vector operands
240 and an extra pointer operand. */
241 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
242 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
243 int32_t data, gen_helper_gvec_3_ptr *fn)
244 {
245 TCGv_ptr a0, a1, a2;
246 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
247
248 a0 = tcg_temp_new_ptr();
249 a1 = tcg_temp_new_ptr();
250 a2 = tcg_temp_new_ptr();
251
252 tcg_gen_addi_ptr(a0, cpu_env, dofs);
253 tcg_gen_addi_ptr(a1, cpu_env, aofs);
254 tcg_gen_addi_ptr(a2, cpu_env, bofs);
255
256 fn(a0, a1, a2, ptr, desc);
257
258 tcg_temp_free_ptr(a0);
259 tcg_temp_free_ptr(a1);
260 tcg_temp_free_ptr(a2);
261 tcg_temp_free_i32(desc);
262 }
263
264 /* Generate a call to a gvec-style helper with four vector operands
265 and an extra pointer operand. */
266 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
267 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
268 uint32_t maxsz, int32_t data,
269 gen_helper_gvec_4_ptr *fn)
270 {
271 TCGv_ptr a0, a1, a2, a3;
272 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
273
274 a0 = tcg_temp_new_ptr();
275 a1 = tcg_temp_new_ptr();
276 a2 = tcg_temp_new_ptr();
277 a3 = tcg_temp_new_ptr();
278
279 tcg_gen_addi_ptr(a0, cpu_env, dofs);
280 tcg_gen_addi_ptr(a1, cpu_env, aofs);
281 tcg_gen_addi_ptr(a2, cpu_env, bofs);
282 tcg_gen_addi_ptr(a3, cpu_env, cofs);
283
284 fn(a0, a1, a2, a3, ptr, desc);
285
286 tcg_temp_free_ptr(a0);
287 tcg_temp_free_ptr(a1);
288 tcg_temp_free_ptr(a2);
289 tcg_temp_free_ptr(a3);
290 tcg_temp_free_i32(desc);
291 }
292
293 /* Generate a call to a gvec-style helper with five vector operands
294 and an extra pointer operand. */
295 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
296 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
297 uint32_t oprsz, uint32_t maxsz, int32_t data,
298 gen_helper_gvec_5_ptr *fn)
299 {
300 TCGv_ptr a0, a1, a2, a3, a4;
301 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
302
303 a0 = tcg_temp_new_ptr();
304 a1 = tcg_temp_new_ptr();
305 a2 = tcg_temp_new_ptr();
306 a3 = tcg_temp_new_ptr();
307 a4 = tcg_temp_new_ptr();
308
309 tcg_gen_addi_ptr(a0, cpu_env, dofs);
310 tcg_gen_addi_ptr(a1, cpu_env, aofs);
311 tcg_gen_addi_ptr(a2, cpu_env, bofs);
312 tcg_gen_addi_ptr(a3, cpu_env, cofs);
313 tcg_gen_addi_ptr(a4, cpu_env, eofs);
314
315 fn(a0, a1, a2, a3, a4, ptr, desc);
316
317 tcg_temp_free_ptr(a0);
318 tcg_temp_free_ptr(a1);
319 tcg_temp_free_ptr(a2);
320 tcg_temp_free_ptr(a3);
321 tcg_temp_free_ptr(a4);
322 tcg_temp_free_i32(desc);
323 }
324
325 /* Return true if we want to implement something of OPRSZ bytes
326 in units of LNSZ. This limits the expansion of inline code. */
327 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
328 {
329 uint32_t q, r;
330
331 if (oprsz < lnsz) {
332 return false;
333 }
334
335 q = oprsz / lnsz;
336 r = oprsz % lnsz;
337 tcg_debug_assert((r & 7) == 0);
338
339 if (lnsz < 16) {
340 /* For sizes below 16, accept no remainder. */
341 if (r != 0) {
342 return false;
343 }
344 } else {
345 /*
346 * Recall that ARM SVE allows vector sizes that are not a
347 * power of 2, but always a multiple of 16. The intent is
348 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
349 * In addition, expand_clr needs to handle a multiple of 8.
350 * Thus we can handle the tail with one more operation per
351 * diminishing power of 2.
352 */
353 q += ctpop32(r);
354 }
355
356 return q <= MAX_UNROLL;
357 }
358
359 static void expand_clr(uint32_t dofs, uint32_t maxsz);
360
361 /* Duplicate C as per VECE. */
362 uint64_t (dup_const)(unsigned vece, uint64_t c)
363 {
364 switch (vece) {
365 case MO_8:
366 return 0x0101010101010101ull * (uint8_t)c;
367 case MO_16:
368 return 0x0001000100010001ull * (uint16_t)c;
369 case MO_32:
370 return 0x0000000100000001ull * (uint32_t)c;
371 case MO_64:
372 return c;
373 default:
374 g_assert_not_reached();
375 }
376 }
377
378 /* Duplicate IN into OUT as per VECE. */
379 static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
380 {
381 switch (vece) {
382 case MO_8:
383 tcg_gen_ext8u_i32(out, in);
384 tcg_gen_muli_i32(out, out, 0x01010101);
385 break;
386 case MO_16:
387 tcg_gen_deposit_i32(out, in, in, 16, 16);
388 break;
389 case MO_32:
390 tcg_gen_mov_i32(out, in);
391 break;
392 default:
393 g_assert_not_reached();
394 }
395 }
396
397 static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
398 {
399 switch (vece) {
400 case MO_8:
401 tcg_gen_ext8u_i64(out, in);
402 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
403 break;
404 case MO_16:
405 tcg_gen_ext16u_i64(out, in);
406 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
407 break;
408 case MO_32:
409 tcg_gen_deposit_i64(out, in, in, 32, 32);
410 break;
411 case MO_64:
412 tcg_gen_mov_i64(out, in);
413 break;
414 default:
415 g_assert_not_reached();
416 }
417 }
418
419 /* Select a supported vector type for implementing an operation on SIZE
420 * bytes. If OP is 0, assume that the real operation to be performed is
421 * required by all backends. Otherwise, make sure than OP can be performed
422 * on elements of size VECE in the selected type. Do not select V64 if
423 * PREFER_I64 is true. Return 0 if no vector type is selected.
424 */
425 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
426 uint32_t size, bool prefer_i64)
427 {
428 /*
429 * Recall that ARM SVE allows vector sizes that are not a
430 * power of 2, but always a multiple of 16. The intent is
431 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
432 * It is hard to imagine a case in which v256 is supported
433 * but v128 is not, but check anyway.
434 * In addition, expand_clr needs to handle a multiple of 8.
435 */
436 if (TCG_TARGET_HAS_v256 &&
437 check_size_impl(size, 32) &&
438 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
439 (!(size & 16) ||
440 (TCG_TARGET_HAS_v128 &&
441 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
442 (!(size & 8) ||
443 (TCG_TARGET_HAS_v64 &&
444 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
445 return TCG_TYPE_V256;
446 }
447 if (TCG_TARGET_HAS_v128 &&
448 check_size_impl(size, 16) &&
449 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
450 (!(size & 8) ||
451 (TCG_TARGET_HAS_v64 &&
452 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
453 return TCG_TYPE_V128;
454 }
455 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
456 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
457 return TCG_TYPE_V64;
458 }
459 return 0;
460 }
461
462 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
463 uint32_t maxsz, TCGv_vec t_vec)
464 {
465 uint32_t i = 0;
466
467 tcg_debug_assert(oprsz >= 8);
468
469 /*
470 * This may be expand_clr for the tail of an operation, e.g.
471 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
472 * are misaligned wrt the maximum vector size, so do that first.
473 */
474 if (dofs & 8) {
475 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
476 i += 8;
477 }
478
479 switch (type) {
480 case TCG_TYPE_V256:
481 /*
482 * Recall that ARM SVE allows vector sizes that are not a
483 * power of 2, but always a multiple of 16. The intent is
484 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
485 */
486 for (; i + 32 <= oprsz; i += 32) {
487 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
488 }
489 /* fallthru */
490 case TCG_TYPE_V128:
491 for (; i + 16 <= oprsz; i += 16) {
492 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
493 }
494 break;
495 case TCG_TYPE_V64:
496 for (; i < oprsz; i += 8) {
497 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
498 }
499 break;
500 default:
501 g_assert_not_reached();
502 }
503
504 if (oprsz < maxsz) {
505 expand_clr(dofs + oprsz, maxsz - oprsz);
506 }
507 }
508
509 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
510 * Only one of IN_32 or IN_64 may be set;
511 * IN_C is used if IN_32 and IN_64 are unset.
512 */
513 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
514 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
515 uint64_t in_c)
516 {
517 TCGType type;
518 TCGv_i64 t_64;
519 TCGv_i32 t_32, t_desc;
520 TCGv_ptr t_ptr;
521 uint32_t i;
522
523 assert(vece <= (in_32 ? MO_32 : MO_64));
524 assert(in_32 == NULL || in_64 == NULL);
525
526 /* If we're storing 0, expand oprsz to maxsz. */
527 if (in_32 == NULL && in_64 == NULL) {
528 in_c = dup_const(vece, in_c);
529 if (in_c == 0) {
530 oprsz = maxsz;
531 }
532 }
533
534 /* Implement inline with a vector type, if possible.
535 * Prefer integer when 64-bit host and no variable dup.
536 */
537 type = choose_vector_type(NULL, vece, oprsz,
538 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
539 && (in_64 == NULL || vece == MO_64)));
540 if (type != 0) {
541 TCGv_vec t_vec = tcg_temp_new_vec(type);
542
543 if (in_32) {
544 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
545 } else if (in_64) {
546 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
547 } else {
548 tcg_gen_dupi_vec(vece, t_vec, in_c);
549 }
550 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
551 tcg_temp_free_vec(t_vec);
552 return;
553 }
554
555 /* Otherwise, inline with an integer type, unless "large". */
556 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
557 t_64 = NULL;
558 t_32 = NULL;
559
560 if (in_32) {
561 /* We are given a 32-bit variable input. For a 64-bit host,
562 use a 64-bit operation unless the 32-bit operation would
563 be simple enough. */
564 if (TCG_TARGET_REG_BITS == 64
565 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
566 t_64 = tcg_temp_new_i64();
567 tcg_gen_extu_i32_i64(t_64, in_32);
568 gen_dup_i64(vece, t_64, t_64);
569 } else {
570 t_32 = tcg_temp_new_i32();
571 gen_dup_i32(vece, t_32, in_32);
572 }
573 } else if (in_64) {
574 /* We are given a 64-bit variable input. */
575 t_64 = tcg_temp_new_i64();
576 gen_dup_i64(vece, t_64, in_64);
577 } else {
578 /* We are given a constant input. */
579 /* For 64-bit hosts, use 64-bit constants for "simple" constants
580 or when we'd need too many 32-bit stores, or when a 64-bit
581 constant is really required. */
582 if (vece == MO_64
583 || (TCG_TARGET_REG_BITS == 64
584 && (in_c == 0 || in_c == -1
585 || !check_size_impl(oprsz, 4)))) {
586 t_64 = tcg_const_i64(in_c);
587 } else {
588 t_32 = tcg_const_i32(in_c);
589 }
590 }
591
592 /* Implement inline if we picked an implementation size above. */
593 if (t_32) {
594 for (i = 0; i < oprsz; i += 4) {
595 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
596 }
597 tcg_temp_free_i32(t_32);
598 goto done;
599 }
600 if (t_64) {
601 for (i = 0; i < oprsz; i += 8) {
602 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
603 }
604 tcg_temp_free_i64(t_64);
605 goto done;
606 }
607 }
608
609 /* Otherwise implement out of line. */
610 t_ptr = tcg_temp_new_ptr();
611 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
612 t_desc = tcg_const_i32(simd_desc(oprsz, maxsz, 0));
613
614 if (vece == MO_64) {
615 if (in_64) {
616 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
617 } else {
618 t_64 = tcg_const_i64(in_c);
619 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
620 tcg_temp_free_i64(t_64);
621 }
622 } else {
623 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
624 static dup_fn * const fns[3] = {
625 gen_helper_gvec_dup8,
626 gen_helper_gvec_dup16,
627 gen_helper_gvec_dup32
628 };
629
630 if (in_32) {
631 fns[vece](t_ptr, t_desc, in_32);
632 } else {
633 t_32 = tcg_temp_new_i32();
634 if (in_64) {
635 tcg_gen_extrl_i64_i32(t_32, in_64);
636 } else if (vece == MO_8) {
637 tcg_gen_movi_i32(t_32, in_c & 0xff);
638 } else if (vece == MO_16) {
639 tcg_gen_movi_i32(t_32, in_c & 0xffff);
640 } else {
641 tcg_gen_movi_i32(t_32, in_c);
642 }
643 fns[vece](t_ptr, t_desc, t_32);
644 tcg_temp_free_i32(t_32);
645 }
646 }
647
648 tcg_temp_free_ptr(t_ptr);
649 tcg_temp_free_i32(t_desc);
650 return;
651
652 done:
653 if (oprsz < maxsz) {
654 expand_clr(dofs + oprsz, maxsz - oprsz);
655 }
656 }
657
658 /* Likewise, but with zero. */
659 static void expand_clr(uint32_t dofs, uint32_t maxsz)
660 {
661 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
662 }
663
664 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
665 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
666 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
667 {
668 TCGv_i32 t0 = tcg_temp_new_i32();
669 TCGv_i32 t1 = tcg_temp_new_i32();
670 uint32_t i;
671
672 for (i = 0; i < oprsz; i += 4) {
673 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
674 if (load_dest) {
675 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
676 }
677 fni(t1, t0);
678 tcg_gen_st_i32(t1, cpu_env, dofs + i);
679 }
680 tcg_temp_free_i32(t0);
681 tcg_temp_free_i32(t1);
682 }
683
684 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
685 int32_t c, bool load_dest,
686 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
687 {
688 TCGv_i32 t0 = tcg_temp_new_i32();
689 TCGv_i32 t1 = tcg_temp_new_i32();
690 uint32_t i;
691
692 for (i = 0; i < oprsz; i += 4) {
693 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
694 if (load_dest) {
695 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
696 }
697 fni(t1, t0, c);
698 tcg_gen_st_i32(t1, cpu_env, dofs + i);
699 }
700 tcg_temp_free_i32(t0);
701 tcg_temp_free_i32(t1);
702 }
703
704 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
705 TCGv_i32 c, bool scalar_first,
706 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
707 {
708 TCGv_i32 t0 = tcg_temp_new_i32();
709 TCGv_i32 t1 = tcg_temp_new_i32();
710 uint32_t i;
711
712 for (i = 0; i < oprsz; i += 4) {
713 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
714 if (scalar_first) {
715 fni(t1, c, t0);
716 } else {
717 fni(t1, t0, c);
718 }
719 tcg_gen_st_i32(t1, cpu_env, dofs + i);
720 }
721 tcg_temp_free_i32(t0);
722 tcg_temp_free_i32(t1);
723 }
724
725 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
726 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
727 uint32_t bofs, uint32_t oprsz, bool load_dest,
728 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
729 {
730 TCGv_i32 t0 = tcg_temp_new_i32();
731 TCGv_i32 t1 = tcg_temp_new_i32();
732 TCGv_i32 t2 = tcg_temp_new_i32();
733 uint32_t i;
734
735 for (i = 0; i < oprsz; i += 4) {
736 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
737 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
738 if (load_dest) {
739 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
740 }
741 fni(t2, t0, t1);
742 tcg_gen_st_i32(t2, cpu_env, dofs + i);
743 }
744 tcg_temp_free_i32(t2);
745 tcg_temp_free_i32(t1);
746 tcg_temp_free_i32(t0);
747 }
748
749 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
750 uint32_t oprsz, int32_t c, bool load_dest,
751 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
752 {
753 TCGv_i32 t0 = tcg_temp_new_i32();
754 TCGv_i32 t1 = tcg_temp_new_i32();
755 TCGv_i32 t2 = tcg_temp_new_i32();
756 uint32_t i;
757
758 for (i = 0; i < oprsz; i += 4) {
759 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
760 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
761 if (load_dest) {
762 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
763 }
764 fni(t2, t0, t1, c);
765 tcg_gen_st_i32(t2, cpu_env, dofs + i);
766 }
767 tcg_temp_free_i32(t0);
768 tcg_temp_free_i32(t1);
769 tcg_temp_free_i32(t2);
770 }
771
772 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
773 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
774 uint32_t cofs, uint32_t oprsz, bool write_aofs,
775 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
776 {
777 TCGv_i32 t0 = tcg_temp_new_i32();
778 TCGv_i32 t1 = tcg_temp_new_i32();
779 TCGv_i32 t2 = tcg_temp_new_i32();
780 TCGv_i32 t3 = tcg_temp_new_i32();
781 uint32_t i;
782
783 for (i = 0; i < oprsz; i += 4) {
784 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
785 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
786 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
787 fni(t0, t1, t2, t3);
788 tcg_gen_st_i32(t0, cpu_env, dofs + i);
789 if (write_aofs) {
790 tcg_gen_st_i32(t1, cpu_env, aofs + i);
791 }
792 }
793 tcg_temp_free_i32(t3);
794 tcg_temp_free_i32(t2);
795 tcg_temp_free_i32(t1);
796 tcg_temp_free_i32(t0);
797 }
798
799 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
800 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
801 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
802 {
803 TCGv_i64 t0 = tcg_temp_new_i64();
804 TCGv_i64 t1 = tcg_temp_new_i64();
805 uint32_t i;
806
807 for (i = 0; i < oprsz; i += 8) {
808 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
809 if (load_dest) {
810 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
811 }
812 fni(t1, t0);
813 tcg_gen_st_i64(t1, cpu_env, dofs + i);
814 }
815 tcg_temp_free_i64(t0);
816 tcg_temp_free_i64(t1);
817 }
818
819 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
820 int64_t c, bool load_dest,
821 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
822 {
823 TCGv_i64 t0 = tcg_temp_new_i64();
824 TCGv_i64 t1 = tcg_temp_new_i64();
825 uint32_t i;
826
827 for (i = 0; i < oprsz; i += 8) {
828 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
829 if (load_dest) {
830 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
831 }
832 fni(t1, t0, c);
833 tcg_gen_st_i64(t1, cpu_env, dofs + i);
834 }
835 tcg_temp_free_i64(t0);
836 tcg_temp_free_i64(t1);
837 }
838
839 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
840 TCGv_i64 c, bool scalar_first,
841 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
842 {
843 TCGv_i64 t0 = tcg_temp_new_i64();
844 TCGv_i64 t1 = tcg_temp_new_i64();
845 uint32_t i;
846
847 for (i = 0; i < oprsz; i += 8) {
848 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
849 if (scalar_first) {
850 fni(t1, c, t0);
851 } else {
852 fni(t1, t0, c);
853 }
854 tcg_gen_st_i64(t1, cpu_env, dofs + i);
855 }
856 tcg_temp_free_i64(t0);
857 tcg_temp_free_i64(t1);
858 }
859
860 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
861 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
862 uint32_t bofs, uint32_t oprsz, bool load_dest,
863 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
864 {
865 TCGv_i64 t0 = tcg_temp_new_i64();
866 TCGv_i64 t1 = tcg_temp_new_i64();
867 TCGv_i64 t2 = tcg_temp_new_i64();
868 uint32_t i;
869
870 for (i = 0; i < oprsz; i += 8) {
871 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
872 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
873 if (load_dest) {
874 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
875 }
876 fni(t2, t0, t1);
877 tcg_gen_st_i64(t2, cpu_env, dofs + i);
878 }
879 tcg_temp_free_i64(t2);
880 tcg_temp_free_i64(t1);
881 tcg_temp_free_i64(t0);
882 }
883
884 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
885 uint32_t oprsz, int64_t c, bool load_dest,
886 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
887 {
888 TCGv_i64 t0 = tcg_temp_new_i64();
889 TCGv_i64 t1 = tcg_temp_new_i64();
890 TCGv_i64 t2 = tcg_temp_new_i64();
891 uint32_t i;
892
893 for (i = 0; i < oprsz; i += 8) {
894 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
895 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
896 if (load_dest) {
897 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
898 }
899 fni(t2, t0, t1, c);
900 tcg_gen_st_i64(t2, cpu_env, dofs + i);
901 }
902 tcg_temp_free_i64(t0);
903 tcg_temp_free_i64(t1);
904 tcg_temp_free_i64(t2);
905 }
906
907 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
908 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
909 uint32_t cofs, uint32_t oprsz, bool write_aofs,
910 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
911 {
912 TCGv_i64 t0 = tcg_temp_new_i64();
913 TCGv_i64 t1 = tcg_temp_new_i64();
914 TCGv_i64 t2 = tcg_temp_new_i64();
915 TCGv_i64 t3 = tcg_temp_new_i64();
916 uint32_t i;
917
918 for (i = 0; i < oprsz; i += 8) {
919 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
920 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
921 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
922 fni(t0, t1, t2, t3);
923 tcg_gen_st_i64(t0, cpu_env, dofs + i);
924 if (write_aofs) {
925 tcg_gen_st_i64(t1, cpu_env, aofs + i);
926 }
927 }
928 tcg_temp_free_i64(t3);
929 tcg_temp_free_i64(t2);
930 tcg_temp_free_i64(t1);
931 tcg_temp_free_i64(t0);
932 }
933
934 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
935 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
936 uint32_t oprsz, uint32_t tysz, TCGType type,
937 bool load_dest,
938 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
939 {
940 TCGv_vec t0 = tcg_temp_new_vec(type);
941 TCGv_vec t1 = tcg_temp_new_vec(type);
942 uint32_t i;
943
944 for (i = 0; i < oprsz; i += tysz) {
945 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
946 if (load_dest) {
947 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
948 }
949 fni(vece, t1, t0);
950 tcg_gen_st_vec(t1, cpu_env, dofs + i);
951 }
952 tcg_temp_free_vec(t0);
953 tcg_temp_free_vec(t1);
954 }
955
956 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
957 using host vectors. */
958 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
959 uint32_t oprsz, uint32_t tysz, TCGType type,
960 int64_t c, bool load_dest,
961 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
962 {
963 TCGv_vec t0 = tcg_temp_new_vec(type);
964 TCGv_vec t1 = tcg_temp_new_vec(type);
965 uint32_t i;
966
967 for (i = 0; i < oprsz; i += tysz) {
968 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
969 if (load_dest) {
970 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
971 }
972 fni(vece, t1, t0, c);
973 tcg_gen_st_vec(t1, cpu_env, dofs + i);
974 }
975 tcg_temp_free_vec(t0);
976 tcg_temp_free_vec(t1);
977 }
978
979 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
980 uint32_t oprsz, uint32_t tysz, TCGType type,
981 TCGv_vec c, bool scalar_first,
982 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
983 {
984 TCGv_vec t0 = tcg_temp_new_vec(type);
985 TCGv_vec t1 = tcg_temp_new_vec(type);
986 uint32_t i;
987
988 for (i = 0; i < oprsz; i += tysz) {
989 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
990 if (scalar_first) {
991 fni(vece, t1, c, t0);
992 } else {
993 fni(vece, t1, t0, c);
994 }
995 tcg_gen_st_vec(t1, cpu_env, dofs + i);
996 }
997 tcg_temp_free_vec(t0);
998 tcg_temp_free_vec(t1);
999 }
1000
1001 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1002 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1003 uint32_t bofs, uint32_t oprsz,
1004 uint32_t tysz, TCGType type, bool load_dest,
1005 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1006 {
1007 TCGv_vec t0 = tcg_temp_new_vec(type);
1008 TCGv_vec t1 = tcg_temp_new_vec(type);
1009 TCGv_vec t2 = tcg_temp_new_vec(type);
1010 uint32_t i;
1011
1012 for (i = 0; i < oprsz; i += tysz) {
1013 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1014 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1015 if (load_dest) {
1016 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1017 }
1018 fni(vece, t2, t0, t1);
1019 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1020 }
1021 tcg_temp_free_vec(t2);
1022 tcg_temp_free_vec(t1);
1023 tcg_temp_free_vec(t0);
1024 }
1025
1026 /*
1027 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1028 * using host vectors.
1029 */
1030 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1031 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
1032 TCGType type, int64_t c, bool load_dest,
1033 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
1034 int64_t))
1035 {
1036 TCGv_vec t0 = tcg_temp_new_vec(type);
1037 TCGv_vec t1 = tcg_temp_new_vec(type);
1038 TCGv_vec t2 = tcg_temp_new_vec(type);
1039 uint32_t i;
1040
1041 for (i = 0; i < oprsz; i += tysz) {
1042 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1043 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1044 if (load_dest) {
1045 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1046 }
1047 fni(vece, t2, t0, t1, c);
1048 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1049 }
1050 tcg_temp_free_vec(t0);
1051 tcg_temp_free_vec(t1);
1052 tcg_temp_free_vec(t2);
1053 }
1054
1055 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1056 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1057 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1058 uint32_t tysz, TCGType type, bool write_aofs,
1059 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1060 TCGv_vec, TCGv_vec))
1061 {
1062 TCGv_vec t0 = tcg_temp_new_vec(type);
1063 TCGv_vec t1 = tcg_temp_new_vec(type);
1064 TCGv_vec t2 = tcg_temp_new_vec(type);
1065 TCGv_vec t3 = tcg_temp_new_vec(type);
1066 uint32_t i;
1067
1068 for (i = 0; i < oprsz; i += tysz) {
1069 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1070 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1071 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1072 fni(vece, t0, t1, t2, t3);
1073 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1074 if (write_aofs) {
1075 tcg_gen_st_vec(t1, cpu_env, aofs + i);
1076 }
1077 }
1078 tcg_temp_free_vec(t3);
1079 tcg_temp_free_vec(t2);
1080 tcg_temp_free_vec(t1);
1081 tcg_temp_free_vec(t0);
1082 }
1083
1084 /* Expand a vector two-operand operation. */
1085 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1086 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1087 {
1088 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1089 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1090 TCGType type;
1091 uint32_t some;
1092
1093 check_size_align(oprsz, maxsz, dofs | aofs);
1094 check_overlap_2(dofs, aofs, maxsz);
1095
1096 type = 0;
1097 if (g->fniv) {
1098 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1099 }
1100 switch (type) {
1101 case TCG_TYPE_V256:
1102 /* Recall that ARM SVE allows vector sizes that are not a
1103 * power of 2, but always a multiple of 16. The intent is
1104 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1105 */
1106 some = QEMU_ALIGN_DOWN(oprsz, 32);
1107 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1108 g->load_dest, g->fniv);
1109 if (some == oprsz) {
1110 break;
1111 }
1112 dofs += some;
1113 aofs += some;
1114 oprsz -= some;
1115 maxsz -= some;
1116 /* fallthru */
1117 case TCG_TYPE_V128:
1118 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1119 g->load_dest, g->fniv);
1120 break;
1121 case TCG_TYPE_V64:
1122 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1123 g->load_dest, g->fniv);
1124 break;
1125
1126 case 0:
1127 if (g->fni8 && check_size_impl(oprsz, 8)) {
1128 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
1129 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1130 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
1131 } else {
1132 assert(g->fno != NULL);
1133 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1134 oprsz = maxsz;
1135 }
1136 break;
1137
1138 default:
1139 g_assert_not_reached();
1140 }
1141 tcg_swap_vecop_list(hold_list);
1142
1143 if (oprsz < maxsz) {
1144 expand_clr(dofs + oprsz, maxsz - oprsz);
1145 }
1146 }
1147
1148 /* Expand a vector operation with two vectors and an immediate. */
1149 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1150 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1151 {
1152 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1153 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1154 TCGType type;
1155 uint32_t some;
1156
1157 check_size_align(oprsz, maxsz, dofs | aofs);
1158 check_overlap_2(dofs, aofs, maxsz);
1159
1160 type = 0;
1161 if (g->fniv) {
1162 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1163 }
1164 switch (type) {
1165 case TCG_TYPE_V256:
1166 /* Recall that ARM SVE allows vector sizes that are not a
1167 * power of 2, but always a multiple of 16. The intent is
1168 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1169 */
1170 some = QEMU_ALIGN_DOWN(oprsz, 32);
1171 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1172 c, g->load_dest, g->fniv);
1173 if (some == oprsz) {
1174 break;
1175 }
1176 dofs += some;
1177 aofs += some;
1178 oprsz -= some;
1179 maxsz -= some;
1180 /* fallthru */
1181 case TCG_TYPE_V128:
1182 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1183 c, g->load_dest, g->fniv);
1184 break;
1185 case TCG_TYPE_V64:
1186 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1187 c, g->load_dest, g->fniv);
1188 break;
1189
1190 case 0:
1191 if (g->fni8 && check_size_impl(oprsz, 8)) {
1192 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1193 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1194 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1195 } else {
1196 if (g->fno) {
1197 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1198 } else {
1199 TCGv_i64 tcg_c = tcg_const_i64(c);
1200 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1201 maxsz, c, g->fnoi);
1202 tcg_temp_free_i64(tcg_c);
1203 }
1204 oprsz = maxsz;
1205 }
1206 break;
1207
1208 default:
1209 g_assert_not_reached();
1210 }
1211 tcg_swap_vecop_list(hold_list);
1212
1213 if (oprsz < maxsz) {
1214 expand_clr(dofs + oprsz, maxsz - oprsz);
1215 }
1216 }
1217
1218 /* Expand a vector operation with two vectors and a scalar. */
1219 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1220 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1221 {
1222 TCGType type;
1223
1224 check_size_align(oprsz, maxsz, dofs | aofs);
1225 check_overlap_2(dofs, aofs, maxsz);
1226
1227 type = 0;
1228 if (g->fniv) {
1229 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1230 }
1231 if (type != 0) {
1232 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1233 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1234 TCGv_vec t_vec = tcg_temp_new_vec(type);
1235 uint32_t some;
1236
1237 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1238
1239 switch (type) {
1240 case TCG_TYPE_V256:
1241 /* Recall that ARM SVE allows vector sizes that are not a
1242 * power of 2, but always a multiple of 16. The intent is
1243 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1244 */
1245 some = QEMU_ALIGN_DOWN(oprsz, 32);
1246 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1247 t_vec, g->scalar_first, g->fniv);
1248 if (some == oprsz) {
1249 break;
1250 }
1251 dofs += some;
1252 aofs += some;
1253 oprsz -= some;
1254 maxsz -= some;
1255 /* fallthru */
1256
1257 case TCG_TYPE_V128:
1258 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1259 t_vec, g->scalar_first, g->fniv);
1260 break;
1261
1262 case TCG_TYPE_V64:
1263 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1264 t_vec, g->scalar_first, g->fniv);
1265 break;
1266
1267 default:
1268 g_assert_not_reached();
1269 }
1270 tcg_temp_free_vec(t_vec);
1271 tcg_swap_vecop_list(hold_list);
1272 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1273 TCGv_i64 t64 = tcg_temp_new_i64();
1274
1275 gen_dup_i64(g->vece, t64, c);
1276 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1277 tcg_temp_free_i64(t64);
1278 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1279 TCGv_i32 t32 = tcg_temp_new_i32();
1280
1281 tcg_gen_extrl_i64_i32(t32, c);
1282 gen_dup_i32(g->vece, t32, t32);
1283 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1284 tcg_temp_free_i32(t32);
1285 } else {
1286 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1287 return;
1288 }
1289
1290 if (oprsz < maxsz) {
1291 expand_clr(dofs + oprsz, maxsz - oprsz);
1292 }
1293 }
1294
1295 /* Expand a vector three-operand operation. */
1296 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1297 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1298 {
1299 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1300 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1301 TCGType type;
1302 uint32_t some;
1303
1304 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1305 check_overlap_3(dofs, aofs, bofs, maxsz);
1306
1307 type = 0;
1308 if (g->fniv) {
1309 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1310 }
1311 switch (type) {
1312 case TCG_TYPE_V256:
1313 /* Recall that ARM SVE allows vector sizes that are not a
1314 * power of 2, but always a multiple of 16. The intent is
1315 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1316 */
1317 some = QEMU_ALIGN_DOWN(oprsz, 32);
1318 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1319 g->load_dest, g->fniv);
1320 if (some == oprsz) {
1321 break;
1322 }
1323 dofs += some;
1324 aofs += some;
1325 bofs += some;
1326 oprsz -= some;
1327 maxsz -= some;
1328 /* fallthru */
1329 case TCG_TYPE_V128:
1330 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1331 g->load_dest, g->fniv);
1332 break;
1333 case TCG_TYPE_V64:
1334 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1335 g->load_dest, g->fniv);
1336 break;
1337
1338 case 0:
1339 if (g->fni8 && check_size_impl(oprsz, 8)) {
1340 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1341 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1342 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1343 } else {
1344 assert(g->fno != NULL);
1345 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1346 maxsz, g->data, g->fno);
1347 oprsz = maxsz;
1348 }
1349 break;
1350
1351 default:
1352 g_assert_not_reached();
1353 }
1354 tcg_swap_vecop_list(hold_list);
1355
1356 if (oprsz < maxsz) {
1357 expand_clr(dofs + oprsz, maxsz - oprsz);
1358 }
1359 }
1360
1361 /* Expand a vector operation with three vectors and an immediate. */
1362 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1363 uint32_t oprsz, uint32_t maxsz, int64_t c,
1364 const GVecGen3i *g)
1365 {
1366 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1367 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1368 TCGType type;
1369 uint32_t some;
1370
1371 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1372 check_overlap_3(dofs, aofs, bofs, maxsz);
1373
1374 type = 0;
1375 if (g->fniv) {
1376 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1377 }
1378 switch (type) {
1379 case TCG_TYPE_V256:
1380 /*
1381 * Recall that ARM SVE allows vector sizes that are not a
1382 * power of 2, but always a multiple of 16. The intent is
1383 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1384 */
1385 some = QEMU_ALIGN_DOWN(oprsz, 32);
1386 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1387 c, g->load_dest, g->fniv);
1388 if (some == oprsz) {
1389 break;
1390 }
1391 dofs += some;
1392 aofs += some;
1393 bofs += some;
1394 oprsz -= some;
1395 maxsz -= some;
1396 /* fallthru */
1397 case TCG_TYPE_V128:
1398 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1399 c, g->load_dest, g->fniv);
1400 break;
1401 case TCG_TYPE_V64:
1402 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1403 c, g->load_dest, g->fniv);
1404 break;
1405
1406 case 0:
1407 if (g->fni8 && check_size_impl(oprsz, 8)) {
1408 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1409 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1410 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1411 } else {
1412 assert(g->fno != NULL);
1413 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1414 oprsz = maxsz;
1415 }
1416 break;
1417
1418 default:
1419 g_assert_not_reached();
1420 }
1421 tcg_swap_vecop_list(hold_list);
1422
1423 if (oprsz < maxsz) {
1424 expand_clr(dofs + oprsz, maxsz - oprsz);
1425 }
1426 }
1427
1428 /* Expand a vector four-operand operation. */
1429 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1430 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1431 {
1432 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1433 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1434 TCGType type;
1435 uint32_t some;
1436
1437 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1438 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1439
1440 type = 0;
1441 if (g->fniv) {
1442 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1443 }
1444 switch (type) {
1445 case TCG_TYPE_V256:
1446 /* Recall that ARM SVE allows vector sizes that are not a
1447 * power of 2, but always a multiple of 16. The intent is
1448 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1449 */
1450 some = QEMU_ALIGN_DOWN(oprsz, 32);
1451 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1452 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1453 if (some == oprsz) {
1454 break;
1455 }
1456 dofs += some;
1457 aofs += some;
1458 bofs += some;
1459 cofs += some;
1460 oprsz -= some;
1461 maxsz -= some;
1462 /* fallthru */
1463 case TCG_TYPE_V128:
1464 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1465 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1466 break;
1467 case TCG_TYPE_V64:
1468 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1469 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1470 break;
1471
1472 case 0:
1473 if (g->fni8 && check_size_impl(oprsz, 8)) {
1474 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1475 g->write_aofs, g->fni8);
1476 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1477 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1478 g->write_aofs, g->fni4);
1479 } else {
1480 assert(g->fno != NULL);
1481 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1482 oprsz, maxsz, g->data, g->fno);
1483 oprsz = maxsz;
1484 }
1485 break;
1486
1487 default:
1488 g_assert_not_reached();
1489 }
1490 tcg_swap_vecop_list(hold_list);
1491
1492 if (oprsz < maxsz) {
1493 expand_clr(dofs + oprsz, maxsz - oprsz);
1494 }
1495 }
1496
1497 /*
1498 * Expand specific vector operations.
1499 */
1500
1501 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1502 {
1503 tcg_gen_mov_vec(a, b);
1504 }
1505
1506 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1507 uint32_t oprsz, uint32_t maxsz)
1508 {
1509 static const GVecGen2 g = {
1510 .fni8 = tcg_gen_mov_i64,
1511 .fniv = vec_mov2,
1512 .fno = gen_helper_gvec_mov,
1513 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1514 };
1515 if (dofs != aofs) {
1516 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1517 } else {
1518 check_size_align(oprsz, maxsz, dofs);
1519 if (oprsz < maxsz) {
1520 expand_clr(dofs + oprsz, maxsz - oprsz);
1521 }
1522 }
1523 }
1524
1525 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1526 uint32_t maxsz, TCGv_i32 in)
1527 {
1528 check_size_align(oprsz, maxsz, dofs);
1529 tcg_debug_assert(vece <= MO_32);
1530 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1531 }
1532
1533 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1534 uint32_t maxsz, TCGv_i64 in)
1535 {
1536 check_size_align(oprsz, maxsz, dofs);
1537 tcg_debug_assert(vece <= MO_64);
1538 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1539 }
1540
1541 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1542 uint32_t oprsz, uint32_t maxsz)
1543 {
1544 check_size_align(oprsz, maxsz, dofs);
1545 if (vece <= MO_64) {
1546 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1547 if (type != 0) {
1548 TCGv_vec t_vec = tcg_temp_new_vec(type);
1549 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1550 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1551 tcg_temp_free_vec(t_vec);
1552 } else if (vece <= MO_32) {
1553 TCGv_i32 in = tcg_temp_new_i32();
1554 switch (vece) {
1555 case MO_8:
1556 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1557 break;
1558 case MO_16:
1559 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1560 break;
1561 default:
1562 tcg_gen_ld_i32(in, cpu_env, aofs);
1563 break;
1564 }
1565 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1566 tcg_temp_free_i32(in);
1567 } else {
1568 TCGv_i64 in = tcg_temp_new_i64();
1569 tcg_gen_ld_i64(in, cpu_env, aofs);
1570 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1571 tcg_temp_free_i64(in);
1572 }
1573 } else {
1574 /* 128-bit duplicate. */
1575 /* ??? Dup to 256-bit vector. */
1576 int i;
1577
1578 tcg_debug_assert(vece == 4);
1579 tcg_debug_assert(oprsz >= 16);
1580 if (TCG_TARGET_HAS_v128) {
1581 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1582
1583 tcg_gen_ld_vec(in, cpu_env, aofs);
1584 for (i = 0; i < oprsz; i += 16) {
1585 tcg_gen_st_vec(in, cpu_env, dofs + i);
1586 }
1587 tcg_temp_free_vec(in);
1588 } else {
1589 TCGv_i64 in0 = tcg_temp_new_i64();
1590 TCGv_i64 in1 = tcg_temp_new_i64();
1591
1592 tcg_gen_ld_i64(in0, cpu_env, aofs);
1593 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1594 for (i = 0; i < oprsz; i += 16) {
1595 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1596 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1597 }
1598 tcg_temp_free_i64(in0);
1599 tcg_temp_free_i64(in1);
1600 }
1601 if (oprsz < maxsz) {
1602 expand_clr(dofs + oprsz, maxsz - oprsz);
1603 }
1604 }
1605 }
1606
1607 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
1608 uint32_t maxsz, uint64_t x)
1609 {
1610 check_size_align(oprsz, maxsz, dofs);
1611 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
1612 }
1613
1614 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1615 uint32_t oprsz, uint32_t maxsz)
1616 {
1617 static const GVecGen2 g = {
1618 .fni8 = tcg_gen_not_i64,
1619 .fniv = tcg_gen_not_vec,
1620 .fno = gen_helper_gvec_not,
1621 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1622 };
1623 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1624 }
1625
1626 /* Perform a vector addition using normal addition and a mask. The mask
1627 should be the sign bit of each lane. This 6-operation form is more
1628 efficient than separate additions when there are 4 or more lanes in
1629 the 64-bit operation. */
1630 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1631 {
1632 TCGv_i64 t1 = tcg_temp_new_i64();
1633 TCGv_i64 t2 = tcg_temp_new_i64();
1634 TCGv_i64 t3 = tcg_temp_new_i64();
1635
1636 tcg_gen_andc_i64(t1, a, m);
1637 tcg_gen_andc_i64(t2, b, m);
1638 tcg_gen_xor_i64(t3, a, b);
1639 tcg_gen_add_i64(d, t1, t2);
1640 tcg_gen_and_i64(t3, t3, m);
1641 tcg_gen_xor_i64(d, d, t3);
1642
1643 tcg_temp_free_i64(t1);
1644 tcg_temp_free_i64(t2);
1645 tcg_temp_free_i64(t3);
1646 }
1647
1648 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1649 {
1650 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1651 gen_addv_mask(d, a, b, m);
1652 tcg_temp_free_i64(m);
1653 }
1654
1655 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1656 {
1657 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1658 gen_addv_mask(d, a, b, m);
1659 tcg_temp_free_i64(m);
1660 }
1661
1662 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1663 {
1664 TCGv_i64 t1 = tcg_temp_new_i64();
1665 TCGv_i64 t2 = tcg_temp_new_i64();
1666
1667 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1668 tcg_gen_add_i64(t2, a, b);
1669 tcg_gen_add_i64(t1, t1, b);
1670 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1671
1672 tcg_temp_free_i64(t1);
1673 tcg_temp_free_i64(t2);
1674 }
1675
1676 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1677
1678 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1679 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1680 {
1681 static const GVecGen3 g[4] = {
1682 { .fni8 = tcg_gen_vec_add8_i64,
1683 .fniv = tcg_gen_add_vec,
1684 .fno = gen_helper_gvec_add8,
1685 .opt_opc = vecop_list_add,
1686 .vece = MO_8 },
1687 { .fni8 = tcg_gen_vec_add16_i64,
1688 .fniv = tcg_gen_add_vec,
1689 .fno = gen_helper_gvec_add16,
1690 .opt_opc = vecop_list_add,
1691 .vece = MO_16 },
1692 { .fni4 = tcg_gen_add_i32,
1693 .fniv = tcg_gen_add_vec,
1694 .fno = gen_helper_gvec_add32,
1695 .opt_opc = vecop_list_add,
1696 .vece = MO_32 },
1697 { .fni8 = tcg_gen_add_i64,
1698 .fniv = tcg_gen_add_vec,
1699 .fno = gen_helper_gvec_add64,
1700 .opt_opc = vecop_list_add,
1701 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1702 .vece = MO_64 },
1703 };
1704
1705 tcg_debug_assert(vece <= MO_64);
1706 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1707 }
1708
1709 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1710 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1711 {
1712 static const GVecGen2s g[4] = {
1713 { .fni8 = tcg_gen_vec_add8_i64,
1714 .fniv = tcg_gen_add_vec,
1715 .fno = gen_helper_gvec_adds8,
1716 .opt_opc = vecop_list_add,
1717 .vece = MO_8 },
1718 { .fni8 = tcg_gen_vec_add16_i64,
1719 .fniv = tcg_gen_add_vec,
1720 .fno = gen_helper_gvec_adds16,
1721 .opt_opc = vecop_list_add,
1722 .vece = MO_16 },
1723 { .fni4 = tcg_gen_add_i32,
1724 .fniv = tcg_gen_add_vec,
1725 .fno = gen_helper_gvec_adds32,
1726 .opt_opc = vecop_list_add,
1727 .vece = MO_32 },
1728 { .fni8 = tcg_gen_add_i64,
1729 .fniv = tcg_gen_add_vec,
1730 .fno = gen_helper_gvec_adds64,
1731 .opt_opc = vecop_list_add,
1732 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1733 .vece = MO_64 },
1734 };
1735
1736 tcg_debug_assert(vece <= MO_64);
1737 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1738 }
1739
1740 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1741 int64_t c, uint32_t oprsz, uint32_t maxsz)
1742 {
1743 TCGv_i64 tmp = tcg_const_i64(c);
1744 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1745 tcg_temp_free_i64(tmp);
1746 }
1747
1748 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
1749
1750 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1751 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1752 {
1753 static const GVecGen2s g[4] = {
1754 { .fni8 = tcg_gen_vec_sub8_i64,
1755 .fniv = tcg_gen_sub_vec,
1756 .fno = gen_helper_gvec_subs8,
1757 .opt_opc = vecop_list_sub,
1758 .vece = MO_8 },
1759 { .fni8 = tcg_gen_vec_sub16_i64,
1760 .fniv = tcg_gen_sub_vec,
1761 .fno = gen_helper_gvec_subs16,
1762 .opt_opc = vecop_list_sub,
1763 .vece = MO_16 },
1764 { .fni4 = tcg_gen_sub_i32,
1765 .fniv = tcg_gen_sub_vec,
1766 .fno = gen_helper_gvec_subs32,
1767 .opt_opc = vecop_list_sub,
1768 .vece = MO_32 },
1769 { .fni8 = tcg_gen_sub_i64,
1770 .fniv = tcg_gen_sub_vec,
1771 .fno = gen_helper_gvec_subs64,
1772 .opt_opc = vecop_list_sub,
1773 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1774 .vece = MO_64 },
1775 };
1776
1777 tcg_debug_assert(vece <= MO_64);
1778 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1779 }
1780
1781 /* Perform a vector subtraction using normal subtraction and a mask.
1782 Compare gen_addv_mask above. */
1783 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1784 {
1785 TCGv_i64 t1 = tcg_temp_new_i64();
1786 TCGv_i64 t2 = tcg_temp_new_i64();
1787 TCGv_i64 t3 = tcg_temp_new_i64();
1788
1789 tcg_gen_or_i64(t1, a, m);
1790 tcg_gen_andc_i64(t2, b, m);
1791 tcg_gen_eqv_i64(t3, a, b);
1792 tcg_gen_sub_i64(d, t1, t2);
1793 tcg_gen_and_i64(t3, t3, m);
1794 tcg_gen_xor_i64(d, d, t3);
1795
1796 tcg_temp_free_i64(t1);
1797 tcg_temp_free_i64(t2);
1798 tcg_temp_free_i64(t3);
1799 }
1800
1801 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1802 {
1803 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1804 gen_subv_mask(d, a, b, m);
1805 tcg_temp_free_i64(m);
1806 }
1807
1808 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1809 {
1810 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1811 gen_subv_mask(d, a, b, m);
1812 tcg_temp_free_i64(m);
1813 }
1814
1815 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1816 {
1817 TCGv_i64 t1 = tcg_temp_new_i64();
1818 TCGv_i64 t2 = tcg_temp_new_i64();
1819
1820 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1821 tcg_gen_sub_i64(t2, a, b);
1822 tcg_gen_sub_i64(t1, a, t1);
1823 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1824
1825 tcg_temp_free_i64(t1);
1826 tcg_temp_free_i64(t2);
1827 }
1828
1829 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1830 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1831 {
1832 static const GVecGen3 g[4] = {
1833 { .fni8 = tcg_gen_vec_sub8_i64,
1834 .fniv = tcg_gen_sub_vec,
1835 .fno = gen_helper_gvec_sub8,
1836 .opt_opc = vecop_list_sub,
1837 .vece = MO_8 },
1838 { .fni8 = tcg_gen_vec_sub16_i64,
1839 .fniv = tcg_gen_sub_vec,
1840 .fno = gen_helper_gvec_sub16,
1841 .opt_opc = vecop_list_sub,
1842 .vece = MO_16 },
1843 { .fni4 = tcg_gen_sub_i32,
1844 .fniv = tcg_gen_sub_vec,
1845 .fno = gen_helper_gvec_sub32,
1846 .opt_opc = vecop_list_sub,
1847 .vece = MO_32 },
1848 { .fni8 = tcg_gen_sub_i64,
1849 .fniv = tcg_gen_sub_vec,
1850 .fno = gen_helper_gvec_sub64,
1851 .opt_opc = vecop_list_sub,
1852 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1853 .vece = MO_64 },
1854 };
1855
1856 tcg_debug_assert(vece <= MO_64);
1857 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1858 }
1859
1860 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
1861
1862 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
1863 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1864 {
1865 static const GVecGen3 g[4] = {
1866 { .fniv = tcg_gen_mul_vec,
1867 .fno = gen_helper_gvec_mul8,
1868 .opt_opc = vecop_list_mul,
1869 .vece = MO_8 },
1870 { .fniv = tcg_gen_mul_vec,
1871 .fno = gen_helper_gvec_mul16,
1872 .opt_opc = vecop_list_mul,
1873 .vece = MO_16 },
1874 { .fni4 = tcg_gen_mul_i32,
1875 .fniv = tcg_gen_mul_vec,
1876 .fno = gen_helper_gvec_mul32,
1877 .opt_opc = vecop_list_mul,
1878 .vece = MO_32 },
1879 { .fni8 = tcg_gen_mul_i64,
1880 .fniv = tcg_gen_mul_vec,
1881 .fno = gen_helper_gvec_mul64,
1882 .opt_opc = vecop_list_mul,
1883 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1884 .vece = MO_64 },
1885 };
1886
1887 tcg_debug_assert(vece <= MO_64);
1888 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1889 }
1890
1891 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
1892 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1893 {
1894 static const GVecGen2s g[4] = {
1895 { .fniv = tcg_gen_mul_vec,
1896 .fno = gen_helper_gvec_muls8,
1897 .opt_opc = vecop_list_mul,
1898 .vece = MO_8 },
1899 { .fniv = tcg_gen_mul_vec,
1900 .fno = gen_helper_gvec_muls16,
1901 .opt_opc = vecop_list_mul,
1902 .vece = MO_16 },
1903 { .fni4 = tcg_gen_mul_i32,
1904 .fniv = tcg_gen_mul_vec,
1905 .fno = gen_helper_gvec_muls32,
1906 .opt_opc = vecop_list_mul,
1907 .vece = MO_32 },
1908 { .fni8 = tcg_gen_mul_i64,
1909 .fniv = tcg_gen_mul_vec,
1910 .fno = gen_helper_gvec_muls64,
1911 .opt_opc = vecop_list_mul,
1912 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1913 .vece = MO_64 },
1914 };
1915
1916 tcg_debug_assert(vece <= MO_64);
1917 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1918 }
1919
1920 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
1921 int64_t c, uint32_t oprsz, uint32_t maxsz)
1922 {
1923 TCGv_i64 tmp = tcg_const_i64(c);
1924 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
1925 tcg_temp_free_i64(tmp);
1926 }
1927
1928 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1929 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1930 {
1931 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
1932 static const GVecGen3 g[4] = {
1933 { .fniv = tcg_gen_ssadd_vec,
1934 .fno = gen_helper_gvec_ssadd8,
1935 .opt_opc = vecop_list,
1936 .vece = MO_8 },
1937 { .fniv = tcg_gen_ssadd_vec,
1938 .fno = gen_helper_gvec_ssadd16,
1939 .opt_opc = vecop_list,
1940 .vece = MO_16 },
1941 { .fniv = tcg_gen_ssadd_vec,
1942 .fno = gen_helper_gvec_ssadd32,
1943 .opt_opc = vecop_list,
1944 .vece = MO_32 },
1945 { .fniv = tcg_gen_ssadd_vec,
1946 .fno = gen_helper_gvec_ssadd64,
1947 .opt_opc = vecop_list,
1948 .vece = MO_64 },
1949 };
1950 tcg_debug_assert(vece <= MO_64);
1951 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1952 }
1953
1954 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
1955 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1956 {
1957 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
1958 static const GVecGen3 g[4] = {
1959 { .fniv = tcg_gen_sssub_vec,
1960 .fno = gen_helper_gvec_sssub8,
1961 .opt_opc = vecop_list,
1962 .vece = MO_8 },
1963 { .fniv = tcg_gen_sssub_vec,
1964 .fno = gen_helper_gvec_sssub16,
1965 .opt_opc = vecop_list,
1966 .vece = MO_16 },
1967 { .fniv = tcg_gen_sssub_vec,
1968 .fno = gen_helper_gvec_sssub32,
1969 .opt_opc = vecop_list,
1970 .vece = MO_32 },
1971 { .fniv = tcg_gen_sssub_vec,
1972 .fno = gen_helper_gvec_sssub64,
1973 .opt_opc = vecop_list,
1974 .vece = MO_64 },
1975 };
1976 tcg_debug_assert(vece <= MO_64);
1977 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1978 }
1979
1980 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1981 {
1982 TCGv_i32 max = tcg_const_i32(-1);
1983 tcg_gen_add_i32(d, a, b);
1984 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
1985 tcg_temp_free_i32(max);
1986 }
1987
1988 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1989 {
1990 TCGv_i64 max = tcg_const_i64(-1);
1991 tcg_gen_add_i64(d, a, b);
1992 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
1993 tcg_temp_free_i64(max);
1994 }
1995
1996 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1997 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1998 {
1999 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
2000 static const GVecGen3 g[4] = {
2001 { .fniv = tcg_gen_usadd_vec,
2002 .fno = gen_helper_gvec_usadd8,
2003 .opt_opc = vecop_list,
2004 .vece = MO_8 },
2005 { .fniv = tcg_gen_usadd_vec,
2006 .fno = gen_helper_gvec_usadd16,
2007 .opt_opc = vecop_list,
2008 .vece = MO_16 },
2009 { .fni4 = tcg_gen_usadd_i32,
2010 .fniv = tcg_gen_usadd_vec,
2011 .fno = gen_helper_gvec_usadd32,
2012 .opt_opc = vecop_list,
2013 .vece = MO_32 },
2014 { .fni8 = tcg_gen_usadd_i64,
2015 .fniv = tcg_gen_usadd_vec,
2016 .fno = gen_helper_gvec_usadd64,
2017 .opt_opc = vecop_list,
2018 .vece = MO_64 }
2019 };
2020 tcg_debug_assert(vece <= MO_64);
2021 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2022 }
2023
2024 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2025 {
2026 TCGv_i32 min = tcg_const_i32(0);
2027 tcg_gen_sub_i32(d, a, b);
2028 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
2029 tcg_temp_free_i32(min);
2030 }
2031
2032 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2033 {
2034 TCGv_i64 min = tcg_const_i64(0);
2035 tcg_gen_sub_i64(d, a, b);
2036 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
2037 tcg_temp_free_i64(min);
2038 }
2039
2040 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
2041 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2042 {
2043 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2044 static const GVecGen3 g[4] = {
2045 { .fniv = tcg_gen_ussub_vec,
2046 .fno = gen_helper_gvec_ussub8,
2047 .opt_opc = vecop_list,
2048 .vece = MO_8 },
2049 { .fniv = tcg_gen_ussub_vec,
2050 .fno = gen_helper_gvec_ussub16,
2051 .opt_opc = vecop_list,
2052 .vece = MO_16 },
2053 { .fni4 = tcg_gen_ussub_i32,
2054 .fniv = tcg_gen_ussub_vec,
2055 .fno = gen_helper_gvec_ussub32,
2056 .opt_opc = vecop_list,
2057 .vece = MO_32 },
2058 { .fni8 = tcg_gen_ussub_i64,
2059 .fniv = tcg_gen_ussub_vec,
2060 .fno = gen_helper_gvec_ussub64,
2061 .opt_opc = vecop_list,
2062 .vece = MO_64 }
2063 };
2064 tcg_debug_assert(vece <= MO_64);
2065 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2066 }
2067
2068 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2069 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2070 {
2071 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2072 static const GVecGen3 g[4] = {
2073 { .fniv = tcg_gen_smin_vec,
2074 .fno = gen_helper_gvec_smin8,
2075 .opt_opc = vecop_list,
2076 .vece = MO_8 },
2077 { .fniv = tcg_gen_smin_vec,
2078 .fno = gen_helper_gvec_smin16,
2079 .opt_opc = vecop_list,
2080 .vece = MO_16 },
2081 { .fni4 = tcg_gen_smin_i32,
2082 .fniv = tcg_gen_smin_vec,
2083 .fno = gen_helper_gvec_smin32,
2084 .opt_opc = vecop_list,
2085 .vece = MO_32 },
2086 { .fni8 = tcg_gen_smin_i64,
2087 .fniv = tcg_gen_smin_vec,
2088 .fno = gen_helper_gvec_smin64,
2089 .opt_opc = vecop_list,
2090 .vece = MO_64 }
2091 };
2092 tcg_debug_assert(vece <= MO_64);
2093 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2094 }
2095
2096 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2097 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2098 {
2099 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2100 static const GVecGen3 g[4] = {
2101 { .fniv = tcg_gen_umin_vec,
2102 .fno = gen_helper_gvec_umin8,
2103 .opt_opc = vecop_list,
2104 .vece = MO_8 },
2105 { .fniv = tcg_gen_umin_vec,
2106 .fno = gen_helper_gvec_umin16,
2107 .opt_opc = vecop_list,
2108 .vece = MO_16 },
2109 { .fni4 = tcg_gen_umin_i32,
2110 .fniv = tcg_gen_umin_vec,
2111 .fno = gen_helper_gvec_umin32,
2112 .opt_opc = vecop_list,
2113 .vece = MO_32 },
2114 { .fni8 = tcg_gen_umin_i64,
2115 .fniv = tcg_gen_umin_vec,
2116 .fno = gen_helper_gvec_umin64,
2117 .opt_opc = vecop_list,
2118 .vece = MO_64 }
2119 };
2120 tcg_debug_assert(vece <= MO_64);
2121 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2122 }
2123
2124 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2125 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2126 {
2127 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2128 static const GVecGen3 g[4] = {
2129 { .fniv = tcg_gen_smax_vec,
2130 .fno = gen_helper_gvec_smax8,
2131 .opt_opc = vecop_list,
2132 .vece = MO_8 },
2133 { .fniv = tcg_gen_smax_vec,
2134 .fno = gen_helper_gvec_smax16,
2135 .opt_opc = vecop_list,
2136 .vece = MO_16 },
2137 { .fni4 = tcg_gen_smax_i32,
2138 .fniv = tcg_gen_smax_vec,
2139 .fno = gen_helper_gvec_smax32,
2140 .opt_opc = vecop_list,
2141 .vece = MO_32 },
2142 { .fni8 = tcg_gen_smax_i64,
2143 .fniv = tcg_gen_smax_vec,
2144 .fno = gen_helper_gvec_smax64,
2145 .opt_opc = vecop_list,
2146 .vece = MO_64 }
2147 };
2148 tcg_debug_assert(vece <= MO_64);
2149 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2150 }
2151
2152 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2153 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2154 {
2155 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2156 static const GVecGen3 g[4] = {
2157 { .fniv = tcg_gen_umax_vec,
2158 .fno = gen_helper_gvec_umax8,
2159 .opt_opc = vecop_list,
2160 .vece = MO_8 },
2161 { .fniv = tcg_gen_umax_vec,
2162 .fno = gen_helper_gvec_umax16,
2163 .opt_opc = vecop_list,
2164 .vece = MO_16 },
2165 { .fni4 = tcg_gen_umax_i32,
2166 .fniv = tcg_gen_umax_vec,
2167 .fno = gen_helper_gvec_umax32,
2168 .opt_opc = vecop_list,
2169 .vece = MO_32 },
2170 { .fni8 = tcg_gen_umax_i64,
2171 .fniv = tcg_gen_umax_vec,
2172 .fno = gen_helper_gvec_umax64,
2173 .opt_opc = vecop_list,
2174 .vece = MO_64 }
2175 };
2176 tcg_debug_assert(vece <= MO_64);
2177 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2178 }
2179
2180 /* Perform a vector negation using normal negation and a mask.
2181 Compare gen_subv_mask above. */
2182 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2183 {
2184 TCGv_i64 t2 = tcg_temp_new_i64();
2185 TCGv_i64 t3 = tcg_temp_new_i64();
2186
2187 tcg_gen_andc_i64(t3, m, b);
2188 tcg_gen_andc_i64(t2, b, m);
2189 tcg_gen_sub_i64(d, m, t2);
2190 tcg_gen_xor_i64(d, d, t3);
2191
2192 tcg_temp_free_i64(t2);
2193 tcg_temp_free_i64(t3);
2194 }
2195
2196 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2197 {
2198 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
2199 gen_negv_mask(d, b, m);
2200 tcg_temp_free_i64(m);
2201 }
2202
2203 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2204 {
2205 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
2206 gen_negv_mask(d, b, m);
2207 tcg_temp_free_i64(m);
2208 }
2209
2210 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2211 {
2212 TCGv_i64 t1 = tcg_temp_new_i64();
2213 TCGv_i64 t2 = tcg_temp_new_i64();
2214
2215 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2216 tcg_gen_neg_i64(t2, b);
2217 tcg_gen_neg_i64(t1, t1);
2218 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2219
2220 tcg_temp_free_i64(t1);
2221 tcg_temp_free_i64(t2);
2222 }
2223
2224 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2225 uint32_t oprsz, uint32_t maxsz)
2226 {
2227 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2228 static const GVecGen2 g[4] = {
2229 { .fni8 = tcg_gen_vec_neg8_i64,
2230 .fniv = tcg_gen_neg_vec,
2231 .fno = gen_helper_gvec_neg8,
2232 .opt_opc = vecop_list,
2233 .vece = MO_8 },
2234 { .fni8 = tcg_gen_vec_neg16_i64,
2235 .fniv = tcg_gen_neg_vec,
2236 .fno = gen_helper_gvec_neg16,
2237 .opt_opc = vecop_list,
2238 .vece = MO_16 },
2239 { .fni4 = tcg_gen_neg_i32,
2240 .fniv = tcg_gen_neg_vec,
2241 .fno = gen_helper_gvec_neg32,
2242 .opt_opc = vecop_list,
2243 .vece = MO_32 },
2244 { .fni8 = tcg_gen_neg_i64,
2245 .fniv = tcg_gen_neg_vec,
2246 .fno = gen_helper_gvec_neg64,
2247 .opt_opc = vecop_list,
2248 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2249 .vece = MO_64 },
2250 };
2251
2252 tcg_debug_assert(vece <= MO_64);
2253 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2254 }
2255
2256 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2257 {
2258 TCGv_i64 t = tcg_temp_new_i64();
2259 int nbit = 8 << vece;
2260
2261 /* Create -1 for each negative element. */
2262 tcg_gen_shri_i64(t, b, nbit - 1);
2263 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2264 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2265
2266 /*
2267 * Invert (via xor -1) and add one (via sub -1).
2268 * Because of the ordering the msb is cleared,
2269 * so we never have carry into the next element.
2270 */
2271 tcg_gen_xor_i64(d, b, t);
2272 tcg_gen_sub_i64(d, d, t);
2273
2274 tcg_temp_free_i64(t);
2275 }
2276
2277 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2278 {
2279 gen_absv_mask(d, b, MO_8);
2280 }
2281
2282 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2283 {
2284 gen_absv_mask(d, b, MO_16);
2285 }
2286
2287 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2288 uint32_t oprsz, uint32_t maxsz)
2289 {
2290 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2291 static const GVecGen2 g[4] = {
2292 { .fni8 = tcg_gen_vec_abs8_i64,
2293 .fniv = tcg_gen_abs_vec,
2294 .fno = gen_helper_gvec_abs8,
2295 .opt_opc = vecop_list,
2296 .vece = MO_8 },
2297 { .fni8 = tcg_gen_vec_abs16_i64,
2298 .fniv = tcg_gen_abs_vec,
2299 .fno = gen_helper_gvec_abs16,
2300 .opt_opc = vecop_list,
2301 .vece = MO_16 },
2302 { .fni4 = tcg_gen_abs_i32,
2303 .fniv = tcg_gen_abs_vec,
2304 .fno = gen_helper_gvec_abs32,
2305 .opt_opc = vecop_list,
2306 .vece = MO_32 },
2307 { .fni8 = tcg_gen_abs_i64,
2308 .fniv = tcg_gen_abs_vec,
2309 .fno = gen_helper_gvec_abs64,
2310 .opt_opc = vecop_list,
2311 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2312 .vece = MO_64 },
2313 };
2314
2315 tcg_debug_assert(vece <= MO_64);
2316 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2317 }
2318
2319 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2320 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2321 {
2322 static const GVecGen3 g = {
2323 .fni8 = tcg_gen_and_i64,
2324 .fniv = tcg_gen_and_vec,
2325 .fno = gen_helper_gvec_and,
2326 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2327 };
2328
2329 if (aofs == bofs) {
2330 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2331 } else {
2332 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2333 }
2334 }
2335
2336 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2337 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2338 {
2339 static const GVecGen3 g = {
2340 .fni8 = tcg_gen_or_i64,
2341 .fniv = tcg_gen_or_vec,
2342 .fno = gen_helper_gvec_or,
2343 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2344 };
2345
2346 if (aofs == bofs) {
2347 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2348 } else {
2349 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2350 }
2351 }
2352
2353 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2354 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2355 {
2356 static const GVecGen3 g = {
2357 .fni8 = tcg_gen_xor_i64,
2358 .fniv = tcg_gen_xor_vec,
2359 .fno = gen_helper_gvec_xor,
2360 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2361 };
2362
2363 if (aofs == bofs) {
2364 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2365 } else {
2366 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2367 }
2368 }
2369
2370 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2371 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2372 {
2373 static const GVecGen3 g = {
2374 .fni8 = tcg_gen_andc_i64,
2375 .fniv = tcg_gen_andc_vec,
2376 .fno = gen_helper_gvec_andc,
2377 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2378 };
2379
2380 if (aofs == bofs) {
2381 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2382 } else {
2383 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2384 }
2385 }
2386
2387 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2388 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2389 {
2390 static const GVecGen3 g = {
2391 .fni8 = tcg_gen_orc_i64,
2392 .fniv = tcg_gen_orc_vec,
2393 .fno = gen_helper_gvec_orc,
2394 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2395 };
2396
2397 if (aofs == bofs) {
2398 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2399 } else {
2400 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2401 }
2402 }
2403
2404 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2405 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2406 {
2407 static const GVecGen3 g = {
2408 .fni8 = tcg_gen_nand_i64,
2409 .fniv = tcg_gen_nand_vec,
2410 .fno = gen_helper_gvec_nand,
2411 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2412 };
2413
2414 if (aofs == bofs) {
2415 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2416 } else {
2417 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2418 }
2419 }
2420
2421 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2422 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2423 {
2424 static const GVecGen3 g = {
2425 .fni8 = tcg_gen_nor_i64,
2426 .fniv = tcg_gen_nor_vec,
2427 .fno = gen_helper_gvec_nor,
2428 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2429 };
2430
2431 if (aofs == bofs) {
2432 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2433 } else {
2434 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2435 }
2436 }
2437
2438 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2439 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2440 {
2441 static const GVecGen3 g = {
2442 .fni8 = tcg_gen_eqv_i64,
2443 .fniv = tcg_gen_eqv_vec,
2444 .fno = gen_helper_gvec_eqv,
2445 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2446 };
2447
2448 if (aofs == bofs) {
2449 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2450 } else {
2451 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2452 }
2453 }
2454
2455 static const GVecGen2s gop_ands = {
2456 .fni8 = tcg_gen_and_i64,
2457 .fniv = tcg_gen_and_vec,
2458 .fno = gen_helper_gvec_ands,
2459 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2460 .vece = MO_64
2461 };
2462
2463 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2464 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2465 {
2466 TCGv_i64 tmp = tcg_temp_new_i64();
2467 gen_dup_i64(vece, tmp, c);
2468 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2469 tcg_temp_free_i64(tmp);
2470 }
2471
2472 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2473 int64_t c, uint32_t oprsz, uint32_t maxsz)
2474 {
2475 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2476 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2477 tcg_temp_free_i64(tmp);
2478 }
2479
2480 static const GVecGen2s gop_xors = {
2481 .fni8 = tcg_gen_xor_i64,
2482 .fniv = tcg_gen_xor_vec,
2483 .fno = gen_helper_gvec_xors,
2484 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2485 .vece = MO_64
2486 };
2487
2488 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2489 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2490 {
2491 TCGv_i64 tmp = tcg_temp_new_i64();
2492 gen_dup_i64(vece, tmp, c);
2493 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2494 tcg_temp_free_i64(tmp);
2495 }
2496
2497 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2498 int64_t c, uint32_t oprsz, uint32_t maxsz)
2499 {
2500 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2501 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2502 tcg_temp_free_i64(tmp);
2503 }
2504
2505 static const GVecGen2s gop_ors = {
2506 .fni8 = tcg_gen_or_i64,
2507 .fniv = tcg_gen_or_vec,
2508 .fno = gen_helper_gvec_ors,
2509 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2510 .vece = MO_64
2511 };
2512
2513 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2514 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2515 {
2516 TCGv_i64 tmp = tcg_temp_new_i64();
2517 gen_dup_i64(vece, tmp, c);
2518 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2519 tcg_temp_free_i64(tmp);
2520 }
2521
2522 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2523 int64_t c, uint32_t oprsz, uint32_t maxsz)
2524 {
2525 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2526 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2527 tcg_temp_free_i64(tmp);
2528 }
2529
2530 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2531 {
2532 uint64_t mask = dup_const(MO_8, 0xff << c);
2533 tcg_gen_shli_i64(d, a, c);
2534 tcg_gen_andi_i64(d, d, mask);
2535 }
2536
2537 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2538 {
2539 uint64_t mask = dup_const(MO_16, 0xffff << c);
2540 tcg_gen_shli_i64(d, a, c);
2541 tcg_gen_andi_i64(d, d, mask);
2542 }
2543
2544 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2545 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2546 {
2547 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2548 static const GVecGen2i g[4] = {
2549 { .fni8 = tcg_gen_vec_shl8i_i64,
2550 .fniv = tcg_gen_shli_vec,
2551 .fno = gen_helper_gvec_shl8i,
2552 .opt_opc = vecop_list,
2553 .vece = MO_8 },
2554 { .fni8 = tcg_gen_vec_shl16i_i64,
2555 .fniv = tcg_gen_shli_vec,
2556 .fno = gen_helper_gvec_shl16i,
2557 .opt_opc = vecop_list,
2558 .vece = MO_16 },
2559 { .fni4 = tcg_gen_shli_i32,
2560 .fniv = tcg_gen_shli_vec,
2561 .fno = gen_helper_gvec_shl32i,
2562 .opt_opc = vecop_list,
2563 .vece = MO_32 },
2564 { .fni8 = tcg_gen_shli_i64,
2565 .fniv = tcg_gen_shli_vec,
2566 .fno = gen_helper_gvec_shl64i,
2567 .opt_opc = vecop_list,
2568 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2569 .vece = MO_64 },
2570 };
2571
2572 tcg_debug_assert(vece <= MO_64);
2573 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2574 if (shift == 0) {
2575 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2576 } else {
2577 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2578 }
2579 }
2580
2581 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2582 {
2583 uint64_t mask = dup_const(MO_8, 0xff >> c);
2584 tcg_gen_shri_i64(d, a, c);
2585 tcg_gen_andi_i64(d, d, mask);
2586 }
2587
2588 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2589 {
2590 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2591 tcg_gen_shri_i64(d, a, c);
2592 tcg_gen_andi_i64(d, d, mask);
2593 }
2594
2595 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2596 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2597 {
2598 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2599 static const GVecGen2i g[4] = {
2600 { .fni8 = tcg_gen_vec_shr8i_i64,
2601 .fniv = tcg_gen_shri_vec,
2602 .fno = gen_helper_gvec_shr8i,
2603 .opt_opc = vecop_list,
2604 .vece = MO_8 },
2605 { .fni8 = tcg_gen_vec_shr16i_i64,
2606 .fniv = tcg_gen_shri_vec,
2607 .fno = gen_helper_gvec_shr16i,
2608 .opt_opc = vecop_list,
2609 .vece = MO_16 },
2610 { .fni4 = tcg_gen_shri_i32,
2611 .fniv = tcg_gen_shri_vec,
2612 .fno = gen_helper_gvec_shr32i,
2613 .opt_opc = vecop_list,
2614 .vece = MO_32 },
2615 { .fni8 = tcg_gen_shri_i64,
2616 .fniv = tcg_gen_shri_vec,
2617 .fno = gen_helper_gvec_shr64i,
2618 .opt_opc = vecop_list,
2619 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2620 .vece = MO_64 },
2621 };
2622
2623 tcg_debug_assert(vece <= MO_64);
2624 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2625 if (shift == 0) {
2626 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2627 } else {
2628 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2629 }
2630 }
2631
2632 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2633 {
2634 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2635 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2636 TCGv_i64 s = tcg_temp_new_i64();
2637
2638 tcg_gen_shri_i64(d, a, c);
2639 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2640 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2641 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2642 tcg_gen_or_i64(d, d, s); /* include sign extension */
2643 tcg_temp_free_i64(s);
2644 }
2645
2646 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2647 {
2648 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2649 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2650 TCGv_i64 s = tcg_temp_new_i64();
2651
2652 tcg_gen_shri_i64(d, a, c);
2653 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2654 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2655 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2656 tcg_gen_or_i64(d, d, s); /* include sign extension */
2657 tcg_temp_free_i64(s);
2658 }
2659
2660 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2661 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2662 {
2663 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
2664 static const GVecGen2i g[4] = {
2665 { .fni8 = tcg_gen_vec_sar8i_i64,
2666 .fniv = tcg_gen_sari_vec,
2667 .fno = gen_helper_gvec_sar8i,
2668 .opt_opc = vecop_list,
2669 .vece = MO_8 },
2670 { .fni8 = tcg_gen_vec_sar16i_i64,
2671 .fniv = tcg_gen_sari_vec,
2672 .fno = gen_helper_gvec_sar16i,
2673 .opt_opc = vecop_list,
2674 .vece = MO_16 },
2675 { .fni4 = tcg_gen_sari_i32,
2676 .fniv = tcg_gen_sari_vec,
2677 .fno = gen_helper_gvec_sar32i,
2678 .opt_opc = vecop_list,
2679 .vece = MO_32 },
2680 { .fni8 = tcg_gen_sari_i64,
2681 .fniv = tcg_gen_sari_vec,
2682 .fno = gen_helper_gvec_sar64i,
2683 .opt_opc = vecop_list,
2684 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2685 .vece = MO_64 },
2686 };
2687
2688 tcg_debug_assert(vece <= MO_64);
2689 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2690 if (shift == 0) {
2691 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2692 } else {
2693 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2694 }
2695 }
2696
2697 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2698 {
2699 uint64_t mask = dup_const(MO_8, 0xff << c);
2700
2701 tcg_gen_shli_i64(d, a, c);
2702 tcg_gen_shri_i64(a, a, 8 - c);
2703 tcg_gen_andi_i64(d, d, mask);
2704 tcg_gen_andi_i64(a, a, ~mask);
2705 tcg_gen_or_i64(d, d, a);
2706 }
2707
2708 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2709 {
2710 uint64_t mask = dup_const(MO_16, 0xffff << c);
2711
2712 tcg_gen_shli_i64(d, a, c);
2713 tcg_gen_shri_i64(a, a, 16 - c);
2714 tcg_gen_andi_i64(d, d, mask);
2715 tcg_gen_andi_i64(a, a, ~mask);
2716 tcg_gen_or_i64(d, d, a);
2717 }
2718
2719 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
2720 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2721 {
2722 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
2723 static const GVecGen2i g[4] = {
2724 { .fni8 = tcg_gen_vec_rotl8i_i64,
2725 .fniv = tcg_gen_rotli_vec,
2726 .fno = gen_helper_gvec_rotl8i,
2727 .opt_opc = vecop_list,
2728 .vece = MO_8 },
2729 { .fni8 = tcg_gen_vec_rotl16i_i64,
2730 .fniv = tcg_gen_rotli_vec,
2731 .fno = gen_helper_gvec_rotl16i,
2732 .opt_opc = vecop_list,
2733 .vece = MO_16 },
2734 { .fni4 = tcg_gen_rotli_i32,
2735 .fniv = tcg_gen_rotli_vec,
2736 .fno = gen_helper_gvec_rotl32i,
2737 .opt_opc = vecop_list,
2738 .vece = MO_32 },
2739 { .fni8 = tcg_gen_rotli_i64,
2740 .fniv = tcg_gen_rotli_vec,
2741 .fno = gen_helper_gvec_rotl64i,
2742 .opt_opc = vecop_list,
2743 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2744 .vece = MO_64 },
2745 };
2746
2747 tcg_debug_assert(vece <= MO_64);
2748 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2749 if (shift == 0) {
2750 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2751 } else {
2752 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2753 }
2754 }
2755
2756 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
2757 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2758 {
2759 tcg_debug_assert(vece <= MO_64);
2760 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2761 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
2762 oprsz, maxsz);
2763 }
2764
2765 /*
2766 * Specialized generation vector shifts by a non-constant scalar.
2767 */
2768
2769 typedef struct {
2770 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
2771 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
2772 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
2773 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
2774 gen_helper_gvec_2 *fno[4];
2775 TCGOpcode s_list[2];
2776 TCGOpcode v_list[2];
2777 } GVecGen2sh;
2778
2779 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2780 uint32_t oprsz, uint32_t tysz, TCGType type,
2781 TCGv_i32 shift,
2782 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
2783 {
2784 TCGv_vec t0 = tcg_temp_new_vec(type);
2785 uint32_t i;
2786
2787 for (i = 0; i < oprsz; i += tysz) {
2788 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2789 fni(vece, t0, t0, shift);
2790 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2791 }
2792 tcg_temp_free_vec(t0);
2793 }
2794
2795 static void
2796 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
2797 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
2798 {
2799 TCGType type;
2800 uint32_t some;
2801
2802 check_size_align(oprsz, maxsz, dofs | aofs);
2803 check_overlap_2(dofs, aofs, maxsz);
2804
2805 /* If the backend has a scalar expansion, great. */
2806 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
2807 if (type) {
2808 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2809 switch (type) {
2810 case TCG_TYPE_V256:
2811 some = QEMU_ALIGN_DOWN(oprsz, 32);
2812 expand_2sh_vec(vece, dofs, aofs, some, 32,
2813 TCG_TYPE_V256, shift, g->fniv_s);
2814 if (some == oprsz) {
2815 break;
2816 }
2817 dofs += some;
2818 aofs += some;
2819 oprsz -= some;
2820 maxsz -= some;
2821 /* fallthru */
2822 case TCG_TYPE_V128:
2823 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
2824 TCG_TYPE_V128, shift, g->fniv_s);
2825 break;
2826 case TCG_TYPE_V64:
2827 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
2828 TCG_TYPE_V64, shift, g->fniv_s);
2829 break;
2830 default:
2831 g_assert_not_reached();
2832 }
2833 tcg_swap_vecop_list(hold_list);
2834 goto clear_tail;
2835 }
2836
2837 /* If the backend supports variable vector shifts, also cool. */
2838 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
2839 if (type) {
2840 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2841 TCGv_vec v_shift = tcg_temp_new_vec(type);
2842
2843 if (vece == MO_64) {
2844 TCGv_i64 sh64 = tcg_temp_new_i64();
2845 tcg_gen_extu_i32_i64(sh64, shift);
2846 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
2847 tcg_temp_free_i64(sh64);
2848 } else {
2849 tcg_gen_dup_i32_vec(vece, v_shift, shift);
2850 }
2851
2852 switch (type) {
2853 case TCG_TYPE_V256:
2854 some = QEMU_ALIGN_DOWN(oprsz, 32);
2855 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
2856 v_shift, false, g->fniv_v);
2857 if (some == oprsz) {
2858 break;
2859 }
2860 dofs += some;
2861 aofs += some;
2862 oprsz -= some;
2863 maxsz -= some;
2864 /* fallthru */
2865 case TCG_TYPE_V128:
2866 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
2867 v_shift, false, g->fniv_v);
2868 break;
2869 case TCG_TYPE_V64:
2870 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
2871 v_shift, false, g->fniv_v);
2872 break;
2873 default:
2874 g_assert_not_reached();
2875 }
2876 tcg_temp_free_vec(v_shift);
2877 tcg_swap_vecop_list(hold_list);
2878 goto clear_tail;
2879 }
2880
2881 /* Otherwise fall back to integral... */
2882 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
2883 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
2884 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
2885 TCGv_i64 sh64 = tcg_temp_new_i64();
2886 tcg_gen_extu_i32_i64(sh64, shift);
2887 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
2888 tcg_temp_free_i64(sh64);
2889 } else {
2890 TCGv_ptr a0 = tcg_temp_new_ptr();
2891 TCGv_ptr a1 = tcg_temp_new_ptr();
2892 TCGv_i32 desc = tcg_temp_new_i32();
2893
2894 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
2895 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
2896 tcg_gen_addi_ptr(a0, cpu_env, dofs);
2897 tcg_gen_addi_ptr(a1, cpu_env, aofs);
2898
2899 g->fno[vece](a0, a1, desc);
2900
2901 tcg_temp_free_ptr(a0);
2902 tcg_temp_free_ptr(a1);
2903 tcg_temp_free_i32(desc);
2904 return;
2905 }
2906
2907 clear_tail:
2908 if (oprsz < maxsz) {
2909 expand_clr(dofs + oprsz, maxsz - oprsz);
2910 }
2911 }
2912
2913 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
2914 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2915 {
2916 static const GVecGen2sh g = {
2917 .fni4 = tcg_gen_shl_i32,
2918 .fni8 = tcg_gen_shl_i64,
2919 .fniv_s = tcg_gen_shls_vec,
2920 .fniv_v = tcg_gen_shlv_vec,
2921 .fno = {
2922 gen_helper_gvec_shl8i,
2923 gen_helper_gvec_shl16i,
2924 gen_helper_gvec_shl32i,
2925 gen_helper_gvec_shl64i,
2926 },
2927 .s_list = { INDEX_op_shls_vec, 0 },
2928 .v_list = { INDEX_op_shlv_vec, 0 },
2929 };
2930
2931 tcg_debug_assert(vece <= MO_64);
2932 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2933 }
2934
2935 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
2936 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2937 {
2938 static const GVecGen2sh g = {
2939 .fni4 = tcg_gen_shr_i32,
2940 .fni8 = tcg_gen_shr_i64,
2941 .fniv_s = tcg_gen_shrs_vec,
2942 .fniv_v = tcg_gen_shrv_vec,
2943 .fno = {
2944 gen_helper_gvec_shr8i,
2945 gen_helper_gvec_shr16i,
2946 gen_helper_gvec_shr32i,
2947 gen_helper_gvec_shr64i,
2948 },
2949 .s_list = { INDEX_op_shrs_vec, 0 },
2950 .v_list = { INDEX_op_shrv_vec, 0 },
2951 };
2952
2953 tcg_debug_assert(vece <= MO_64);
2954 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2955 }
2956
2957 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
2958 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2959 {
2960 static const GVecGen2sh g = {
2961 .fni4 = tcg_gen_sar_i32,
2962 .fni8 = tcg_gen_sar_i64,
2963 .fniv_s = tcg_gen_sars_vec,
2964 .fniv_v = tcg_gen_sarv_vec,
2965 .fno = {
2966 gen_helper_gvec_sar8i,
2967 gen_helper_gvec_sar16i,
2968 gen_helper_gvec_sar32i,
2969 gen_helper_gvec_sar64i,
2970 },
2971 .s_list = { INDEX_op_sars_vec, 0 },
2972 .v_list = { INDEX_op_sarv_vec, 0 },
2973 };
2974
2975 tcg_debug_assert(vece <= MO_64);
2976 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2977 }
2978
2979 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
2980 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2981 {
2982 static const GVecGen2sh g = {
2983 .fni4 = tcg_gen_rotl_i32,
2984 .fni8 = tcg_gen_rotl_i64,
2985 .fniv_s = tcg_gen_rotls_vec,
2986 .fniv_v = tcg_gen_rotlv_vec,
2987 .fno = {
2988 gen_helper_gvec_rotl8i,
2989 gen_helper_gvec_rotl16i,
2990 gen_helper_gvec_rotl32i,
2991 gen_helper_gvec_rotl64i,
2992 },
2993 .s_list = { INDEX_op_rotls_vec, 0 },
2994 .v_list = { INDEX_op_rotlv_vec, 0 },
2995 };
2996
2997 tcg_debug_assert(vece <= MO_64);
2998 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2999 }
3000
3001 /*
3002 * Expand D = A << (B % element bits)
3003 *
3004 * Unlike scalar shifts, where it is easy for the target front end
3005 * to include the modulo as part of the expansion. If the target
3006 * naturally includes the modulo as part of the operation, great!
3007 * If the target has some other behaviour from out-of-range shifts,
3008 * then it could not use this function anyway, and would need to
3009 * do it's own expansion with custom functions.
3010 */
3011 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
3012 TCGv_vec a, TCGv_vec b)
3013 {
3014 TCGv_vec t = tcg_temp_new_vec_matching(d);
3015
3016 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3017 tcg_gen_and_vec(vece, t, t, b);
3018 tcg_gen_shlv_vec(vece, d, a, t);
3019 tcg_temp_free_vec(t);
3020 }
3021
3022 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3023 {
3024 TCGv_i32 t = tcg_temp_new_i32();
3025
3026 tcg_gen_andi_i32(t, b, 31);
3027 tcg_gen_shl_i32(d, a, t);
3028 tcg_temp_free_i32(t);
3029 }
3030
3031 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3032 {
3033 TCGv_i64 t = tcg_temp_new_i64();
3034
3035 tcg_gen_andi_i64(t, b, 63);
3036 tcg_gen_shl_i64(d, a, t);
3037 tcg_temp_free_i64(t);
3038 }
3039
3040 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3041 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3042 {
3043 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
3044 static const GVecGen3 g[4] = {
3045 { .fniv = tcg_gen_shlv_mod_vec,
3046 .fno = gen_helper_gvec_shl8v,
3047 .opt_opc = vecop_list,
3048 .vece = MO_8 },
3049 { .fniv = tcg_gen_shlv_mod_vec,
3050 .fno = gen_helper_gvec_shl16v,
3051 .opt_opc = vecop_list,
3052 .vece = MO_16 },
3053 { .fni4 = tcg_gen_shl_mod_i32,
3054 .fniv = tcg_gen_shlv_mod_vec,
3055 .fno = gen_helper_gvec_shl32v,
3056 .opt_opc = vecop_list,
3057 .vece = MO_32 },
3058 { .fni8 = tcg_gen_shl_mod_i64,
3059 .fniv = tcg_gen_shlv_mod_vec,
3060 .fno = gen_helper_gvec_shl64v,
3061 .opt_opc = vecop_list,
3062 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3063 .vece = MO_64 },
3064 };
3065
3066 tcg_debug_assert(vece <= MO_64);
3067 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3068 }
3069
3070 /*
3071 * Similarly for logical right shifts.
3072 */
3073
3074 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
3075 TCGv_vec a, TCGv_vec b)
3076 {
3077 TCGv_vec t = tcg_temp_new_vec_matching(d);
3078
3079 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3080 tcg_gen_and_vec(vece, t, t, b);
3081 tcg_gen_shrv_vec(vece, d, a, t);
3082 tcg_temp_free_vec(t);
3083 }
3084
3085 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3086 {
3087 TCGv_i32 t = tcg_temp_new_i32();
3088
3089 tcg_gen_andi_i32(t, b, 31);
3090 tcg_gen_shr_i32(d, a, t);
3091 tcg_temp_free_i32(t);
3092 }
3093
3094 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3095 {
3096 TCGv_i64 t = tcg_temp_new_i64();
3097
3098 tcg_gen_andi_i64(t, b, 63);
3099 tcg_gen_shr_i64(d, a, t);
3100 tcg_temp_free_i64(t);
3101 }
3102
3103 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3104 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3105 {
3106 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
3107 static const GVecGen3 g[4] = {
3108 { .fniv = tcg_gen_shrv_mod_vec,
3109 .fno = gen_helper_gvec_shr8v,
3110 .opt_opc = vecop_list,
3111 .vece = MO_8 },
3112 { .fniv = tcg_gen_shrv_mod_vec,
3113 .fno = gen_helper_gvec_shr16v,
3114 .opt_opc = vecop_list,
3115 .vece = MO_16 },
3116 { .fni4 = tcg_gen_shr_mod_i32,
3117 .fniv = tcg_gen_shrv_mod_vec,
3118 .fno = gen_helper_gvec_shr32v,
3119 .opt_opc = vecop_list,
3120 .vece = MO_32 },
3121 { .fni8 = tcg_gen_shr_mod_i64,
3122 .fniv = tcg_gen_shrv_mod_vec,
3123 .fno = gen_helper_gvec_shr64v,
3124 .opt_opc = vecop_list,
3125 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3126 .vece = MO_64 },
3127 };
3128
3129 tcg_debug_assert(vece <= MO_64);
3130 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3131 }
3132
3133 /*
3134 * Similarly for arithmetic right shifts.
3135 */
3136
3137 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3138 TCGv_vec a, TCGv_vec b)
3139 {
3140 TCGv_vec t = tcg_temp_new_vec_matching(d);
3141
3142 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3143 tcg_gen_and_vec(vece, t, t, b);
3144 tcg_gen_sarv_vec(vece, d, a, t);
3145 tcg_temp_free_vec(t);
3146 }
3147
3148 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3149 {
3150 TCGv_i32 t = tcg_temp_new_i32();
3151
3152 tcg_gen_andi_i32(t, b, 31);
3153 tcg_gen_sar_i32(d, a, t);
3154 tcg_temp_free_i32(t);
3155 }
3156
3157 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3158 {
3159 TCGv_i64 t = tcg_temp_new_i64();
3160
3161 tcg_gen_andi_i64(t, b, 63);
3162 tcg_gen_sar_i64(d, a, t);
3163 tcg_temp_free_i64(t);
3164 }
3165
3166 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3167 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3168 {
3169 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3170 static const GVecGen3 g[4] = {
3171 { .fniv = tcg_gen_sarv_mod_vec,
3172 .fno = gen_helper_gvec_sar8v,
3173 .opt_opc = vecop_list,
3174 .vece = MO_8 },
3175 { .fniv = tcg_gen_sarv_mod_vec,
3176 .fno = gen_helper_gvec_sar16v,
3177 .opt_opc = vecop_list,
3178 .vece = MO_16 },
3179 { .fni4 = tcg_gen_sar_mod_i32,
3180 .fniv = tcg_gen_sarv_mod_vec,
3181 .fno = gen_helper_gvec_sar32v,
3182 .opt_opc = vecop_list,
3183 .vece = MO_32 },
3184 { .fni8 = tcg_gen_sar_mod_i64,
3185 .fniv = tcg_gen_sarv_mod_vec,
3186 .fno = gen_helper_gvec_sar64v,
3187 .opt_opc = vecop_list,
3188 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3189 .vece = MO_64 },
3190 };
3191
3192 tcg_debug_assert(vece <= MO_64);
3193 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3194 }
3195
3196 /*
3197 * Similarly for rotates.
3198 */
3199
3200 static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d,
3201 TCGv_vec a, TCGv_vec b)
3202 {
3203 TCGv_vec t = tcg_temp_new_vec_matching(d);
3204
3205 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3206 tcg_gen_and_vec(vece, t, t, b);
3207 tcg_gen_rotlv_vec(vece, d, a, t);
3208 tcg_temp_free_vec(t);
3209 }
3210