Merge remote-tracking branch 'remotes/ericb/tags/pull-nbd-2021-10-15' into staging
[qemu.git] / tcg / tcg-op-gvec.c
1 /*
2 * Generic vector operation expansion
3 *
4 * Copyright (c) 2018 Linaro
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
26
27 #define MAX_UNROLL 4
28
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
34
35
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
39 {
40 uint32_t max_align;
41
42 switch (oprsz) {
43 case 8:
44 case 16:
45 case 32:
46 tcg_debug_assert(oprsz <= maxsz);
47 break;
48 default:
49 tcg_debug_assert(oprsz == maxsz);
50 break;
51 }
52 tcg_debug_assert(maxsz <= (8 << SIMD_MAXSZ_BITS));
53
54 max_align = maxsz >= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz & max_align) == 0);
56 tcg_debug_assert((ofs & max_align) == 0);
57 }
58
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
61 {
62 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
63 }
64
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
67 {
68 check_overlap_2(d, a, s);
69 check_overlap_2(d, b, s);
70 check_overlap_2(a, b, s);
71 }
72
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
75 uint32_t c, uint32_t s)
76 {
77 check_overlap_2(d, a, s);
78 check_overlap_2(d, b, s);
79 check_overlap_2(d, c, s);
80 check_overlap_2(a, b, s);
81 check_overlap_2(a, c, s);
82 check_overlap_2(b, c, s);
83 }
84
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
87 {
88 uint32_t desc = 0;
89
90 check_size_align(oprsz, maxsz, 0);
91 tcg_debug_assert(data == sextract32(data, 0, SIMD_DATA_BITS));
92
93 oprsz = (oprsz / 8) - 1;
94 maxsz = (maxsz / 8) - 1;
95
96 /*
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
100 */
101 if (oprsz == maxsz) {
102 oprsz = 2;
103 }
104
105 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
106 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
107 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
108
109 return desc;
110 }
111
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
114 uint32_t oprsz, uint32_t maxsz, int32_t data,
115 gen_helper_gvec_2 *fn)
116 {
117 TCGv_ptr a0, a1;
118 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
119
120 a0 = tcg_temp_new_ptr();
121 a1 = tcg_temp_new_ptr();
122
123 tcg_gen_addi_ptr(a0, cpu_env, dofs);
124 tcg_gen_addi_ptr(a1, cpu_env, aofs);
125
126 fn(a0, a1, desc);
127
128 tcg_temp_free_ptr(a0);
129 tcg_temp_free_ptr(a1);
130 }
131
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
135 uint32_t oprsz, uint32_t maxsz, int32_t data,
136 gen_helper_gvec_2i *fn)
137 {
138 TCGv_ptr a0, a1;
139 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
140
141 a0 = tcg_temp_new_ptr();
142 a1 = tcg_temp_new_ptr();
143
144 tcg_gen_addi_ptr(a0, cpu_env, dofs);
145 tcg_gen_addi_ptr(a1, cpu_env, aofs);
146
147 fn(a0, a1, c, desc);
148
149 tcg_temp_free_ptr(a0);
150 tcg_temp_free_ptr(a1);
151 }
152
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
155 uint32_t oprsz, uint32_t maxsz, int32_t data,
156 gen_helper_gvec_3 *fn)
157 {
158 TCGv_ptr a0, a1, a2;
159 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
160
161 a0 = tcg_temp_new_ptr();
162 a1 = tcg_temp_new_ptr();
163 a2 = tcg_temp_new_ptr();
164
165 tcg_gen_addi_ptr(a0, cpu_env, dofs);
166 tcg_gen_addi_ptr(a1, cpu_env, aofs);
167 tcg_gen_addi_ptr(a2, cpu_env, bofs);
168
169 fn(a0, a1, a2, desc);
170
171 tcg_temp_free_ptr(a0);
172 tcg_temp_free_ptr(a1);
173 tcg_temp_free_ptr(a2);
174 }
175
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
178 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
179 int32_t data, gen_helper_gvec_4 *fn)
180 {
181 TCGv_ptr a0, a1, a2, a3;
182 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
183
184 a0 = tcg_temp_new_ptr();
185 a1 = tcg_temp_new_ptr();
186 a2 = tcg_temp_new_ptr();
187 a3 = tcg_temp_new_ptr();
188
189 tcg_gen_addi_ptr(a0, cpu_env, dofs);
190 tcg_gen_addi_ptr(a1, cpu_env, aofs);
191 tcg_gen_addi_ptr(a2, cpu_env, bofs);
192 tcg_gen_addi_ptr(a3, cpu_env, cofs);
193
194 fn(a0, a1, a2, a3, desc);
195
196 tcg_temp_free_ptr(a0);
197 tcg_temp_free_ptr(a1);
198 tcg_temp_free_ptr(a2);
199 tcg_temp_free_ptr(a3);
200 }
201
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
204 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
205 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
206 {
207 TCGv_ptr a0, a1, a2, a3, a4;
208 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
209
210 a0 = tcg_temp_new_ptr();
211 a1 = tcg_temp_new_ptr();
212 a2 = tcg_temp_new_ptr();
213 a3 = tcg_temp_new_ptr();
214 a4 = tcg_temp_new_ptr();
215
216 tcg_gen_addi_ptr(a0, cpu_env, dofs);
217 tcg_gen_addi_ptr(a1, cpu_env, aofs);
218 tcg_gen_addi_ptr(a2, cpu_env, bofs);
219 tcg_gen_addi_ptr(a3, cpu_env, cofs);
220 tcg_gen_addi_ptr(a4, cpu_env, xofs);
221
222 fn(a0, a1, a2, a3, a4, desc);
223
224 tcg_temp_free_ptr(a0);
225 tcg_temp_free_ptr(a1);
226 tcg_temp_free_ptr(a2);
227 tcg_temp_free_ptr(a3);
228 tcg_temp_free_ptr(a4);
229 }
230
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
234 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
235 int32_t data, gen_helper_gvec_2_ptr *fn)
236 {
237 TCGv_ptr a0, a1;
238 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
239
240 a0 = tcg_temp_new_ptr();
241 a1 = tcg_temp_new_ptr();
242
243 tcg_gen_addi_ptr(a0, cpu_env, dofs);
244 tcg_gen_addi_ptr(a1, cpu_env, aofs);
245
246 fn(a0, a1, ptr, desc);
247
248 tcg_temp_free_ptr(a0);
249 tcg_temp_free_ptr(a1);
250 }
251
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
255 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
256 int32_t data, gen_helper_gvec_3_ptr *fn)
257 {
258 TCGv_ptr a0, a1, a2;
259 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
260
261 a0 = tcg_temp_new_ptr();
262 a1 = tcg_temp_new_ptr();
263 a2 = tcg_temp_new_ptr();
264
265 tcg_gen_addi_ptr(a0, cpu_env, dofs);
266 tcg_gen_addi_ptr(a1, cpu_env, aofs);
267 tcg_gen_addi_ptr(a2, cpu_env, bofs);
268
269 fn(a0, a1, a2, ptr, desc);
270
271 tcg_temp_free_ptr(a0);
272 tcg_temp_free_ptr(a1);
273 tcg_temp_free_ptr(a2);
274 }
275
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
279 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
280 uint32_t maxsz, int32_t data,
281 gen_helper_gvec_4_ptr *fn)
282 {
283 TCGv_ptr a0, a1, a2, a3;
284 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
285
286 a0 = tcg_temp_new_ptr();
287 a1 = tcg_temp_new_ptr();
288 a2 = tcg_temp_new_ptr();
289 a3 = tcg_temp_new_ptr();
290
291 tcg_gen_addi_ptr(a0, cpu_env, dofs);
292 tcg_gen_addi_ptr(a1, cpu_env, aofs);
293 tcg_gen_addi_ptr(a2, cpu_env, bofs);
294 tcg_gen_addi_ptr(a3, cpu_env, cofs);
295
296 fn(a0, a1, a2, a3, ptr, desc);
297
298 tcg_temp_free_ptr(a0);
299 tcg_temp_free_ptr(a1);
300 tcg_temp_free_ptr(a2);
301 tcg_temp_free_ptr(a3);
302 }
303
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
307 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
308 uint32_t oprsz, uint32_t maxsz, int32_t data,
309 gen_helper_gvec_5_ptr *fn)
310 {
311 TCGv_ptr a0, a1, a2, a3, a4;
312 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
313
314 a0 = tcg_temp_new_ptr();
315 a1 = tcg_temp_new_ptr();
316 a2 = tcg_temp_new_ptr();
317 a3 = tcg_temp_new_ptr();
318 a4 = tcg_temp_new_ptr();
319
320 tcg_gen_addi_ptr(a0, cpu_env, dofs);
321 tcg_gen_addi_ptr(a1, cpu_env, aofs);
322 tcg_gen_addi_ptr(a2, cpu_env, bofs);
323 tcg_gen_addi_ptr(a3, cpu_env, cofs);
324 tcg_gen_addi_ptr(a4, cpu_env, eofs);
325
326 fn(a0, a1, a2, a3, a4, ptr, desc);
327
328 tcg_temp_free_ptr(a0);
329 tcg_temp_free_ptr(a1);
330 tcg_temp_free_ptr(a2);
331 tcg_temp_free_ptr(a3);
332 tcg_temp_free_ptr(a4);
333 }
334
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
338 {
339 uint32_t q, r;
340
341 if (oprsz < lnsz) {
342 return false;
343 }
344
345 q = oprsz / lnsz;
346 r = oprsz % lnsz;
347 tcg_debug_assert((r & 7) == 0);
348
349 if (lnsz < 16) {
350 /* For sizes below 16, accept no remainder. */
351 if (r != 0) {
352 return false;
353 }
354 } else {
355 /*
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
362 */
363 q += ctpop32(r);
364 }
365
366 return q <= MAX_UNROLL;
367 }
368
369 static void expand_clr(uint32_t dofs, uint32_t maxsz);
370
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const)(unsigned vece, uint64_t c)
373 {
374 switch (vece) {
375 case MO_8:
376 return 0x0101010101010101ull * (uint8_t)c;
377 case MO_16:
378 return 0x0001000100010001ull * (uint16_t)c;
379 case MO_32:
380 return 0x0000000100000001ull * (uint32_t)c;
381 case MO_64:
382 return c;
383 default:
384 g_assert_not_reached();
385 }
386 }
387
388 /* Duplicate IN into OUT as per VECE. */
389 static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
390 {
391 switch (vece) {
392 case MO_8:
393 tcg_gen_ext8u_i32(out, in);
394 tcg_gen_muli_i32(out, out, 0x01010101);
395 break;
396 case MO_16:
397 tcg_gen_deposit_i32(out, in, in, 16, 16);
398 break;
399 case MO_32:
400 tcg_gen_mov_i32(out, in);
401 break;
402 default:
403 g_assert_not_reached();
404 }
405 }
406
407 static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
408 {
409 switch (vece) {
410 case MO_8:
411 tcg_gen_ext8u_i64(out, in);
412 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
413 break;
414 case MO_16:
415 tcg_gen_ext16u_i64(out, in);
416 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
417 break;
418 case MO_32:
419 tcg_gen_deposit_i64(out, in, in, 32, 32);
420 break;
421 case MO_64:
422 tcg_gen_mov_i64(out, in);
423 break;
424 default:
425 g_assert_not_reached();
426 }
427 }
428
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
434 */
435 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
436 uint32_t size, bool prefer_i64)
437 {
438 /*
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
445 */
446 if (TCG_TARGET_HAS_v256 &&
447 check_size_impl(size, 32) &&
448 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
449 (!(size & 16) ||
450 (TCG_TARGET_HAS_v128 &&
451 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
452 (!(size & 8) ||
453 (TCG_TARGET_HAS_v64 &&
454 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
455 return TCG_TYPE_V256;
456 }
457 if (TCG_TARGET_HAS_v128 &&
458 check_size_impl(size, 16) &&
459 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
460 (!(size & 8) ||
461 (TCG_TARGET_HAS_v64 &&
462 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
463 return TCG_TYPE_V128;
464 }
465 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
466 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
467 return TCG_TYPE_V64;
468 }
469 return 0;
470 }
471
472 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
473 uint32_t maxsz, TCGv_vec t_vec)
474 {
475 uint32_t i = 0;
476
477 tcg_debug_assert(oprsz >= 8);
478
479 /*
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
483 */
484 if (dofs & 8) {
485 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
486 i += 8;
487 }
488
489 switch (type) {
490 case TCG_TYPE_V256:
491 /*
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
495 */
496 for (; i + 32 <= oprsz; i += 32) {
497 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
498 }
499 /* fallthru */
500 case TCG_TYPE_V128:
501 for (; i + 16 <= oprsz; i += 16) {
502 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
503 }
504 break;
505 case TCG_TYPE_V64:
506 for (; i < oprsz; i += 8) {
507 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
508 }
509 break;
510 default:
511 g_assert_not_reached();
512 }
513
514 if (oprsz < maxsz) {
515 expand_clr(dofs + oprsz, maxsz - oprsz);
516 }
517 }
518
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
522 */
523 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
524 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
525 uint64_t in_c)
526 {
527 TCGType type;
528 TCGv_i64 t_64;
529 TCGv_i32 t_32, t_desc;
530 TCGv_ptr t_ptr;
531 uint32_t i;
532
533 assert(vece <= (in_32 ? MO_32 : MO_64));
534 assert(in_32 == NULL || in_64 == NULL);
535
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32 == NULL && in_64 == NULL) {
538 in_c = dup_const(vece, in_c);
539 if (in_c == 0) {
540 oprsz = maxsz;
541 vece = MO_8;
542 } else if (in_c == dup_const(MO_8, in_c)) {
543 vece = MO_8;
544 }
545 }
546
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
549 */
550 type = choose_vector_type(NULL, vece, oprsz,
551 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
552 && (in_64 == NULL || vece == MO_64)));
553 if (type != 0) {
554 TCGv_vec t_vec = tcg_temp_new_vec(type);
555
556 if (in_32) {
557 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
558 } else if (in_64) {
559 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
560 } else {
561 tcg_gen_dupi_vec(vece, t_vec, in_c);
562 }
563 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
564 tcg_temp_free_vec(t_vec);
565 return;
566 }
567
568 /* Otherwise, inline with an integer type, unless "large". */
569 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
570 t_64 = NULL;
571 t_32 = NULL;
572
573 if (in_32) {
574 /* We are given a 32-bit variable input. For a 64-bit host,
575 use a 64-bit operation unless the 32-bit operation would
576 be simple enough. */
577 if (TCG_TARGET_REG_BITS == 64
578 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
579 t_64 = tcg_temp_new_i64();
580 tcg_gen_extu_i32_i64(t_64, in_32);
581 gen_dup_i64(vece, t_64, t_64);
582 } else {
583 t_32 = tcg_temp_new_i32();
584 gen_dup_i32(vece, t_32, in_32);
585 }
586 } else if (in_64) {
587 /* We are given a 64-bit variable input. */
588 t_64 = tcg_temp_new_i64();
589 gen_dup_i64(vece, t_64, in_64);
590 } else {
591 /* We are given a constant input. */
592 /* For 64-bit hosts, use 64-bit constants for "simple" constants
593 or when we'd need too many 32-bit stores, or when a 64-bit
594 constant is really required. */
595 if (vece == MO_64
596 || (TCG_TARGET_REG_BITS == 64
597 && (in_c == 0 || in_c == -1
598 || !check_size_impl(oprsz, 4)))) {
599 t_64 = tcg_constant_i64(in_c);
600 } else {
601 t_32 = tcg_constant_i32(in_c);
602 }
603 }
604
605 /* Implement inline if we picked an implementation size above. */
606 if (t_32) {
607 for (i = 0; i < oprsz; i += 4) {
608 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
609 }
610 tcg_temp_free_i32(t_32);
611 goto done;
612 }
613 if (t_64) {
614 for (i = 0; i < oprsz; i += 8) {
615 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
616 }
617 tcg_temp_free_i64(t_64);
618 goto done;
619 }
620 }
621
622 /* Otherwise implement out of line. */
623 t_ptr = tcg_temp_new_ptr();
624 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
625
626 /*
627 * This may be expand_clr for the tail of an operation, e.g.
628 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
629 * wrt simd_desc and will assert. Simply pass all replicated byte
630 * stores through to memset.
631 */
632 if (oprsz == maxsz && vece == MO_8) {
633 TCGv_ptr t_size = tcg_const_ptr(oprsz);
634 TCGv_i32 t_val;
635
636 if (in_32) {
637 t_val = in_32;
638 } else if (in_64) {
639 t_val = tcg_temp_new_i32();
640 tcg_gen_extrl_i64_i32(t_val, in_64);
641 } else {
642 t_val = tcg_constant_i32(in_c);
643 }
644 gen_helper_memset(t_ptr, t_ptr, t_val, t_size);
645
646 if (in_64) {
647 tcg_temp_free_i32(t_val);
648 }
649 tcg_temp_free_ptr(t_size);
650 tcg_temp_free_ptr(t_ptr);
651 return;
652 }
653
654 t_desc = tcg_constant_i32(simd_desc(oprsz, maxsz, 0));
655
656 if (vece == MO_64) {
657 if (in_64) {
658 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
659 } else {
660 t_64 = tcg_constant_i64(in_c);
661 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
662 }
663 } else {
664 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
665 static dup_fn * const fns[3] = {
666 gen_helper_gvec_dup8,
667 gen_helper_gvec_dup16,
668 gen_helper_gvec_dup32
669 };
670
671 if (in_32) {
672 fns[vece](t_ptr, t_desc, in_32);
673 } else if (in_64) {
674 t_32 = tcg_temp_new_i32();
675 tcg_gen_extrl_i64_i32(t_32, in_64);
676 fns[vece](t_ptr, t_desc, t_32);
677 tcg_temp_free_i32(t_32);
678 } else {
679 if (vece == MO_8) {
680 in_c &= 0xff;
681 } else if (vece == MO_16) {
682 in_c &= 0xffff;
683 }
684 t_32 = tcg_constant_i32(in_c);
685 fns[vece](t_ptr, t_desc, t_32);
686 }
687 }
688
689 tcg_temp_free_ptr(t_ptr);
690 return;
691
692 done:
693 if (oprsz < maxsz) {
694 expand_clr(dofs + oprsz, maxsz - oprsz);
695 }
696 }
697
698 /* Likewise, but with zero. */
699 static void expand_clr(uint32_t dofs, uint32_t maxsz)
700 {
701 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
702 }
703
704 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
705 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
706 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
707 {
708 TCGv_i32 t0 = tcg_temp_new_i32();
709 TCGv_i32 t1 = tcg_temp_new_i32();
710 uint32_t i;
711
712 for (i = 0; i < oprsz; i += 4) {
713 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
714 if (load_dest) {
715 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
716 }
717 fni(t1, t0);
718 tcg_gen_st_i32(t1, cpu_env, dofs + i);
719 }
720 tcg_temp_free_i32(t0);
721 tcg_temp_free_i32(t1);
722 }
723
724 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
725 int32_t c, bool load_dest,
726 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
727 {
728 TCGv_i32 t0 = tcg_temp_new_i32();
729 TCGv_i32 t1 = tcg_temp_new_i32();
730 uint32_t i;
731
732 for (i = 0; i < oprsz; i += 4) {
733 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
734 if (load_dest) {
735 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
736 }
737 fni(t1, t0, c);
738 tcg_gen_st_i32(t1, cpu_env, dofs + i);
739 }
740 tcg_temp_free_i32(t0);
741 tcg_temp_free_i32(t1);
742 }
743
744 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
745 TCGv_i32 c, bool scalar_first,
746 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
747 {
748 TCGv_i32 t0 = tcg_temp_new_i32();
749 TCGv_i32 t1 = tcg_temp_new_i32();
750 uint32_t i;
751
752 for (i = 0; i < oprsz; i += 4) {
753 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
754 if (scalar_first) {
755 fni(t1, c, t0);
756 } else {
757 fni(t1, t0, c);
758 }
759 tcg_gen_st_i32(t1, cpu_env, dofs + i);
760 }
761 tcg_temp_free_i32(t0);
762 tcg_temp_free_i32(t1);
763 }
764
765 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
766 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
767 uint32_t bofs, uint32_t oprsz, bool load_dest,
768 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
769 {
770 TCGv_i32 t0 = tcg_temp_new_i32();
771 TCGv_i32 t1 = tcg_temp_new_i32();
772 TCGv_i32 t2 = tcg_temp_new_i32();
773 uint32_t i;
774
775 for (i = 0; i < oprsz; i += 4) {
776 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
777 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
778 if (load_dest) {
779 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
780 }
781 fni(t2, t0, t1);
782 tcg_gen_st_i32(t2, cpu_env, dofs + i);
783 }
784 tcg_temp_free_i32(t2);
785 tcg_temp_free_i32(t1);
786 tcg_temp_free_i32(t0);
787 }
788
789 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
790 uint32_t oprsz, int32_t c, bool load_dest,
791 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
792 {
793 TCGv_i32 t0 = tcg_temp_new_i32();
794 TCGv_i32 t1 = tcg_temp_new_i32();
795 TCGv_i32 t2 = tcg_temp_new_i32();
796 uint32_t i;
797
798 for (i = 0; i < oprsz; i += 4) {
799 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
800 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
801 if (load_dest) {
802 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
803 }
804 fni(t2, t0, t1, c);
805 tcg_gen_st_i32(t2, cpu_env, dofs + i);
806 }
807 tcg_temp_free_i32(t0);
808 tcg_temp_free_i32(t1);
809 tcg_temp_free_i32(t2);
810 }
811
812 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
813 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
814 uint32_t cofs, uint32_t oprsz, bool write_aofs,
815 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
816 {
817 TCGv_i32 t0 = tcg_temp_new_i32();
818 TCGv_i32 t1 = tcg_temp_new_i32();
819 TCGv_i32 t2 = tcg_temp_new_i32();
820 TCGv_i32 t3 = tcg_temp_new_i32();
821 uint32_t i;
822
823 for (i = 0; i < oprsz; i += 4) {
824 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
825 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
826 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
827 fni(t0, t1, t2, t3);
828 tcg_gen_st_i32(t0, cpu_env, dofs + i);
829 if (write_aofs) {
830 tcg_gen_st_i32(t1, cpu_env, aofs + i);
831 }
832 }
833 tcg_temp_free_i32(t3);
834 tcg_temp_free_i32(t2);
835 tcg_temp_free_i32(t1);
836 tcg_temp_free_i32(t0);
837 }
838
839 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
840 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
841 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
842 {
843 TCGv_i64 t0 = tcg_temp_new_i64();
844 TCGv_i64 t1 = tcg_temp_new_i64();
845 uint32_t i;
846
847 for (i = 0; i < oprsz; i += 8) {
848 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
849 if (load_dest) {
850 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
851 }
852 fni(t1, t0);
853 tcg_gen_st_i64(t1, cpu_env, dofs + i);
854 }
855 tcg_temp_free_i64(t0);
856 tcg_temp_free_i64(t1);
857 }
858
859 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
860 int64_t c, bool load_dest,
861 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
862 {
863 TCGv_i64 t0 = tcg_temp_new_i64();
864 TCGv_i64 t1 = tcg_temp_new_i64();
865 uint32_t i;
866
867 for (i = 0; i < oprsz; i += 8) {
868 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
869 if (load_dest) {
870 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
871 }
872 fni(t1, t0, c);
873 tcg_gen_st_i64(t1, cpu_env, dofs + i);
874 }
875 tcg_temp_free_i64(t0);
876 tcg_temp_free_i64(t1);
877 }
878
879 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
880 TCGv_i64 c, bool scalar_first,
881 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
882 {
883 TCGv_i64 t0 = tcg_temp_new_i64();
884 TCGv_i64 t1 = tcg_temp_new_i64();
885 uint32_t i;
886
887 for (i = 0; i < oprsz; i += 8) {
888 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
889 if (scalar_first) {
890 fni(t1, c, t0);
891 } else {
892 fni(t1, t0, c);
893 }
894 tcg_gen_st_i64(t1, cpu_env, dofs + i);
895 }
896 tcg_temp_free_i64(t0);
897 tcg_temp_free_i64(t1);
898 }
899
900 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
901 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
902 uint32_t bofs, uint32_t oprsz, bool load_dest,
903 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
904 {
905 TCGv_i64 t0 = tcg_temp_new_i64();
906 TCGv_i64 t1 = tcg_temp_new_i64();
907 TCGv_i64 t2 = tcg_temp_new_i64();
908 uint32_t i;
909
910 for (i = 0; i < oprsz; i += 8) {
911 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
912 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
913 if (load_dest) {
914 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
915 }
916 fni(t2, t0, t1);
917 tcg_gen_st_i64(t2, cpu_env, dofs + i);
918 }
919 tcg_temp_free_i64(t2);
920 tcg_temp_free_i64(t1);
921 tcg_temp_free_i64(t0);
922 }
923
924 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
925 uint32_t oprsz, int64_t c, bool load_dest,
926 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
927 {
928 TCGv_i64 t0 = tcg_temp_new_i64();
929 TCGv_i64 t1 = tcg_temp_new_i64();
930 TCGv_i64 t2 = tcg_temp_new_i64();
931 uint32_t i;
932
933 for (i = 0; i < oprsz; i += 8) {
934 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
935 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
936 if (load_dest) {
937 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
938 }
939 fni(t2, t0, t1, c);
940 tcg_gen_st_i64(t2, cpu_env, dofs + i);
941 }
942 tcg_temp_free_i64(t0);
943 tcg_temp_free_i64(t1);
944 tcg_temp_free_i64(t2);
945 }
946
947 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
948 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
949 uint32_t cofs, uint32_t oprsz, bool write_aofs,
950 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
951 {
952 TCGv_i64 t0 = tcg_temp_new_i64();
953 TCGv_i64 t1 = tcg_temp_new_i64();
954 TCGv_i64 t2 = tcg_temp_new_i64();
955 TCGv_i64 t3 = tcg_temp_new_i64();
956 uint32_t i;
957
958 for (i = 0; i < oprsz; i += 8) {
959 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
960 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
961 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
962 fni(t0, t1, t2, t3);
963 tcg_gen_st_i64(t0, cpu_env, dofs + i);
964 if (write_aofs) {
965 tcg_gen_st_i64(t1, cpu_env, aofs + i);
966 }
967 }
968 tcg_temp_free_i64(t3);
969 tcg_temp_free_i64(t2);
970 tcg_temp_free_i64(t1);
971 tcg_temp_free_i64(t0);
972 }
973
974 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
975 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
976 uint32_t oprsz, uint32_t tysz, TCGType type,
977 bool load_dest,
978 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
979 {
980 TCGv_vec t0 = tcg_temp_new_vec(type);
981 TCGv_vec t1 = tcg_temp_new_vec(type);
982 uint32_t i;
983
984 for (i = 0; i < oprsz; i += tysz) {
985 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
986 if (load_dest) {
987 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
988 }
989 fni(vece, t1, t0);
990 tcg_gen_st_vec(t1, cpu_env, dofs + i);
991 }
992 tcg_temp_free_vec(t0);
993 tcg_temp_free_vec(t1);
994 }
995
996 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
997 using host vectors. */
998 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
999 uint32_t oprsz, uint32_t tysz, TCGType type,
1000 int64_t c, bool load_dest,
1001 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
1002 {
1003 TCGv_vec t0 = tcg_temp_new_vec(type);
1004 TCGv_vec t1 = tcg_temp_new_vec(type);
1005 uint32_t i;
1006
1007 for (i = 0; i < oprsz; i += tysz) {
1008 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1009 if (load_dest) {
1010 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
1011 }
1012 fni(vece, t1, t0, c);
1013 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1014 }
1015 tcg_temp_free_vec(t0);
1016 tcg_temp_free_vec(t1);
1017 }
1018
1019 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1020 uint32_t oprsz, uint32_t tysz, TCGType type,
1021 TCGv_vec c, bool scalar_first,
1022 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1023 {
1024 TCGv_vec t0 = tcg_temp_new_vec(type);
1025 TCGv_vec t1 = tcg_temp_new_vec(type);
1026 uint32_t i;
1027
1028 for (i = 0; i < oprsz; i += tysz) {
1029 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1030 if (scalar_first) {
1031 fni(vece, t1, c, t0);
1032 } else {
1033 fni(vece, t1, t0, c);
1034 }
1035 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1036 }
1037 tcg_temp_free_vec(t0);
1038 tcg_temp_free_vec(t1);
1039 }
1040
1041 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1042 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1043 uint32_t bofs, uint32_t oprsz,
1044 uint32_t tysz, TCGType type, bool load_dest,
1045 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1046 {
1047 TCGv_vec t0 = tcg_temp_new_vec(type);
1048 TCGv_vec t1 = tcg_temp_new_vec(type);
1049 TCGv_vec t2 = tcg_temp_new_vec(type);
1050 uint32_t i;
1051
1052 for (i = 0; i < oprsz; i += tysz) {
1053 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1054 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1055 if (load_dest) {
1056 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1057 }
1058 fni(vece, t2, t0, t1);
1059 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1060 }
1061 tcg_temp_free_vec(t2);
1062 tcg_temp_free_vec(t1);
1063 tcg_temp_free_vec(t0);
1064 }
1065
1066 /*
1067 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1068 * using host vectors.
1069 */
1070 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1071 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
1072 TCGType type, int64_t c, bool load_dest,
1073 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
1074 int64_t))
1075 {
1076 TCGv_vec t0 = tcg_temp_new_vec(type);
1077 TCGv_vec t1 = tcg_temp_new_vec(type);
1078 TCGv_vec t2 = tcg_temp_new_vec(type);
1079 uint32_t i;
1080
1081 for (i = 0; i < oprsz; i += tysz) {
1082 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1083 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1084 if (load_dest) {
1085 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1086 }
1087 fni(vece, t2, t0, t1, c);
1088 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1089 }
1090 tcg_temp_free_vec(t0);
1091 tcg_temp_free_vec(t1);
1092 tcg_temp_free_vec(t2);
1093 }
1094
1095 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1096 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1097 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1098 uint32_t tysz, TCGType type, bool write_aofs,
1099 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1100 TCGv_vec, TCGv_vec))
1101 {
1102 TCGv_vec t0 = tcg_temp_new_vec(type);
1103 TCGv_vec t1 = tcg_temp_new_vec(type);
1104 TCGv_vec t2 = tcg_temp_new_vec(type);
1105 TCGv_vec t3 = tcg_temp_new_vec(type);
1106 uint32_t i;
1107
1108 for (i = 0; i < oprsz; i += tysz) {
1109 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1110 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1111 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1112 fni(vece, t0, t1, t2, t3);
1113 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1114 if (write_aofs) {
1115 tcg_gen_st_vec(t1, cpu_env, aofs + i);
1116 }
1117 }
1118 tcg_temp_free_vec(t3);
1119 tcg_temp_free_vec(t2);
1120 tcg_temp_free_vec(t1);
1121 tcg_temp_free_vec(t0);
1122 }
1123
1124 /* Expand a vector two-operand operation. */
1125 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1126 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1127 {
1128 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1129 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1130 TCGType type;
1131 uint32_t some;
1132
1133 check_size_align(oprsz, maxsz, dofs | aofs);
1134 check_overlap_2(dofs, aofs, maxsz);
1135
1136 type = 0;
1137 if (g->fniv) {
1138 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1139 }
1140 switch (type) {
1141 case TCG_TYPE_V256:
1142 /* Recall that ARM SVE allows vector sizes that are not a
1143 * power of 2, but always a multiple of 16. The intent is
1144 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1145 */
1146 some = QEMU_ALIGN_DOWN(oprsz, 32);
1147 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1148 g->load_dest, g->fniv);
1149 if (some == oprsz) {
1150 break;
1151 }
1152 dofs += some;
1153 aofs += some;
1154 oprsz -= some;
1155 maxsz -= some;
1156 /* fallthru */
1157 case TCG_TYPE_V128:
1158 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1159 g->load_dest, g->fniv);
1160 break;
1161 case TCG_TYPE_V64:
1162 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1163 g->load_dest, g->fniv);
1164 break;
1165
1166 case 0:
1167 if (g->fni8 && check_size_impl(oprsz, 8)) {
1168 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
1169 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1170 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
1171 } else {
1172 assert(g->fno != NULL);
1173 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1174 oprsz = maxsz;
1175 }
1176 break;
1177
1178 default:
1179 g_assert_not_reached();
1180 }
1181 tcg_swap_vecop_list(hold_list);
1182
1183 if (oprsz < maxsz) {
1184 expand_clr(dofs + oprsz, maxsz - oprsz);
1185 }
1186 }
1187
1188 /* Expand a vector operation with two vectors and an immediate. */
1189 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1190 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1191 {
1192 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1193 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1194 TCGType type;
1195 uint32_t some;
1196
1197 check_size_align(oprsz, maxsz, dofs | aofs);
1198 check_overlap_2(dofs, aofs, maxsz);
1199
1200 type = 0;
1201 if (g->fniv) {
1202 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1203 }
1204 switch (type) {
1205 case TCG_TYPE_V256:
1206 /* Recall that ARM SVE allows vector sizes that are not a
1207 * power of 2, but always a multiple of 16. The intent is
1208 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1209 */
1210 some = QEMU_ALIGN_DOWN(oprsz, 32);
1211 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1212 c, g->load_dest, g->fniv);
1213 if (some == oprsz) {
1214 break;
1215 }
1216 dofs += some;
1217 aofs += some;
1218 oprsz -= some;
1219 maxsz -= some;
1220 /* fallthru */
1221 case TCG_TYPE_V128:
1222 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1223 c, g->load_dest, g->fniv);
1224 break;
1225 case TCG_TYPE_V64:
1226 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1227 c, g->load_dest, g->fniv);
1228 break;
1229
1230 case 0:
1231 if (g->fni8 && check_size_impl(oprsz, 8)) {
1232 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1233 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1234 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1235 } else {
1236 if (g->fno) {
1237 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1238 } else {
1239 TCGv_i64 tcg_c = tcg_constant_i64(c);
1240 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1241 maxsz, c, g->fnoi);
1242 }
1243 oprsz = maxsz;
1244 }
1245 break;
1246
1247 default:
1248 g_assert_not_reached();
1249 }
1250 tcg_swap_vecop_list(hold_list);
1251
1252 if (oprsz < maxsz) {
1253 expand_clr(dofs + oprsz, maxsz - oprsz);
1254 }
1255 }
1256
1257 /* Expand a vector operation with two vectors and a scalar. */
1258 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1259 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1260 {
1261 TCGType type;
1262
1263 check_size_align(oprsz, maxsz, dofs | aofs);
1264 check_overlap_2(dofs, aofs, maxsz);
1265
1266 type = 0;
1267 if (g->fniv) {
1268 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1269 }
1270 if (type != 0) {
1271 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1272 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1273 TCGv_vec t_vec = tcg_temp_new_vec(type);
1274 uint32_t some;
1275
1276 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1277
1278 switch (type) {
1279 case TCG_TYPE_V256:
1280 /* Recall that ARM SVE allows vector sizes that are not a
1281 * power of 2, but always a multiple of 16. The intent is
1282 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1283 */
1284 some = QEMU_ALIGN_DOWN(oprsz, 32);
1285 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1286 t_vec, g->scalar_first, g->fniv);
1287 if (some == oprsz) {
1288 break;
1289 }
1290 dofs += some;
1291 aofs += some;
1292 oprsz -= some;
1293 maxsz -= some;
1294 /* fallthru */
1295
1296 case TCG_TYPE_V128:
1297 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1298 t_vec, g->scalar_first, g->fniv);
1299 break;
1300
1301 case TCG_TYPE_V64:
1302 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1303 t_vec, g->scalar_first, g->fniv);
1304 break;
1305
1306 default:
1307 g_assert_not_reached();
1308 }
1309 tcg_temp_free_vec(t_vec);
1310 tcg_swap_vecop_list(hold_list);
1311 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1312 TCGv_i64 t64 = tcg_temp_new_i64();
1313
1314 gen_dup_i64(g->vece, t64, c);
1315 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1316 tcg_temp_free_i64(t64);
1317 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1318 TCGv_i32 t32 = tcg_temp_new_i32();
1319
1320 tcg_gen_extrl_i64_i32(t32, c);
1321 gen_dup_i32(g->vece, t32, t32);
1322 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1323 tcg_temp_free_i32(t32);
1324 } else {
1325 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1326 return;
1327 }
1328
1329 if (oprsz < maxsz) {
1330 expand_clr(dofs + oprsz, maxsz - oprsz);
1331 }
1332 }
1333
1334 /* Expand a vector three-operand operation. */
1335 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1336 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1337 {
1338 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1339 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1340 TCGType type;
1341 uint32_t some;
1342
1343 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1344 check_overlap_3(dofs, aofs, bofs, maxsz);
1345
1346 type = 0;
1347 if (g->fniv) {
1348 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1349 }
1350 switch (type) {
1351 case TCG_TYPE_V256:
1352 /* Recall that ARM SVE allows vector sizes that are not a
1353 * power of 2, but always a multiple of 16. The intent is
1354 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1355 */
1356 some = QEMU_ALIGN_DOWN(oprsz, 32);
1357 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1358 g->load_dest, g->fniv);
1359 if (some == oprsz) {
1360 break;
1361 }
1362 dofs += some;
1363 aofs += some;
1364 bofs += some;
1365 oprsz -= some;
1366 maxsz -= some;
1367 /* fallthru */
1368 case TCG_TYPE_V128:
1369 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1370 g->load_dest, g->fniv);
1371 break;
1372 case TCG_TYPE_V64:
1373 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1374 g->load_dest, g->fniv);
1375 break;
1376
1377 case 0:
1378 if (g->fni8 && check_size_impl(oprsz, 8)) {
1379 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1380 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1381 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1382 } else {
1383 assert(g->fno != NULL);
1384 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1385 maxsz, g->data, g->fno);
1386 oprsz = maxsz;
1387 }
1388 break;
1389
1390 default:
1391 g_assert_not_reached();
1392 }
1393 tcg_swap_vecop_list(hold_list);
1394
1395 if (oprsz < maxsz) {
1396 expand_clr(dofs + oprsz, maxsz - oprsz);
1397 }
1398 }
1399
1400 /* Expand a vector operation with three vectors and an immediate. */
1401 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1402 uint32_t oprsz, uint32_t maxsz, int64_t c,
1403 const GVecGen3i *g)
1404 {
1405 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1406 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1407 TCGType type;
1408 uint32_t some;
1409
1410 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1411 check_overlap_3(dofs, aofs, bofs, maxsz);
1412
1413 type = 0;
1414 if (g->fniv) {
1415 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1416 }
1417 switch (type) {
1418 case TCG_TYPE_V256:
1419 /*
1420 * Recall that ARM SVE allows vector sizes that are not a
1421 * power of 2, but always a multiple of 16. The intent is
1422 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1423 */
1424 some = QEMU_ALIGN_DOWN(oprsz, 32);
1425 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1426 c, g->load_dest, g->fniv);
1427 if (some == oprsz) {
1428 break;
1429 }
1430 dofs += some;
1431 aofs += some;
1432 bofs += some;
1433 oprsz -= some;
1434 maxsz -= some;
1435 /* fallthru */
1436 case TCG_TYPE_V128:
1437 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1438 c, g->load_dest, g->fniv);
1439 break;
1440 case TCG_TYPE_V64:
1441 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1442 c, g->load_dest, g->fniv);
1443 break;
1444
1445 case 0:
1446 if (g->fni8 && check_size_impl(oprsz, 8)) {
1447 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1448 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1449 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1450 } else {
1451 assert(g->fno != NULL);
1452 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1453 oprsz = maxsz;
1454 }
1455 break;
1456
1457 default:
1458 g_assert_not_reached();
1459 }
1460 tcg_swap_vecop_list(hold_list);
1461
1462 if (oprsz < maxsz) {
1463 expand_clr(dofs + oprsz, maxsz - oprsz);
1464 }
1465 }
1466
1467 /* Expand a vector four-operand operation. */
1468 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1469 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1470 {
1471 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1472 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1473 TCGType type;
1474 uint32_t some;
1475
1476 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1477 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1478
1479 type = 0;
1480 if (g->fniv) {
1481 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1482 }
1483 switch (type) {
1484 case TCG_TYPE_V256:
1485 /* Recall that ARM SVE allows vector sizes that are not a
1486 * power of 2, but always a multiple of 16. The intent is
1487 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1488 */
1489 some = QEMU_ALIGN_DOWN(oprsz, 32);
1490 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1491 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1492 if (some == oprsz) {
1493 break;
1494 }
1495 dofs += some;
1496 aofs += some;
1497 bofs += some;
1498 cofs += some;
1499 oprsz -= some;
1500 maxsz -= some;
1501 /* fallthru */
1502 case TCG_TYPE_V128:
1503 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1504 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1505 break;
1506 case TCG_TYPE_V64:
1507 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1508 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1509 break;
1510
1511 case 0:
1512 if (g->fni8 && check_size_impl(oprsz, 8)) {
1513 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1514 g->write_aofs, g->fni8);
1515 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1516 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1517 g->write_aofs, g->fni4);
1518 } else {
1519 assert(g->fno != NULL);
1520 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1521 oprsz, maxsz, g->data, g->fno);
1522 oprsz = maxsz;
1523 }
1524 break;
1525
1526 default:
1527 g_assert_not_reached();
1528 }
1529 tcg_swap_vecop_list(hold_list);
1530
1531 if (oprsz < maxsz) {
1532 expand_clr(dofs + oprsz, maxsz - oprsz);
1533 }
1534 }
1535
1536 /*
1537 * Expand specific vector operations.
1538 */
1539
1540 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1541 {
1542 tcg_gen_mov_vec(a, b);
1543 }
1544
1545 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1546 uint32_t oprsz, uint32_t maxsz)
1547 {
1548 static const GVecGen2 g = {
1549 .fni8 = tcg_gen_mov_i64,
1550 .fniv = vec_mov2,
1551 .fno = gen_helper_gvec_mov,
1552 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1553 };
1554 if (dofs != aofs) {
1555 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1556 } else {
1557 check_size_align(oprsz, maxsz, dofs);
1558 if (oprsz < maxsz) {
1559 expand_clr(dofs + oprsz, maxsz - oprsz);
1560 }
1561 }
1562 }
1563
1564 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1565 uint32_t maxsz, TCGv_i32 in)
1566 {
1567 check_size_align(oprsz, maxsz, dofs);
1568 tcg_debug_assert(vece <= MO_32);
1569 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1570 }
1571
1572 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1573 uint32_t maxsz, TCGv_i64 in)
1574 {
1575 check_size_align(oprsz, maxsz, dofs);
1576 tcg_debug_assert(vece <= MO_64);
1577 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1578 }
1579
1580 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1581 uint32_t oprsz, uint32_t maxsz)
1582 {
1583 check_size_align(oprsz, maxsz, dofs);
1584 if (vece <= MO_64) {
1585 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1586 if (type != 0) {
1587 TCGv_vec t_vec = tcg_temp_new_vec(type);
1588 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1589 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1590 tcg_temp_free_vec(t_vec);
1591 } else if (vece <= MO_32) {
1592 TCGv_i32 in = tcg_temp_new_i32();
1593 switch (vece) {
1594 case MO_8:
1595 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1596 break;
1597 case MO_16:
1598 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1599 break;
1600 default:
1601 tcg_gen_ld_i32(in, cpu_env, aofs);
1602 break;
1603 }
1604 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1605 tcg_temp_free_i32(in);
1606 } else {
1607 TCGv_i64 in = tcg_temp_new_i64();
1608 tcg_gen_ld_i64(in, cpu_env, aofs);
1609 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1610 tcg_temp_free_i64(in);
1611 }
1612 } else if (vece == 4) {
1613 /* 128-bit duplicate. */
1614 int i;
1615
1616 tcg_debug_assert(oprsz >= 16);
1617 if (TCG_TARGET_HAS_v128) {
1618 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1619
1620 tcg_gen_ld_vec(in, cpu_env, aofs);
1621 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1622 tcg_gen_st_vec(in, cpu_env, dofs + i);
1623 }
1624 tcg_temp_free_vec(in);
1625 } else {
1626 TCGv_i64 in0 = tcg_temp_new_i64();
1627 TCGv_i64 in1 = tcg_temp_new_i64();
1628
1629 tcg_gen_ld_i64(in0, cpu_env, aofs);
1630 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1631 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1632 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1633 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1634 }
1635 tcg_temp_free_i64(in0);
1636 tcg_temp_free_i64(in1);
1637 }
1638 if (oprsz < maxsz) {
1639 expand_clr(dofs + oprsz, maxsz - oprsz);
1640 }
1641 } else if (vece == 5) {
1642 /* 256-bit duplicate. */
1643 int i;
1644
1645 tcg_debug_assert(oprsz >= 32);
1646 tcg_debug_assert(oprsz % 32 == 0);
1647 if (TCG_TARGET_HAS_v256) {
1648 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256);
1649
1650 tcg_gen_ld_vec(in, cpu_env, aofs);
1651 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1652 tcg_gen_st_vec(in, cpu_env, dofs + i);
1653 }
1654 tcg_temp_free_vec(in);
1655 } else if (TCG_TARGET_HAS_v128) {
1656 TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128);
1657 TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128);
1658
1659 tcg_gen_ld_vec(in0, cpu_env, aofs);
1660 tcg_gen_ld_vec(in1, cpu_env, aofs + 16);
1661 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1662 tcg_gen_st_vec(in0, cpu_env, dofs + i);
1663 tcg_gen_st_vec(in1, cpu_env, dofs + i + 16);
1664 }
1665 tcg_temp_free_vec(in0);
1666 tcg_temp_free_vec(in1);
1667 } else {
1668 TCGv_i64 in[4];
1669 int j;
1670
1671 for (j = 0; j < 4; ++j) {
1672 in[j] = tcg_temp_new_i64();
1673 tcg_gen_ld_i64(in[j], cpu_env, aofs + j * 8);
1674 }
1675 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1676 for (j = 0; j < 4; ++j) {
1677 tcg_gen_st_i64(in[j], cpu_env, dofs + i + j * 8);
1678 }
1679 }
1680 for (j = 0; j < 4; ++j) {
1681 tcg_temp_free_i64(in[j]);
1682 }
1683 }
1684 if (oprsz < maxsz) {
1685 expand_clr(dofs + oprsz, maxsz - oprsz);
1686 }
1687 } else {
1688 g_assert_not_reached();
1689 }
1690 }
1691
1692 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
1693 uint32_t maxsz, uint64_t x)
1694 {
1695 check_size_align(oprsz, maxsz, dofs);
1696 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
1697 }
1698
1699 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1700 uint32_t oprsz, uint32_t maxsz)
1701 {
1702 static const GVecGen2 g = {
1703 .fni8 = tcg_gen_not_i64,
1704 .fniv = tcg_gen_not_vec,
1705 .fno = gen_helper_gvec_not,
1706 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1707 };
1708 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1709 }
1710
1711 /* Perform a vector addition using normal addition and a mask. The mask
1712 should be the sign bit of each lane. This 6-operation form is more
1713 efficient than separate additions when there are 4 or more lanes in
1714 the 64-bit operation. */
1715 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1716 {
1717 TCGv_i64 t1 = tcg_temp_new_i64();
1718 TCGv_i64 t2 = tcg_temp_new_i64();
1719 TCGv_i64 t3 = tcg_temp_new_i64();
1720
1721 tcg_gen_andc_i64(t1, a, m);
1722 tcg_gen_andc_i64(t2, b, m);
1723 tcg_gen_xor_i64(t3, a, b);
1724 tcg_gen_add_i64(d, t1, t2);
1725 tcg_gen_and_i64(t3, t3, m);
1726 tcg_gen_xor_i64(d, d, t3);
1727
1728 tcg_temp_free_i64(t1);
1729 tcg_temp_free_i64(t2);
1730 tcg_temp_free_i64(t3);
1731 }
1732
1733 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1734 {
1735 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
1736 gen_addv_mask(d, a, b, m);
1737 }
1738
1739 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1740 {
1741 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
1742 gen_addv_mask(d, a, b, m);
1743 }
1744
1745 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1746 {
1747 TCGv_i64 t1 = tcg_temp_new_i64();
1748 TCGv_i64 t2 = tcg_temp_new_i64();
1749
1750 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1751 tcg_gen_add_i64(t2, a, b);
1752 tcg_gen_add_i64(t1, t1, b);
1753 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1754
1755 tcg_temp_free_i64(t1);
1756 tcg_temp_free_i64(t2);
1757 }
1758
1759 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1760
1761 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1762 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1763 {
1764 static const GVecGen3 g[4] = {
1765 { .fni8 = tcg_gen_vec_add8_i64,
1766 .fniv = tcg_gen_add_vec,
1767 .fno = gen_helper_gvec_add8,
1768 .opt_opc = vecop_list_add,
1769 .vece = MO_8 },
1770 { .fni8 = tcg_gen_vec_add16_i64,
1771 .fniv = tcg_gen_add_vec,
1772 .fno = gen_helper_gvec_add16,
1773 .opt_opc = vecop_list_add,
1774 .vece = MO_16 },
1775 { .fni4 = tcg_gen_add_i32,
1776 .fniv = tcg_gen_add_vec,
1777 .fno = gen_helper_gvec_add32,
1778 .opt_opc = vecop_list_add,
1779 .vece = MO_32 },
1780 { .fni8 = tcg_gen_add_i64,
1781 .fniv = tcg_gen_add_vec,
1782 .fno = gen_helper_gvec_add64,
1783 .opt_opc = vecop_list_add,
1784 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1785 .vece = MO_64 },
1786 };
1787
1788 tcg_debug_assert(vece <= MO_64);
1789 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1790 }
1791
1792 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1793 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1794 {
1795 static const GVecGen2s g[4] = {
1796 { .fni8 = tcg_gen_vec_add8_i64,
1797 .fniv = tcg_gen_add_vec,
1798 .fno = gen_helper_gvec_adds8,
1799 .opt_opc = vecop_list_add,
1800 .vece = MO_8 },
1801 { .fni8 = tcg_gen_vec_add16_i64,
1802 .fniv = tcg_gen_add_vec,
1803 .fno = gen_helper_gvec_adds16,
1804 .opt_opc = vecop_list_add,
1805 .vece = MO_16 },
1806 { .fni4 = tcg_gen_add_i32,
1807 .fniv = tcg_gen_add_vec,
1808 .fno = gen_helper_gvec_adds32,
1809 .opt_opc = vecop_list_add,
1810 .vece = MO_32 },
1811 { .fni8 = tcg_gen_add_i64,
1812 .fniv = tcg_gen_add_vec,
1813 .fno = gen_helper_gvec_adds64,
1814 .opt_opc = vecop_list_add,
1815 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1816 .vece = MO_64 },
1817 };
1818
1819 tcg_debug_assert(vece <= MO_64);
1820 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1821 }
1822
1823 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1824 int64_t c, uint32_t oprsz, uint32_t maxsz)
1825 {
1826 TCGv_i64 tmp = tcg_constant_i64(c);
1827 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1828 }
1829
1830 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
1831
1832 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1833 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1834 {
1835 static const GVecGen2s g[4] = {
1836 { .fni8 = tcg_gen_vec_sub8_i64,
1837 .fniv = tcg_gen_sub_vec,
1838 .fno = gen_helper_gvec_subs8,
1839 .opt_opc = vecop_list_sub,
1840 .vece = MO_8 },
1841 { .fni8 = tcg_gen_vec_sub16_i64,
1842 .fniv = tcg_gen_sub_vec,
1843 .fno = gen_helper_gvec_subs16,
1844 .opt_opc = vecop_list_sub,
1845 .vece = MO_16 },
1846 { .fni4 = tcg_gen_sub_i32,
1847 .fniv = tcg_gen_sub_vec,
1848 .fno = gen_helper_gvec_subs32,
1849 .opt_opc = vecop_list_sub,
1850 .vece = MO_32 },
1851 { .fni8 = tcg_gen_sub_i64,
1852 .fniv = tcg_gen_sub_vec,
1853 .fno = gen_helper_gvec_subs64,
1854 .opt_opc = vecop_list_sub,
1855 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1856 .vece = MO_64 },
1857 };
1858
1859 tcg_debug_assert(vece <= MO_64);
1860 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1861 }
1862
1863 /* Perform a vector subtraction using normal subtraction and a mask.
1864 Compare gen_addv_mask above. */
1865 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1866 {
1867 TCGv_i64 t1 = tcg_temp_new_i64();
1868 TCGv_i64 t2 = tcg_temp_new_i64();
1869 TCGv_i64 t3 = tcg_temp_new_i64();
1870
1871 tcg_gen_or_i64(t1, a, m);
1872 tcg_gen_andc_i64(t2, b, m);
1873 tcg_gen_eqv_i64(t3, a, b);
1874 tcg_gen_sub_i64(d, t1, t2);
1875 tcg_gen_and_i64(t3, t3, m);
1876 tcg_gen_xor_i64(d, d, t3);
1877
1878 tcg_temp_free_i64(t1);
1879 tcg_temp_free_i64(t2);
1880 tcg_temp_free_i64(t3);
1881 }
1882
1883 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1884 {
1885 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
1886 gen_subv_mask(d, a, b, m);
1887 }
1888
1889 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1890 {
1891 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
1892 gen_subv_mask(d, a, b, m);
1893 }
1894
1895 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1896 {
1897 TCGv_i64 t1 = tcg_temp_new_i64();
1898 TCGv_i64 t2 = tcg_temp_new_i64();
1899
1900 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1901 tcg_gen_sub_i64(t2, a, b);
1902 tcg_gen_sub_i64(t1, a, t1);
1903 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1904
1905 tcg_temp_free_i64(t1);
1906 tcg_temp_free_i64(t2);
1907 }
1908
1909 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1910 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1911 {
1912 static const GVecGen3 g[4] = {
1913 { .fni8 = tcg_gen_vec_sub8_i64,
1914 .fniv = tcg_gen_sub_vec,
1915 .fno = gen_helper_gvec_sub8,
1916 .opt_opc = vecop_list_sub,
1917 .vece = MO_8 },
1918 { .fni8 = tcg_gen_vec_sub16_i64,
1919 .fniv = tcg_gen_sub_vec,
1920 .fno = gen_helper_gvec_sub16,
1921 .opt_opc = vecop_list_sub,
1922 .vece = MO_16 },
1923 { .fni4 = tcg_gen_sub_i32,
1924 .fniv = tcg_gen_sub_vec,
1925 .fno = gen_helper_gvec_sub32,
1926 .opt_opc = vecop_list_sub,
1927 .vece = MO_32 },
1928 { .fni8 = tcg_gen_sub_i64,
1929 .fniv = tcg_gen_sub_vec,
1930 .fno = gen_helper_gvec_sub64,
1931 .opt_opc = vecop_list_sub,
1932 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1933 .vece = MO_64 },
1934 };
1935
1936 tcg_debug_assert(vece <= MO_64);
1937 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1938 }
1939
1940 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
1941
1942 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
1943 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1944 {
1945 static const GVecGen3 g[4] = {
1946 { .fniv = tcg_gen_mul_vec,
1947 .fno = gen_helper_gvec_mul8,
1948 .opt_opc = vecop_list_mul,
1949 .vece = MO_8 },
1950 { .fniv = tcg_gen_mul_vec,
1951 .fno = gen_helper_gvec_mul16,
1952 .opt_opc = vecop_list_mul,
1953 .vece = MO_16 },
1954 { .fni4 = tcg_gen_mul_i32,
1955 .fniv = tcg_gen_mul_vec,
1956 .fno = gen_helper_gvec_mul32,
1957 .opt_opc = vecop_list_mul,
1958 .vece = MO_32 },
1959 { .fni8 = tcg_gen_mul_i64,
1960 .fniv = tcg_gen_mul_vec,
1961 .fno = gen_helper_gvec_mul64,
1962 .opt_opc = vecop_list_mul,
1963 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1964 .vece = MO_64 },
1965 };
1966
1967 tcg_debug_assert(vece <= MO_64);
1968 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1969 }
1970
1971 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
1972 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1973 {
1974 static const GVecGen2s g[4] = {
1975 { .fniv = tcg_gen_mul_vec,
1976 .fno = gen_helper_gvec_muls8,
1977 .opt_opc = vecop_list_mul,
1978 .vece = MO_8 },
1979 { .fniv = tcg_gen_mul_vec,
1980 .fno = gen_helper_gvec_muls16,
1981 .opt_opc = vecop_list_mul,
1982 .vece = MO_16 },
1983 { .fni4 = tcg_gen_mul_i32,
1984 .fniv = tcg_gen_mul_vec,
1985 .fno = gen_helper_gvec_muls32,
1986 .opt_opc = vecop_list_mul,
1987 .vece = MO_32 },
1988 { .fni8 = tcg_gen_mul_i64,
1989 .fniv = tcg_gen_mul_vec,
1990 .fno = gen_helper_gvec_muls64,
1991 .opt_opc = vecop_list_mul,
1992 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1993 .vece = MO_64 },
1994 };
1995
1996 tcg_debug_assert(vece <= MO_64);
1997 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1998 }
1999
2000 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
2001 int64_t c, uint32_t oprsz, uint32_t maxsz)
2002 {
2003 TCGv_i64 tmp = tcg_constant_i64(c);
2004 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
2005 }
2006
2007 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2008 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2009 {
2010 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
2011 static const GVecGen3 g[4] = {
2012 { .fniv = tcg_gen_ssadd_vec,
2013 .fno = gen_helper_gvec_ssadd8,
2014 .opt_opc = vecop_list,
2015 .vece = MO_8 },
2016 { .fniv = tcg_gen_ssadd_vec,
2017 .fno = gen_helper_gvec_ssadd16,
2018 .opt_opc = vecop_list,
2019 .vece = MO_16 },
2020 { .fniv = tcg_gen_ssadd_vec,
2021 .fno = gen_helper_gvec_ssadd32,
2022 .opt_opc = vecop_list,
2023 .vece = MO_32 },
2024 { .fniv = tcg_gen_ssadd_vec,
2025 .fno = gen_helper_gvec_ssadd64,
2026 .opt_opc = vecop_list,
2027 .vece = MO_64 },
2028 };
2029 tcg_debug_assert(vece <= MO_64);
2030 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2031 }
2032
2033 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
2034 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2035 {
2036 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
2037 static const GVecGen3 g[4] = {
2038 { .fniv = tcg_gen_sssub_vec,
2039 .fno = gen_helper_gvec_sssub8,
2040 .opt_opc = vecop_list,
2041 .vece = MO_8 },
2042 { .fniv = tcg_gen_sssub_vec,
2043 .fno = gen_helper_gvec_sssub16,
2044 .opt_opc = vecop_list,
2045 .vece = MO_16 },
2046 { .fniv = tcg_gen_sssub_vec,
2047 .fno = gen_helper_gvec_sssub32,
2048 .opt_opc = vecop_list,
2049 .vece = MO_32 },
2050 { .fniv = tcg_gen_sssub_vec,
2051 .fno = gen_helper_gvec_sssub64,
2052 .opt_opc = vecop_list,
2053 .vece = MO_64 },
2054 };
2055 tcg_debug_assert(vece <= MO_64);
2056 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2057 }
2058
2059 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2060 {
2061 TCGv_i32 max = tcg_constant_i32(-1);
2062 tcg_gen_add_i32(d, a, b);
2063 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
2064 }
2065
2066 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2067 {
2068 TCGv_i64 max = tcg_constant_i64(-1);
2069 tcg_gen_add_i64(d, a, b);
2070 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
2071 }
2072
2073 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2074 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2075 {
2076 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
2077 static const GVecGen3 g[4] = {
2078 { .fniv = tcg_gen_usadd_vec,
2079 .fno = gen_helper_gvec_usadd8,
2080 .opt_opc = vecop_list,
2081 .vece = MO_8 },
2082 { .fniv = tcg_gen_usadd_vec,
2083 .fno = gen_helper_gvec_usadd16,
2084 .opt_opc = vecop_list,
2085 .vece = MO_16 },
2086 { .fni4 = tcg_gen_usadd_i32,
2087 .fniv = tcg_gen_usadd_vec,
2088 .fno = gen_helper_gvec_usadd32,
2089 .opt_opc = vecop_list,
2090 .vece = MO_32 },
2091 { .fni8 = tcg_gen_usadd_i64,
2092 .fniv = tcg_gen_usadd_vec,
2093 .fno = gen_helper_gvec_usadd64,
2094 .opt_opc = vecop_list,
2095 .vece = MO_64 }
2096 };
2097 tcg_debug_assert(vece <= MO_64);
2098 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2099 }
2100
2101 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2102 {
2103 TCGv_i32 min = tcg_constant_i32(0);
2104 tcg_gen_sub_i32(d, a, b);
2105 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
2106 }
2107
2108 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2109 {
2110 TCGv_i64 min = tcg_constant_i64(0);
2111 tcg_gen_sub_i64(d, a, b);
2112 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
2113 }
2114
2115 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
2116 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2117 {
2118 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2119 static const GVecGen3 g[4] = {
2120 { .fniv = tcg_gen_ussub_vec,
2121 .fno = gen_helper_gvec_ussub8,
2122 .opt_opc = vecop_list,
2123 .vece = MO_8 },
2124 { .fniv = tcg_gen_ussub_vec,
2125 .fno = gen_helper_gvec_ussub16,
2126 .opt_opc = vecop_list,
2127 .vece = MO_16 },
2128 { .fni4 = tcg_gen_ussub_i32,
2129 .fniv = tcg_gen_ussub_vec,
2130 .fno = gen_helper_gvec_ussub32,
2131 .opt_opc = vecop_list,
2132 .vece = MO_32 },
2133 { .fni8 = tcg_gen_ussub_i64,
2134 .fniv = tcg_gen_ussub_vec,
2135 .fno = gen_helper_gvec_ussub64,
2136 .opt_opc = vecop_list,
2137 .vece = MO_64 }
2138 };
2139 tcg_debug_assert(vece <= MO_64);
2140 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2141 }
2142
2143 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2144 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2145 {
2146 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2147 static const GVecGen3 g[4] = {
2148 { .fniv = tcg_gen_smin_vec,
2149 .fno = gen_helper_gvec_smin8,
2150 .opt_opc = vecop_list,
2151 .vece = MO_8 },
2152 { .fniv = tcg_gen_smin_vec,
2153 .fno = gen_helper_gvec_smin16,
2154 .opt_opc = vecop_list,
2155 .vece = MO_16 },
2156 { .fni4 = tcg_gen_smin_i32,
2157 .fniv = tcg_gen_smin_vec,
2158 .fno = gen_helper_gvec_smin32,
2159 .opt_opc = vecop_list,
2160 .vece = MO_32 },
2161 { .fni8 = tcg_gen_smin_i64,
2162 .fniv = tcg_gen_smin_vec,
2163 .fno = gen_helper_gvec_smin64,
2164 .opt_opc = vecop_list,
2165 .vece = MO_64 }
2166 };
2167 tcg_debug_assert(vece <= MO_64);
2168 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2169 }
2170
2171 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2172 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2173 {
2174 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2175 static const GVecGen3 g[4] = {
2176 { .fniv = tcg_gen_umin_vec,
2177 .fno = gen_helper_gvec_umin8,
2178 .opt_opc = vecop_list,
2179 .vece = MO_8 },
2180 { .fniv = tcg_gen_umin_vec,
2181 .fno = gen_helper_gvec_umin16,
2182 .opt_opc = vecop_list,
2183 .vece = MO_16 },
2184 { .fni4 = tcg_gen_umin_i32,
2185 .fniv = tcg_gen_umin_vec,
2186 .fno = gen_helper_gvec_umin32,
2187 .opt_opc = vecop_list,
2188 .vece = MO_32 },
2189 { .fni8 = tcg_gen_umin_i64,
2190 .fniv = tcg_gen_umin_vec,
2191 .fno = gen_helper_gvec_umin64,
2192 .opt_opc = vecop_list,
2193 .vece = MO_64 }
2194 };
2195 tcg_debug_assert(vece <= MO_64);
2196 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2197 }
2198
2199 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2200 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2201 {
2202 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2203 static const GVecGen3 g[4] = {
2204 { .fniv = tcg_gen_smax_vec,
2205 .fno = gen_helper_gvec_smax8,
2206 .opt_opc = vecop_list,
2207 .vece = MO_8 },
2208 { .fniv = tcg_gen_smax_vec,
2209 .fno = gen_helper_gvec_smax16,
2210 .opt_opc = vecop_list,
2211 .vece = MO_16 },
2212 { .fni4 = tcg_gen_smax_i32,
2213 .fniv = tcg_gen_smax_vec,
2214 .fno = gen_helper_gvec_smax32,
2215 .opt_opc = vecop_list,
2216 .vece = MO_32 },
2217 { .fni8 = tcg_gen_smax_i64,
2218 .fniv = tcg_gen_smax_vec,
2219 .fno = gen_helper_gvec_smax64,
2220 .opt_opc = vecop_list,
2221 .vece = MO_64 }
2222 };
2223 tcg_debug_assert(vece <= MO_64);
2224 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2225 }
2226
2227 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2228 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2229 {
2230 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2231 static const GVecGen3 g[4] = {
2232 { .fniv = tcg_gen_umax_vec,
2233 .fno = gen_helper_gvec_umax8,
2234 .opt_opc = vecop_list,
2235 .vece = MO_8 },
2236 { .fniv = tcg_gen_umax_vec,
2237 .fno = gen_helper_gvec_umax16,
2238 .opt_opc = vecop_list,
2239 .vece = MO_16 },
2240 { .fni4 = tcg_gen_umax_i32,
2241 .fniv = tcg_gen_umax_vec,
2242 .fno = gen_helper_gvec_umax32,
2243 .opt_opc = vecop_list,
2244 .vece = MO_32 },
2245 { .fni8 = tcg_gen_umax_i64,
2246 .fniv = tcg_gen_umax_vec,
2247 .fno = gen_helper_gvec_umax64,
2248 .opt_opc = vecop_list,
2249 .vece = MO_64 }
2250 };
2251 tcg_debug_assert(vece <= MO_64);
2252 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2253 }
2254
2255 /* Perform a vector negation using normal negation and a mask.
2256 Compare gen_subv_mask above. */
2257 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2258 {
2259 TCGv_i64 t2 = tcg_temp_new_i64();
2260 TCGv_i64 t3 = tcg_temp_new_i64();
2261
2262 tcg_gen_andc_i64(t3, m, b);
2263 tcg_gen_andc_i64(t2, b, m);
2264 tcg_gen_sub_i64(d, m, t2);
2265 tcg_gen_xor_i64(d, d, t3);
2266
2267 tcg_temp_free_i64(t2);
2268 tcg_temp_free_i64(t3);
2269 }
2270
2271 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2272 {
2273 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2274 gen_negv_mask(d, b, m);
2275 }
2276
2277 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2278 {
2279 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2280 gen_negv_mask(d, b, m);
2281 }
2282
2283 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2284 {
2285 TCGv_i64 t1 = tcg_temp_new_i64();
2286 TCGv_i64 t2 = tcg_temp_new_i64();
2287
2288 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2289 tcg_gen_neg_i64(t2, b);
2290 tcg_gen_neg_i64(t1, t1);
2291 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2292
2293 tcg_temp_free_i64(t1);
2294 tcg_temp_free_i64(t2);
2295 }
2296
2297 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2298 uint32_t oprsz, uint32_t maxsz)
2299 {
2300 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2301 static const GVecGen2 g[4] = {
2302 { .fni8 = tcg_gen_vec_neg8_i64,
2303 .fniv = tcg_gen_neg_vec,
2304 .fno = gen_helper_gvec_neg8,
2305 .opt_opc = vecop_list,
2306 .vece = MO_8 },
2307 { .fni8 = tcg_gen_vec_neg16_i64,
2308 .fniv = tcg_gen_neg_vec,
2309 .fno = gen_helper_gvec_neg16,
2310 .opt_opc = vecop_list,
2311 .vece = MO_16 },
2312 { .fni4 = tcg_gen_neg_i32,
2313 .fniv = tcg_gen_neg_vec,
2314 .fno = gen_helper_gvec_neg32,
2315 .opt_opc = vecop_list,
2316 .vece = MO_32 },
2317 { .fni8 = tcg_gen_neg_i64,
2318 .fniv = tcg_gen_neg_vec,
2319 .fno = gen_helper_gvec_neg64,
2320 .opt_opc = vecop_list,
2321 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2322 .vece = MO_64 },
2323 };
2324
2325 tcg_debug_assert(vece <= MO_64);
2326 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2327 }
2328
2329 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2330 {
2331 TCGv_i64 t = tcg_temp_new_i64();
2332 int nbit = 8 << vece;
2333
2334 /* Create -1 for each negative element. */
2335 tcg_gen_shri_i64(t, b, nbit - 1);
2336 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2337 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2338
2339 /*
2340 * Invert (via xor -1) and add one.
2341 * Because of the ordering the msb is cleared,
2342 * so we never have carry into the next element.
2343 */
2344 tcg_gen_xor_i64(d, b, t);
2345 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2346 tcg_gen_add_i64(d, d, t);
2347
2348 tcg_temp_free_i64(t);
2349 }
2350
2351 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2352 {
2353 gen_absv_mask(d, b, MO_8);
2354 }
2355
2356 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2357 {
2358 gen_absv_mask(d, b, MO_16);
2359 }
2360
2361 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2362 uint32_t oprsz, uint32_t maxsz)
2363 {
2364 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2365 static const GVecGen2 g[4] = {
2366 { .fni8 = tcg_gen_vec_abs8_i64,
2367 .fniv = tcg_gen_abs_vec,
2368 .fno = gen_helper_gvec_abs8,
2369 .opt_opc = vecop_list,
2370 .vece = MO_8 },
2371 { .fni8 = tcg_gen_vec_abs16_i64,
2372 .fniv = tcg_gen_abs_vec,
2373 .fno = gen_helper_gvec_abs16,
2374 .opt_opc = vecop_list,
2375 .vece = MO_16 },
2376 { .fni4 = tcg_gen_abs_i32,
2377 .fniv = tcg_gen_abs_vec,
2378 .fno = gen_helper_gvec_abs32,
2379 .opt_opc = vecop_list,
2380 .vece = MO_32 },
2381 { .fni8 = tcg_gen_abs_i64,
2382 .fniv = tcg_gen_abs_vec,
2383 .fno = gen_helper_gvec_abs64,
2384 .opt_opc = vecop_list,
2385 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2386 .vece = MO_64 },
2387 };
2388
2389 tcg_debug_assert(vece <= MO_64);
2390 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2391 }
2392
2393 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2394 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2395 {
2396 static const GVecGen3 g = {
2397 .fni8 = tcg_gen_and_i64,
2398 .fniv = tcg_gen_and_vec,
2399 .fno = gen_helper_gvec_and,
2400 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2401 };
2402
2403 if (aofs == bofs) {
2404 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2405 } else {
2406 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2407 }
2408 }
2409
2410 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2411 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2412 {
2413 static const GVecGen3 g = {
2414 .fni8 = tcg_gen_or_i64,
2415 .fniv = tcg_gen_or_vec,
2416 .fno = gen_helper_gvec_or,
2417 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2418 };
2419
2420 if (aofs == bofs) {
2421 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2422 } else {
2423 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2424 }
2425 }
2426
2427 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2428 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2429 {
2430 static const GVecGen3 g = {
2431 .fni8 = tcg_gen_xor_i64,
2432 .fniv = tcg_gen_xor_vec,
2433 .fno = gen_helper_gvec_xor,
2434 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2435 };
2436
2437 if (aofs == bofs) {
2438 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2439 } else {
2440 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2441 }
2442 }
2443
2444 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2445 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2446 {
2447 static const GVecGen3 g = {
2448 .fni8 = tcg_gen_andc_i64,
2449 .fniv = tcg_gen_andc_vec,
2450 .fno = gen_helper_gvec_andc,
2451 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2452 };
2453
2454 if (aofs == bofs) {
2455 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2456 } else {
2457 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2458 }
2459 }
2460
2461 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2462 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2463 {
2464 static const GVecGen3 g = {
2465 .fni8 = tcg_gen_orc_i64,
2466 .fniv = tcg_gen_orc_vec,
2467 .fno = gen_helper_gvec_orc,
2468 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2469 };
2470
2471 if (aofs == bofs) {
2472 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2473 } else {
2474 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2475 }
2476 }
2477
2478 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2479 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2480 {
2481 static const GVecGen3 g = {
2482 .fni8 = tcg_gen_nand_i64,
2483 .fniv = tcg_gen_nand_vec,
2484 .fno = gen_helper_gvec_nand,
2485 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2486 };
2487
2488 if (aofs == bofs) {
2489 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2490 } else {
2491 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2492 }
2493 }
2494
2495 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2496 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2497 {
2498 static const GVecGen3 g = {
2499 .fni8 = tcg_gen_nor_i64,
2500 .fniv = tcg_gen_nor_vec,
2501 .fno = gen_helper_gvec_nor,
2502 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2503 };
2504
2505 if (aofs == bofs) {
2506 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2507 } else {
2508 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2509 }
2510 }
2511
2512 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2513 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2514 {
2515 static const GVecGen3 g = {
2516 .fni8 = tcg_gen_eqv_i64,
2517 .fniv = tcg_gen_eqv_vec,
2518 .fno = gen_helper_gvec_eqv,
2519 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2520 };
2521
2522 if (aofs == bofs) {
2523 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2524 } else {
2525 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2526 }
2527 }
2528
2529 static const GVecGen2s gop_ands = {
2530 .fni8 = tcg_gen_and_i64,
2531 .fniv = tcg_gen_and_vec,
2532 .fno = gen_helper_gvec_ands,
2533 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2534 .vece = MO_64
2535 };
2536
2537 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2538 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2539 {
2540 TCGv_i64 tmp = tcg_temp_new_i64();
2541 gen_dup_i64(vece, tmp, c);
2542 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2543 tcg_temp_free_i64(tmp);
2544 }
2545
2546 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2547 int64_t c, uint32_t oprsz, uint32_t maxsz)
2548 {
2549 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2550 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2551 }
2552
2553 static const GVecGen2s gop_xors = {
2554 .fni8 = tcg_gen_xor_i64,
2555 .fniv = tcg_gen_xor_vec,
2556 .fno = gen_helper_gvec_xors,
2557 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2558 .vece = MO_64
2559 };
2560
2561 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2562 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2563 {
2564 TCGv_i64 tmp = tcg_temp_new_i64();
2565 gen_dup_i64(vece, tmp, c);
2566 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2567 tcg_temp_free_i64(tmp);
2568 }
2569
2570 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2571 int64_t c, uint32_t oprsz, uint32_t maxsz)
2572 {
2573 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2574 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2575 }
2576
2577 static const GVecGen2s gop_ors = {
2578 .fni8 = tcg_gen_or_i64,
2579 .fniv = tcg_gen_or_vec,
2580 .fno = gen_helper_gvec_ors,
2581 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2582 .vece = MO_64
2583 };
2584
2585 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2586 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2587 {
2588 TCGv_i64 tmp = tcg_temp_new_i64();
2589 gen_dup_i64(vece, tmp, c);
2590 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2591 tcg_temp_free_i64(tmp);
2592 }
2593
2594 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2595 int64_t c, uint32_t oprsz, uint32_t maxsz)
2596 {
2597 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2598 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2599 }
2600
2601 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2602 {
2603 uint64_t mask = dup_const(MO_8, 0xff << c);
2604 tcg_gen_shli_i64(d, a, c);
2605 tcg_gen_andi_i64(d, d, mask);
2606 }
2607
2608 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2609 {
2610 uint64_t mask = dup_const(MO_16, 0xffff << c);
2611 tcg_gen_shli_i64(d, a, c);
2612 tcg_gen_andi_i64(d, d, mask);
2613 }
2614
2615 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2616 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2617 {
2618 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2619 static const GVecGen2i g[4] = {
2620 { .fni8 = tcg_gen_vec_shl8i_i64,
2621 .fniv = tcg_gen_shli_vec,
2622 .fno = gen_helper_gvec_shl8i,
2623 .opt_opc = vecop_list,
2624 .vece = MO_8 },
2625 { .fni8 = tcg_gen_vec_shl16i_i64,
2626 .fniv = tcg_gen_shli_vec,
2627 .fno = gen_helper_gvec_shl16i,
2628 .opt_opc = vecop_list,
2629 .vece = MO_16 },
2630 { .fni4 = tcg_gen_shli_i32,
2631 .fniv = tcg_gen_shli_vec,
2632 .fno = gen_helper_gvec_shl32i,
2633 .opt_opc = vecop_list,
2634 .vece = MO_32 },
2635 { .fni8 = tcg_gen_shli_i64,
2636 .fniv = tcg_gen_shli_vec,
2637 .fno = gen_helper_gvec_shl64i,
2638 .opt_opc = vecop_list,
2639 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2640 .vece = MO_64 },
2641 };
2642
2643 tcg_debug_assert(vece <= MO_64);
2644 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2645 if (shift == 0) {
2646 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2647 } else {
2648 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2649 }
2650 }
2651
2652 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2653 {
2654 uint64_t mask = dup_const(MO_8, 0xff >> c);
2655 tcg_gen_shri_i64(d, a, c);
2656 tcg_gen_andi_i64(d, d, mask);
2657 }
2658
2659 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2660 {
2661 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2662 tcg_gen_shri_i64(d, a, c);
2663 tcg_gen_andi_i64(d, d, mask);
2664 }
2665
2666 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2667 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2668 {
2669 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2670 static const GVecGen2i g[4] = {
2671 { .fni8 = tcg_gen_vec_shr8i_i64,
2672 .fniv = tcg_gen_shri_vec,
2673 .fno = gen_helper_gvec_shr8i,
2674 .opt_opc = vecop_list,
2675 .vece = MO_8 },
2676 { .fni8 = tcg_gen_vec_shr16i_i64,
2677 .fniv = tcg_gen_shri_vec,
2678 .fno = gen_helper_gvec_shr16i,
2679 .opt_opc = vecop_list,
2680 .vece = MO_16 },
2681 { .fni4 = tcg_gen_shri_i32,
2682 .fniv = tcg_gen_shri_vec,
2683 .fno = gen_helper_gvec_shr32i,
2684 .opt_opc = vecop_list,
2685 .vece = MO_32 },
2686 { .fni8 = tcg_gen_shri_i64,
2687 .fniv = tcg_gen_shri_vec,
2688 .fno = gen_helper_gvec_shr64i,
2689 .opt_opc = vecop_list,
2690 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2691 .vece = MO_64 },
2692 };
2693
2694 tcg_debug_assert(vece <= MO_64);
2695 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2696 if (shift == 0) {
2697 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2698 } else {
2699 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2700 }
2701 }
2702
2703 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2704 {
2705 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2706 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2707 TCGv_i64 s = tcg_temp_new_i64();
2708
2709 tcg_gen_shri_i64(d, a, c);
2710 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2711 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2712 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2713 tcg_gen_or_i64(d, d, s); /* include sign extension */
2714 tcg_temp_free_i64(s);
2715 }
2716
2717 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2718 {
2719 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2720 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2721 TCGv_i64 s = tcg_temp_new_i64();
2722
2723 tcg_gen_shri_i64(d, a, c);
2724 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2725 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2726 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2727 tcg_gen_or_i64(d, d, s); /* include sign extension */
2728 tcg_temp_free_i64(s);
2729 }
2730
2731 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2732 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2733 {
2734 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
2735 static const GVecGen2i g[4] = {
2736 { .fni8 = tcg_gen_vec_sar8i_i64,
2737 .fniv = tcg_gen_sari_vec,
2738 .fno = gen_helper_gvec_sar8i,
2739 .opt_opc = vecop_list,
2740 .vece = MO_8 },
2741 { .fni8 = tcg_gen_vec_sar16i_i64,
2742 .fniv = tcg_gen_sari_vec,
2743 .fno = gen_helper_gvec_sar16i,
2744 .opt_opc = vecop_list,
2745 .vece = MO_16 },
2746 { .fni4 = tcg_gen_sari_i32,
2747 .fniv = tcg_gen_sari_vec,
2748 .fno = gen_helper_gvec_sar32i,
2749 .opt_opc = vecop_list,
2750 .vece = MO_32 },
2751 { .fni8 = tcg_gen_sari_i64,
2752 .fniv = tcg_gen_sari_vec,
2753 .fno = gen_helper_gvec_sar64i,
2754 .opt_opc = vecop_list,
2755 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2756 .vece = MO_64 },
2757 };
2758
2759 tcg_debug_assert(vece <= MO_64);
2760 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2761 if (shift == 0) {
2762 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2763 } else {
2764 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2765 }
2766 }
2767
2768 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2769 {
2770 uint64_t mask = dup_const(MO_8, 0xff << c);
2771
2772 tcg_gen_shli_i64(d, a, c);
2773 tcg_gen_shri_i64(a, a, 8 - c);
2774 tcg_gen_andi_i64(d, d, mask);
2775 tcg_gen_andi_i64(a, a, ~mask);
2776 tcg_gen_or_i64(d, d, a);
2777 }
2778
2779 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2780 {
2781 uint64_t mask = dup_const(MO_16, 0xffff << c);
2782
2783 tcg_gen_shli_i64(d, a, c);
2784 tcg_gen_shri_i64(a, a, 16 - c);
2785 tcg_gen_andi_i64(d, d, mask);
2786 tcg_gen_andi_i64(a, a, ~mask);
2787 tcg_gen_or_i64(d, d, a);
2788 }
2789
2790 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
2791 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2792 {
2793 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
2794 static const GVecGen2i g[4] = {
2795 { .fni8 = tcg_gen_vec_rotl8i_i64,
2796 .fniv = tcg_gen_rotli_vec,
2797 .fno = gen_helper_gvec_rotl8i,
2798 .opt_opc = vecop_list,
2799 .vece = MO_8 },
2800 { .fni8 = tcg_gen_vec_rotl16i_i64,
2801 .fniv = tcg_gen_rotli_vec,
2802 .fno = gen_helper_gvec_rotl16i,
2803 .opt_opc = vecop_list,
2804 .vece = MO_16 },
2805 { .fni4 = tcg_gen_rotli_i32,
2806 .fniv = tcg_gen_rotli_vec,
2807 .fno = gen_helper_gvec_rotl32i,
2808 .opt_opc = vecop_list,
2809 .vece = MO_32 },
2810 { .fni8 = tcg_gen_rotli_i64,
2811 .fniv = tcg_gen_rotli_vec,
2812 .fno = gen_helper_gvec_rotl64i,
2813 .opt_opc = vecop_list,
2814 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2815 .vece = MO_64 },
2816 };
2817
2818 tcg_debug_assert(vece <= MO_64);
2819 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2820 if (shift == 0) {
2821 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2822 } else {
2823 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2824 }
2825 }
2826
2827 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
2828 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2829 {
2830 tcg_debug_assert(vece <= MO_64);
2831 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2832 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
2833 oprsz, maxsz);
2834 }
2835
2836 /*
2837 * Specialized generation vector shifts by a non-constant scalar.
2838 */
2839
2840 typedef struct {
2841 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
2842 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
2843 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
2844 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
2845 gen_helper_gvec_2 *fno[4];
2846 TCGOpcode s_list[2];
2847 TCGOpcode v_list[2];
2848 } GVecGen2sh;
2849
2850 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2851 uint32_t oprsz, uint32_t tysz, TCGType type,
2852 TCGv_i32 shift,
2853 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
2854 {
2855 TCGv_vec t0 = tcg_temp_new_vec(type);
2856 uint32_t i;
2857
2858 for (i = 0; i < oprsz; i += tysz) {
2859 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2860 fni(vece, t0, t0, shift);
2861 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2862 }
2863 tcg_temp_free_vec(t0);
2864 }
2865
2866 static void
2867 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
2868 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
2869 {
2870 TCGType type;
2871 uint32_t some;
2872
2873 check_size_align(oprsz, maxsz, dofs | aofs);
2874 check_overlap_2(dofs, aofs, maxsz);
2875
2876 /* If the backend has a scalar expansion, great. */
2877 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
2878 if (type) {
2879 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2880 switch (type) {
2881 case TCG_TYPE_V256:
2882 some = QEMU_ALIGN_DOWN(oprsz, 32);
2883 expand_2sh_vec(vece, dofs, aofs, some, 32,
2884 TCG_TYPE_V256, shift, g->fniv_s);
2885 if (some == oprsz) {
2886 break;
2887 }
2888 dofs += some;
2889 aofs += some;
2890 oprsz -= some;
2891 maxsz -= some;
2892 /* fallthru */
2893 case TCG_TYPE_V128:
2894 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
2895 TCG_TYPE_V128, shift, g->fniv_s);
2896 break;
2897 case TCG_TYPE_V64:
2898 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
2899 TCG_TYPE_V64, shift, g->fniv_s);
2900 break;
2901 default:
2902 g_assert_not_reached();
2903 }
2904 tcg_swap_vecop_list(hold_list);
2905 goto clear_tail;
2906 }
2907
2908 /* If the backend supports variable vector shifts, also cool. */
2909 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
2910 if (type) {
2911 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2912 TCGv_vec v_shift = tcg_temp_new_vec(type);
2913
2914 if (vece == MO_64) {
2915 TCGv_i64 sh64 = tcg_temp_new_i64();
2916 tcg_gen_extu_i32_i64(sh64, shift);
2917 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
2918 tcg_temp_free_i64(sh64);
2919 } else {
2920 tcg_gen_dup_i32_vec(vece, v_shift, shift);
2921 }
2922
2923 switch (type) {
2924 case TCG_TYPE_V256:
2925 some = QEMU_ALIGN_DOWN(oprsz, 32);
2926 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
2927 v_shift, false, g->fniv_v);
2928 if (some == oprsz) {
2929 break;
2930 }
2931 dofs += some;
2932 aofs += some;
2933 oprsz -= some;
2934 maxsz -= some;
2935 /* fallthru */
2936 case TCG_TYPE_V128:
2937 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
2938 v_shift, false, g->fniv_v);
2939 break;
2940 case TCG_TYPE_V64:
2941 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
2942 v_shift, false, g->fniv_v);
2943 break;
2944 default:
2945 g_assert_not_reached();
2946 }
2947 tcg_temp_free_vec(v_shift);
2948 tcg_swap_vecop_list(hold_list);
2949 goto clear_tail;
2950 }
2951
2952 /* Otherwise fall back to integral... */
2953 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
2954 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
2955 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
2956 TCGv_i64 sh64 = tcg_temp_new_i64();
2957 tcg_gen_extu_i32_i64(sh64, shift);
2958 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
2959 tcg_temp_free_i64(sh64);
2960 } else {
2961 TCGv_ptr a0 = tcg_temp_new_ptr();
2962 TCGv_ptr a1 = tcg_temp_new_ptr();
2963 TCGv_i32 desc = tcg_temp_new_i32();
2964
2965 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
2966 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
2967 tcg_gen_addi_ptr(a0, cpu_env, dofs);
2968 tcg_gen_addi_ptr(a1, cpu_env, aofs);
2969
2970 g->fno[vece](a0, a1, desc);
2971
2972 tcg_temp_free_ptr(a0);
2973 tcg_temp_free_ptr(a1);
2974 tcg_temp_free_i32(desc);
2975 return;
2976 }
2977
2978 clear_tail:
2979 if (oprsz < maxsz) {
2980 expand_clr(dofs + oprsz, maxsz - oprsz);
2981 }
2982 }
2983
2984 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
2985 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2986 {
2987 static const GVecGen2sh g = {
2988 .fni4 = tcg_gen_shl_i32,
2989 .fni8 = tcg_gen_shl_i64,
2990 .fniv_s = tcg_gen_shls_vec,
2991 .fniv_v = tcg_gen_shlv_vec,
2992 .fno = {
2993 gen_helper_gvec_shl8i,
2994 gen_helper_gvec_shl16i,
2995 gen_helper_gvec_shl32i,
2996 gen_helper_gvec_shl64i,
2997 },
2998 .s_list = { INDEX_op_shls_vec, 0 },
2999 .v_list = { INDEX_op_shlv_vec, 0 },
3000 };
3001
3002 tcg_debug_assert(vece <= MO_64);
3003 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3004 }
3005
3006 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
3007 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3008 {
3009 static const GVecGen2sh g = {
3010 .fni4 = tcg_gen_shr_i32,
3011 .fni8 = tcg_gen_shr_i64,
3012 .fniv_s = tcg_gen_shrs_vec,
3013 .fniv_v = tcg_gen_shrv_vec,
3014 .fno = {
3015 gen_helper_gvec_shr8i,
3016 gen_helper_gvec_shr16i,
3017 gen_helper_gvec_shr32i,
3018 gen_helper_gvec_shr64i,
3019 },
3020 .s_list = { INDEX_op_shrs_vec, 0 },
3021 .v_list = { INDEX_op_shrv_vec, 0 },
3022 };
3023
3024 tcg_debug_assert(vece <= MO_64);
3025 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3026 }
3027
3028 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
3029 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3030 {
3031 static const GVecGen2sh g = {
3032 .fni4 = tcg_gen_sar_i32,
3033 .fni8 = tcg_gen_sar_i64,
3034 .fniv_s = tcg_gen_sars_vec,
3035 .fniv_v = tcg_gen_sarv_vec,
3036 .fno = {
3037 gen_helper_gvec_sar8i,
3038 gen_helper_gvec_sar16i,
3039 gen_helper_gvec_sar32i,
3040 gen_helper_gvec_sar64i,
3041 },
3042 .s_list = { INDEX_op_sars_vec, 0 },
3043 .v_list = { INDEX_op_sarv_vec, 0 },
3044 };
3045
3046 tcg_debug_assert(vece <= MO_64);
3047 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3048 }
3049
3050 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
3051 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3052 {
3053 static const GVecGen2sh g = {
3054 .fni4 = tcg_gen_rotl_i32,
3055 .fni8 = tcg_gen_rotl_i64,
3056 .fniv_s = tcg_gen_rotls_vec,
3057 .fniv_v = tcg_gen_rotlv_vec,
3058 .fno = {
3059 gen_helper_gvec_rotl8i,
3060 gen_helper_gvec_rotl16i,
3061 gen_helper_gvec_rotl32i,
3062 gen_helper_gvec_rotl64i,
3063 },
3064 .s_list = { INDEX_op_rotls_vec, 0 },
3065 .v_list = { INDEX_op_rotlv_vec, 0 },
3066 };
3067
3068 tcg_debug_assert(vece <= MO_64);
3069 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3070 }
3071
3072 /*
3073 * Expand D = A << (B % element bits)
3074 *
3075 * Unlike scalar shifts, where it is easy for the target front end
3076 * to include the modulo as part of the expansion. If the target
3077 * naturally includes the modulo as part of the operation, great!
3078 * If the target has some other behaviour from out-of-range shifts,
3079 * then it could not use this function anyway, and would need to
3080 * do it's own expansion with custom functions.
3081 */
3082 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
3083 TCGv_vec a, TCGv_vec b)
3084 {
3085 TCGv_vec t = tcg_temp_new_vec_matching(d);
3086 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3087
3088 tcg_gen_and_vec(vece, t, b, m);
3089 tcg_gen_shlv_vec(vece, d, a, t);
3090 tcg_temp_free_vec(t);
3091 }
3092
3093 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3094 {
3095 TCGv_i32 t = tcg_temp_new_i32();
3096
3097 tcg_gen_andi_i32(t, b, 31);
3098 tcg_gen_shl_i32(d, a, t);
3099 tcg_temp_free_i32(t);
3100 }
3101
3102 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3103 {
3104 TCGv_i64 t = tcg_temp_new_i64();
3105
3106 tcg_gen_andi_i64(t, b, 63);
3107 tcg_gen_shl_i64(d, a, t);
3108 tcg_temp_free_i64(t);
3109 }
3110
3111 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3112 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3113 {
3114 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
3115 static const GVecGen3 g[4] = {
3116 { .fniv = tcg_gen_shlv_mod_vec,
3117 .fno = gen_helper_gvec_shl8v,
3118 .opt_opc = vecop_list,
3119 .vece = MO_8 },
3120 { .fniv = tcg_gen_shlv_mod_vec,
3121 .fno = gen_helper_gvec_shl16v,
3122 .opt_opc = vecop_list,
3123 .vece = MO_16 },
3124 { .fni4 = tcg_gen_shl_mod_i32,
3125 .fniv = tcg_gen_shlv_mod_vec,
3126 .fno = gen_helper_gvec_shl32v,
3127 .opt_opc = vecop_list,
3128 .vece = MO_32 },
3129 { .fni8 = tcg_gen_shl_mod_i64,
3130 .fniv = tcg_gen_shlv_mod_vec,
3131 .fno = gen_helper_gvec_shl64v,
3132 .opt_opc = vecop_list,
3133 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3134 .vece = MO_64 },
3135 };
3136
3137 tcg_debug_assert(vece <= MO_64);
3138 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3139 }
3140
3141 /*
3142 * Similarly for logical right shifts.
3143 */
3144
3145 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
3146 TCGv_vec a, TCGv_vec b)
3147 {
3148 TCGv_vec t = tcg_temp_new_vec_matching(d);
3149 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3150
3151 tcg_gen_and_vec(vece, t, b, m);
3152 tcg_gen_shrv_vec(vece, d, a, t);
3153 tcg_temp_free_vec(t);
3154 }
3155
3156 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3157 {
3158 TCGv_i32 t = tcg_temp_new_i32();
3159
3160 tcg_gen_andi_i32(t, b, 31);
3161 tcg_gen_shr_i32(d, a, t);
3162 tcg_temp_free_i32(t);
3163 }
3164
3165 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3166 {
3167 TCGv_i64 t = tcg_temp_new_i64();
3168
3169 tcg_gen_andi_i64(t, b, 63);
3170 tcg_gen_shr_i64(d, a, t);
3171 tcg_temp_free_i64(t);
3172 }
3173
3174 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3175 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3176 {
3177 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
3178 static const GVecGen3 g[4] = {
3179 { .fniv = tcg_gen_shrv_mod_vec,
3180 .fno = gen_helper_gvec_shr8v,
3181 .opt_opc = vecop_list,
3182 .vece = MO_8 },
3183 { .fniv = tcg_gen_shrv_mod_vec,
3184 .fno = gen_helper_gvec_shr16v,
3185 .opt_opc = vecop_list,
3186 .vece = MO_16 },
3187 { .fni4 = tcg_gen_shr_mod_i32,
3188 .fniv = tcg_gen_shrv_mod_vec,
3189 .fno = gen_helper_gvec_shr32v,
3190 .opt_opc = vecop_list,
3191 .vece = MO_32 },
3192 { .fni8 = tcg_gen_shr_mod_i64,
3193 .fniv = tcg_gen_shrv_mod_vec,
3194 .fno = gen_helper_gvec_shr64v,
3195 .opt_opc = vecop_list,
3196 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3197 .vece = MO_64 },
3198 };
3199
3200 tcg_debug_assert(vece <= MO_64);
3201 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3202 }
3203
3204 /*
3205 * Similarly for arithmetic right shifts.
3206 */
3207
3208 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3209 TCGv_vec a, TCGv_vec b)
3210 {
3211 TCGv_vec t = tcg_temp_new_vec_matching(d);
3212 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3213
3214 tcg_gen_and_vec(vece, t, b, m);
3215 tcg_gen_sarv_vec(vece, d, a, t);
3216 tcg_temp_free_vec(t);
3217 }
3218
3219 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3220 {
3221 TCGv_i32 t = tcg_temp_new_i32();
3222
3223 tcg_gen_andi_i32(t, b, 31);
3224 tcg_gen_sar_i32(d, a, t);
3225 tcg_temp_free_i32(t);
3226 }
3227
3228 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3229 {
3230 TCGv_i64 t = tcg_temp_new_i64();
3231
3232 tcg_gen_andi_i64(t, b, 63);
3233 tcg_gen_sar_i64(d, a, t);
3234 tcg_temp_free_i64(t);
3235 }
3236
3237 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3238 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3239 {
3240 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3241 static const GVecGen3 g[4] = {
3242 { .fniv = tcg_gen_sarv_mod_vec,
3243 .fno = gen_helper_gvec_sar8v,
3244 .opt_opc = vecop_list,
3245 .vece = MO_8 },
3246 { .fniv = tcg_gen_sarv_mod_vec,
3247 .fno = gen_helper_gvec_sar16v,
3248 .opt_opc = vecop_list,
3249 .vece = MO_16 },
3250 { .fni4 = tcg_gen_sar_mod_i32,
3251 .fniv = tcg_gen_sarv_mod_vec,
3252 .fno = gen_helper_gvec_sar32v,
3253 .opt_opc = vecop_list,
3254 .vece = MO_32 },
3255 { .fni8 = tcg_gen_sar_mod_i64,
3256 .fniv = tcg_gen_sarv_mod_vec,
3257 .fno = gen_helper_gvec_sar64v,
3258 .opt_opc = vecop_list,
3259 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3260 .vece = MO_64 },
3261 };
3262
3263 tcg_debug_assert(vece <= MO_64);
3264 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3265 }
3266
3267 /*
3268 * Similarly for rotates.
3269 */
3270
3271 static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d,
3272 TCGv_vec a, TCGv_vec b)
3273 {
3274 TCGv_vec t = tcg_temp_new_vec_matching(d);
3275 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3276
3277 tcg_gen_and_vec(vece, t, b, m);
3278 tcg_gen_rotlv_vec(vece, d, a, t);
3279 tcg_temp_free_vec(t);
3280 }
3281
3282 static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3283 {
3284 TCGv_i32 t = tcg_temp_new_i32();
3285
3286 tcg_gen_andi_i32(t, b, 31);
3287 tcg_gen_rotl_i32(d, a, t);
3288 tcg_temp_free_i32(t);
3289 }
3290
3291 static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3292 {
3293 TCGv_i64 t = tcg_temp_new_i64();
3294
3295 tcg_gen_andi_i64(t, b, 63);
3296 tcg_gen_rotl_i64(d, a, t);
3297 tcg_temp_free_i64(t);
3298 }
3299
3300 void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3301 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3302 {
3303 static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 };
3304 static const GVecGen3 g[4] = {
3305 { .fniv = tcg_gen_rotlv_mod_vec,
3306 .fno = gen_helper_gvec_rotl8v,
3307 .opt_opc = vecop_list,
3308 .vece = MO_8 },
3309 { .fniv = tcg_gen_rotlv_mod_vec,
3310 .fno = gen_helper_gvec_rotl16v,
3311 .opt_opc = vecop_list,
3312 .vece = MO_16 },
3313 { .fni4 = tcg_gen_rotl_mod_i32,
3314 .fniv = tcg_gen_rotlv_mod_vec,
3315 .fno = gen_helper_gvec_rotl32v,
3316 .opt_opc = vecop_list,
3317 .vece = MO_32 },
3318 { .fni8 = tcg_gen_rotl_mod_i64,
3319 .fniv = tcg_gen_rotlv_mod_vec,
3320 .fno = gen_helper_gvec_rotl64v,
3321 .opt_opc = vecop_list,
3322 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3323 .vece = MO_64 },
3324 };
3325
3326 tcg_debug_assert(vece <= MO_64);
3327 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3328 }
3329
3330 static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d,
3331 TCGv_vec a, TCGv_vec b)
3332 {
3333 TCGv_vec t = tcg_temp_new_vec_matching(d);
3334 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3335
3336 tcg_gen_and_vec(vece, t, b, m);
3337 tcg_gen_rotrv_vec(vece, d, a, t);
3338 tcg_temp_free_vec(t);
3339 }
3340
3341 static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3342 {
3343 TCGv_i32 t = tcg_temp_new_i32();
3344
3345 tcg_gen_andi_i32(t, b, 31);
3346 tcg_gen_rotr_i32(d, a, t);
3347 tcg_temp_free_i32(t);
3348 }
3349
3350 static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3351 {
3352 TCGv_i64 t = tcg_temp_new_i64();
3353
3354 tcg_gen_andi_i64(t, b, 63);
3355 tcg_gen_rotr_i64(d, a, t);
3356 tcg_temp_free_i64(t);
3357 }
3358
3359 void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3360 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3361 {
3362 static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 };
3363 static const GVecGen3 g[4] = {
3364 { .fniv = tcg_gen_rotrv_mod_vec,
3365 .fno = gen_helper_gvec_rotr8v,
3366 .opt_opc = vecop_list,
3367 .vece = MO_8 },
3368 { .fniv = tcg_gen_rotrv_mod_vec,
3369 .fno = gen_helper_gvec_rotr16v,
3370 .opt_opc = vecop_list,
3371 .vece = MO_16 },
3372 { .fni4 = tcg_gen_rotr_mod_i32,
3373 .fniv = tcg_gen_rotrv_mod_vec,
3374 .fno = gen_helper_gvec_rotr32v,
3375 .opt_opc = vecop_list,
3376 .vece = MO_32 },
3377 { .fni8 = tcg_gen_rotr_mod_i64,
3378 .fniv = tcg_gen_rotrv_mod_vec,
3379 .fno = gen_helper_gvec_rotr64v,
3380 .opt_opc = vecop_list,
3381 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3382 .vece = MO_64 },
3383 };
3384
3385 tcg_debug_assert(vece <= MO_64);
3386 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3387 }
3388
3389 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3390 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3391 uint32_t oprsz, TCGCond cond)
3392 {
3393 TCGv_i32 t0 = tcg_temp_new_i32();
3394 TCGv_i32 t1 = tcg_temp_new_i32();
3395 uint32_t i;
3396
3397 for (i = 0; i < oprsz; i += 4) {
3398 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
3399 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
3400 tcg_gen_setcond_i32(cond, t0, t0, t1);
3401 tcg_gen_neg_i32(t0, t0);
3402 tcg_gen_st_i32(t0, cpu_env, dofs + i);
3403 }
3404 tcg_temp_free_i32(t1);
3405 tcg_temp_free_i32(t0);
3406 }
3407
3408 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3409 uint32_t oprsz, TCGCond cond)
3410 {
3411 TCGv_i64 t0 = tcg_temp_new_i64();
3412 TCGv_i64 t1 = tcg_temp_new_i64();
3413 uint32_t i;
3414
3415 for (i = 0; i < oprsz; i += 8) {
3416 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
3417 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
3418 tcg_gen_setcond_i64(cond, t0, t0, t1);
3419 tcg_gen_neg_i64(t0, t0);
3420 tcg_gen_st_i64(t0, cpu_env, dofs + i);
3421 }
3422 tcg_temp_free_i64(t1);
3423 tcg_temp_free_i64(t0);
3424 }
3425
3426 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3427 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
3428 TCGType type, TCGCond cond)
3429 {
3430 TCGv_vec t0 = tcg_temp_new_vec(type);
3431 TCGv_vec t1 = tcg_temp_new_vec(type);
3432 uint32_t i;
3433
3434 for (i = 0; i < oprsz; i += tysz) {
3435 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3436 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
3437 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
3438 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3439 }
3440 tcg_temp_free_vec(t1);
3441 tcg_temp_free_vec(t0);
3442 }
3443
3444 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
3445 uint32_t aofs, uint32_t bofs,
3446 uint32_t oprsz, uint32_t maxsz)
3447 {
3448 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3449 static gen_helper_gvec_3 * const eq_fn[4] = {
3450 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
3451 gen_helper_gvec_eq32, gen_helper_gvec_eq64
3452 };
3453 static gen_helper_gvec_3 * const ne_fn[4] = {
3454 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
3455 gen_helper_gvec_ne32, gen_helper_gvec_ne64
3456 };
3457 static gen_helper_gvec_3 * const lt_fn[4] = {
3458 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
3459 gen_helper_gvec_lt32, gen_helper_gvec_lt64
3460 };
3461 static gen_helper_gvec_3 * const le_fn[4] = {
3462 gen_helper_gvec_le8, gen_helper_gvec_le16,
3463 gen_helper_gvec_le32, gen_helper_gvec_le64
3464 };
3465 static gen_helper_gvec_3 * const ltu_fn[4] = {
3466 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
3467 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
3468 };
3469 static gen_helper_gvec_3 * const leu_fn[4] = {
3470 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
3471 gen_helper_gvec_leu32, gen_helper_gvec_leu64
3472 };
3473 static gen_helper_gvec_3 * const * const fns[16] = {
3474 [TCG_COND_EQ] = eq_fn,
3475 [TCG_COND_NE] = ne_fn,
3476 [TCG_COND_LT] = lt_fn,
3477 [TCG_COND_LE] = le_fn,
3478 [TCG_COND_LTU] = ltu_fn,
3479 [TCG_COND_LEU] = leu_fn,
3480 };
3481
3482 const TCGOpcode *hold_list;
3483 TCGType type;
3484 uint32_t some;
3485
3486 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
3487 check_overlap_3(dofs, aofs, bofs, maxsz);
3488
3489 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3490 do_dup(MO_8, dofs, oprsz, maxsz,
3491 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3492 return;
3493 }
3494
3495 /*
3496 * Implement inline with a vector type, if possible.
3497 * Prefer integer when 64-bit host and 64-bit comparison.
3498 */
3499 hold_list = tcg_swap_vecop_list(cmp_list);
3500 type = choose_vector_type(cmp_list, vece, oprsz,
3501 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3502 switch (type) {
3503 case TCG_TYPE_V256:
3504 /* Recall that ARM SVE allows vector sizes that are not a
3505 * power of 2, but always a multiple of 16. The intent is
3506 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3507 */
3508 some = QEMU_ALIGN_DOWN(oprsz, 32);
3509 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
3510 if (some == oprsz) {
3511 break;
3512 }
3513 dofs += some;
3514 aofs += some;
3515 bofs += some;
3516 oprsz -= some;
3517 maxsz -= some;
3518 /* fallthru */
3519 case TCG_TYPE_V128:
3520 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
3521 break;
3522 case TCG_TYPE_V64:
3523 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
3524 break;
3525
3526 case 0:
3527 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3528 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
3529 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3530 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
3531 } else {
3532 gen_helper_gvec_3 * const *fn = fns[cond];
3533
3534 if (fn == NULL) {
3535 uint32_t tmp;
3536 tmp = aofs, aofs = bofs, bofs = tmp;
3537 cond = tcg_swap_cond(cond);
3538 fn = fns[cond];
3539 assert(fn != NULL);
3540 }
3541 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
3542 oprsz = maxsz;
3543 }
3544 break;
3545
3546 default:
3547 g_assert_not_reached();
3548 }
3549 tcg_swap_vecop_list(hold_list);
3550
3551 if (oprsz < maxsz) {
3552 expand_clr(dofs + oprsz, maxsz - oprsz);
3553 }
3554 }
3555
3556 static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
3557 {
3558 TCGv_i64 t = tcg_temp_new_i64();
3559
3560 tcg_gen_and_i64(t, b, a);
3561 tcg_gen_andc_i64(d, c, a);
3562 tcg_gen_or_i64(d, d, t);
3563 tcg_temp_free_i64(t);
3564 }
3565
3566 void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs,
3567 uint32_t bofs, uint32_t cofs,
3568 uint32_t oprsz, uint32_t maxsz)
3569 {
3570 static const GVecGen4 g = {
3571 .fni8 = tcg_gen_bitsel_i64,
3572 .fniv = tcg_gen_bitsel_vec,
3573 .fno = gen_helper_gvec_bitsel,
3574 };
3575
3576 tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g);
3577 }