stubs: Move qemu_fd_register stub to util/main-loop.c
[qemu.git] / tcg / tcg-op-gvec.c
1 /*
2 * Generic vector operation expansion
3 *
4 * Copyright (c) 2018 Linaro
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
26
27 #define MAX_UNROLL 4
28
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
34
35
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
39 {
40 uint32_t opr_align = oprsz >= 16 ? 15 : 7;
41 uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7;
42 tcg_debug_assert(oprsz > 0);
43 tcg_debug_assert(oprsz <= maxsz);
44 tcg_debug_assert((oprsz & opr_align) == 0);
45 tcg_debug_assert((maxsz & max_align) == 0);
46 tcg_debug_assert((ofs & max_align) == 0);
47 }
48
49 /* Verify vector overlap rules for two operands. */
50 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
51 {
52 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
53 }
54
55 /* Verify vector overlap rules for three operands. */
56 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
57 {
58 check_overlap_2(d, a, s);
59 check_overlap_2(d, b, s);
60 check_overlap_2(a, b, s);
61 }
62
63 /* Verify vector overlap rules for four operands. */
64 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
65 uint32_t c, uint32_t s)
66 {
67 check_overlap_2(d, a, s);
68 check_overlap_2(d, b, s);
69 check_overlap_2(d, c, s);
70 check_overlap_2(a, b, s);
71 check_overlap_2(a, c, s);
72 check_overlap_2(b, c, s);
73 }
74
75 /* Create a descriptor from components. */
76 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
77 {
78 uint32_t desc = 0;
79
80 assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS));
81 assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS));
82 assert(data == sextract32(data, 0, SIMD_DATA_BITS));
83
84 oprsz = (oprsz / 8) - 1;
85 maxsz = (maxsz / 8) - 1;
86 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
87 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
88 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
89
90 return desc;
91 }
92
93 /* Generate a call to a gvec-style helper with two vector operands. */
94 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
95 uint32_t oprsz, uint32_t maxsz, int32_t data,
96 gen_helper_gvec_2 *fn)
97 {
98 TCGv_ptr a0, a1;
99 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
100
101 a0 = tcg_temp_new_ptr();
102 a1 = tcg_temp_new_ptr();
103
104 tcg_gen_addi_ptr(a0, cpu_env, dofs);
105 tcg_gen_addi_ptr(a1, cpu_env, aofs);
106
107 fn(a0, a1, desc);
108
109 tcg_temp_free_ptr(a0);
110 tcg_temp_free_ptr(a1);
111 tcg_temp_free_i32(desc);
112 }
113
114 /* Generate a call to a gvec-style helper with two vector operands
115 and one scalar operand. */
116 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
117 uint32_t oprsz, uint32_t maxsz, int32_t data,
118 gen_helper_gvec_2i *fn)
119 {
120 TCGv_ptr a0, a1;
121 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
122
123 a0 = tcg_temp_new_ptr();
124 a1 = tcg_temp_new_ptr();
125
126 tcg_gen_addi_ptr(a0, cpu_env, dofs);
127 tcg_gen_addi_ptr(a1, cpu_env, aofs);
128
129 fn(a0, a1, c, desc);
130
131 tcg_temp_free_ptr(a0);
132 tcg_temp_free_ptr(a1);
133 tcg_temp_free_i32(desc);
134 }
135
136 /* Generate a call to a gvec-style helper with three vector operands. */
137 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
138 uint32_t oprsz, uint32_t maxsz, int32_t data,
139 gen_helper_gvec_3 *fn)
140 {
141 TCGv_ptr a0, a1, a2;
142 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
143
144 a0 = tcg_temp_new_ptr();
145 a1 = tcg_temp_new_ptr();
146 a2 = tcg_temp_new_ptr();
147
148 tcg_gen_addi_ptr(a0, cpu_env, dofs);
149 tcg_gen_addi_ptr(a1, cpu_env, aofs);
150 tcg_gen_addi_ptr(a2, cpu_env, bofs);
151
152 fn(a0, a1, a2, desc);
153
154 tcg_temp_free_ptr(a0);
155 tcg_temp_free_ptr(a1);
156 tcg_temp_free_ptr(a2);
157 tcg_temp_free_i32(desc);
158 }
159
160 /* Generate a call to a gvec-style helper with four vector operands. */
161 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
162 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
163 int32_t data, gen_helper_gvec_4 *fn)
164 {
165 TCGv_ptr a0, a1, a2, a3;
166 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
167
168 a0 = tcg_temp_new_ptr();
169 a1 = tcg_temp_new_ptr();
170 a2 = tcg_temp_new_ptr();
171 a3 = tcg_temp_new_ptr();
172
173 tcg_gen_addi_ptr(a0, cpu_env, dofs);
174 tcg_gen_addi_ptr(a1, cpu_env, aofs);
175 tcg_gen_addi_ptr(a2, cpu_env, bofs);
176 tcg_gen_addi_ptr(a3, cpu_env, cofs);
177
178 fn(a0, a1, a2, a3, desc);
179
180 tcg_temp_free_ptr(a0);
181 tcg_temp_free_ptr(a1);
182 tcg_temp_free_ptr(a2);
183 tcg_temp_free_ptr(a3);
184 tcg_temp_free_i32(desc);
185 }
186
187 /* Generate a call to a gvec-style helper with five vector operands. */
188 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
189 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
190 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
191 {
192 TCGv_ptr a0, a1, a2, a3, a4;
193 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
194
195 a0 = tcg_temp_new_ptr();
196 a1 = tcg_temp_new_ptr();
197 a2 = tcg_temp_new_ptr();
198 a3 = tcg_temp_new_ptr();
199 a4 = tcg_temp_new_ptr();
200
201 tcg_gen_addi_ptr(a0, cpu_env, dofs);
202 tcg_gen_addi_ptr(a1, cpu_env, aofs);
203 tcg_gen_addi_ptr(a2, cpu_env, bofs);
204 tcg_gen_addi_ptr(a3, cpu_env, cofs);
205 tcg_gen_addi_ptr(a4, cpu_env, xofs);
206
207 fn(a0, a1, a2, a3, a4, desc);
208
209 tcg_temp_free_ptr(a0);
210 tcg_temp_free_ptr(a1);
211 tcg_temp_free_ptr(a2);
212 tcg_temp_free_ptr(a3);
213 tcg_temp_free_ptr(a4);
214 tcg_temp_free_i32(desc);
215 }
216
217 /* Generate a call to a gvec-style helper with three vector operands
218 and an extra pointer operand. */
219 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
220 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
221 int32_t data, gen_helper_gvec_2_ptr *fn)
222 {
223 TCGv_ptr a0, a1;
224 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
225
226 a0 = tcg_temp_new_ptr();
227 a1 = tcg_temp_new_ptr();
228
229 tcg_gen_addi_ptr(a0, cpu_env, dofs);
230 tcg_gen_addi_ptr(a1, cpu_env, aofs);
231
232 fn(a0, a1, ptr, desc);
233
234 tcg_temp_free_ptr(a0);
235 tcg_temp_free_ptr(a1);
236 tcg_temp_free_i32(desc);
237 }
238
239 /* Generate a call to a gvec-style helper with three vector operands
240 and an extra pointer operand. */
241 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
242 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
243 int32_t data, gen_helper_gvec_3_ptr *fn)
244 {
245 TCGv_ptr a0, a1, a2;
246 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
247
248 a0 = tcg_temp_new_ptr();
249 a1 = tcg_temp_new_ptr();
250 a2 = tcg_temp_new_ptr();
251
252 tcg_gen_addi_ptr(a0, cpu_env, dofs);
253 tcg_gen_addi_ptr(a1, cpu_env, aofs);
254 tcg_gen_addi_ptr(a2, cpu_env, bofs);
255
256 fn(a0, a1, a2, ptr, desc);
257
258 tcg_temp_free_ptr(a0);
259 tcg_temp_free_ptr(a1);
260 tcg_temp_free_ptr(a2);
261 tcg_temp_free_i32(desc);
262 }
263
264 /* Generate a call to a gvec-style helper with four vector operands
265 and an extra pointer operand. */
266 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
267 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
268 uint32_t maxsz, int32_t data,
269 gen_helper_gvec_4_ptr *fn)
270 {
271 TCGv_ptr a0, a1, a2, a3;
272 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
273
274 a0 = tcg_temp_new_ptr();
275 a1 = tcg_temp_new_ptr();
276 a2 = tcg_temp_new_ptr();
277 a3 = tcg_temp_new_ptr();
278
279 tcg_gen_addi_ptr(a0, cpu_env, dofs);
280 tcg_gen_addi_ptr(a1, cpu_env, aofs);
281 tcg_gen_addi_ptr(a2, cpu_env, bofs);
282 tcg_gen_addi_ptr(a3, cpu_env, cofs);
283
284 fn(a0, a1, a2, a3, ptr, desc);
285
286 tcg_temp_free_ptr(a0);
287 tcg_temp_free_ptr(a1);
288 tcg_temp_free_ptr(a2);
289 tcg_temp_free_ptr(a3);
290 tcg_temp_free_i32(desc);
291 }
292
293 /* Generate a call to a gvec-style helper with five vector operands
294 and an extra pointer operand. */
295 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
296 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
297 uint32_t oprsz, uint32_t maxsz, int32_t data,
298 gen_helper_gvec_5_ptr *fn)
299 {
300 TCGv_ptr a0, a1, a2, a3, a4;
301 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
302
303 a0 = tcg_temp_new_ptr();
304 a1 = tcg_temp_new_ptr();
305 a2 = tcg_temp_new_ptr();
306 a3 = tcg_temp_new_ptr();
307 a4 = tcg_temp_new_ptr();
308
309 tcg_gen_addi_ptr(a0, cpu_env, dofs);
310 tcg_gen_addi_ptr(a1, cpu_env, aofs);
311 tcg_gen_addi_ptr(a2, cpu_env, bofs);
312 tcg_gen_addi_ptr(a3, cpu_env, cofs);
313 tcg_gen_addi_ptr(a4, cpu_env, eofs);
314
315 fn(a0, a1, a2, a3, a4, ptr, desc);
316
317 tcg_temp_free_ptr(a0);
318 tcg_temp_free_ptr(a1);
319 tcg_temp_free_ptr(a2);
320 tcg_temp_free_ptr(a3);
321 tcg_temp_free_ptr(a4);
322 tcg_temp_free_i32(desc);
323 }
324
325 /* Return true if we want to implement something of OPRSZ bytes
326 in units of LNSZ. This limits the expansion of inline code. */
327 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
328 {
329 uint32_t q, r;
330
331 if (oprsz < lnsz) {
332 return false;
333 }
334
335 q = oprsz / lnsz;
336 r = oprsz % lnsz;
337 tcg_debug_assert((r & 7) == 0);
338
339 if (lnsz < 16) {
340 /* For sizes below 16, accept no remainder. */
341 if (r != 0) {
342 return false;
343 }
344 } else {
345 /*
346 * Recall that ARM SVE allows vector sizes that are not a
347 * power of 2, but always a multiple of 16. The intent is
348 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
349 * In addition, expand_clr needs to handle a multiple of 8.
350 * Thus we can handle the tail with one more operation per
351 * diminishing power of 2.
352 */
353 q += ctpop32(r);
354 }
355
356 return q <= MAX_UNROLL;
357 }
358
359 static void expand_clr(uint32_t dofs, uint32_t maxsz);
360
361 /* Duplicate C as per VECE. */
362 uint64_t (dup_const)(unsigned vece, uint64_t c)
363 {
364 switch (vece) {
365 case MO_8:
366 return 0x0101010101010101ull * (uint8_t)c;
367 case MO_16:
368 return 0x0001000100010001ull * (uint16_t)c;
369 case MO_32:
370 return 0x0000000100000001ull * (uint32_t)c;
371 case MO_64:
372 return c;
373 default:
374 g_assert_not_reached();
375 }
376 }
377
378 /* Duplicate IN into OUT as per VECE. */
379 static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
380 {
381 switch (vece) {
382 case MO_8:
383 tcg_gen_ext8u_i32(out, in);
384 tcg_gen_muli_i32(out, out, 0x01010101);
385 break;
386 case MO_16:
387 tcg_gen_deposit_i32(out, in, in, 16, 16);
388 break;
389 case MO_32:
390 tcg_gen_mov_i32(out, in);
391 break;
392 default:
393 g_assert_not_reached();
394 }
395 }
396
397 static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
398 {
399 switch (vece) {
400 case MO_8:
401 tcg_gen_ext8u_i64(out, in);
402 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
403 break;
404 case MO_16:
405 tcg_gen_ext16u_i64(out, in);
406 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
407 break;
408 case MO_32:
409 tcg_gen_deposit_i64(out, in, in, 32, 32);
410 break;
411 case MO_64:
412 tcg_gen_mov_i64(out, in);
413 break;
414 default:
415 g_assert_not_reached();
416 }
417 }
418
419 /* Select a supported vector type for implementing an operation on SIZE
420 * bytes. If OP is 0, assume that the real operation to be performed is
421 * required by all backends. Otherwise, make sure than OP can be performed
422 * on elements of size VECE in the selected type. Do not select V64 if
423 * PREFER_I64 is true. Return 0 if no vector type is selected.
424 */
425 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
426 uint32_t size, bool prefer_i64)
427 {
428 /*
429 * Recall that ARM SVE allows vector sizes that are not a
430 * power of 2, but always a multiple of 16. The intent is
431 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
432 * It is hard to imagine a case in which v256 is supported
433 * but v128 is not, but check anyway.
434 * In addition, expand_clr needs to handle a multiple of 8.
435 */
436 if (TCG_TARGET_HAS_v256 &&
437 check_size_impl(size, 32) &&
438 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
439 (!(size & 16) ||
440 (TCG_TARGET_HAS_v128 &&
441 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
442 (!(size & 8) ||
443 (TCG_TARGET_HAS_v64 &&
444 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
445 return TCG_TYPE_V256;
446 }
447 if (TCG_TARGET_HAS_v128 &&
448 check_size_impl(size, 16) &&
449 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
450 (!(size & 8) ||
451 (TCG_TARGET_HAS_v64 &&
452 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
453 return TCG_TYPE_V128;
454 }
455 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
456 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
457 return TCG_TYPE_V64;
458 }
459 return 0;
460 }
461
462 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
463 uint32_t maxsz, TCGv_vec t_vec)
464 {
465 uint32_t i = 0;
466
467 tcg_debug_assert(oprsz >= 8);
468
469 /*
470 * This may be expand_clr for the tail of an operation, e.g.
471 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
472 * are misaligned wrt the maximum vector size, so do that first.
473 */
474 if (dofs & 8) {
475 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
476 i += 8;
477 }
478
479 switch (type) {
480 case TCG_TYPE_V256:
481 /*
482 * Recall that ARM SVE allows vector sizes that are not a
483 * power of 2, but always a multiple of 16. The intent is
484 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
485 */
486 for (; i + 32 <= oprsz; i += 32) {
487 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
488 }
489 /* fallthru */
490 case TCG_TYPE_V128:
491 for (; i + 16 <= oprsz; i += 16) {
492 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
493 }
494 break;
495 case TCG_TYPE_V64:
496 for (; i < oprsz; i += 8) {
497 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
498 }
499 break;
500 default:
501 g_assert_not_reached();
502 }
503
504 if (oprsz < maxsz) {
505 expand_clr(dofs + oprsz, maxsz - oprsz);
506 }
507 }
508
509 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
510 * Only one of IN_32 or IN_64 may be set;
511 * IN_C is used if IN_32 and IN_64 are unset.
512 */
513 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
514 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
515 uint64_t in_c)
516 {
517 TCGType type;
518 TCGv_i64 t_64;
519 TCGv_i32 t_32, t_desc;
520 TCGv_ptr t_ptr;
521 uint32_t i;
522
523 assert(vece <= (in_32 ? MO_32 : MO_64));
524 assert(in_32 == NULL || in_64 == NULL);
525
526 /* If we're storing 0, expand oprsz to maxsz. */
527 if (in_32 == NULL && in_64 == NULL) {
528 in_c = dup_const(vece, in_c);
529 if (in_c == 0) {
530 oprsz = maxsz;
531 }
532 }
533
534 /* Implement inline with a vector type, if possible.
535 * Prefer integer when 64-bit host and no variable dup.
536 */
537 type = choose_vector_type(NULL, vece, oprsz,
538 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
539 && (in_64 == NULL || vece == MO_64)));
540 if (type != 0) {
541 TCGv_vec t_vec = tcg_temp_new_vec(type);
542
543 if (in_32) {
544 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
545 } else if (in_64) {
546 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
547 } else {
548 tcg_gen_dupi_vec(vece, t_vec, in_c);
549 }
550 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
551 tcg_temp_free_vec(t_vec);
552 return;
553 }
554
555 /* Otherwise, inline with an integer type, unless "large". */
556 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
557 t_64 = NULL;
558 t_32 = NULL;
559
560 if (in_32) {
561 /* We are given a 32-bit variable input. For a 64-bit host,
562 use a 64-bit operation unless the 32-bit operation would
563 be simple enough. */
564 if (TCG_TARGET_REG_BITS == 64
565 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
566 t_64 = tcg_temp_new_i64();
567 tcg_gen_extu_i32_i64(t_64, in_32);
568 gen_dup_i64(vece, t_64, t_64);
569 } else {
570 t_32 = tcg_temp_new_i32();
571 gen_dup_i32(vece, t_32, in_32);
572 }
573 } else if (in_64) {
574 /* We are given a 64-bit variable input. */
575 t_64 = tcg_temp_new_i64();
576 gen_dup_i64(vece, t_64, in_64);
577 } else {
578 /* We are given a constant input. */
579 /* For 64-bit hosts, use 64-bit constants for "simple" constants
580 or when we'd need too many 32-bit stores, or when a 64-bit
581 constant is really required. */
582 if (vece == MO_64
583 || (TCG_TARGET_REG_BITS == 64
584 && (in_c == 0 || in_c == -1
585 || !check_size_impl(oprsz, 4)))) {
586 t_64 = tcg_const_i64(in_c);
587 } else {
588 t_32 = tcg_const_i32(in_c);
589 }
590 }
591
592 /* Implement inline if we picked an implementation size above. */
593 if (t_32) {
594 for (i = 0; i < oprsz; i += 4) {
595 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
596 }
597 tcg_temp_free_i32(t_32);
598 goto done;
599 }
600 if (t_64) {
601 for (i = 0; i < oprsz; i += 8) {
602 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
603 }
604 tcg_temp_free_i64(t_64);
605 goto done;
606 }
607 }
608
609 /* Otherwise implement out of line. */
610 t_ptr = tcg_temp_new_ptr();
611 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
612 t_desc = tcg_const_i32(simd_desc(oprsz, maxsz, 0));
613
614 if (vece == MO_64) {
615 if (in_64) {
616 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
617 } else {
618 t_64 = tcg_const_i64(in_c);
619 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
620 tcg_temp_free_i64(t_64);
621 }
622 } else {
623 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
624 static dup_fn * const fns[3] = {
625 gen_helper_gvec_dup8,
626 gen_helper_gvec_dup16,
627 gen_helper_gvec_dup32
628 };
629
630 if (in_32) {
631 fns[vece](t_ptr, t_desc, in_32);
632 } else {
633 t_32 = tcg_temp_new_i32();
634 if (in_64) {
635 tcg_gen_extrl_i64_i32(t_32, in_64);
636 } else if (vece == MO_8) {
637 tcg_gen_movi_i32(t_32, in_c & 0xff);
638 } else if (vece == MO_16) {
639 tcg_gen_movi_i32(t_32, in_c & 0xffff);
640 } else {
641 tcg_gen_movi_i32(t_32, in_c);
642 }
643 fns[vece](t_ptr, t_desc, t_32);
644 tcg_temp_free_i32(t_32);
645 }
646 }
647
648 tcg_temp_free_ptr(t_ptr);
649 tcg_temp_free_i32(t_desc);
650 return;
651
652 done:
653 if (oprsz < maxsz) {
654 expand_clr(dofs + oprsz, maxsz - oprsz);
655 }
656 }
657
658 /* Likewise, but with zero. */
659 static void expand_clr(uint32_t dofs, uint32_t maxsz)
660 {
661 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
662 }
663
664 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
665 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
666 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
667 {
668 TCGv_i32 t0 = tcg_temp_new_i32();
669 TCGv_i32 t1 = tcg_temp_new_i32();
670 uint32_t i;
671
672 for (i = 0; i < oprsz; i += 4) {
673 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
674 if (load_dest) {
675 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
676 }
677 fni(t1, t0);
678 tcg_gen_st_i32(t1, cpu_env, dofs + i);
679 }
680 tcg_temp_free_i32(t0);
681 tcg_temp_free_i32(t1);
682 }
683
684 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
685 int32_t c, bool load_dest,
686 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
687 {
688 TCGv_i32 t0 = tcg_temp_new_i32();
689 TCGv_i32 t1 = tcg_temp_new_i32();
690 uint32_t i;
691
692 for (i = 0; i < oprsz; i += 4) {
693 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
694 if (load_dest) {
695 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
696 }
697 fni(t1, t0, c);
698 tcg_gen_st_i32(t1, cpu_env, dofs + i);
699 }
700 tcg_temp_free_i32(t0);
701 tcg_temp_free_i32(t1);
702 }
703
704 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
705 TCGv_i32 c, bool scalar_first,
706 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
707 {
708 TCGv_i32 t0 = tcg_temp_new_i32();
709 TCGv_i32 t1 = tcg_temp_new_i32();
710 uint32_t i;
711
712 for (i = 0; i < oprsz; i += 4) {
713 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
714 if (scalar_first) {
715 fni(t1, c, t0);
716 } else {
717 fni(t1, t0, c);
718 }
719 tcg_gen_st_i32(t1, cpu_env, dofs + i);
720 }
721 tcg_temp_free_i32(t0);
722 tcg_temp_free_i32(t1);
723 }
724
725 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
726 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
727 uint32_t bofs, uint32_t oprsz, bool load_dest,
728 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
729 {
730 TCGv_i32 t0 = tcg_temp_new_i32();
731 TCGv_i32 t1 = tcg_temp_new_i32();
732 TCGv_i32 t2 = tcg_temp_new_i32();
733 uint32_t i;
734
735 for (i = 0; i < oprsz; i += 4) {
736 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
737 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
738 if (load_dest) {
739 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
740 }
741 fni(t2, t0, t1);
742 tcg_gen_st_i32(t2, cpu_env, dofs + i);
743 }
744 tcg_temp_free_i32(t2);
745 tcg_temp_free_i32(t1);
746 tcg_temp_free_i32(t0);
747 }
748
749 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
750 uint32_t oprsz, int32_t c, bool load_dest,
751 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
752 {
753 TCGv_i32 t0 = tcg_temp_new_i32();
754 TCGv_i32 t1 = tcg_temp_new_i32();
755 TCGv_i32 t2 = tcg_temp_new_i32();
756 uint32_t i;
757
758 for (i = 0; i < oprsz; i += 4) {
759 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
760 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
761 if (load_dest) {
762 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
763 }
764 fni(t2, t0, t1, c);
765 tcg_gen_st_i32(t2, cpu_env, dofs + i);
766 }
767 tcg_temp_free_i32(t0);
768 tcg_temp_free_i32(t1);
769 tcg_temp_free_i32(t2);
770 }
771
772 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
773 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
774 uint32_t cofs, uint32_t oprsz, bool write_aofs,
775 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
776 {
777 TCGv_i32 t0 = tcg_temp_new_i32();
778 TCGv_i32 t1 = tcg_temp_new_i32();
779 TCGv_i32 t2 = tcg_temp_new_i32();
780 TCGv_i32 t3 = tcg_temp_new_i32();
781 uint32_t i;
782
783 for (i = 0; i < oprsz; i += 4) {
784 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
785 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
786 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
787 fni(t0, t1, t2, t3);
788 tcg_gen_st_i32(t0, cpu_env, dofs + i);
789 if (write_aofs) {
790 tcg_gen_st_i32(t1, cpu_env, aofs + i);
791 }
792 }
793 tcg_temp_free_i32(t3);
794 tcg_temp_free_i32(t2);
795 tcg_temp_free_i32(t1);
796 tcg_temp_free_i32(t0);
797 }
798
799 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
800 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
801 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
802 {
803 TCGv_i64 t0 = tcg_temp_new_i64();
804 TCGv_i64 t1 = tcg_temp_new_i64();
805 uint32_t i;
806
807 for (i = 0; i < oprsz; i += 8) {
808 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
809 if (load_dest) {
810 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
811 }
812 fni(t1, t0);
813 tcg_gen_st_i64(t1, cpu_env, dofs + i);
814 }
815 tcg_temp_free_i64(t0);
816 tcg_temp_free_i64(t1);
817 }
818
819 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
820 int64_t c, bool load_dest,
821 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
822 {
823 TCGv_i64 t0 = tcg_temp_new_i64();
824 TCGv_i64 t1 = tcg_temp_new_i64();
825 uint32_t i;
826
827 for (i = 0; i < oprsz; i += 8) {
828 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
829 if (load_dest) {
830 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
831 }
832 fni(t1, t0, c);
833 tcg_gen_st_i64(t1, cpu_env, dofs + i);
834 }
835 tcg_temp_free_i64(t0);
836 tcg_temp_free_i64(t1);
837 }
838
839 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
840 TCGv_i64 c, bool scalar_first,
841 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
842 {
843 TCGv_i64 t0 = tcg_temp_new_i64();
844 TCGv_i64 t1 = tcg_temp_new_i64();
845 uint32_t i;
846
847 for (i = 0; i < oprsz; i += 8) {
848 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
849 if (scalar_first) {
850 fni(t1, c, t0);
851 } else {
852 fni(t1, t0, c);
853 }
854 tcg_gen_st_i64(t1, cpu_env, dofs + i);
855 }
856 tcg_temp_free_i64(t0);
857 tcg_temp_free_i64(t1);
858 }
859
860 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
861 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
862 uint32_t bofs, uint32_t oprsz, bool load_dest,
863 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
864 {
865 TCGv_i64 t0 = tcg_temp_new_i64();
866 TCGv_i64 t1 = tcg_temp_new_i64();
867 TCGv_i64 t2 = tcg_temp_new_i64();
868 uint32_t i;
869
870 for (i = 0; i < oprsz; i += 8) {
871 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
872 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
873 if (load_dest) {
874 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
875 }
876 fni(t2, t0, t1);
877 tcg_gen_st_i64(t2, cpu_env, dofs + i);
878 }
879 tcg_temp_free_i64(t2);
880 tcg_temp_free_i64(t1);
881 tcg_temp_free_i64(t0);
882 }
883
884 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
885 uint32_t oprsz, int64_t c, bool load_dest,
886 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
887 {
888 TCGv_i64 t0 = tcg_temp_new_i64();
889 TCGv_i64 t1 = tcg_temp_new_i64();
890 TCGv_i64 t2 = tcg_temp_new_i64();
891 uint32_t i;
892
893 for (i = 0; i < oprsz; i += 8) {
894 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
895 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
896 if (load_dest) {
897 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
898 }
899 fni(t2, t0, t1, c);
900 tcg_gen_st_i64(t2, cpu_env, dofs + i);
901 }
902 tcg_temp_free_i64(t0);
903 tcg_temp_free_i64(t1);
904 tcg_temp_free_i64(t2);
905 }
906
907 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
908 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
909 uint32_t cofs, uint32_t oprsz, bool write_aofs,
910 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
911 {
912 TCGv_i64 t0 = tcg_temp_new_i64();
913 TCGv_i64 t1 = tcg_temp_new_i64();
914 TCGv_i64 t2 = tcg_temp_new_i64();
915 TCGv_i64 t3 = tcg_temp_new_i64();
916 uint32_t i;
917
918 for (i = 0; i < oprsz; i += 8) {
919 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
920 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
921 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
922 fni(t0, t1, t2, t3);
923 tcg_gen_st_i64(t0, cpu_env, dofs + i);
924 if (write_aofs) {
925 tcg_gen_st_i64(t1, cpu_env, aofs + i);
926 }
927 }
928 tcg_temp_free_i64(t3);
929 tcg_temp_free_i64(t2);
930 tcg_temp_free_i64(t1);
931 tcg_temp_free_i64(t0);
932 }
933
934 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
935 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
936 uint32_t oprsz, uint32_t tysz, TCGType type,
937 bool load_dest,
938 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
939 {
940 TCGv_vec t0 = tcg_temp_new_vec(type);
941 TCGv_vec t1 = tcg_temp_new_vec(type);
942 uint32_t i;
943
944 for (i = 0; i < oprsz; i += tysz) {
945 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
946 if (load_dest) {
947 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
948 }
949 fni(vece, t1, t0);
950 tcg_gen_st_vec(t1, cpu_env, dofs + i);
951 }
952 tcg_temp_free_vec(t0);
953 tcg_temp_free_vec(t1);
954 }
955
956 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
957 using host vectors. */
958 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
959 uint32_t oprsz, uint32_t tysz, TCGType type,
960 int64_t c, bool load_dest,
961 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
962 {
963 TCGv_vec t0 = tcg_temp_new_vec(type);
964 TCGv_vec t1 = tcg_temp_new_vec(type);
965 uint32_t i;
966
967 for (i = 0; i < oprsz; i += tysz) {
968 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
969 if (load_dest) {
970 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
971 }
972 fni(vece, t1, t0, c);
973 tcg_gen_st_vec(t1, cpu_env, dofs + i);
974 }
975 tcg_temp_free_vec(t0);
976 tcg_temp_free_vec(t1);
977 }
978
979 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
980 uint32_t oprsz, uint32_t tysz, TCGType type,
981 TCGv_vec c, bool scalar_first,
982 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
983 {
984 TCGv_vec t0 = tcg_temp_new_vec(type);
985 TCGv_vec t1 = tcg_temp_new_vec(type);
986 uint32_t i;
987
988 for (i = 0; i < oprsz; i += tysz) {
989 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
990 if (scalar_first) {
991 fni(vece, t1, c, t0);
992 } else {
993 fni(vece, t1, t0, c);
994 }
995 tcg_gen_st_vec(t1, cpu_env, dofs + i);
996 }
997 tcg_temp_free_vec(t0);
998 tcg_temp_free_vec(t1);
999 }
1000
1001 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1002 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1003 uint32_t bofs, uint32_t oprsz,
1004 uint32_t tysz, TCGType type, bool load_dest,
1005 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1006 {
1007 TCGv_vec t0 = tcg_temp_new_vec(type);
1008 TCGv_vec t1 = tcg_temp_new_vec(type);
1009 TCGv_vec t2 = tcg_temp_new_vec(type);
1010 uint32_t i;
1011
1012 for (i = 0; i < oprsz; i += tysz) {
1013 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1014 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1015 if (load_dest) {
1016 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1017 }
1018 fni(vece, t2, t0, t1);
1019 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1020 }
1021 tcg_temp_free_vec(t2);
1022 tcg_temp_free_vec(t1);
1023 tcg_temp_free_vec(t0);
1024 }
1025
1026 /*
1027 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1028 * using host vectors.
1029 */
1030 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1031 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
1032 TCGType type, int64_t c, bool load_dest,
1033 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
1034 int64_t))
1035 {
1036 TCGv_vec t0 = tcg_temp_new_vec(type);
1037 TCGv_vec t1 = tcg_temp_new_vec(type);
1038 TCGv_vec t2 = tcg_temp_new_vec(type);
1039 uint32_t i;
1040
1041 for (i = 0; i < oprsz; i += tysz) {
1042 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1043 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1044 if (load_dest) {
1045 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1046 }
1047 fni(vece, t2, t0, t1, c);
1048 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1049 }
1050 tcg_temp_free_vec(t0);
1051 tcg_temp_free_vec(t1);
1052 tcg_temp_free_vec(t2);
1053 }
1054
1055 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1056 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1057 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1058 uint32_t tysz, TCGType type, bool write_aofs,
1059 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1060 TCGv_vec, TCGv_vec))
1061 {
1062 TCGv_vec t0 = tcg_temp_new_vec(type);
1063 TCGv_vec t1 = tcg_temp_new_vec(type);
1064 TCGv_vec t2 = tcg_temp_new_vec(type);
1065 TCGv_vec t3 = tcg_temp_new_vec(type);
1066 uint32_t i;
1067
1068 for (i = 0; i < oprsz; i += tysz) {
1069 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1070 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1071 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1072 fni(vece, t0, t1, t2, t3);
1073 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1074 if (write_aofs) {
1075 tcg_gen_st_vec(t1, cpu_env, aofs + i);
1076 }
1077 }
1078 tcg_temp_free_vec(t3);
1079 tcg_temp_free_vec(t2);
1080 tcg_temp_free_vec(t1);
1081 tcg_temp_free_vec(t0);
1082 }
1083
1084 /* Expand a vector two-operand operation. */
1085 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1086 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1087 {
1088 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1089 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1090 TCGType type;
1091 uint32_t some;
1092
1093 check_size_align(oprsz, maxsz, dofs | aofs);
1094 check_overlap_2(dofs, aofs, maxsz);
1095
1096 type = 0;
1097 if (g->fniv) {
1098 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1099 }
1100 switch (type) {
1101 case TCG_TYPE_V256:
1102 /* Recall that ARM SVE allows vector sizes that are not a
1103 * power of 2, but always a multiple of 16. The intent is
1104 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1105 */
1106 some = QEMU_ALIGN_DOWN(oprsz, 32);
1107 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1108 g->load_dest, g->fniv);
1109 if (some == oprsz) {
1110 break;
1111 }
1112 dofs += some;
1113 aofs += some;
1114 oprsz -= some;
1115 maxsz -= some;
1116 /* fallthru */
1117 case TCG_TYPE_V128:
1118 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1119 g->load_dest, g->fniv);
1120 break;
1121 case TCG_TYPE_V64:
1122 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1123 g->load_dest, g->fniv);
1124 break;
1125
1126 case 0:
1127 if (g->fni8 && check_size_impl(oprsz, 8)) {
1128 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
1129 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1130 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
1131 } else {
1132 assert(g->fno != NULL);
1133 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1134 oprsz = maxsz;
1135 }
1136 break;
1137
1138 default:
1139 g_assert_not_reached();
1140 }
1141 tcg_swap_vecop_list(hold_list);
1142
1143 if (oprsz < maxsz) {
1144 expand_clr(dofs + oprsz, maxsz - oprsz);
1145 }
1146 }
1147
1148 /* Expand a vector operation with two vectors and an immediate. */
1149 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1150 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1151 {
1152 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1153 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1154 TCGType type;
1155 uint32_t some;
1156
1157 check_size_align(oprsz, maxsz, dofs | aofs);
1158 check_overlap_2(dofs, aofs, maxsz);
1159
1160 type = 0;
1161 if (g->fniv) {
1162 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1163 }
1164 switch (type) {
1165 case TCG_TYPE_V256:
1166 /* Recall that ARM SVE allows vector sizes that are not a
1167 * power of 2, but always a multiple of 16. The intent is
1168 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1169 */
1170 some = QEMU_ALIGN_DOWN(oprsz, 32);
1171 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1172 c, g->load_dest, g->fniv);
1173 if (some == oprsz) {
1174 break;
1175 }
1176 dofs += some;
1177 aofs += some;
1178 oprsz -= some;
1179 maxsz -= some;
1180 /* fallthru */
1181 case TCG_TYPE_V128:
1182 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1183 c, g->load_dest, g->fniv);
1184 break;
1185 case TCG_TYPE_V64:
1186 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1187 c, g->load_dest, g->fniv);
1188 break;
1189
1190 case 0:
1191 if (g->fni8 && check_size_impl(oprsz, 8)) {
1192 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1193 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1194 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1195 } else {
1196 if (g->fno) {
1197 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1198 } else {
1199 TCGv_i64 tcg_c = tcg_const_i64(c);
1200 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1201 maxsz, c, g->fnoi);
1202 tcg_temp_free_i64(tcg_c);
1203 }
1204 oprsz = maxsz;
1205 }
1206 break;
1207
1208 default:
1209 g_assert_not_reached();
1210 }
1211 tcg_swap_vecop_list(hold_list);
1212
1213 if (oprsz < maxsz) {
1214 expand_clr(dofs + oprsz, maxsz - oprsz);
1215 }
1216 }
1217
1218 /* Expand a vector operation with two vectors and a scalar. */
1219 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1220 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1221 {
1222 TCGType type;
1223
1224 check_size_align(oprsz, maxsz, dofs | aofs);
1225 check_overlap_2(dofs, aofs, maxsz);
1226
1227 type = 0;
1228 if (g->fniv) {
1229 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1230 }
1231 if (type != 0) {
1232 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1233 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1234 TCGv_vec t_vec = tcg_temp_new_vec(type);
1235 uint32_t some;
1236
1237 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1238
1239 switch (type) {
1240 case TCG_TYPE_V256:
1241 /* Recall that ARM SVE allows vector sizes that are not a
1242 * power of 2, but always a multiple of 16. The intent is
1243 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1244 */
1245 some = QEMU_ALIGN_DOWN(oprsz, 32);
1246 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1247 t_vec, g->scalar_first, g->fniv);
1248 if (some == oprsz) {
1249 break;
1250 }
1251 dofs += some;
1252 aofs += some;
1253 oprsz -= some;
1254 maxsz -= some;
1255 /* fallthru */
1256
1257 case TCG_TYPE_V128:
1258 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1259 t_vec, g->scalar_first, g->fniv);
1260 break;
1261
1262 case TCG_TYPE_V64:
1263 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1264 t_vec, g->scalar_first, g->fniv);
1265 break;
1266
1267 default:
1268 g_assert_not_reached();
1269 }
1270 tcg_temp_free_vec(t_vec);
1271 tcg_swap_vecop_list(hold_list);
1272 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1273 TCGv_i64 t64 = tcg_temp_new_i64();
1274
1275 gen_dup_i64(g->vece, t64, c);
1276 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1277 tcg_temp_free_i64(t64);
1278 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1279 TCGv_i32 t32 = tcg_temp_new_i32();
1280
1281 tcg_gen_extrl_i64_i32(t32, c);
1282 gen_dup_i32(g->vece, t32, t32);
1283 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1284 tcg_temp_free_i32(t32);
1285 } else {
1286 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1287 return;
1288 }
1289
1290 if (oprsz < maxsz) {
1291 expand_clr(dofs + oprsz, maxsz - oprsz);
1292 }
1293 }
1294
1295 /* Expand a vector three-operand operation. */
1296 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1297 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1298 {
1299 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1300 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1301 TCGType type;
1302 uint32_t some;
1303
1304 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1305 check_overlap_3(dofs, aofs, bofs, maxsz);
1306
1307 type = 0;
1308 if (g->fniv) {
1309 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1310 }
1311 switch (type) {
1312 case TCG_TYPE_V256:
1313 /* Recall that ARM SVE allows vector sizes that are not a
1314 * power of 2, but always a multiple of 16. The intent is
1315 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1316 */
1317 some = QEMU_ALIGN_DOWN(oprsz, 32);
1318 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1319 g->load_dest, g->fniv);
1320 if (some == oprsz) {
1321 break;
1322 }
1323 dofs += some;
1324 aofs += some;
1325 bofs += some;
1326 oprsz -= some;
1327 maxsz -= some;
1328 /* fallthru */
1329 case TCG_TYPE_V128:
1330 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1331 g->load_dest, g->fniv);
1332 break;
1333 case TCG_TYPE_V64:
1334 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1335 g->load_dest, g->fniv);
1336 break;
1337
1338 case 0:
1339 if (g->fni8 && check_size_impl(oprsz, 8)) {
1340 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1341 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1342 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1343 } else {
1344 assert(g->fno != NULL);
1345 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1346 maxsz, g->data, g->fno);
1347 oprsz = maxsz;
1348 }
1349 break;
1350
1351 default:
1352 g_assert_not_reached();
1353 }
1354 tcg_swap_vecop_list(hold_list);
1355
1356 if (oprsz < maxsz) {
1357 expand_clr(dofs + oprsz, maxsz - oprsz);
1358 }
1359 }
1360
1361 /* Expand a vector operation with three vectors and an immediate. */
1362 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1363 uint32_t oprsz, uint32_t maxsz, int64_t c,
1364 const GVecGen3i *g)
1365 {
1366 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1367 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1368 TCGType type;
1369 uint32_t some;
1370
1371 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1372 check_overlap_3(dofs, aofs, bofs, maxsz);
1373
1374 type = 0;
1375 if (g->fniv) {
1376 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1377 }
1378 switch (type) {
1379 case TCG_TYPE_V256:
1380 /*
1381 * Recall that ARM SVE allows vector sizes that are not a
1382 * power of 2, but always a multiple of 16. The intent is
1383 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1384 */
1385 some = QEMU_ALIGN_DOWN(oprsz, 32);
1386 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1387 c, g->load_dest, g->fniv);
1388 if (some == oprsz) {
1389 break;
1390 }
1391 dofs += some;
1392 aofs += some;
1393 bofs += some;
1394 oprsz -= some;
1395 maxsz -= some;
1396 /* fallthru */
1397 case TCG_TYPE_V128:
1398 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1399 c, g->load_dest, g->fniv);
1400 break;
1401 case TCG_TYPE_V64:
1402 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1403 c, g->load_dest, g->fniv);
1404 break;
1405
1406 case 0:
1407 if (g->fni8 && check_size_impl(oprsz, 8)) {
1408 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1409 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1410 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1411 } else {
1412 assert(g->fno != NULL);
1413 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1414 oprsz = maxsz;
1415 }
1416 break;
1417
1418 default:
1419 g_assert_not_reached();
1420 }
1421 tcg_swap_vecop_list(hold_list);
1422
1423 if (oprsz < maxsz) {
1424 expand_clr(dofs + oprsz, maxsz - oprsz);
1425 }
1426 }
1427
1428 /* Expand a vector four-operand operation. */
1429 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1430 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1431 {
1432 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1433 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1434 TCGType type;
1435 uint32_t some;
1436
1437 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1438 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1439
1440 type = 0;
1441 if (g->fniv) {
1442 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1443 }
1444 switch (type) {
1445 case TCG_TYPE_V256:
1446 /* Recall that ARM SVE allows vector sizes that are not a
1447 * power of 2, but always a multiple of 16. The intent is
1448 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1449 */
1450 some = QEMU_ALIGN_DOWN(oprsz, 32);
1451 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1452 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1453 if (some == oprsz) {
1454 break;
1455 }
1456 dofs += some;
1457 aofs += some;
1458 bofs += some;
1459 cofs += some;
1460 oprsz -= some;
1461 maxsz -= some;
1462 /* fallthru */
1463 case TCG_TYPE_V128:
1464 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1465 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1466 break;
1467 case TCG_TYPE_V64:
1468 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1469 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1470 break;
1471
1472 case 0:
1473 if (g->fni8 && check_size_impl(oprsz, 8)) {
1474 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1475 g->write_aofs, g->fni8);
1476 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1477 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1478 g->write_aofs, g->fni4);
1479 } else {
1480 assert(g->fno != NULL);
1481 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1482 oprsz, maxsz, g->data, g->fno);
1483 oprsz = maxsz;
1484 }
1485 break;
1486
1487 default:
1488 g_assert_not_reached();
1489 }
1490 tcg_swap_vecop_list(hold_list);
1491
1492 if (oprsz < maxsz) {
1493 expand_clr(dofs + oprsz, maxsz - oprsz);
1494 }
1495 }
1496
1497 /*
1498 * Expand specific vector operations.
1499 */
1500
1501 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1502 {
1503 tcg_gen_mov_vec(a, b);
1504 }
1505
1506 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1507 uint32_t oprsz, uint32_t maxsz)
1508 {
1509 static const GVecGen2 g = {
1510 .fni8 = tcg_gen_mov_i64,
1511 .fniv = vec_mov2,
1512 .fno = gen_helper_gvec_mov,
1513 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1514 };
1515 if (dofs != aofs) {
1516 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1517 } else {
1518 check_size_align(oprsz, maxsz, dofs);
1519 if (oprsz < maxsz) {
1520 expand_clr(dofs + oprsz, maxsz - oprsz);
1521 }
1522 }
1523 }
1524
1525 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1526 uint32_t maxsz, TCGv_i32 in)
1527 {
1528 check_size_align(oprsz, maxsz, dofs);
1529 tcg_debug_assert(vece <= MO_32);
1530 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1531 }
1532
1533 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1534 uint32_t maxsz, TCGv_i64 in)
1535 {
1536 check_size_align(oprsz, maxsz, dofs);
1537 tcg_debug_assert(vece <= MO_64);
1538 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1539 }
1540
1541 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1542 uint32_t oprsz, uint32_t maxsz)
1543 {
1544 check_size_align(oprsz, maxsz, dofs);
1545 if (vece <= MO_64) {
1546 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1547 if (type != 0) {
1548 TCGv_vec t_vec = tcg_temp_new_vec(type);
1549 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1550 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1551 tcg_temp_free_vec(t_vec);
1552 } else if (vece <= MO_32) {
1553 TCGv_i32 in = tcg_temp_new_i32();
1554 switch (vece) {
1555 case MO_8:
1556 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1557 break;
1558 case MO_16:
1559 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1560 break;
1561 default:
1562 tcg_gen_ld_i32(in, cpu_env, aofs);
1563 break;
1564 }
1565 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1566 tcg_temp_free_i32(in);
1567 } else {
1568 TCGv_i64 in = tcg_temp_new_i64();
1569 tcg_gen_ld_i64(in, cpu_env, aofs);
1570 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1571 tcg_temp_free_i64(in);
1572 }
1573 } else if (vece == 4) {
1574 /* 128-bit duplicate. */
1575 int i;
1576
1577 tcg_debug_assert(oprsz >= 16);
1578 if (TCG_TARGET_HAS_v128) {
1579 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1580
1581 tcg_gen_ld_vec(in, cpu_env, aofs);
1582 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1583 tcg_gen_st_vec(in, cpu_env, dofs + i);
1584 }
1585 tcg_temp_free_vec(in);
1586 } else {
1587 TCGv_i64 in0 = tcg_temp_new_i64();
1588 TCGv_i64 in1 = tcg_temp_new_i64();
1589
1590 tcg_gen_ld_i64(in0, cpu_env, aofs);
1591 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1592 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1593 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1594 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1595 }
1596 tcg_temp_free_i64(in0);
1597 tcg_temp_free_i64(in1);
1598 }
1599 if (oprsz < maxsz) {
1600 expand_clr(dofs + oprsz, maxsz - oprsz);
1601 }
1602 } else if (vece == 5) {
1603 /* 256-bit duplicate. */
1604 int i;
1605
1606 tcg_debug_assert(oprsz >= 32);
1607 tcg_debug_assert(oprsz % 32 == 0);
1608 if (TCG_TARGET_HAS_v256) {
1609 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256);
1610
1611 tcg_gen_ld_vec(in, cpu_env, aofs);
1612 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1613 tcg_gen_st_vec(in, cpu_env, dofs + i);
1614 }
1615 tcg_temp_free_vec(in);
1616 } else if (TCG_TARGET_HAS_v128) {
1617 TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128);
1618 TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128);
1619
1620 tcg_gen_ld_vec(in0, cpu_env, aofs);
1621 tcg_gen_ld_vec(in1, cpu_env, aofs + 16);
1622 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1623 tcg_gen_st_vec(in0, cpu_env, dofs + i);
1624 tcg_gen_st_vec(in1, cpu_env, dofs + i + 16);
1625 }
1626 tcg_temp_free_vec(in0);
1627 tcg_temp_free_vec(in1);
1628 } else {
1629 TCGv_i64 in[4];
1630 int j;
1631
1632 for (j = 0; j < 4; ++j) {
1633 in[j] = tcg_temp_new_i64();
1634 tcg_gen_ld_i64(in[j], cpu_env, aofs + j * 8);
1635 }
1636 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1637 for (j = 0; j < 4; ++j) {
1638 tcg_gen_st_i64(in[j], cpu_env, dofs + i + j * 8);
1639 }
1640 }
1641 for (j = 0; j < 4; ++j) {
1642 tcg_temp_free_i64(in[j]);
1643 }
1644 }
1645 if (oprsz < maxsz) {
1646 expand_clr(dofs + oprsz, maxsz - oprsz);
1647 }
1648 } else {
1649 g_assert_not_reached();
1650 }
1651 }
1652
1653 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
1654 uint32_t maxsz, uint64_t x)
1655 {
1656 check_size_align(oprsz, maxsz, dofs);
1657 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
1658 }
1659
1660 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1661 uint32_t oprsz, uint32_t maxsz)
1662 {
1663 static const GVecGen2 g = {
1664 .fni8 = tcg_gen_not_i64,
1665 .fniv = tcg_gen_not_vec,
1666 .fno = gen_helper_gvec_not,
1667 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1668 };
1669 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1670 }
1671
1672 /* Perform a vector addition using normal addition and a mask. The mask
1673 should be the sign bit of each lane. This 6-operation form is more
1674 efficient than separate additions when there are 4 or more lanes in
1675 the 64-bit operation. */
1676 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1677 {
1678 TCGv_i64 t1 = tcg_temp_new_i64();
1679 TCGv_i64 t2 = tcg_temp_new_i64();
1680 TCGv_i64 t3 = tcg_temp_new_i64();
1681
1682 tcg_gen_andc_i64(t1, a, m);
1683 tcg_gen_andc_i64(t2, b, m);
1684 tcg_gen_xor_i64(t3, a, b);
1685 tcg_gen_add_i64(d, t1, t2);
1686 tcg_gen_and_i64(t3, t3, m);
1687 tcg_gen_xor_i64(d, d, t3);
1688
1689 tcg_temp_free_i64(t1);
1690 tcg_temp_free_i64(t2);
1691 tcg_temp_free_i64(t3);
1692 }
1693
1694 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1695 {
1696 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1697 gen_addv_mask(d, a, b, m);
1698 tcg_temp_free_i64(m);
1699 }
1700
1701 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1702 {
1703 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1704 gen_addv_mask(d, a, b, m);
1705 tcg_temp_free_i64(m);
1706 }
1707
1708 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1709 {
1710 TCGv_i64 t1 = tcg_temp_new_i64();
1711 TCGv_i64 t2 = tcg_temp_new_i64();
1712
1713 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1714 tcg_gen_add_i64(t2, a, b);
1715 tcg_gen_add_i64(t1, t1, b);
1716 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1717
1718 tcg_temp_free_i64(t1);
1719 tcg_temp_free_i64(t2);
1720 }
1721
1722 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1723
1724 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1725 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1726 {
1727 static const GVecGen3 g[4] = {
1728 { .fni8 = tcg_gen_vec_add8_i64,
1729 .fniv = tcg_gen_add_vec,
1730 .fno = gen_helper_gvec_add8,
1731 .opt_opc = vecop_list_add,
1732 .vece = MO_8 },
1733 { .fni8 = tcg_gen_vec_add16_i64,
1734 .fniv = tcg_gen_add_vec,
1735 .fno = gen_helper_gvec_add16,
1736 .opt_opc = vecop_list_add,
1737 .vece = MO_16 },
1738 { .fni4 = tcg_gen_add_i32,
1739 .fniv = tcg_gen_add_vec,
1740 .fno = gen_helper_gvec_add32,
1741 .opt_opc = vecop_list_add,
1742 .vece = MO_32 },
1743 { .fni8 = tcg_gen_add_i64,
1744 .fniv = tcg_gen_add_vec,
1745 .fno = gen_helper_gvec_add64,
1746 .opt_opc = vecop_list_add,
1747 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1748 .vece = MO_64 },
1749 };
1750
1751 tcg_debug_assert(vece <= MO_64);
1752 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1753 }
1754
1755 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1756 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1757 {
1758 static const GVecGen2s g[4] = {
1759 { .fni8 = tcg_gen_vec_add8_i64,
1760 .fniv = tcg_gen_add_vec,
1761 .fno = gen_helper_gvec_adds8,
1762 .opt_opc = vecop_list_add,
1763 .vece = MO_8 },
1764 { .fni8 = tcg_gen_vec_add16_i64,
1765 .fniv = tcg_gen_add_vec,
1766 .fno = gen_helper_gvec_adds16,
1767 .opt_opc = vecop_list_add,
1768 .vece = MO_16 },
1769 { .fni4 = tcg_gen_add_i32,
1770 .fniv = tcg_gen_add_vec,
1771 .fno = gen_helper_gvec_adds32,
1772 .opt_opc = vecop_list_add,
1773 .vece = MO_32 },
1774 { .fni8 = tcg_gen_add_i64,
1775 .fniv = tcg_gen_add_vec,
1776 .fno = gen_helper_gvec_adds64,
1777 .opt_opc = vecop_list_add,
1778 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1779 .vece = MO_64 },
1780 };
1781
1782 tcg_debug_assert(vece <= MO_64);
1783 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1784 }
1785
1786 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1787 int64_t c, uint32_t oprsz, uint32_t maxsz)
1788 {
1789 TCGv_i64 tmp = tcg_const_i64(c);
1790 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1791 tcg_temp_free_i64(tmp);
1792 }
1793
1794 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
1795
1796 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1797 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1798 {
1799 static const GVecGen2s g[4] = {
1800 { .fni8 = tcg_gen_vec_sub8_i64,
1801 .fniv = tcg_gen_sub_vec,
1802 .fno = gen_helper_gvec_subs8,
1803 .opt_opc = vecop_list_sub,
1804 .vece = MO_8 },
1805 { .fni8 = tcg_gen_vec_sub16_i64,
1806 .fniv = tcg_gen_sub_vec,
1807 .fno = gen_helper_gvec_subs16,
1808 .opt_opc = vecop_list_sub,
1809 .vece = MO_16 },
1810 { .fni4 = tcg_gen_sub_i32,
1811 .fniv = tcg_gen_sub_vec,
1812 .fno = gen_helper_gvec_subs32,
1813 .opt_opc = vecop_list_sub,
1814 .vece = MO_32 },
1815 { .fni8 = tcg_gen_sub_i64,
1816 .fniv = tcg_gen_sub_vec,
1817 .fno = gen_helper_gvec_subs64,
1818 .opt_opc = vecop_list_sub,
1819 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1820 .vece = MO_64 },
1821 };
1822
1823 tcg_debug_assert(vece <= MO_64);
1824 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1825 }
1826
1827 /* Perform a vector subtraction using normal subtraction and a mask.
1828 Compare gen_addv_mask above. */
1829 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1830 {
1831 TCGv_i64 t1 = tcg_temp_new_i64();
1832 TCGv_i64 t2 = tcg_temp_new_i64();
1833 TCGv_i64 t3 = tcg_temp_new_i64();
1834
1835 tcg_gen_or_i64(t1, a, m);
1836 tcg_gen_andc_i64(t2, b, m);
1837 tcg_gen_eqv_i64(t3, a, b);
1838 tcg_gen_sub_i64(d, t1, t2);
1839 tcg_gen_and_i64(t3, t3, m);
1840 tcg_gen_xor_i64(d, d, t3);
1841
1842 tcg_temp_free_i64(t1);
1843 tcg_temp_free_i64(t2);
1844 tcg_temp_free_i64(t3);
1845 }
1846
1847 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1848 {
1849 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1850 gen_subv_mask(d, a, b, m);
1851 tcg_temp_free_i64(m);
1852 }
1853
1854 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1855 {
1856 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1857 gen_subv_mask(d, a, b, m);
1858 tcg_temp_free_i64(m);
1859 }
1860
1861 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1862 {
1863 TCGv_i64 t1 = tcg_temp_new_i64();
1864 TCGv_i64 t2 = tcg_temp_new_i64();
1865
1866 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1867 tcg_gen_sub_i64(t2, a, b);
1868 tcg_gen_sub_i64(t1, a, t1);
1869 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1870
1871 tcg_temp_free_i64(t1);
1872 tcg_temp_free_i64(t2);
1873 }
1874
1875 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1876 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1877 {
1878 static const GVecGen3 g[4] = {
1879 { .fni8 = tcg_gen_vec_sub8_i64,
1880 .fniv = tcg_gen_sub_vec,
1881 .fno = gen_helper_gvec_sub8,
1882 .opt_opc = vecop_list_sub,
1883 .vece = MO_8 },
1884 { .fni8 = tcg_gen_vec_sub16_i64,
1885 .fniv = tcg_gen_sub_vec,
1886 .fno = gen_helper_gvec_sub16,
1887 .opt_opc = vecop_list_sub,
1888 .vece = MO_16 },
1889 { .fni4 = tcg_gen_sub_i32,
1890 .fniv = tcg_gen_sub_vec,
1891 .fno = gen_helper_gvec_sub32,
1892 .opt_opc = vecop_list_sub,
1893 .vece = MO_32 },
1894 { .fni8 = tcg_gen_sub_i64,
1895 .fniv = tcg_gen_sub_vec,
1896 .fno = gen_helper_gvec_sub64,
1897 .opt_opc = vecop_list_sub,
1898 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1899 .vece = MO_64 },
1900 };
1901
1902 tcg_debug_assert(vece <= MO_64);
1903 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1904 }
1905
1906 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
1907
1908 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
1909 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1910 {
1911 static const GVecGen3 g[4] = {
1912 { .fniv = tcg_gen_mul_vec,
1913 .fno = gen_helper_gvec_mul8,
1914 .opt_opc = vecop_list_mul,
1915 .vece = MO_8 },
1916 { .fniv = tcg_gen_mul_vec,
1917 .fno = gen_helper_gvec_mul16,
1918 .opt_opc = vecop_list_mul,
1919 .vece = MO_16 },
1920 { .fni4 = tcg_gen_mul_i32,
1921 .fniv = tcg_gen_mul_vec,
1922 .fno = gen_helper_gvec_mul32,
1923 .opt_opc = vecop_list_mul,
1924 .vece = MO_32 },
1925 { .fni8 = tcg_gen_mul_i64,
1926 .fniv = tcg_gen_mul_vec,
1927 .fno = gen_helper_gvec_mul64,
1928 .opt_opc = vecop_list_mul,
1929 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1930 .vece = MO_64 },
1931 };
1932
1933 tcg_debug_assert(vece <= MO_64);
1934 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1935 }
1936
1937 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
1938 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1939 {
1940 static const GVecGen2s g[4] = {
1941 { .fniv = tcg_gen_mul_vec,
1942 .fno = gen_helper_gvec_muls8,
1943 .opt_opc = vecop_list_mul,
1944 .vece = MO_8 },
1945 { .fniv = tcg_gen_mul_vec,
1946 .fno = gen_helper_gvec_muls16,
1947 .opt_opc = vecop_list_mul,
1948 .vece = MO_16 },
1949 { .fni4 = tcg_gen_mul_i32,
1950 .fniv = tcg_gen_mul_vec,
1951 .fno = gen_helper_gvec_muls32,
1952 .opt_opc = vecop_list_mul,
1953 .vece = MO_32 },
1954 { .fni8 = tcg_gen_mul_i64,
1955 .fniv = tcg_gen_mul_vec,
1956 .fno = gen_helper_gvec_muls64,
1957 .opt_opc = vecop_list_mul,
1958 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1959 .vece = MO_64 },
1960 };
1961
1962 tcg_debug_assert(vece <= MO_64);
1963 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1964 }
1965
1966 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
1967 int64_t c, uint32_t oprsz, uint32_t maxsz)
1968 {
1969 TCGv_i64 tmp = tcg_const_i64(c);
1970 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
1971 tcg_temp_free_i64(tmp);
1972 }
1973
1974 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1975 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1976 {
1977 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
1978 static const GVecGen3 g[4] = {
1979 { .fniv = tcg_gen_ssadd_vec,
1980 .fno = gen_helper_gvec_ssadd8,
1981 .opt_opc = vecop_list,
1982 .vece = MO_8 },
1983 { .fniv = tcg_gen_ssadd_vec,
1984 .fno = gen_helper_gvec_ssadd16,
1985 .opt_opc = vecop_list,
1986 .vece = MO_16 },
1987 { .fniv = tcg_gen_ssadd_vec,
1988 .fno = gen_helper_gvec_ssadd32,
1989 .opt_opc = vecop_list,
1990 .vece = MO_32 },
1991 { .fniv = tcg_gen_ssadd_vec,
1992 .fno = gen_helper_gvec_ssadd64,
1993 .opt_opc = vecop_list,
1994 .vece = MO_64 },
1995 };
1996 tcg_debug_assert(vece <= MO_64);
1997 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1998 }
1999
2000 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
2001 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2002 {
2003 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
2004 static const GVecGen3 g[4] = {
2005 { .fniv = tcg_gen_sssub_vec,
2006 .fno = gen_helper_gvec_sssub8,
2007 .opt_opc = vecop_list,
2008 .vece = MO_8 },
2009 { .fniv = tcg_gen_sssub_vec,
2010 .fno = gen_helper_gvec_sssub16,
2011 .opt_opc = vecop_list,
2012 .vece = MO_16 },
2013 { .fniv = tcg_gen_sssub_vec,
2014 .fno = gen_helper_gvec_sssub32,
2015 .opt_opc = vecop_list,
2016 .vece = MO_32 },
2017 { .fniv = tcg_gen_sssub_vec,
2018 .fno = gen_helper_gvec_sssub64,
2019 .opt_opc = vecop_list,
2020 .vece = MO_64 },
2021 };
2022 tcg_debug_assert(vece <= MO_64);
2023 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2024 }
2025
2026 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2027 {
2028 TCGv_i32 max = tcg_const_i32(-1);
2029 tcg_gen_add_i32(d, a, b);
2030 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
2031 tcg_temp_free_i32(max);
2032 }
2033
2034 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2035 {
2036 TCGv_i64 max = tcg_const_i64(-1);
2037 tcg_gen_add_i64(d, a, b);
2038 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
2039 tcg_temp_free_i64(max);
2040 }
2041
2042 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2043 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2044 {
2045 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
2046 static const GVecGen3 g[4] = {
2047 { .fniv = tcg_gen_usadd_vec,
2048 .fno = gen_helper_gvec_usadd8,
2049 .opt_opc = vecop_list,
2050 .vece = MO_8 },
2051 { .fniv = tcg_gen_usadd_vec,
2052 .fno = gen_helper_gvec_usadd16,
2053 .opt_opc = vecop_list,
2054 .vece = MO_16 },
2055 { .fni4 = tcg_gen_usadd_i32,
2056 .fniv = tcg_gen_usadd_vec,
2057 .fno = gen_helper_gvec_usadd32,
2058 .opt_opc = vecop_list,
2059 .vece = MO_32 },
2060 { .fni8 = tcg_gen_usadd_i64,
2061 .fniv = tcg_gen_usadd_vec,
2062 .fno = gen_helper_gvec_usadd64,
2063 .opt_opc = vecop_list,
2064 .vece = MO_64 }
2065 };
2066 tcg_debug_assert(vece <= MO_64);
2067 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2068 }
2069
2070 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2071 {
2072 TCGv_i32 min = tcg_const_i32(0);
2073 tcg_gen_sub_i32(d, a, b);
2074 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
2075 tcg_temp_free_i32(min);
2076 }
2077
2078 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2079 {
2080 TCGv_i64 min = tcg_const_i64(0);
2081 tcg_gen_sub_i64(d, a, b);
2082 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
2083 tcg_temp_free_i64(min);
2084 }
2085
2086 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
2087 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2088 {
2089 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2090 static const GVecGen3 g[4] = {
2091 { .fniv = tcg_gen_ussub_vec,
2092 .fno = gen_helper_gvec_ussub8,
2093 .opt_opc = vecop_list,
2094 .vece = MO_8 },
2095 { .fniv = tcg_gen_ussub_vec,
2096 .fno = gen_helper_gvec_ussub16,
2097 .opt_opc = vecop_list,
2098 .vece = MO_16 },
2099 { .fni4 = tcg_gen_ussub_i32,
2100 .fniv = tcg_gen_ussub_vec,
2101 .fno = gen_helper_gvec_ussub32,
2102 .opt_opc = vecop_list,
2103 .vece = MO_32 },
2104 { .fni8 = tcg_gen_ussub_i64,
2105 .fniv = tcg_gen_ussub_vec,
2106 .fno = gen_helper_gvec_ussub64,
2107 .opt_opc = vecop_list,
2108 .vece = MO_64 }
2109 };
2110 tcg_debug_assert(vece <= MO_64);
2111 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2112 }
2113
2114 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2115 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2116 {
2117 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2118 static const GVecGen3 g[4] = {
2119 { .fniv = tcg_gen_smin_vec,
2120 .fno = gen_helper_gvec_smin8,
2121 .opt_opc = vecop_list,
2122 .vece = MO_8 },
2123 { .fniv = tcg_gen_smin_vec,
2124 .fno = gen_helper_gvec_smin16,
2125 .opt_opc = vecop_list,
2126 .vece = MO_16 },
2127 { .fni4 = tcg_gen_smin_i32,
2128 .fniv = tcg_gen_smin_vec,
2129 .fno = gen_helper_gvec_smin32,
2130 .opt_opc = vecop_list,
2131 .vece = MO_32 },
2132 { .fni8 = tcg_gen_smin_i64,
2133 .fniv = tcg_gen_smin_vec,
2134 .fno = gen_helper_gvec_smin64,
2135 .opt_opc = vecop_list,
2136 .vece = MO_64 }
2137 };
2138 tcg_debug_assert(vece <= MO_64);
2139 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2140 }
2141
2142 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2143 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2144 {
2145 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2146 static const GVecGen3 g[4] = {
2147 { .fniv = tcg_gen_umin_vec,
2148 .fno = gen_helper_gvec_umin8,
2149 .opt_opc = vecop_list,
2150 .vece = MO_8 },
2151 { .fniv = tcg_gen_umin_vec,
2152 .fno = gen_helper_gvec_umin16,
2153 .opt_opc = vecop_list,
2154 .vece = MO_16 },
2155 { .fni4 = tcg_gen_umin_i32,
2156 .fniv = tcg_gen_umin_vec,
2157 .fno = gen_helper_gvec_umin32,
2158 .opt_opc = vecop_list,
2159 .vece = MO_32 },
2160 { .fni8 = tcg_gen_umin_i64,
2161 .fniv = tcg_gen_umin_vec,
2162 .fno = gen_helper_gvec_umin64,
2163 .opt_opc = vecop_list,
2164 .vece = MO_64 }
2165 };
2166 tcg_debug_assert(vece <= MO_64);
2167 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2168 }
2169
2170 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2171 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2172 {
2173 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2174 static const GVecGen3 g[4] = {
2175 { .fniv = tcg_gen_smax_vec,
2176 .fno = gen_helper_gvec_smax8,
2177 .opt_opc = vecop_list,
2178 .vece = MO_8 },
2179 { .fniv = tcg_gen_smax_vec,
2180 .fno = gen_helper_gvec_smax16,
2181 .opt_opc = vecop_list,
2182 .vece = MO_16 },
2183 { .fni4 = tcg_gen_smax_i32,
2184 .fniv = tcg_gen_smax_vec,
2185 .fno = gen_helper_gvec_smax32,
2186 .opt_opc = vecop_list,
2187 .vece = MO_32 },
2188 { .fni8 = tcg_gen_smax_i64,
2189 .fniv = tcg_gen_smax_vec,
2190 .fno = gen_helper_gvec_smax64,
2191 .opt_opc = vecop_list,
2192 .vece = MO_64 }
2193 };
2194 tcg_debug_assert(vece <= MO_64);
2195 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2196 }
2197
2198 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2199 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2200 {
2201 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2202 static const GVecGen3 g[4] = {
2203 { .fniv = tcg_gen_umax_vec,
2204 .fno = gen_helper_gvec_umax8,
2205 .opt_opc = vecop_list,
2206 .vece = MO_8 },
2207 { .fniv = tcg_gen_umax_vec,
2208 .fno = gen_helper_gvec_umax16,
2209 .opt_opc = vecop_list,
2210 .vece = MO_16 },
2211 { .fni4 = tcg_gen_umax_i32,
2212 .fniv = tcg_gen_umax_vec,
2213 .fno = gen_helper_gvec_umax32,
2214 .opt_opc = vecop_list,
2215 .vece = MO_32 },
2216 { .fni8 = tcg_gen_umax_i64,
2217 .fniv = tcg_gen_umax_vec,
2218 .fno = gen_helper_gvec_umax64,
2219 .opt_opc = vecop_list,
2220 .vece = MO_64 }
2221 };
2222 tcg_debug_assert(vece <= MO_64);
2223 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2224 }
2225
2226 /* Perform a vector negation using normal negation and a mask.
2227 Compare gen_subv_mask above. */
2228 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2229 {
2230 TCGv_i64 t2 = tcg_temp_new_i64();
2231 TCGv_i64 t3 = tcg_temp_new_i64();
2232
2233 tcg_gen_andc_i64(t3, m, b);
2234 tcg_gen_andc_i64(t2, b, m);
2235 tcg_gen_sub_i64(d, m, t2);
2236 tcg_gen_xor_i64(d, d, t3);
2237
2238 tcg_temp_free_i64(t2);
2239 tcg_temp_free_i64(t3);
2240 }
2241
2242 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2243 {
2244 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
2245 gen_negv_mask(d, b, m);
2246 tcg_temp_free_i64(m);
2247 }
2248
2249 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2250 {
2251 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
2252 gen_negv_mask(d, b, m);
2253 tcg_temp_free_i64(m);
2254 }
2255
2256 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2257 {
2258 TCGv_i64 t1 = tcg_temp_new_i64();
2259 TCGv_i64 t2 = tcg_temp_new_i64();
2260
2261 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2262 tcg_gen_neg_i64(t2, b);
2263 tcg_gen_neg_i64(t1, t1);
2264 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2265
2266 tcg_temp_free_i64(t1);
2267 tcg_temp_free_i64(t2);
2268 }
2269
2270 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2271 uint32_t oprsz, uint32_t maxsz)
2272 {
2273 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2274 static const GVecGen2 g[4] = {
2275 { .fni8 = tcg_gen_vec_neg8_i64,
2276 .fniv = tcg_gen_neg_vec,
2277 .fno = gen_helper_gvec_neg8,
2278 .opt_opc = vecop_list,
2279 .vece = MO_8 },
2280 { .fni8 = tcg_gen_vec_neg16_i64,
2281 .fniv = tcg_gen_neg_vec,
2282 .fno = gen_helper_gvec_neg16,
2283 .opt_opc = vecop_list,
2284 .vece = MO_16 },
2285 { .fni4 = tcg_gen_neg_i32,
2286 .fniv = tcg_gen_neg_vec,
2287 .fno = gen_helper_gvec_neg32,
2288 .opt_opc = vecop_list,
2289 .vece = MO_32 },
2290 { .fni8 = tcg_gen_neg_i64,
2291 .fniv = tcg_gen_neg_vec,
2292 .fno = gen_helper_gvec_neg64,
2293 .opt_opc = vecop_list,
2294 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2295 .vece = MO_64 },
2296 };
2297
2298 tcg_debug_assert(vece <= MO_64);
2299 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2300 }
2301
2302 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2303 {
2304 TCGv_i64 t = tcg_temp_new_i64();
2305 int nbit = 8 << vece;
2306
2307 /* Create -1 for each negative element. */
2308 tcg_gen_shri_i64(t, b, nbit - 1);
2309 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2310 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2311
2312 /*
2313 * Invert (via xor -1) and add one.
2314 * Because of the ordering the msb is cleared,
2315 * so we never have carry into the next element.
2316 */
2317 tcg_gen_xor_i64(d, b, t);
2318 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2319 tcg_gen_add_i64(d, d, t);
2320
2321 tcg_temp_free_i64(t);
2322 }
2323
2324 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2325 {
2326 gen_absv_mask(d, b, MO_8);
2327 }
2328
2329 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2330 {
2331 gen_absv_mask(d, b, MO_16);
2332 }
2333
2334 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2335 uint32_t oprsz, uint32_t maxsz)
2336 {
2337 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2338 static const GVecGen2 g[4] = {
2339 { .fni8 = tcg_gen_vec_abs8_i64,
2340 .fniv = tcg_gen_abs_vec,
2341 .fno = gen_helper_gvec_abs8,
2342 .opt_opc = vecop_list,
2343 .vece = MO_8 },
2344 { .fni8 = tcg_gen_vec_abs16_i64,
2345 .fniv = tcg_gen_abs_vec,
2346 .fno = gen_helper_gvec_abs16,
2347 .opt_opc = vecop_list,
2348 .vece = MO_16 },
2349 { .fni4 = tcg_gen_abs_i32,
2350 .fniv = tcg_gen_abs_vec,
2351 .fno = gen_helper_gvec_abs32,
2352 .opt_opc = vecop_list,
2353 .vece = MO_32 },
2354 { .fni8 = tcg_gen_abs_i64,
2355 .fniv = tcg_gen_abs_vec,
2356 .fno = gen_helper_gvec_abs64,
2357 .opt_opc = vecop_list,
2358 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2359 .vece = MO_64 },
2360 };
2361
2362 tcg_debug_assert(vece <= MO_64);
2363 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2364 }
2365
2366 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2367 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2368 {
2369 static const GVecGen3 g = {
2370 .fni8 = tcg_gen_and_i64,
2371 .fniv = tcg_gen_and_vec,
2372 .fno = gen_helper_gvec_and,
2373 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2374 };
2375
2376 if (aofs == bofs) {
2377 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2378 } else {
2379 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2380 }
2381 }
2382
2383 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2384 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2385 {
2386 static const GVecGen3 g = {
2387 .fni8 = tcg_gen_or_i64,
2388 .fniv = tcg_gen_or_vec,
2389 .fno = gen_helper_gvec_or,
2390 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2391 };
2392
2393 if (aofs == bofs) {
2394 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2395 } else {
2396 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2397 }
2398 }
2399
2400 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2401 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2402 {
2403 static const GVecGen3 g = {
2404 .fni8 = tcg_gen_xor_i64,
2405 .fniv = tcg_gen_xor_vec,
2406 .fno = gen_helper_gvec_xor,
2407 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2408 };
2409
2410 if (aofs == bofs) {
2411 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2412 } else {
2413 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2414 }
2415 }
2416
2417 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2418 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2419 {
2420 static const GVecGen3 g = {
2421 .fni8 = tcg_gen_andc_i64,
2422 .fniv = tcg_gen_andc_vec,
2423 .fno = gen_helper_gvec_andc,
2424 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2425 };
2426
2427 if (aofs == bofs) {
2428 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2429 } else {
2430 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2431 }
2432 }
2433
2434 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2435 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2436 {
2437 static const GVecGen3 g = {
2438 .fni8 = tcg_gen_orc_i64,
2439 .fniv = tcg_gen_orc_vec,
2440 .fno = gen_helper_gvec_orc,
2441 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2442 };
2443
2444 if (aofs == bofs) {
2445 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2446 } else {
2447 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2448 }
2449 }
2450
2451 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2452 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2453 {
2454 static const GVecGen3 g = {
2455 .fni8 = tcg_gen_nand_i64,
2456 .fniv = tcg_gen_nand_vec,
2457 .fno = gen_helper_gvec_nand,
2458 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2459 };
2460
2461 if (aofs == bofs) {
2462 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2463 } else {
2464 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2465 }
2466 }
2467
2468 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2469 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2470 {
2471 static const GVecGen3 g = {
2472 .fni8 = tcg_gen_nor_i64,
2473 .fniv = tcg_gen_nor_vec,
2474 .fno = gen_helper_gvec_nor,
2475 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2476 };
2477
2478 if (aofs == bofs) {
2479 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2480 } else {
2481 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2482 }
2483 }
2484
2485 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2486 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2487 {
2488 static const GVecGen3 g = {
2489 .fni8 = tcg_gen_eqv_i64,
2490 .fniv = tcg_gen_eqv_vec,
2491 .fno = gen_helper_gvec_eqv,
2492 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2493 };
2494
2495 if (aofs == bofs) {
2496 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2497 } else {
2498 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2499 }
2500 }
2501
2502 static const GVecGen2s gop_ands = {
2503 .fni8 = tcg_gen_and_i64,
2504 .fniv = tcg_gen_and_vec,
2505 .fno = gen_helper_gvec_ands,
2506 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2507 .vece = MO_64
2508 };
2509
2510 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2511 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2512 {
2513 TCGv_i64 tmp = tcg_temp_new_i64();
2514 gen_dup_i64(vece, tmp, c);
2515 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2516 tcg_temp_free_i64(tmp);
2517 }
2518
2519 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2520 int64_t c, uint32_t oprsz, uint32_t maxsz)
2521 {
2522 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2523 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2524 tcg_temp_free_i64(tmp);
2525 }
2526
2527 static const GVecGen2s gop_xors = {
2528 .fni8 = tcg_gen_xor_i64,
2529 .fniv = tcg_gen_xor_vec,
2530 .fno = gen_helper_gvec_xors,
2531 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2532 .vece = MO_64
2533 };
2534
2535 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2536 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2537 {
2538 TCGv_i64 tmp = tcg_temp_new_i64();
2539 gen_dup_i64(vece, tmp, c);
2540 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2541 tcg_temp_free_i64(tmp);
2542 }
2543
2544 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2545 int64_t c, uint32_t oprsz, uint32_t maxsz)
2546 {
2547 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2548 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2549 tcg_temp_free_i64(tmp);
2550 }
2551
2552 static const GVecGen2s gop_ors = {
2553 .fni8 = tcg_gen_or_i64,
2554 .fniv = tcg_gen_or_vec,
2555 .fno = gen_helper_gvec_ors,
2556 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2557 .vece = MO_64
2558 };
2559
2560 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2561 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2562 {
2563 TCGv_i64 tmp = tcg_temp_new_i64();
2564 gen_dup_i64(vece, tmp, c);
2565 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2566 tcg_temp_free_i64(tmp);
2567 }
2568
2569 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2570 int64_t c, uint32_t oprsz, uint32_t maxsz)
2571 {
2572 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2573 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2574 tcg_temp_free_i64(tmp);
2575 }
2576
2577 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2578 {
2579 uint64_t mask = dup_const(MO_8, 0xff << c);
2580 tcg_gen_shli_i64(d, a, c);
2581 tcg_gen_andi_i64(d, d, mask);
2582 }
2583
2584 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2585 {
2586 uint64_t mask = dup_const(MO_16, 0xffff << c);
2587 tcg_gen_shli_i64(d, a, c);
2588 tcg_gen_andi_i64(d, d, mask);
2589 }
2590
2591 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2592 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2593 {
2594 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2595 static const GVecGen2i g[4] = {
2596 { .fni8 = tcg_gen_vec_shl8i_i64,
2597 .fniv = tcg_gen_shli_vec,
2598 .fno = gen_helper_gvec_shl8i,
2599 .opt_opc = vecop_list,
2600 .vece = MO_8 },
2601 { .fni8 = tcg_gen_vec_shl16i_i64,
2602 .fniv = tcg_gen_shli_vec,
2603 .fno = gen_helper_gvec_shl16i,
2604 .opt_opc = vecop_list,
2605 .vece = MO_16 },
2606 { .fni4 = tcg_gen_shli_i32,
2607 .fniv = tcg_gen_shli_vec,
2608 .fno = gen_helper_gvec_shl32i,
2609 .opt_opc = vecop_list,
2610 .vece = MO_32 },
2611 { .fni8 = tcg_gen_shli_i64,
2612 .fniv = tcg_gen_shli_vec,
2613 .fno = gen_helper_gvec_shl64i,
2614 .opt_opc = vecop_list,
2615 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2616 .vece = MO_64 },
2617 };
2618
2619 tcg_debug_assert(vece <= MO_64);
2620 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2621 if (shift == 0) {
2622 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2623 } else {
2624 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2625 }
2626 }
2627
2628 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2629 {
2630 uint64_t mask = dup_const(MO_8, 0xff >> c);
2631 tcg_gen_shri_i64(d, a, c);
2632 tcg_gen_andi_i64(d, d, mask);
2633 }
2634
2635 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2636 {
2637 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2638 tcg_gen_shri_i64(d, a, c);
2639 tcg_gen_andi_i64(d, d, mask);
2640 }
2641
2642 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2643 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2644 {
2645 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2646 static const GVecGen2i g[4] = {
2647 { .fni8 = tcg_gen_vec_shr8i_i64,
2648 .fniv = tcg_gen_shri_vec,
2649 .fno = gen_helper_gvec_shr8i,
2650 .opt_opc = vecop_list,
2651 .vece = MO_8 },
2652 { .fni8 = tcg_gen_vec_shr16i_i64,
2653 .fniv = tcg_gen_shri_vec,
2654 .fno = gen_helper_gvec_shr16i,
2655 .opt_opc = vecop_list,
2656 .vece = MO_16 },
2657 { .fni4 = tcg_gen_shri_i32,
2658 .fniv = tcg_gen_shri_vec,
2659 .fno = gen_helper_gvec_shr32i,
2660 .opt_opc = vecop_list,
2661 .vece = MO_32 },
2662 { .fni8 = tcg_gen_shri_i64,
2663 .fniv = tcg_gen_shri_vec,
2664 .fno = gen_helper_gvec_shr64i,
2665 .opt_opc = vecop_list,
2666 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2667 .vece = MO_64 },
2668 };
2669
2670 tcg_debug_assert(vece <= MO_64);
2671 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2672 if (shift == 0) {
2673 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2674 } else {
2675 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2676 }
2677 }
2678
2679 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2680 {
2681 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2682 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2683 TCGv_i64 s = tcg_temp_new_i64();
2684
2685 tcg_gen_shri_i64(d, a, c);
2686 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2687 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2688 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2689 tcg_gen_or_i64(d, d, s); /* include sign extension */
2690 tcg_temp_free_i64(s);
2691 }
2692
2693 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2694 {
2695 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2696 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2697 TCGv_i64 s = tcg_temp_new_i64();
2698
2699 tcg_gen_shri_i64(d, a, c);
2700 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2701 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2702 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2703 tcg_gen_or_i64(d, d, s); /* include sign extension */
2704 tcg_temp_free_i64(s);
2705 }
2706
2707 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2708 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2709 {
2710 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
2711 static const GVecGen2i g[4] = {
2712 { .fni8 = tcg_gen_vec_sar8i_i64,
2713 .fniv = tcg_gen_sari_vec,
2714 .fno = gen_helper_gvec_sar8i,
2715 .opt_opc = vecop_list,
2716 .vece = MO_8 },
2717 { .fni8 = tcg_gen_vec_sar16i_i64,
2718 .fniv = tcg_gen_sari_vec,
2719 .fno = gen_helper_gvec_sar16i,
2720 .opt_opc = vecop_list,
2721 .vece = MO_16 },
2722 { .fni4 = tcg_gen_sari_i32,
2723 .fniv = tcg_gen_sari_vec,
2724 .fno = gen_helper_gvec_sar32i,
2725 .opt_opc = vecop_list,
2726 .vece = MO_32 },
2727 { .fni8 = tcg_gen_sari_i64,
2728 .fniv = tcg_gen_sari_vec,
2729 .fno = gen_helper_gvec_sar64i,
2730 .opt_opc = vecop_list,
2731 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2732 .vece = MO_64 },
2733 };
2734
2735 tcg_debug_assert(vece <= MO_64);
2736 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2737 if (shift == 0) {
2738 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2739 } else {
2740 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2741 }
2742 }
2743
2744 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2745 {
2746 uint64_t mask = dup_const(MO_8, 0xff << c);
2747
2748 tcg_gen_shli_i64(d, a, c);
2749 tcg_gen_shri_i64(a, a, 8 - c);
2750 tcg_gen_andi_i64(d, d, mask);
2751 tcg_gen_andi_i64(a, a, ~mask);
2752 tcg_gen_or_i64(d, d, a);
2753 }
2754
2755 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2756 {
2757 uint64_t mask = dup_const(MO_16, 0xffff << c);
2758
2759 tcg_gen_shli_i64(d, a, c);
2760 tcg_gen_shri_i64(a, a, 16 - c);
2761 tcg_gen_andi_i64(d, d, mask);
2762 tcg_gen_andi_i64(a, a, ~mask);
2763 tcg_gen_or_i64(d, d, a);
2764 }
2765
2766 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
2767 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2768 {
2769 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
2770 static const GVecGen2i g[4] = {
2771 { .fni8 = tcg_gen_vec_rotl8i_i64,
2772 .fniv = tcg_gen_rotli_vec,
2773 .fno = gen_helper_gvec_rotl8i,
2774 .opt_opc = vecop_list,
2775 .vece = MO_8 },
2776 { .fni8 = tcg_gen_vec_rotl16i_i64,
2777 .fniv = tcg_gen_rotli_vec,
2778 .fno = gen_helper_gvec_rotl16i,
2779 .opt_opc = vecop_list,
2780 .vece = MO_16 },
2781 { .fni4 = tcg_gen_rotli_i32,
2782 .fniv = tcg_gen_rotli_vec,
2783 .fno = gen_helper_gvec_rotl32i,
2784 .opt_opc = vecop_list,
2785 .vece = MO_32 },
2786 { .fni8 = tcg_gen_rotli_i64,
2787 .fniv = tcg_gen_rotli_vec,
2788 .fno = gen_helper_gvec_rotl64i,
2789 .opt_opc = vecop_list,
2790 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2791 .vece = MO_64 },
2792 };
2793
2794 tcg_debug_assert(vece <= MO_64);
2795 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2796 if (shift == 0) {
2797 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2798 } else {
2799 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2800 }
2801 }
2802
2803 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
2804 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2805 {
2806 tcg_debug_assert(vece <= MO_64);
2807 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2808 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
2809 oprsz, maxsz);
2810 }
2811
2812 /*
2813 * Specialized generation vector shifts by a non-constant scalar.
2814 */
2815
2816 typedef struct {
2817 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
2818 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
2819 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
2820 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
2821 gen_helper_gvec_2 *fno[4];
2822 TCGOpcode s_list[2];
2823 TCGOpcode v_list[2];
2824 } GVecGen2sh;
2825
2826 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2827 uint32_t oprsz, uint32_t tysz, TCGType type,
2828 TCGv_i32 shift,
2829 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
2830 {
2831 TCGv_vec t0 = tcg_temp_new_vec(type);
2832 uint32_t i;
2833
2834 for (i = 0; i < oprsz; i += tysz) {
2835 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2836 fni(vece, t0, t0, shift);
2837 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2838 }
2839 tcg_temp_free_vec(t0);
2840 }
2841
2842 static void
2843 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
2844 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
2845 {
2846 TCGType type;
2847 uint32_t some;
2848
2849 check_size_align(oprsz, maxsz, dofs | aofs);
2850 check_overlap_2(dofs, aofs, maxsz);
2851
2852 /* If the backend has a scalar expansion, great. */
2853 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
2854 if (type) {
2855 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2856 switch (type) {
2857 case TCG_TYPE_V256:
2858 some = QEMU_ALIGN_DOWN(oprsz, 32);
2859 expand_2sh_vec(vece, dofs, aofs, some, 32,
2860 TCG_TYPE_V256, shift, g->fniv_s);
2861 if (some == oprsz) {
2862 break;
2863 }
2864 dofs += some;
2865 aofs += some;
2866 oprsz -= some;
2867 maxsz -= some;
2868 /* fallthru */
2869 case TCG_TYPE_V128:
2870 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
2871 TCG_TYPE_V128, shift, g->fniv_s);
2872 break;
2873 case TCG_TYPE_V64:
2874 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
2875 TCG_TYPE_V64, shift, g->fniv_s);
2876 break;
2877 default:
2878 g_assert_not_reached();
2879 }
2880 tcg_swap_vecop_list(hold_list);
2881 goto clear_tail;
2882 }
2883
2884 /* If the backend supports variable vector shifts, also cool. */
2885 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
2886 if (type) {
2887 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2888 TCGv_vec v_shift = tcg_temp_new_vec(type);
2889
2890 if (vece == MO_64) {
2891 TCGv_i64 sh64 = tcg_temp_new_i64();
2892 tcg_gen_extu_i32_i64(sh64, shift);
2893 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
2894 tcg_temp_free_i64(sh64);
2895 } else {
2896 tcg_gen_dup_i32_vec(vece, v_shift, shift);
2897 }
2898
2899 switch (type) {
2900 case TCG_TYPE_V256:
2901 some = QEMU_ALIGN_DOWN(oprsz, 32);
2902 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
2903 v_shift, false, g->fniv_v);
2904 if (some == oprsz) {
2905 break;
2906 }
2907 dofs += some;
2908 aofs += some;
2909 oprsz -= some;
2910 maxsz -= some;
2911 /* fallthru */
2912 case TCG_TYPE_V128:
2913 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
2914 v_shift, false, g->fniv_v);
2915 break;
2916 case TCG_TYPE_V64:
2917 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
2918 v_shift, false, g->fniv_v);
2919 break;
2920 default:
2921 g_assert_not_reached();
2922 }
2923 tcg_temp_free_vec(v_shift);
2924 tcg_swap_vecop_list(hold_list);
2925 goto clear_tail;
2926 }
2927
2928 /* Otherwise fall back to integral... */
2929 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
2930 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
2931 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
2932 TCGv_i64 sh64 = tcg_temp_new_i64();
2933 tcg_gen_extu_i32_i64(sh64, shift);
2934 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
2935 tcg_temp_free_i64(sh64);
2936 } else {
2937 TCGv_ptr a0 = tcg_temp_new_ptr();
2938 TCGv_ptr a1 = tcg_temp_new_ptr();
2939 TCGv_i32 desc = tcg_temp_new_i32();
2940
2941 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
2942 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
2943 tcg_gen_addi_ptr(a0, cpu_env, dofs);
2944 tcg_gen_addi_ptr(a1, cpu_env, aofs);
2945
2946 g->fno[vece](a0, a1, desc);
2947
2948 tcg_temp_free_ptr(a0);
2949 tcg_temp_free_ptr(a1);
2950 tcg_temp_free_i32(desc);
2951 return;
2952 }
2953
2954 clear_tail:
2955 if (oprsz < maxsz) {
2956 expand_clr(dofs + oprsz, maxsz - oprsz);
2957 }
2958 }
2959
2960 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
2961 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2962 {
2963 static const GVecGen2sh g = {
2964 .fni4 = tcg_gen_shl_i32,
2965 .fni8 = tcg_gen_shl_i64,
2966 .fniv_s = tcg_gen_shls_vec,
2967 .fniv_v = tcg_gen_shlv_vec,
2968 .fno = {
2969 gen_helper_gvec_shl8i,
2970 gen_helper_gvec_shl16i,
2971 gen_helper_gvec_shl32i,
2972 gen_helper_gvec_shl64i,
2973 },
2974 .s_list = { INDEX_op_shls_vec, 0 },
2975 .v_list = { INDEX_op_shlv_vec, 0 },
2976 };
2977
2978 tcg_debug_assert(vece <= MO_64);
2979 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2980 }
2981
2982 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
2983 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2984 {
2985 static const GVecGen2sh g = {
2986 .fni4 = tcg_gen_shr_i32,
2987 .fni8 = tcg_gen_shr_i64,
2988 .fniv_s = tcg_gen_shrs_vec,
2989 .fniv_v = tcg_gen_shrv_vec,
2990 .fno = {
2991 gen_helper_gvec_shr8i,
2992 gen_helper_gvec_shr16i,
2993 gen_helper_gvec_shr32i,
2994 gen_helper_gvec_shr64i,
2995 },
2996 .s_list = { INDEX_op_shrs_vec, 0 },
2997 .v_list = { INDEX_op_shrv_vec, 0 },
2998 };
2999
3000 tcg_debug_assert(vece <= MO_64);
3001 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3002 }
3003
3004 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
3005 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3006 {
3007 static const GVecGen2sh g = {
3008 .fni4 = tcg_gen_sar_i32,
3009 .fni8 = tcg_gen_sar_i64,
3010 .fniv_s = tcg_gen_sars_vec,
3011 .fniv_v = tcg_gen_sarv_vec,
3012 .fno = {
3013 gen_helper_gvec_sar8i,
3014 gen_helper_gvec_sar16i,
3015 gen_helper_gvec_sar32i,
3016 gen_helper_gvec_sar64i,
3017 },
3018 .s_list = { INDEX_op_sars_vec, 0 },
3019 .v_list = { INDEX_op_sarv_vec, 0 },
3020 };
3021
3022 tcg_debug_assert(vece <= MO_64);
3023 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3024 }
3025
3026 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
3027 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3028 {
3029 static const GVecGen2sh g = {
3030 .fni4 = tcg_gen_rotl_i32,
3031 .fni8 = tcg_gen_rotl_i64,
3032 .fniv_s = tcg_gen_rotls_vec,
3033 .fniv_v = tcg_gen_rotlv_vec,
3034 .fno = {
3035 gen_helper_gvec_rotl8i,
3036 gen_helper_gvec_rotl16i,
3037 gen_helper_gvec_rotl32i,
3038 gen_helper_gvec_rotl64i,
3039 },
3040 .s_list = { INDEX_op_rotls_vec, 0 },
3041 .v_list = { INDEX_op_rotlv_vec, 0 },
3042 };
3043
3044 tcg_debug_assert(vece <= MO_64);
3045 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3046 }
3047
3048 /*
3049 * Expand D = A << (B % element bits)
3050 *
3051 * Unlike scalar shifts, where it is easy for the target front end
3052 * to include the modulo as part of the expansion. If the target
3053 * naturally includes the modulo as part of the operation, great!
3054 * If the target has some other behaviour from out-of-range shifts,
3055 * then it could not use this function anyway, and would need to
3056 * do it's own expansion with custom functions.
3057 */
3058 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
3059 TCGv_vec a, TCGv_vec b)
3060 {
3061 TCGv_vec t = tcg_temp_new_vec_matching(d);
3062
3063 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3064 tcg_gen_and_vec(vece, t, t, b);
3065 tcg_gen_shlv_vec(vece, d, a, t);
3066 tcg_temp_free_vec(t);
3067 }
3068
3069 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3070 {
3071 TCGv_i32 t = tcg_temp_new_i32();
3072
3073 tcg_gen_andi_i32(t, b, 31);
3074 tcg_gen_shl_i32(d, a, t);
3075 tcg_temp_free_i32(t);
3076 }
3077
3078 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3079 {
3080 TCGv_i64 t = tcg_temp_new_i64();
3081
3082 tcg_gen_andi_i64(t, b, 63);
3083 tcg_gen_shl_i64(d, a, t);
3084 tcg_temp_free_i64(t);
3085 }
3086
3087 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3088 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3089 {
3090 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
3091 static const GVecGen3 g[4] = {
3092 { .fniv = tcg_gen_shlv_mod_vec,
3093 .fno = gen_helper_gvec_shl8v,
3094 .opt_opc = vecop_list,
3095 .vece = MO_8 },
3096 { .fniv = tcg_gen_shlv_mod_vec,
3097 .fno = gen_helper_gvec_shl16v,
3098 .opt_opc = vecop_list,
3099 .vece = MO_16 },
3100 { .fni4 = tcg_gen_shl_mod_i32,
3101 .fniv = tcg_gen_shlv_mod_vec,
3102 .fno = gen_helper_gvec_shl32v,
3103 .opt_opc = vecop_list,
3104 .vece = MO_32 },
3105 { .fni8 = tcg_gen_shl_mod_i64,
3106 .fniv = tcg_gen_shlv_mod_vec,
3107 .fno = gen_helper_gvec_shl64v,
3108 .opt_opc = vecop_list,
3109 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3110 .vece = MO_64 },
3111 };
3112
3113 tcg_debug_assert(vece <= MO_64);
3114 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3115 }
3116
3117 /*
3118 * Similarly for logical right shifts.
3119 */
3120
3121 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
3122 TCGv_vec a, TCGv_vec b)
3123 {
3124 TCGv_vec t = tcg_temp_new_vec_matching(d);
3125
3126 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3127 tcg_gen_and_vec(vece, t, t, b);
3128 tcg_gen_shrv_vec(vece, d, a, t);
3129 tcg_temp_free_vec(t);
3130 }
3131
3132 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3133 {
3134 TCGv_i32 t = tcg_temp_new_i32();
3135
3136 tcg_gen_andi_i32(t, b, 31);
3137 tcg_gen_shr_i32(d, a, t);
3138 tcg_temp_free_i32(t);
3139 }
3140
3141 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3142 {
3143 TCGv_i64 t = tcg_temp_new_i64();
3144
3145 tcg_gen_andi_i64(t, b, 63);
3146 tcg_gen_shr_i64(d, a, t);
3147 tcg_temp_free_i64(t);
3148 }
3149
3150 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3151 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3152 {
3153 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
3154 static const GVecGen3 g[4] = {
3155 { .fniv = tcg_gen_shrv_mod_vec,
3156 .fno = gen_helper_gvec_shr8v,
3157 .opt_opc = vecop_list,
3158 .vece = MO_8 },
3159 { .fniv = tcg_gen_shrv_mod_vec,
3160 .fno = gen_helper_gvec_shr16v,
3161 .opt_opc = vecop_list,
3162 .vece = MO_16 },
3163 { .fni4 = tcg_gen_shr_mod_i32,
3164 .fniv = tcg_gen_shrv_mod_vec,
3165 .fno = gen_helper_gvec_shr32v,
3166 .opt_opc = vecop_list,
3167 .vece = MO_32 },
3168 { .fni8 = tcg_gen_shr_mod_i64,
3169 .fniv = tcg_gen_shrv_mod_vec,
3170 .fno = gen_helper_gvec_shr64v,
3171 .opt_opc = vecop_list,
3172 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3173 .vece = MO_64 },
3174 };
3175
3176 tcg_debug_assert(vece <= MO_64);
3177 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3178 }
3179
3180 /*
3181 * Similarly for arithmetic right shifts.
3182 */
3183
3184 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3185 TCGv_vec a, TCGv_vec b)
3186 {
3187 TCGv_vec t = tcg_temp_new_vec_matching(d);
3188
3189 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3190 tcg_gen_and_vec(vece, t, t, b);
3191 tcg_gen_sarv_vec(vece, d, a, t);
3192 tcg_temp_free_vec(t);
3193 }
3194
3195 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3196 {
3197 TCGv_i32 t = tcg_temp_new_i32();
3198
3199 tcg_gen_andi_i32(t, b, 31);
3200 tcg_gen_sar_i32(d, a, t);
3201 tcg_temp_free_i32(t);
3202 }
3203