tcg: Eliminate one store for in-place 128-bit dup_mem
[qemu.git] / tcg / tcg-op-gvec.c
1 /*
2 * Generic vector operation expansion
3 *
4 * Copyright (c) 2018 Linaro
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
26
27 #define MAX_UNROLL 4
28
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
34
35
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
39 {
40 uint32_t opr_align = oprsz >= 16 ? 15 : 7;
41 uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7;
42 tcg_debug_assert(oprsz > 0);
43 tcg_debug_assert(oprsz <= maxsz);
44 tcg_debug_assert((oprsz & opr_align) == 0);
45 tcg_debug_assert((maxsz & max_align) == 0);
46 tcg_debug_assert((ofs & max_align) == 0);
47 }
48
49 /* Verify vector overlap rules for two operands. */
50 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
51 {
52 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
53 }
54
55 /* Verify vector overlap rules for three operands. */
56 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
57 {
58 check_overlap_2(d, a, s);
59 check_overlap_2(d, b, s);
60 check_overlap_2(a, b, s);
61 }
62
63 /* Verify vector overlap rules for four operands. */
64 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
65 uint32_t c, uint32_t s)
66 {
67 check_overlap_2(d, a, s);
68 check_overlap_2(d, b, s);
69 check_overlap_2(d, c, s);
70 check_overlap_2(a, b, s);
71 check_overlap_2(a, c, s);
72 check_overlap_2(b, c, s);
73 }
74
75 /* Create a descriptor from components. */
76 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
77 {
78 uint32_t desc = 0;
79
80 assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS));
81 assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS));
82 assert(data == sextract32(data, 0, SIMD_DATA_BITS));
83
84 oprsz = (oprsz / 8) - 1;
85 maxsz = (maxsz / 8) - 1;
86 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
87 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
88 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
89
90 return desc;
91 }
92
93 /* Generate a call to a gvec-style helper with two vector operands. */
94 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
95 uint32_t oprsz, uint32_t maxsz, int32_t data,
96 gen_helper_gvec_2 *fn)
97 {
98 TCGv_ptr a0, a1;
99 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
100
101 a0 = tcg_temp_new_ptr();
102 a1 = tcg_temp_new_ptr();
103
104 tcg_gen_addi_ptr(a0, cpu_env, dofs);
105 tcg_gen_addi_ptr(a1, cpu_env, aofs);
106
107 fn(a0, a1, desc);
108
109 tcg_temp_free_ptr(a0);
110 tcg_temp_free_ptr(a1);
111 tcg_temp_free_i32(desc);
112 }
113
114 /* Generate a call to a gvec-style helper with two vector operands
115 and one scalar operand. */
116 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
117 uint32_t oprsz, uint32_t maxsz, int32_t data,
118 gen_helper_gvec_2i *fn)
119 {
120 TCGv_ptr a0, a1;
121 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
122
123 a0 = tcg_temp_new_ptr();
124 a1 = tcg_temp_new_ptr();
125
126 tcg_gen_addi_ptr(a0, cpu_env, dofs);
127 tcg_gen_addi_ptr(a1, cpu_env, aofs);
128
129 fn(a0, a1, c, desc);
130
131 tcg_temp_free_ptr(a0);
132 tcg_temp_free_ptr(a1);
133 tcg_temp_free_i32(desc);
134 }
135
136 /* Generate a call to a gvec-style helper with three vector operands. */
137 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
138 uint32_t oprsz, uint32_t maxsz, int32_t data,
139 gen_helper_gvec_3 *fn)
140 {
141 TCGv_ptr a0, a1, a2;
142 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
143
144 a0 = tcg_temp_new_ptr();
145 a1 = tcg_temp_new_ptr();
146 a2 = tcg_temp_new_ptr();
147
148 tcg_gen_addi_ptr(a0, cpu_env, dofs);
149 tcg_gen_addi_ptr(a1, cpu_env, aofs);
150 tcg_gen_addi_ptr(a2, cpu_env, bofs);
151
152 fn(a0, a1, a2, desc);
153
154 tcg_temp_free_ptr(a0);
155 tcg_temp_free_ptr(a1);
156 tcg_temp_free_ptr(a2);
157 tcg_temp_free_i32(desc);
158 }
159
160 /* Generate a call to a gvec-style helper with four vector operands. */
161 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
162 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
163 int32_t data, gen_helper_gvec_4 *fn)
164 {
165 TCGv_ptr a0, a1, a2, a3;
166 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
167
168 a0 = tcg_temp_new_ptr();
169 a1 = tcg_temp_new_ptr();
170 a2 = tcg_temp_new_ptr();
171 a3 = tcg_temp_new_ptr();
172
173 tcg_gen_addi_ptr(a0, cpu_env, dofs);
174 tcg_gen_addi_ptr(a1, cpu_env, aofs);
175 tcg_gen_addi_ptr(a2, cpu_env, bofs);
176 tcg_gen_addi_ptr(a3, cpu_env, cofs);
177
178 fn(a0, a1, a2, a3, desc);
179
180 tcg_temp_free_ptr(a0);
181 tcg_temp_free_ptr(a1);
182 tcg_temp_free_ptr(a2);
183 tcg_temp_free_ptr(a3);
184 tcg_temp_free_i32(desc);
185 }
186
187 /* Generate a call to a gvec-style helper with five vector operands. */
188 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
189 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
190 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
191 {
192 TCGv_ptr a0, a1, a2, a3, a4;
193 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
194
195 a0 = tcg_temp_new_ptr();
196 a1 = tcg_temp_new_ptr();
197 a2 = tcg_temp_new_ptr();
198 a3 = tcg_temp_new_ptr();
199 a4 = tcg_temp_new_ptr();
200
201 tcg_gen_addi_ptr(a0, cpu_env, dofs);
202 tcg_gen_addi_ptr(a1, cpu_env, aofs);
203 tcg_gen_addi_ptr(a2, cpu_env, bofs);
204 tcg_gen_addi_ptr(a3, cpu_env, cofs);
205 tcg_gen_addi_ptr(a4, cpu_env, xofs);
206
207 fn(a0, a1, a2, a3, a4, desc);
208
209 tcg_temp_free_ptr(a0);
210 tcg_temp_free_ptr(a1);
211 tcg_temp_free_ptr(a2);
212 tcg_temp_free_ptr(a3);
213 tcg_temp_free_ptr(a4);
214 tcg_temp_free_i32(desc);
215 }
216
217 /* Generate a call to a gvec-style helper with three vector operands
218 and an extra pointer operand. */
219 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
220 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
221 int32_t data, gen_helper_gvec_2_ptr *fn)
222 {
223 TCGv_ptr a0, a1;
224 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
225
226 a0 = tcg_temp_new_ptr();
227 a1 = tcg_temp_new_ptr();
228
229 tcg_gen_addi_ptr(a0, cpu_env, dofs);
230 tcg_gen_addi_ptr(a1, cpu_env, aofs);
231
232 fn(a0, a1, ptr, desc);
233
234 tcg_temp_free_ptr(a0);
235 tcg_temp_free_ptr(a1);
236 tcg_temp_free_i32(desc);
237 }
238
239 /* Generate a call to a gvec-style helper with three vector operands
240 and an extra pointer operand. */
241 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
242 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
243 int32_t data, gen_helper_gvec_3_ptr *fn)
244 {
245 TCGv_ptr a0, a1, a2;
246 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
247
248 a0 = tcg_temp_new_ptr();
249 a1 = tcg_temp_new_ptr();
250 a2 = tcg_temp_new_ptr();
251
252 tcg_gen_addi_ptr(a0, cpu_env, dofs);
253 tcg_gen_addi_ptr(a1, cpu_env, aofs);
254 tcg_gen_addi_ptr(a2, cpu_env, bofs);
255
256 fn(a0, a1, a2, ptr, desc);
257
258 tcg_temp_free_ptr(a0);
259 tcg_temp_free_ptr(a1);
260 tcg_temp_free_ptr(a2);
261 tcg_temp_free_i32(desc);
262 }
263
264 /* Generate a call to a gvec-style helper with four vector operands
265 and an extra pointer operand. */
266 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
267 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
268 uint32_t maxsz, int32_t data,
269 gen_helper_gvec_4_ptr *fn)
270 {
271 TCGv_ptr a0, a1, a2, a3;
272 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
273
274 a0 = tcg_temp_new_ptr();
275 a1 = tcg_temp_new_ptr();
276 a2 = tcg_temp_new_ptr();
277 a3 = tcg_temp_new_ptr();
278
279 tcg_gen_addi_ptr(a0, cpu_env, dofs);
280 tcg_gen_addi_ptr(a1, cpu_env, aofs);
281 tcg_gen_addi_ptr(a2, cpu_env, bofs);
282 tcg_gen_addi_ptr(a3, cpu_env, cofs);
283
284 fn(a0, a1, a2, a3, ptr, desc);
285
286 tcg_temp_free_ptr(a0);
287 tcg_temp_free_ptr(a1);
288 tcg_temp_free_ptr(a2);
289 tcg_temp_free_ptr(a3);
290 tcg_temp_free_i32(desc);
291 }
292
293 /* Generate a call to a gvec-style helper with five vector operands
294 and an extra pointer operand. */
295 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
296 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
297 uint32_t oprsz, uint32_t maxsz, int32_t data,
298 gen_helper_gvec_5_ptr *fn)
299 {
300 TCGv_ptr a0, a1, a2, a3, a4;
301 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
302
303 a0 = tcg_temp_new_ptr();
304 a1 = tcg_temp_new_ptr();
305 a2 = tcg_temp_new_ptr();
306 a3 = tcg_temp_new_ptr();
307 a4 = tcg_temp_new_ptr();
308
309 tcg_gen_addi_ptr(a0, cpu_env, dofs);
310 tcg_gen_addi_ptr(a1, cpu_env, aofs);
311 tcg_gen_addi_ptr(a2, cpu_env, bofs);
312 tcg_gen_addi_ptr(a3, cpu_env, cofs);
313 tcg_gen_addi_ptr(a4, cpu_env, eofs);
314
315 fn(a0, a1, a2, a3, a4, ptr, desc);
316
317 tcg_temp_free_ptr(a0);
318 tcg_temp_free_ptr(a1);
319 tcg_temp_free_ptr(a2);
320 tcg_temp_free_ptr(a3);
321 tcg_temp_free_ptr(a4);
322 tcg_temp_free_i32(desc);
323 }
324
325 /* Return true if we want to implement something of OPRSZ bytes
326 in units of LNSZ. This limits the expansion of inline code. */
327 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
328 {
329 uint32_t q, r;
330
331 if (oprsz < lnsz) {
332 return false;
333 }
334
335 q = oprsz / lnsz;
336 r = oprsz % lnsz;
337 tcg_debug_assert((r & 7) == 0);
338
339 if (lnsz < 16) {
340 /* For sizes below 16, accept no remainder. */
341 if (r != 0) {
342 return false;
343 }
344 } else {
345 /*
346 * Recall that ARM SVE allows vector sizes that are not a
347 * power of 2, but always a multiple of 16. The intent is
348 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
349 * In addition, expand_clr needs to handle a multiple of 8.
350 * Thus we can handle the tail with one more operation per
351 * diminishing power of 2.
352 */
353 q += ctpop32(r);
354 }
355
356 return q <= MAX_UNROLL;
357 }
358
359 static void expand_clr(uint32_t dofs, uint32_t maxsz);
360
361 /* Duplicate C as per VECE. */
362 uint64_t (dup_const)(unsigned vece, uint64_t c)
363 {
364 switch (vece) {
365 case MO_8:
366 return 0x0101010101010101ull * (uint8_t)c;
367 case MO_16:
368 return 0x0001000100010001ull * (uint16_t)c;
369 case MO_32:
370 return 0x0000000100000001ull * (uint32_t)c;
371 case MO_64:
372 return c;
373 default:
374 g_assert_not_reached();
375 }
376 }
377
378 /* Duplicate IN into OUT as per VECE. */
379 static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
380 {
381 switch (vece) {
382 case MO_8:
383 tcg_gen_ext8u_i32(out, in);
384 tcg_gen_muli_i32(out, out, 0x01010101);
385 break;
386 case MO_16:
387 tcg_gen_deposit_i32(out, in, in, 16, 16);
388 break;
389 case MO_32:
390 tcg_gen_mov_i32(out, in);
391 break;
392 default:
393 g_assert_not_reached();
394 }
395 }
396
397 static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
398 {
399 switch (vece) {
400 case MO_8:
401 tcg_gen_ext8u_i64(out, in);
402 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
403 break;
404 case MO_16:
405 tcg_gen_ext16u_i64(out, in);
406 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
407 break;
408 case MO_32:
409 tcg_gen_deposit_i64(out, in, in, 32, 32);
410 break;
411 case MO_64:
412 tcg_gen_mov_i64(out, in);
413 break;
414 default:
415 g_assert_not_reached();
416 }
417 }
418
419 /* Select a supported vector type for implementing an operation on SIZE
420 * bytes. If OP is 0, assume that the real operation to be performed is
421 * required by all backends. Otherwise, make sure than OP can be performed
422 * on elements of size VECE in the selected type. Do not select V64 if
423 * PREFER_I64 is true. Return 0 if no vector type is selected.
424 */
425 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
426 uint32_t size, bool prefer_i64)
427 {
428 /*
429 * Recall that ARM SVE allows vector sizes that are not a
430 * power of 2, but always a multiple of 16. The intent is
431 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
432 * It is hard to imagine a case in which v256 is supported
433 * but v128 is not, but check anyway.
434 * In addition, expand_clr needs to handle a multiple of 8.
435 */
436 if (TCG_TARGET_HAS_v256 &&
437 check_size_impl(size, 32) &&
438 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
439 (!(size & 16) ||
440 (TCG_TARGET_HAS_v128 &&
441 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
442 (!(size & 8) ||
443 (TCG_TARGET_HAS_v64 &&
444 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
445 return TCG_TYPE_V256;
446 }
447 if (TCG_TARGET_HAS_v128 &&
448 check_size_impl(size, 16) &&
449 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
450 (!(size & 8) ||
451 (TCG_TARGET_HAS_v64 &&
452 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
453 return TCG_TYPE_V128;
454 }
455 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
456 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
457 return TCG_TYPE_V64;
458 }
459 return 0;
460 }
461
462 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
463 uint32_t maxsz, TCGv_vec t_vec)
464 {
465 uint32_t i = 0;
466
467 tcg_debug_assert(oprsz >= 8);
468
469 /*
470 * This may be expand_clr for the tail of an operation, e.g.
471 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
472 * are misaligned wrt the maximum vector size, so do that first.
473 */
474 if (dofs & 8) {
475 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
476 i += 8;
477 }
478
479 switch (type) {
480 case TCG_TYPE_V256:
481 /*
482 * Recall that ARM SVE allows vector sizes that are not a
483 * power of 2, but always a multiple of 16. The intent is
484 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
485 */
486 for (; i + 32 <= oprsz; i += 32) {
487 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
488 }
489 /* fallthru */
490 case TCG_TYPE_V128:
491 for (; i + 16 <= oprsz; i += 16) {
492 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
493 }
494 break;
495 case TCG_TYPE_V64:
496 for (; i < oprsz; i += 8) {
497 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
498 }
499 break;
500 default:
501 g_assert_not_reached();
502 }
503
504 if (oprsz < maxsz) {
505 expand_clr(dofs + oprsz, maxsz - oprsz);
506 }
507 }
508
509 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
510 * Only one of IN_32 or IN_64 may be set;
511 * IN_C is used if IN_32 and IN_64 are unset.
512 */
513 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
514 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
515 uint64_t in_c)
516 {
517 TCGType type;
518 TCGv_i64 t_64;
519 TCGv_i32 t_32, t_desc;
520 TCGv_ptr t_ptr;
521 uint32_t i;
522
523 assert(vece <= (in_32 ? MO_32 : MO_64));
524 assert(in_32 == NULL || in_64 == NULL);
525
526 /* If we're storing 0, expand oprsz to maxsz. */
527 if (in_32 == NULL && in_64 == NULL) {
528 in_c = dup_const(vece, in_c);
529 if (in_c == 0) {
530 oprsz = maxsz;
531 }
532 }
533
534 /* Implement inline with a vector type, if possible.
535 * Prefer integer when 64-bit host and no variable dup.
536 */
537 type = choose_vector_type(NULL, vece, oprsz,
538 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
539 && (in_64 == NULL || vece == MO_64)));
540 if (type != 0) {
541 TCGv_vec t_vec = tcg_temp_new_vec(type);
542
543 if (in_32) {
544 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
545 } else if (in_64) {
546 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
547 } else {
548 tcg_gen_dupi_vec(vece, t_vec, in_c);
549 }
550 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
551 tcg_temp_free_vec(t_vec);
552 return;
553 }
554
555 /* Otherwise, inline with an integer type, unless "large". */
556 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
557 t_64 = NULL;
558 t_32 = NULL;
559
560 if (in_32) {
561 /* We are given a 32-bit variable input. For a 64-bit host,
562 use a 64-bit operation unless the 32-bit operation would
563 be simple enough. */
564 if (TCG_TARGET_REG_BITS == 64
565 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
566 t_64 = tcg_temp_new_i64();
567 tcg_gen_extu_i32_i64(t_64, in_32);
568 gen_dup_i64(vece, t_64, t_64);
569 } else {
570 t_32 = tcg_temp_new_i32();
571 gen_dup_i32(vece, t_32, in_32);
572 }
573 } else if (in_64) {
574 /* We are given a 64-bit variable input. */
575 t_64 = tcg_temp_new_i64();
576 gen_dup_i64(vece, t_64, in_64);
577 } else {
578 /* We are given a constant input. */
579 /* For 64-bit hosts, use 64-bit constants for "simple" constants
580 or when we'd need too many 32-bit stores, or when a 64-bit
581 constant is really required. */
582 if (vece == MO_64
583 || (TCG_TARGET_REG_BITS == 64
584 && (in_c == 0 || in_c == -1
585 || !check_size_impl(oprsz, 4)))) {
586 t_64 = tcg_const_i64(in_c);
587 } else {
588 t_32 = tcg_const_i32(in_c);
589 }
590 }
591
592 /* Implement inline if we picked an implementation size above. */
593 if (t_32) {
594 for (i = 0; i < oprsz; i += 4) {
595 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
596 }
597 tcg_temp_free_i32(t_32);
598 goto done;
599 }
600 if (t_64) {
601 for (i = 0; i < oprsz; i += 8) {
602 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
603 }
604 tcg_temp_free_i64(t_64);
605 goto done;
606 }
607 }
608
609 /* Otherwise implement out of line. */
610 t_ptr = tcg_temp_new_ptr();
611 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
612 t_desc = tcg_const_i32(simd_desc(oprsz, maxsz, 0));
613
614 if (vece == MO_64) {
615 if (in_64) {
616 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
617 } else {
618 t_64 = tcg_const_i64(in_c);
619 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
620 tcg_temp_free_i64(t_64);
621 }
622 } else {
623 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
624 static dup_fn * const fns[3] = {
625 gen_helper_gvec_dup8,
626 gen_helper_gvec_dup16,
627 gen_helper_gvec_dup32
628 };
629
630 if (in_32) {
631 fns[vece](t_ptr, t_desc, in_32);
632 } else {
633 t_32 = tcg_temp_new_i32();
634 if (in_64) {
635 tcg_gen_extrl_i64_i32(t_32, in_64);
636 } else if (vece == MO_8) {
637 tcg_gen_movi_i32(t_32, in_c & 0xff);
638 } else if (vece == MO_16) {
639 tcg_gen_movi_i32(t_32, in_c & 0xffff);
640 } else {
641 tcg_gen_movi_i32(t_32, in_c);
642 }
643 fns[vece](t_ptr, t_desc, t_32);
644 tcg_temp_free_i32(t_32);
645 }
646 }
647
648 tcg_temp_free_ptr(t_ptr);
649 tcg_temp_free_i32(t_desc);
650 return;
651
652 done:
653 if (oprsz < maxsz) {
654 expand_clr(dofs + oprsz, maxsz - oprsz);
655 }
656 }
657
658 /* Likewise, but with zero. */
659 static void expand_clr(uint32_t dofs, uint32_t maxsz)
660 {
661 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
662 }
663
664 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
665 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
666 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
667 {
668 TCGv_i32 t0 = tcg_temp_new_i32();
669 TCGv_i32 t1 = tcg_temp_new_i32();
670 uint32_t i;
671
672 for (i = 0; i < oprsz; i += 4) {
673 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
674 if (load_dest) {
675 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
676 }
677 fni(t1, t0);
678 tcg_gen_st_i32(t1, cpu_env, dofs + i);
679 }
680 tcg_temp_free_i32(t0);
681 tcg_temp_free_i32(t1);
682 }
683
684 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
685 int32_t c, bool load_dest,
686 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
687 {
688 TCGv_i32 t0 = tcg_temp_new_i32();
689 TCGv_i32 t1 = tcg_temp_new_i32();
690 uint32_t i;
691
692 for (i = 0; i < oprsz; i += 4) {
693 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
694 if (load_dest) {
695 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
696 }
697 fni(t1, t0, c);
698 tcg_gen_st_i32(t1, cpu_env, dofs + i);
699 }
700 tcg_temp_free_i32(t0);
701 tcg_temp_free_i32(t1);
702 }
703
704 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
705 TCGv_i32 c, bool scalar_first,
706 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
707 {
708 TCGv_i32 t0 = tcg_temp_new_i32();
709 TCGv_i32 t1 = tcg_temp_new_i32();
710 uint32_t i;
711
712 for (i = 0; i < oprsz; i += 4) {
713 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
714 if (scalar_first) {
715 fni(t1, c, t0);
716 } else {
717 fni(t1, t0, c);
718 }
719 tcg_gen_st_i32(t1, cpu_env, dofs + i);
720 }
721 tcg_temp_free_i32(t0);
722 tcg_temp_free_i32(t1);
723 }
724
725 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
726 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
727 uint32_t bofs, uint32_t oprsz, bool load_dest,
728 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
729 {
730 TCGv_i32 t0 = tcg_temp_new_i32();
731 TCGv_i32 t1 = tcg_temp_new_i32();
732 TCGv_i32 t2 = tcg_temp_new_i32();
733 uint32_t i;
734
735 for (i = 0; i < oprsz; i += 4) {
736 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
737 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
738 if (load_dest) {
739 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
740 }
741 fni(t2, t0, t1);
742 tcg_gen_st_i32(t2, cpu_env, dofs + i);
743 }
744 tcg_temp_free_i32(t2);
745 tcg_temp_free_i32(t1);
746 tcg_temp_free_i32(t0);
747 }
748
749 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
750 uint32_t oprsz, int32_t c, bool load_dest,
751 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
752 {
753 TCGv_i32 t0 = tcg_temp_new_i32();
754 TCGv_i32 t1 = tcg_temp_new_i32();
755 TCGv_i32 t2 = tcg_temp_new_i32();
756 uint32_t i;
757
758 for (i = 0; i < oprsz; i += 4) {
759 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
760 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
761 if (load_dest) {
762 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
763 }
764 fni(t2, t0, t1, c);
765 tcg_gen_st_i32(t2, cpu_env, dofs + i);
766 }
767 tcg_temp_free_i32(t0);
768 tcg_temp_free_i32(t1);
769 tcg_temp_free_i32(t2);
770 }
771
772 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
773 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
774 uint32_t cofs, uint32_t oprsz, bool write_aofs,
775 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
776 {
777 TCGv_i32 t0 = tcg_temp_new_i32();
778 TCGv_i32 t1 = tcg_temp_new_i32();
779 TCGv_i32 t2 = tcg_temp_new_i32();
780 TCGv_i32 t3 = tcg_temp_new_i32();
781 uint32_t i;
782
783 for (i = 0; i < oprsz; i += 4) {
784 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
785 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
786 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
787 fni(t0, t1, t2, t3);
788 tcg_gen_st_i32(t0, cpu_env, dofs + i);
789 if (write_aofs) {
790 tcg_gen_st_i32(t1, cpu_env, aofs + i);
791 }
792 }
793 tcg_temp_free_i32(t3);
794 tcg_temp_free_i32(t2);
795 tcg_temp_free_i32(t1);
796 tcg_temp_free_i32(t0);
797 }
798
799 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
800 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
801 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
802 {
803 TCGv_i64 t0 = tcg_temp_new_i64();
804 TCGv_i64 t1 = tcg_temp_new_i64();
805 uint32_t i;
806
807 for (i = 0; i < oprsz; i += 8) {
808 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
809 if (load_dest) {
810 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
811 }
812 fni(t1, t0);
813 tcg_gen_st_i64(t1, cpu_env, dofs + i);
814 }
815 tcg_temp_free_i64(t0);
816 tcg_temp_free_i64(t1);
817 }
818
819 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
820 int64_t c, bool load_dest,
821 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
822 {
823 TCGv_i64 t0 = tcg_temp_new_i64();
824 TCGv_i64 t1 = tcg_temp_new_i64();
825 uint32_t i;
826
827 for (i = 0; i < oprsz; i += 8) {
828 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
829 if (load_dest) {
830 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
831 }
832 fni(t1, t0, c);
833 tcg_gen_st_i64(t1, cpu_env, dofs + i);
834 }
835 tcg_temp_free_i64(t0);
836 tcg_temp_free_i64(t1);
837 }
838
839 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
840 TCGv_i64 c, bool scalar_first,
841 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
842 {
843 TCGv_i64 t0 = tcg_temp_new_i64();
844 TCGv_i64 t1 = tcg_temp_new_i64();
845 uint32_t i;
846
847 for (i = 0; i < oprsz; i += 8) {
848 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
849 if (scalar_first) {
850 fni(t1, c, t0);
851 } else {
852 fni(t1, t0, c);
853 }
854 tcg_gen_st_i64(t1, cpu_env, dofs + i);
855 }
856 tcg_temp_free_i64(t0);
857 tcg_temp_free_i64(t1);
858 }
859
860 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
861 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
862 uint32_t bofs, uint32_t oprsz, bool load_dest,
863 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
864 {
865 TCGv_i64 t0 = tcg_temp_new_i64();
866 TCGv_i64 t1 = tcg_temp_new_i64();
867 TCGv_i64 t2 = tcg_temp_new_i64();
868 uint32_t i;
869
870 for (i = 0; i < oprsz; i += 8) {
871 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
872 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
873 if (load_dest) {
874 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
875 }
876 fni(t2, t0, t1);
877 tcg_gen_st_i64(t2, cpu_env, dofs + i);
878 }
879 tcg_temp_free_i64(t2);
880 tcg_temp_free_i64(t1);
881 tcg_temp_free_i64(t0);
882 }
883
884 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
885 uint32_t oprsz, int64_t c, bool load_dest,
886 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
887 {
888 TCGv_i64 t0 = tcg_temp_new_i64();
889 TCGv_i64 t1 = tcg_temp_new_i64();
890 TCGv_i64 t2 = tcg_temp_new_i64();
891 uint32_t i;
892
893 for (i = 0; i < oprsz; i += 8) {
894 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
895 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
896 if (load_dest) {
897 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
898 }
899 fni(t2, t0, t1, c);
900 tcg_gen_st_i64(t2, cpu_env, dofs + i);
901 }
902 tcg_temp_free_i64(t0);
903 tcg_temp_free_i64(t1);
904 tcg_temp_free_i64(t2);
905 }
906
907 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
908 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
909 uint32_t cofs, uint32_t oprsz, bool write_aofs,
910 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
911 {
912 TCGv_i64 t0 = tcg_temp_new_i64();
913 TCGv_i64 t1 = tcg_temp_new_i64();
914 TCGv_i64 t2 = tcg_temp_new_i64();
915 TCGv_i64 t3 = tcg_temp_new_i64();
916 uint32_t i;
917
918 for (i = 0; i < oprsz; i += 8) {
919 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
920 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
921 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
922 fni(t0, t1, t2, t3);
923 tcg_gen_st_i64(t0, cpu_env, dofs + i);
924 if (write_aofs) {
925 tcg_gen_st_i64(t1, cpu_env, aofs + i);
926 }
927 }
928 tcg_temp_free_i64(t3);
929 tcg_temp_free_i64(t2);
930 tcg_temp_free_i64(t1);
931 tcg_temp_free_i64(t0);
932 }
933
934 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
935 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
936 uint32_t oprsz, uint32_t tysz, TCGType type,
937 bool load_dest,
938 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
939 {
940 TCGv_vec t0 = tcg_temp_new_vec(type);
941 TCGv_vec t1 = tcg_temp_new_vec(type);
942 uint32_t i;
943
944 for (i = 0; i < oprsz; i += tysz) {
945 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
946 if (load_dest) {
947 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
948 }
949 fni(vece, t1, t0);
950 tcg_gen_st_vec(t1, cpu_env, dofs + i);
951 }
952 tcg_temp_free_vec(t0);
953 tcg_temp_free_vec(t1);
954 }
955
956 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
957 using host vectors. */
958 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
959 uint32_t oprsz, uint32_t tysz, TCGType type,
960 int64_t c, bool load_dest,
961 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
962 {
963 TCGv_vec t0 = tcg_temp_new_vec(type);
964 TCGv_vec t1 = tcg_temp_new_vec(type);
965 uint32_t i;
966
967 for (i = 0; i < oprsz; i += tysz) {
968 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
969 if (load_dest) {
970 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
971 }
972 fni(vece, t1, t0, c);
973 tcg_gen_st_vec(t1, cpu_env, dofs + i);
974 }
975 tcg_temp_free_vec(t0);
976 tcg_temp_free_vec(t1);
977 }
978
979 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
980 uint32_t oprsz, uint32_t tysz, TCGType type,
981 TCGv_vec c, bool scalar_first,
982 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
983 {
984 TCGv_vec t0 = tcg_temp_new_vec(type);
985 TCGv_vec t1 = tcg_temp_new_vec(type);
986 uint32_t i;
987
988 for (i = 0; i < oprsz; i += tysz) {
989 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
990 if (scalar_first) {
991 fni(vece, t1, c, t0);
992 } else {
993 fni(vece, t1, t0, c);
994 }
995 tcg_gen_st_vec(t1, cpu_env, dofs + i);
996 }
997 tcg_temp_free_vec(t0);
998 tcg_temp_free_vec(t1);
999 }
1000
1001 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1002 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1003 uint32_t bofs, uint32_t oprsz,
1004 uint32_t tysz, TCGType type, bool load_dest,
1005 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1006 {
1007 TCGv_vec t0 = tcg_temp_new_vec(type);
1008 TCGv_vec t1 = tcg_temp_new_vec(type);
1009 TCGv_vec t2 = tcg_temp_new_vec(type);
1010 uint32_t i;
1011
1012 for (i = 0; i < oprsz; i += tysz) {
1013 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1014 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1015 if (load_dest) {
1016 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1017 }
1018 fni(vece, t2, t0, t1);
1019 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1020 }
1021 tcg_temp_free_vec(t2);
1022 tcg_temp_free_vec(t1);
1023 tcg_temp_free_vec(t0);
1024 }
1025
1026 /*
1027 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1028 * using host vectors.
1029 */
1030 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1031 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
1032 TCGType type, int64_t c, bool load_dest,
1033 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
1034 int64_t))
1035 {
1036 TCGv_vec t0 = tcg_temp_new_vec(type);
1037 TCGv_vec t1 = tcg_temp_new_vec(type);
1038 TCGv_vec t2 = tcg_temp_new_vec(type);
1039 uint32_t i;
1040
1041 for (i = 0; i < oprsz; i += tysz) {
1042 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1043 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1044 if (load_dest) {
1045 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1046 }
1047 fni(vece, t2, t0, t1, c);
1048 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1049 }
1050 tcg_temp_free_vec(t0);
1051 tcg_temp_free_vec(t1);
1052 tcg_temp_free_vec(t2);
1053 }
1054
1055 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1056 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1057 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1058 uint32_t tysz, TCGType type, bool write_aofs,
1059 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1060 TCGv_vec, TCGv_vec))
1061 {
1062 TCGv_vec t0 = tcg_temp_new_vec(type);
1063 TCGv_vec t1 = tcg_temp_new_vec(type);
1064 TCGv_vec t2 = tcg_temp_new_vec(type);
1065 TCGv_vec t3 = tcg_temp_new_vec(type);
1066 uint32_t i;
1067
1068 for (i = 0; i < oprsz; i += tysz) {
1069 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1070 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1071 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1072 fni(vece, t0, t1, t2, t3);
1073 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1074 if (write_aofs) {
1075 tcg_gen_st_vec(t1, cpu_env, aofs + i);
1076 }
1077 }
1078 tcg_temp_free_vec(t3);
1079 tcg_temp_free_vec(t2);
1080 tcg_temp_free_vec(t1);
1081 tcg_temp_free_vec(t0);
1082 }
1083
1084 /* Expand a vector two-operand operation. */
1085 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1086 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1087 {
1088 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1089 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1090 TCGType type;
1091 uint32_t some;
1092
1093 check_size_align(oprsz, maxsz, dofs | aofs);
1094 check_overlap_2(dofs, aofs, maxsz);
1095
1096 type = 0;
1097 if (g->fniv) {
1098 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1099 }
1100 switch (type) {
1101 case TCG_TYPE_V256:
1102 /* Recall that ARM SVE allows vector sizes that are not a
1103 * power of 2, but always a multiple of 16. The intent is
1104 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1105 */
1106 some = QEMU_ALIGN_DOWN(oprsz, 32);
1107 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1108 g->load_dest, g->fniv);
1109 if (some == oprsz) {
1110 break;
1111 }
1112 dofs += some;
1113 aofs += some;
1114 oprsz -= some;
1115 maxsz -= some;
1116 /* fallthru */
1117 case TCG_TYPE_V128:
1118 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1119 g->load_dest, g->fniv);
1120 break;
1121 case TCG_TYPE_V64:
1122 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1123 g->load_dest, g->fniv);
1124 break;
1125
1126 case 0:
1127 if (g->fni8 && check_size_impl(oprsz, 8)) {
1128 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
1129 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1130 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
1131 } else {
1132 assert(g->fno != NULL);
1133 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1134 oprsz = maxsz;
1135 }
1136 break;
1137
1138 default:
1139 g_assert_not_reached();
1140 }
1141 tcg_swap_vecop_list(hold_list);
1142
1143 if (oprsz < maxsz) {
1144 expand_clr(dofs + oprsz, maxsz - oprsz);
1145 }
1146 }
1147
1148 /* Expand a vector operation with two vectors and an immediate. */
1149 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1150 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1151 {
1152 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1153 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1154 TCGType type;
1155 uint32_t some;
1156
1157 check_size_align(oprsz, maxsz, dofs | aofs);
1158 check_overlap_2(dofs, aofs, maxsz);
1159
1160 type = 0;
1161 if (g->fniv) {
1162 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1163 }
1164 switch (type) {
1165 case TCG_TYPE_V256:
1166 /* Recall that ARM SVE allows vector sizes that are not a
1167 * power of 2, but always a multiple of 16. The intent is
1168 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1169 */
1170 some = QEMU_ALIGN_DOWN(oprsz, 32);
1171 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1172 c, g->load_dest, g->fniv);
1173 if (some == oprsz) {
1174 break;
1175 }
1176 dofs += some;
1177 aofs += some;
1178 oprsz -= some;
1179 maxsz -= some;
1180 /* fallthru */
1181 case TCG_TYPE_V128:
1182 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1183 c, g->load_dest, g->fniv);
1184 break;
1185 case TCG_TYPE_V64:
1186 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1187 c, g->load_dest, g->fniv);
1188 break;
1189
1190 case 0:
1191 if (g->fni8 && check_size_impl(oprsz, 8)) {
1192 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1193 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1194 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1195 } else {
1196 if (g->fno) {
1197 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1198 } else {
1199 TCGv_i64 tcg_c = tcg_const_i64(c);
1200 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1201 maxsz, c, g->fnoi);
1202 tcg_temp_free_i64(tcg_c);
1203 }
1204 oprsz = maxsz;
1205 }
1206 break;
1207
1208 default:
1209 g_assert_not_reached();
1210 }
1211 tcg_swap_vecop_list(hold_list);
1212
1213 if (oprsz < maxsz) {
1214 expand_clr(dofs + oprsz, maxsz - oprsz);
1215 }
1216 }
1217
1218 /* Expand a vector operation with two vectors and a scalar. */
1219 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1220 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1221 {
1222 TCGType type;
1223
1224 check_size_align(oprsz, maxsz, dofs | aofs);
1225 check_overlap_2(dofs, aofs, maxsz);
1226
1227 type = 0;
1228 if (g->fniv) {
1229 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1230 }
1231 if (type != 0) {
1232 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1233 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1234 TCGv_vec t_vec = tcg_temp_new_vec(type);
1235 uint32_t some;
1236
1237 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1238
1239 switch (type) {
1240 case TCG_TYPE_V256:
1241 /* Recall that ARM SVE allows vector sizes that are not a
1242 * power of 2, but always a multiple of 16. The intent is
1243 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1244 */
1245 some = QEMU_ALIGN_DOWN(oprsz, 32);
1246 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1247 t_vec, g->scalar_first, g->fniv);
1248 if (some == oprsz) {
1249 break;
1250 }
1251 dofs += some;
1252 aofs += some;
1253 oprsz -= some;
1254 maxsz -= some;
1255 /* fallthru */
1256
1257 case TCG_TYPE_V128:
1258 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1259 t_vec, g->scalar_first, g->fniv);
1260 break;
1261
1262 case TCG_TYPE_V64:
1263 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1264 t_vec, g->scalar_first, g->fniv);
1265 break;
1266
1267 default:
1268 g_assert_not_reached();
1269 }
1270 tcg_temp_free_vec(t_vec);
1271 tcg_swap_vecop_list(hold_list);
1272 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1273 TCGv_i64 t64 = tcg_temp_new_i64();
1274
1275 gen_dup_i64(g->vece, t64, c);
1276 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1277 tcg_temp_free_i64(t64);
1278 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1279 TCGv_i32 t32 = tcg_temp_new_i32();
1280
1281 tcg_gen_extrl_i64_i32(t32, c);
1282 gen_dup_i32(g->vece, t32, t32);
1283 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1284 tcg_temp_free_i32(t32);
1285 } else {
1286 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1287 return;
1288 }
1289
1290 if (oprsz < maxsz) {
1291 expand_clr(dofs + oprsz, maxsz - oprsz);
1292 }
1293 }
1294
1295 /* Expand a vector three-operand operation. */
1296 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1297 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1298 {
1299 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1300 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1301 TCGType type;
1302 uint32_t some;
1303
1304 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1305 check_overlap_3(dofs, aofs, bofs, maxsz);
1306
1307 type = 0;
1308 if (g->fniv) {
1309 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1310 }
1311 switch (type) {
1312 case TCG_TYPE_V256:
1313 /* Recall that ARM SVE allows vector sizes that are not a
1314 * power of 2, but always a multiple of 16. The intent is
1315 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1316 */
1317 some = QEMU_ALIGN_DOWN(oprsz, 32);
1318 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1319 g->load_dest, g->fniv);
1320 if (some == oprsz) {
1321 break;
1322 }
1323 dofs += some;
1324 aofs += some;
1325 bofs += some;
1326 oprsz -= some;
1327 maxsz -= some;
1328 /* fallthru */
1329 case TCG_TYPE_V128:
1330 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1331 g->load_dest, g->fniv);
1332 break;
1333 case TCG_TYPE_V64:
1334 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1335 g->load_dest, g->fniv);
1336 break;
1337
1338 case 0:
1339 if (g->fni8 && check_size_impl(oprsz, 8)) {
1340 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1341 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1342 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1343 } else {
1344 assert(g->fno != NULL);
1345 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1346 maxsz, g->data, g->fno);
1347 oprsz = maxsz;
1348 }
1349 break;
1350
1351 default:
1352 g_assert_not_reached();
1353 }
1354 tcg_swap_vecop_list(hold_list);
1355
1356 if (oprsz < maxsz) {
1357 expand_clr(dofs + oprsz, maxsz - oprsz);
1358 }
1359 }
1360
1361 /* Expand a vector operation with three vectors and an immediate. */
1362 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1363 uint32_t oprsz, uint32_t maxsz, int64_t c,
1364 const GVecGen3i *g)
1365 {
1366 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1367 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1368 TCGType type;
1369 uint32_t some;
1370
1371 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1372 check_overlap_3(dofs, aofs, bofs, maxsz);
1373
1374 type = 0;
1375 if (g->fniv) {
1376 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1377 }
1378 switch (type) {
1379 case TCG_TYPE_V256:
1380 /*
1381 * Recall that ARM SVE allows vector sizes that are not a
1382 * power of 2, but always a multiple of 16. The intent is
1383 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1384 */
1385 some = QEMU_ALIGN_DOWN(oprsz, 32);
1386 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1387 c, g->load_dest, g->fniv);
1388 if (some == oprsz) {
1389 break;
1390 }
1391 dofs += some;
1392 aofs += some;
1393 bofs += some;
1394 oprsz -= some;
1395 maxsz -= some;
1396 /* fallthru */
1397 case TCG_TYPE_V128:
1398 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1399 c, g->load_dest, g->fniv);
1400 break;
1401 case TCG_TYPE_V64:
1402 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1403 c, g->load_dest, g->fniv);
1404 break;
1405
1406 case 0:
1407 if (g->fni8 && check_size_impl(oprsz, 8)) {
1408 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1409 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1410 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1411 } else {
1412 assert(g->fno != NULL);
1413 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1414 oprsz = maxsz;
1415 }
1416 break;
1417
1418 default:
1419 g_assert_not_reached();
1420 }
1421 tcg_swap_vecop_list(hold_list);
1422
1423 if (oprsz < maxsz) {
1424 expand_clr(dofs + oprsz, maxsz - oprsz);
1425 }
1426 }
1427
1428 /* Expand a vector four-operand operation. */
1429 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1430 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1431 {
1432 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1433 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1434 TCGType type;
1435 uint32_t some;
1436
1437 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1438 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1439
1440 type = 0;
1441 if (g->fniv) {
1442 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1443 }
1444 switch (type) {
1445 case TCG_TYPE_V256:
1446 /* Recall that ARM SVE allows vector sizes that are not a
1447 * power of 2, but always a multiple of 16. The intent is
1448 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1449 */
1450 some = QEMU_ALIGN_DOWN(oprsz, 32);
1451 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1452 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1453 if (some == oprsz) {
1454 break;
1455 }
1456 dofs += some;
1457 aofs += some;
1458 bofs += some;
1459 cofs += some;
1460 oprsz -= some;
1461 maxsz -= some;
1462 /* fallthru */
1463 case TCG_TYPE_V128:
1464 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1465 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1466 break;
1467 case TCG_TYPE_V64:
1468 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1469 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1470 break;
1471
1472 case 0:
1473 if (g->fni8 && check_size_impl(oprsz, 8)) {
1474 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1475 g->write_aofs, g->fni8);
1476 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1477 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1478 g->write_aofs, g->fni4);
1479 } else {
1480 assert(g->fno != NULL);
1481 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1482 oprsz, maxsz, g->data, g->fno);
1483 oprsz = maxsz;
1484 }
1485 break;
1486
1487 default:
1488 g_assert_not_reached();
1489 }
1490 tcg_swap_vecop_list(hold_list);
1491
1492 if (oprsz < maxsz) {
1493 expand_clr(dofs + oprsz, maxsz - oprsz);
1494 }
1495 }
1496
1497 /*
1498 * Expand specific vector operations.
1499 */
1500
1501 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1502 {
1503 tcg_gen_mov_vec(a, b);
1504 }
1505
1506 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1507 uint32_t oprsz, uint32_t maxsz)
1508 {
1509 static const GVecGen2 g = {
1510 .fni8 = tcg_gen_mov_i64,
1511 .fniv = vec_mov2,
1512 .fno = gen_helper_gvec_mov,
1513 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1514 };
1515 if (dofs != aofs) {
1516 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1517 } else {
1518 check_size_align(oprsz, maxsz, dofs);
1519 if (oprsz < maxsz) {
1520 expand_clr(dofs + oprsz, maxsz - oprsz);
1521 }
1522 }
1523 }
1524
1525 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1526 uint32_t maxsz, TCGv_i32 in)
1527 {
1528 check_size_align(oprsz, maxsz, dofs);
1529 tcg_debug_assert(vece <= MO_32);
1530 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1531 }
1532
1533 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1534 uint32_t maxsz, TCGv_i64 in)
1535 {
1536 check_size_align(oprsz, maxsz, dofs);
1537 tcg_debug_assert(vece <= MO_64);
1538 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1539 }
1540
1541 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1542 uint32_t oprsz, uint32_t maxsz)
1543 {
1544 check_size_align(oprsz, maxsz, dofs);
1545 if (vece <= MO_64) {
1546 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1547 if (type != 0) {
1548 TCGv_vec t_vec = tcg_temp_new_vec(type);
1549 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1550 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1551 tcg_temp_free_vec(t_vec);
1552 } else if (vece <= MO_32) {
1553 TCGv_i32 in = tcg_temp_new_i32();
1554 switch (vece) {
1555 case MO_8:
1556 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1557 break;
1558 case MO_16:
1559 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1560 break;
1561 default:
1562 tcg_gen_ld_i32(in, cpu_env, aofs);
1563 break;
1564 }
1565 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1566 tcg_temp_free_i32(in);
1567 } else {
1568 TCGv_i64 in = tcg_temp_new_i64();
1569 tcg_gen_ld_i64(in, cpu_env, aofs);
1570 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1571 tcg_temp_free_i64(in);
1572 }
1573 } else {
1574 /* 128-bit duplicate. */
1575 /* ??? Dup to 256-bit vector. */
1576 int i;
1577
1578 tcg_debug_assert(vece == 4);
1579 tcg_debug_assert(oprsz >= 16);
1580 if (TCG_TARGET_HAS_v128) {
1581 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1582
1583 tcg_gen_ld_vec(in, cpu_env, aofs);
1584 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1585 tcg_gen_st_vec(in, cpu_env, dofs + i);
1586 }
1587 tcg_temp_free_vec(in);
1588 } else {
1589 TCGv_i64 in0 = tcg_temp_new_i64();
1590 TCGv_i64 in1 = tcg_temp_new_i64();
1591
1592 tcg_gen_ld_i64(in0, cpu_env, aofs);
1593 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1594 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1595 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1596 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1597 }
1598 tcg_temp_free_i64(in0);
1599 tcg_temp_free_i64(in1);
1600 }
1601 if (oprsz < maxsz) {
1602 expand_clr(dofs + oprsz, maxsz - oprsz);
1603 }
1604 }
1605 }
1606
1607 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
1608 uint32_t maxsz, uint64_t x)
1609 {
1610 check_size_align(oprsz, maxsz, dofs);
1611 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
1612 }
1613
1614 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1615 uint32_t oprsz, uint32_t maxsz)
1616 {
1617 static const GVecGen2 g = {
1618 .fni8 = tcg_gen_not_i64,
1619 .fniv = tcg_gen_not_vec,
1620 .fno = gen_helper_gvec_not,
1621 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1622 };
1623 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1624 }
1625
1626 /* Perform a vector addition using normal addition and a mask. The mask
1627 should be the sign bit of each lane. This 6-operation form is more
1628 efficient than separate additions when there are 4 or more lanes in
1629 the 64-bit operation. */
1630 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1631 {
1632 TCGv_i64 t1 = tcg_temp_new_i64();
1633 TCGv_i64 t2 = tcg_temp_new_i64();
1634 TCGv_i64 t3 = tcg_temp_new_i64();
1635
1636 tcg_gen_andc_i64(t1, a, m);
1637 tcg_gen_andc_i64(t2, b, m);
1638 tcg_gen_xor_i64(t3, a, b);
1639 tcg_gen_add_i64(d, t1, t2);
1640 tcg_gen_and_i64(t3, t3, m);
1641 tcg_gen_xor_i64(d, d, t3);
1642
1643 tcg_temp_free_i64(t1);
1644 tcg_temp_free_i64(t2);
1645 tcg_temp_free_i64(t3);
1646 }
1647
1648 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1649 {
1650 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1651 gen_addv_mask(d, a, b, m);
1652 tcg_temp_free_i64(m);
1653 }
1654
1655 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1656 {
1657 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1658 gen_addv_mask(d, a, b, m);
1659 tcg_temp_free_i64(m);
1660 }
1661
1662 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1663 {
1664 TCGv_i64 t1 = tcg_temp_new_i64();
1665 TCGv_i64 t2 = tcg_temp_new_i64();
1666
1667 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1668 tcg_gen_add_i64(t2, a, b);
1669 tcg_gen_add_i64(t1, t1, b);
1670 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1671
1672 tcg_temp_free_i64(t1);
1673 tcg_temp_free_i64(t2);
1674 }
1675
1676 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1677
1678 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1679 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1680 {
1681 static const GVecGen3 g[4] = {
1682 { .fni8 = tcg_gen_vec_add8_i64,
1683 .fniv = tcg_gen_add_vec,
1684 .fno = gen_helper_gvec_add8,
1685 .opt_opc = vecop_list_add,
1686 .vece = MO_8 },
1687 { .fni8 = tcg_gen_vec_add16_i64,
1688 .fniv = tcg_gen_add_vec,
1689 .fno = gen_helper_gvec_add16,
1690 .opt_opc = vecop_list_add,
1691 .vece = MO_16 },
1692 { .fni4 = tcg_gen_add_i32,
1693 .fniv = tcg_gen_add_vec,
1694 .fno = gen_helper_gvec_add32,
1695 .opt_opc = vecop_list_add,
1696 .vece = MO_32 },
1697 { .fni8 = tcg_gen_add_i64,
1698 .fniv = tcg_gen_add_vec,
1699 .fno = gen_helper_gvec_add64,
1700 .opt_opc = vecop_list_add,
1701 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1702 .vece = MO_64 },
1703 };
1704
1705 tcg_debug_assert(vece <= MO_64);
1706 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1707 }
1708
1709 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1710 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1711 {
1712 static const GVecGen2s g[4] = {
1713 { .fni8 = tcg_gen_vec_add8_i64,
1714 .fniv = tcg_gen_add_vec,
1715 .fno = gen_helper_gvec_adds8,
1716 .opt_opc = vecop_list_add,
1717 .vece = MO_8 },
1718 { .fni8 = tcg_gen_vec_add16_i64,
1719 .fniv = tcg_gen_add_vec,
1720 .fno = gen_helper_gvec_adds16,
1721 .opt_opc = vecop_list_add,
1722 .vece = MO_16 },
1723 { .fni4 = tcg_gen_add_i32,
1724 .fniv = tcg_gen_add_vec,
1725 .fno = gen_helper_gvec_adds32,
1726 .opt_opc = vecop_list_add,
1727 .vece = MO_32 },
1728 { .fni8 = tcg_gen_add_i64,
1729 .fniv = tcg_gen_add_vec,
1730 .fno = gen_helper_gvec_adds64,
1731 .opt_opc = vecop_list_add,
1732 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1733 .vece = MO_64 },
1734 };
1735
1736 tcg_debug_assert(vece <= MO_64);
1737 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1738 }
1739
1740 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1741 int64_t c, uint32_t oprsz, uint32_t maxsz)
1742 {
1743 TCGv_i64 tmp = tcg_const_i64(c);
1744 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1745 tcg_temp_free_i64(tmp);
1746 }
1747
1748 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
1749
1750 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1751 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1752 {
1753 static const GVecGen2s g[4] = {
1754 { .fni8 = tcg_gen_vec_sub8_i64,
1755 .fniv = tcg_gen_sub_vec,
1756 .fno = gen_helper_gvec_subs8,
1757 .opt_opc = vecop_list_sub,
1758 .vece = MO_8 },
1759 { .fni8 = tcg_gen_vec_sub16_i64,
1760 .fniv = tcg_gen_sub_vec,
1761 .fno = gen_helper_gvec_subs16,
1762 .opt_opc = vecop_list_sub,
1763 .vece = MO_16 },
1764 { .fni4 = tcg_gen_sub_i32,
1765 .fniv = tcg_gen_sub_vec,
1766 .fno = gen_helper_gvec_subs32,
1767 .opt_opc = vecop_list_sub,
1768 .vece = MO_32 },
1769 { .fni8 = tcg_gen_sub_i64,
1770 .fniv = tcg_gen_sub_vec,
1771 .fno = gen_helper_gvec_subs64,
1772 .opt_opc = vecop_list_sub,
1773 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1774 .vece = MO_64 },
1775 };
1776
1777 tcg_debug_assert(vece <= MO_64);
1778 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1779 }
1780
1781 /* Perform a vector subtraction using normal subtraction and a mask.
1782 Compare gen_addv_mask above. */
1783 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1784 {
1785 TCGv_i64 t1 = tcg_temp_new_i64();
1786 TCGv_i64 t2 = tcg_temp_new_i64();
1787 TCGv_i64 t3 = tcg_temp_new_i64();
1788
1789 tcg_gen_or_i64(t1, a, m);
1790 tcg_gen_andc_i64(t2, b, m);
1791 tcg_gen_eqv_i64(t3, a, b);
1792 tcg_gen_sub_i64(d, t1, t2);
1793 tcg_gen_and_i64(t3, t3, m);
1794 tcg_gen_xor_i64(d, d, t3);
1795
1796 tcg_temp_free_i64(t1);
1797 tcg_temp_free_i64(t2);
1798 tcg_temp_free_i64(t3);
1799 }
1800
1801 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1802 {
1803 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1804 gen_subv_mask(d, a, b, m);
1805 tcg_temp_free_i64(m);
1806 }
1807
1808 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1809 {
1810 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1811 gen_subv_mask(d, a, b, m);
1812 tcg_temp_free_i64(m);
1813 }
1814
1815 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1816 {
1817 TCGv_i64 t1 = tcg_temp_new_i64();
1818 TCGv_i64 t2 = tcg_temp_new_i64();
1819
1820 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1821 tcg_gen_sub_i64(t2, a, b);
1822 tcg_gen_sub_i64(t1, a, t1);
1823 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1824
1825 tcg_temp_free_i64(t1);
1826 tcg_temp_free_i64(t2);
1827 }
1828
1829 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1830 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1831 {
1832 static const GVecGen3 g[4] = {
1833 { .fni8 = tcg_gen_vec_sub8_i64,
1834 .fniv = tcg_gen_sub_vec,
1835 .fno = gen_helper_gvec_sub8,
1836 .opt_opc = vecop_list_sub,
1837 .vece = MO_8 },
1838 { .fni8 = tcg_gen_vec_sub16_i64,
1839 .fniv = tcg_gen_sub_vec,
1840 .fno = gen_helper_gvec_sub16,
1841 .opt_opc = vecop_list_sub,
1842 .vece = MO_16 },
1843 { .fni4 = tcg_gen_sub_i32,
1844 .fniv = tcg_gen_sub_vec,
1845 .fno = gen_helper_gvec_sub32,
1846 .opt_opc = vecop_list_sub,
1847 .vece = MO_32 },
1848 { .fni8 = tcg_gen_sub_i64,
1849 .fniv = tcg_gen_sub_vec,
1850 .fno = gen_helper_gvec_sub64,
1851 .opt_opc = vecop_list_sub,
1852 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1853 .vece = MO_64 },
1854 };
1855
1856 tcg_debug_assert(vece <= MO_64);
1857 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1858 }
1859
1860 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
1861
1862 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
1863 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1864 {
1865 static const GVecGen3 g[4] = {
1866 { .fniv = tcg_gen_mul_vec,
1867 .fno = gen_helper_gvec_mul8,
1868 .opt_opc = vecop_list_mul,
1869 .vece = MO_8 },
1870 { .fniv = tcg_gen_mul_vec,
1871 .fno = gen_helper_gvec_mul16,
1872 .opt_opc = vecop_list_mul,
1873 .vece = MO_16 },
1874 { .fni4 = tcg_gen_mul_i32,
1875 .fniv = tcg_gen_mul_vec,
1876 .fno = gen_helper_gvec_mul32,
1877 .opt_opc = vecop_list_mul,
1878 .vece = MO_32 },
1879 { .fni8 = tcg_gen_mul_i64,
1880 .fniv = tcg_gen_mul_vec,
1881 .fno = gen_helper_gvec_mul64,
1882 .opt_opc = vecop_list_mul,
1883 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1884 .vece = MO_64 },
1885 };
1886
1887 tcg_debug_assert(vece <= MO_64);
1888 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1889 }
1890
1891 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
1892 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1893 {
1894 static const GVecGen2s g[4] = {
1895 { .fniv = tcg_gen_mul_vec,
1896 .fno = gen_helper_gvec_muls8,
1897 .opt_opc = vecop_list_mul,
1898 .vece = MO_8 },
1899 { .fniv = tcg_gen_mul_vec,
1900 .fno = gen_helper_gvec_muls16,
1901 .opt_opc = vecop_list_mul,
1902 .vece = MO_16 },
1903 { .fni4 = tcg_gen_mul_i32,
1904 .fniv = tcg_gen_mul_vec,
1905 .fno = gen_helper_gvec_muls32,
1906 .opt_opc = vecop_list_mul,
1907 .vece = MO_32 },
1908 { .fni8 = tcg_gen_mul_i64,
1909 .fniv = tcg_gen_mul_vec,
1910 .fno = gen_helper_gvec_muls64,
1911 .opt_opc = vecop_list_mul,
1912 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1913 .vece = MO_64 },
1914 };
1915
1916 tcg_debug_assert(vece <= MO_64);
1917 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1918 }
1919
1920 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
1921 int64_t c, uint32_t oprsz, uint32_t maxsz)
1922 {
1923 TCGv_i64 tmp = tcg_const_i64(c);
1924 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
1925 tcg_temp_free_i64(tmp);
1926 }
1927
1928 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1929 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1930 {
1931 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
1932 static const GVecGen3 g[4] = {
1933 { .fniv = tcg_gen_ssadd_vec,
1934 .fno = gen_helper_gvec_ssadd8,
1935 .opt_opc = vecop_list,
1936 .vece = MO_8 },
1937 { .fniv = tcg_gen_ssadd_vec,
1938 .fno = gen_helper_gvec_ssadd16,
1939 .opt_opc = vecop_list,
1940 .vece = MO_16 },
1941 { .fniv = tcg_gen_ssadd_vec,
1942 .fno = gen_helper_gvec_ssadd32,
1943 .opt_opc = vecop_list,
1944 .vece = MO_32 },
1945 { .fniv = tcg_gen_ssadd_vec,
1946 .fno = gen_helper_gvec_ssadd64,
1947 .opt_opc = vecop_list,
1948 .vece = MO_64 },
1949 };
1950 tcg_debug_assert(vece <= MO_64);
1951 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1952 }
1953
1954 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
1955 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1956 {
1957 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
1958 static const GVecGen3 g[4] = {
1959 { .fniv = tcg_gen_sssub_vec,
1960 .fno = gen_helper_gvec_sssub8,
1961 .opt_opc = vecop_list,
1962 .vece = MO_8 },
1963 { .fniv = tcg_gen_sssub_vec,
1964 .fno = gen_helper_gvec_sssub16,
1965 .opt_opc = vecop_list,
1966 .vece = MO_16 },
1967 { .fniv = tcg_gen_sssub_vec,
1968 .fno = gen_helper_gvec_sssub32,
1969 .opt_opc = vecop_list,
1970 .vece = MO_32 },
1971 { .fniv = tcg_gen_sssub_vec,
1972 .fno = gen_helper_gvec_sssub64,
1973 .opt_opc = vecop_list,
1974 .vece = MO_64 },
1975 };
1976 tcg_debug_assert(vece <= MO_64);
1977 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1978 }
1979
1980 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1981 {
1982 TCGv_i32 max = tcg_const_i32(-1);
1983 tcg_gen_add_i32(d, a, b);
1984 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
1985 tcg_temp_free_i32(max);
1986 }
1987
1988 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1989 {
1990 TCGv_i64 max = tcg_const_i64(-1);
1991 tcg_gen_add_i64(d, a, b);
1992 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
1993 tcg_temp_free_i64(max);
1994 }
1995
1996 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1997 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1998 {
1999 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
2000 static const GVecGen3 g[4] = {
2001 { .fniv = tcg_gen_usadd_vec,
2002 .fno = gen_helper_gvec_usadd8,
2003 .opt_opc = vecop_list,
2004 .vece = MO_8 },
2005 { .fniv = tcg_gen_usadd_vec,
2006 .fno = gen_helper_gvec_usadd16,
2007 .opt_opc = vecop_list,
2008 .vece = MO_16 },
2009 { .fni4 = tcg_gen_usadd_i32,
2010 .fniv = tcg_gen_usadd_vec,
2011 .fno = gen_helper_gvec_usadd32,
2012 .opt_opc = vecop_list,
2013 .vece = MO_32 },
2014 { .fni8 = tcg_gen_usadd_i64,
2015 .fniv = tcg_gen_usadd_vec,
2016 .fno = gen_helper_gvec_usadd64,
2017 .opt_opc = vecop_list,
2018 .vece = MO_64 }
2019 };
2020 tcg_debug_assert(vece <= MO_64);
2021 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2022 }
2023
2024 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2025 {
2026 TCGv_i32 min = tcg_const_i32(0);
2027 tcg_gen_sub_i32(d, a, b);
2028 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
2029 tcg_temp_free_i32(min);
2030 }
2031
2032 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2033 {
2034 TCGv_i64 min = tcg_const_i64(0);
2035 tcg_gen_sub_i64(d, a, b);
2036 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
2037 tcg_temp_free_i64(min);
2038 }
2039
2040 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
2041 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2042 {
2043 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2044 static const GVecGen3 g[4] = {
2045 { .fniv = tcg_gen_ussub_vec,
2046 .fno = gen_helper_gvec_ussub8,
2047 .opt_opc = vecop_list,
2048 .vece = MO_8 },
2049 { .fniv = tcg_gen_ussub_vec,
2050 .fno = gen_helper_gvec_ussub16,
2051 .opt_opc = vecop_list,
2052 .vece = MO_16 },
2053 { .fni4 = tcg_gen_ussub_i32,
2054 .fniv = tcg_gen_ussub_vec,
2055 .fno = gen_helper_gvec_ussub32,
2056 .opt_opc = vecop_list,
2057 .vece = MO_32 },
2058 { .fni8 = tcg_gen_ussub_i64,
2059 .fniv = tcg_gen_ussub_vec,
2060 .fno = gen_helper_gvec_ussub64,
2061 .opt_opc = vecop_list,
2062 .vece = MO_64 }
2063 };
2064 tcg_debug_assert(vece <= MO_64);
2065 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2066 }
2067
2068 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2069 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2070 {
2071 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2072 static const GVecGen3 g[4] = {
2073 { .fniv = tcg_gen_smin_vec,
2074 .fno = gen_helper_gvec_smin8,
2075 .opt_opc = vecop_list,
2076 .vece = MO_8 },
2077 { .fniv = tcg_gen_smin_vec,
2078 .fno = gen_helper_gvec_smin16,
2079 .opt_opc = vecop_list,
2080 .vece = MO_16 },
2081 { .fni4 = tcg_gen_smin_i32,
2082 .fniv = tcg_gen_smin_vec,
2083 .fno = gen_helper_gvec_smin32,
2084 .opt_opc = vecop_list,
2085 .vece = MO_32 },
2086 { .fni8 = tcg_gen_smin_i64,
2087 .fniv = tcg_gen_smin_vec,
2088 .fno = gen_helper_gvec_smin64,
2089 .opt_opc = vecop_list,
2090 .vece = MO_64 }
2091 };
2092 tcg_debug_assert(vece <= MO_64);
2093 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2094 }
2095
2096 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2097 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2098 {
2099 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2100 static const GVecGen3 g[4] = {
2101 { .fniv = tcg_gen_umin_vec,
2102 .fno = gen_helper_gvec_umin8,
2103 .opt_opc = vecop_list,
2104 .vece = MO_8 },
2105 { .fniv = tcg_gen_umin_vec,
2106 .fno = gen_helper_gvec_umin16,
2107 .opt_opc = vecop_list,
2108 .vece = MO_16 },
2109 { .fni4 = tcg_gen_umin_i32,
2110 .fniv = tcg_gen_umin_vec,
2111 .fno = gen_helper_gvec_umin32,
2112 .opt_opc = vecop_list,
2113 .vece = MO_32 },
2114 { .fni8 = tcg_gen_umin_i64,
2115 .fniv = tcg_gen_umin_vec,
2116 .fno = gen_helper_gvec_umin64,
2117 .opt_opc = vecop_list,
2118 .vece = MO_64 }
2119 };
2120 tcg_debug_assert(vece <= MO_64);
2121 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2122 }
2123
2124 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2125 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2126 {
2127 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2128 static const GVecGen3 g[4] = {
2129 { .fniv = tcg_gen_smax_vec,
2130 .fno = gen_helper_gvec_smax8,
2131 .opt_opc = vecop_list,
2132 .vece = MO_8 },
2133 { .fniv = tcg_gen_smax_vec,
2134 .fno = gen_helper_gvec_smax16,
2135 .opt_opc = vecop_list,
2136 .vece = MO_16 },
2137 { .fni4 = tcg_gen_smax_i32,
2138 .fniv = tcg_gen_smax_vec,
2139 .fno = gen_helper_gvec_smax32,
2140 .opt_opc = vecop_list,
2141 .vece = MO_32 },
2142 { .fni8 = tcg_gen_smax_i64,
2143 .fniv = tcg_gen_smax_vec,
2144 .fno = gen_helper_gvec_smax64,
2145 .opt_opc = vecop_list,
2146 .vece = MO_64 }
2147 };
2148 tcg_debug_assert(vece <= MO_64);
2149 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2150 }
2151
2152 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2153 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2154 {
2155 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2156 static const GVecGen3 g[4] = {
2157 { .fniv = tcg_gen_umax_vec,
2158 .fno = gen_helper_gvec_umax8,
2159 .opt_opc = vecop_list,
2160 .vece = MO_8 },
2161 { .fniv = tcg_gen_umax_vec,
2162 .fno = gen_helper_gvec_umax16,
2163 .opt_opc = vecop_list,
2164 .vece = MO_16 },
2165 { .fni4 = tcg_gen_umax_i32,
2166 .fniv = tcg_gen_umax_vec,
2167 .fno = gen_helper_gvec_umax32,
2168 .opt_opc = vecop_list,
2169 .vece = MO_32 },
2170 { .fni8 = tcg_gen_umax_i64,
2171 .fniv = tcg_gen_umax_vec,
2172 .fno = gen_helper_gvec_umax64,
2173 .opt_opc = vecop_list,
2174 .vece = MO_64 }
2175 };
2176 tcg_debug_assert(vece <= MO_64);
2177 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2178 }
2179
2180 /* Perform a vector negation using normal negation and a mask.
2181 Compare gen_subv_mask above. */
2182 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2183 {
2184 TCGv_i64 t2 = tcg_temp_new_i64();
2185 TCGv_i64 t3 = tcg_temp_new_i64();
2186
2187 tcg_gen_andc_i64(t3, m, b);
2188 tcg_gen_andc_i64(t2, b, m);
2189 tcg_gen_sub_i64(d, m, t2);
2190 tcg_gen_xor_i64(d, d, t3);
2191
2192 tcg_temp_free_i64(t2);
2193 tcg_temp_free_i64(t3);
2194 }
2195
2196 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2197 {
2198 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
2199 gen_negv_mask(d, b, m);
2200 tcg_temp_free_i64(m);
2201 }
2202
2203 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2204 {
2205 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
2206 gen_negv_mask(d, b, m);
2207 tcg_temp_free_i64(m);
2208 }
2209
2210 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2211 {
2212 TCGv_i64 t1 = tcg_temp_new_i64();
2213 TCGv_i64 t2 = tcg_temp_new_i64();
2214
2215 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2216 tcg_gen_neg_i64(t2, b);
2217 tcg_gen_neg_i64(t1, t1);
2218 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2219
2220 tcg_temp_free_i64(t1);
2221 tcg_temp_free_i64(t2);
2222 }
2223
2224 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2225 uint32_t oprsz, uint32_t maxsz)
2226 {
2227 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2228 static const GVecGen2 g[4] = {
2229 { .fni8 = tcg_gen_vec_neg8_i64,
2230 .fniv = tcg_gen_neg_vec,
2231 .fno = gen_helper_gvec_neg8,
2232 .opt_opc = vecop_list,
2233 .vece = MO_8 },
2234 { .fni8 = tcg_gen_vec_neg16_i64,
2235 .fniv = tcg_gen_neg_vec,
2236 .fno = gen_helper_gvec_neg16,
2237 .opt_opc = vecop_list,
2238 .vece = MO_16 },
2239 { .fni4 = tcg_gen_neg_i32,
2240 .fniv = tcg_gen_neg_vec,
2241 .fno = gen_helper_gvec_neg32,
2242 .opt_opc = vecop_list,
2243 .vece = MO_32 },
2244 { .fni8 = tcg_gen_neg_i64,
2245 .fniv = tcg_gen_neg_vec,
2246 .fno = gen_helper_gvec_neg64,
2247 .opt_opc = vecop_list,
2248 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2249 .vece = MO_64 },
2250 };
2251
2252 tcg_debug_assert(vece <= MO_64);
2253 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2254 }
2255
2256 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2257 {
2258 TCGv_i64 t = tcg_temp_new_i64();
2259 int nbit = 8 << vece;
2260
2261 /* Create -1 for each negative element. */
2262 tcg_gen_shri_i64(t, b, nbit - 1);
2263 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2264 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2265
2266 /*
2267 * Invert (via xor -1) and add one.
2268 * Because of the ordering the msb is cleared,
2269 * so we never have carry into the next element.
2270 */
2271 tcg_gen_xor_i64(d, b, t);
2272 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2273 tcg_gen_add_i64(d, d, t);
2274
2275 tcg_temp_free_i64(t);
2276 }
2277
2278 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2279 {
2280 gen_absv_mask(d, b, MO_8);
2281 }
2282
2283 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2284 {
2285 gen_absv_mask(d, b, MO_16);
2286 }
2287
2288 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2289 uint32_t oprsz, uint32_t maxsz)
2290 {
2291 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2292 static const GVecGen2 g[4] = {
2293 { .fni8 = tcg_gen_vec_abs8_i64,
2294 .fniv = tcg_gen_abs_vec,
2295 .fno = gen_helper_gvec_abs8,
2296 .opt_opc = vecop_list,
2297 .vece = MO_8 },
2298 { .fni8 = tcg_gen_vec_abs16_i64,
2299 .fniv = tcg_gen_abs_vec,
2300 .fno = gen_helper_gvec_abs16,
2301 .opt_opc = vecop_list,
2302 .vece = MO_16 },
2303 { .fni4 = tcg_gen_abs_i32,
2304 .fniv = tcg_gen_abs_vec,
2305 .fno = gen_helper_gvec_abs32,
2306 .opt_opc = vecop_list,
2307 .vece = MO_32 },
2308 { .fni8 = tcg_gen_abs_i64,
2309 .fniv = tcg_gen_abs_vec,
2310 .fno = gen_helper_gvec_abs64,
2311 .opt_opc = vecop_list,
2312 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2313 .vece = MO_64 },
2314 };
2315
2316 tcg_debug_assert(vece <= MO_64);
2317 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2318 }
2319
2320 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2321 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2322 {
2323 static const GVecGen3 g = {
2324 .fni8 = tcg_gen_and_i64,
2325 .fniv = tcg_gen_and_vec,
2326 .fno = gen_helper_gvec_and,
2327 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2328 };
2329
2330 if (aofs == bofs) {
2331 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2332 } else {
2333 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2334 }
2335 }
2336
2337 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2338 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2339 {
2340 static const GVecGen3 g = {
2341 .fni8 = tcg_gen_or_i64,
2342 .fniv = tcg_gen_or_vec,
2343 .fno = gen_helper_gvec_or,
2344 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2345 };
2346
2347 if (aofs == bofs) {
2348 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2349 } else {
2350 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2351 }
2352 }
2353
2354 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2355 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2356 {
2357 static const GVecGen3 g = {
2358 .fni8 = tcg_gen_xor_i64,
2359 .fniv = tcg_gen_xor_vec,
2360 .fno = gen_helper_gvec_xor,
2361 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2362 };
2363
2364 if (aofs == bofs) {
2365 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2366 } else {
2367 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2368 }
2369 }
2370
2371 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2372 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2373 {
2374 static const GVecGen3 g = {
2375 .fni8 = tcg_gen_andc_i64,
2376 .fniv = tcg_gen_andc_vec,
2377 .fno = gen_helper_gvec_andc,
2378 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2379 };
2380
2381 if (aofs == bofs) {
2382 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2383 } else {
2384 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2385 }
2386 }
2387
2388 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2389 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2390 {
2391 static const GVecGen3 g = {
2392 .fni8 = tcg_gen_orc_i64,
2393 .fniv = tcg_gen_orc_vec,
2394 .fno = gen_helper_gvec_orc,
2395 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2396 };
2397
2398 if (aofs == bofs) {
2399 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2400 } else {
2401 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2402 }
2403 }
2404
2405 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2406 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2407 {
2408 static const GVecGen3 g = {
2409 .fni8 = tcg_gen_nand_i64,
2410 .fniv = tcg_gen_nand_vec,
2411 .fno = gen_helper_gvec_nand,
2412 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2413 };
2414
2415 if (aofs == bofs) {
2416 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2417 } else {
2418 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2419 }
2420 }
2421
2422 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2423 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2424 {
2425 static const GVecGen3 g = {
2426 .fni8 = tcg_gen_nor_i64,
2427 .fniv = tcg_gen_nor_vec,
2428 .fno = gen_helper_gvec_nor,
2429 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2430 };
2431
2432 if (aofs == bofs) {
2433 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2434 } else {
2435 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2436 }
2437 }
2438
2439 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2440 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2441 {
2442 static const GVecGen3 g = {
2443 .fni8 = tcg_gen_eqv_i64,
2444 .fniv = tcg_gen_eqv_vec,
2445 .fno = gen_helper_gvec_eqv,
2446 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2447 };
2448
2449 if (aofs == bofs) {
2450 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2451 } else {
2452 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2453 }
2454 }
2455
2456 static const GVecGen2s gop_ands = {
2457 .fni8 = tcg_gen_and_i64,
2458 .fniv = tcg_gen_and_vec,
2459 .fno = gen_helper_gvec_ands,
2460 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2461 .vece = MO_64
2462 };
2463
2464 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2465 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2466 {
2467 TCGv_i64 tmp = tcg_temp_new_i64();
2468 gen_dup_i64(vece, tmp, c);
2469 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2470 tcg_temp_free_i64(tmp);
2471 }
2472
2473 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2474 int64_t c, uint32_t oprsz, uint32_t maxsz)
2475 {
2476 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2477 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2478 tcg_temp_free_i64(tmp);
2479 }
2480
2481 static const GVecGen2s gop_xors = {
2482 .fni8 = tcg_gen_xor_i64,
2483 .fniv = tcg_gen_xor_vec,
2484 .fno = gen_helper_gvec_xors,
2485 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2486 .vece = MO_64
2487 };
2488
2489 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2490 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2491 {
2492 TCGv_i64 tmp = tcg_temp_new_i64();
2493 gen_dup_i64(vece, tmp, c);
2494 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2495 tcg_temp_free_i64(tmp);
2496 }
2497
2498 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2499 int64_t c, uint32_t oprsz, uint32_t maxsz)
2500 {
2501 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2502 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2503 tcg_temp_free_i64(tmp);
2504 }
2505
2506 static const GVecGen2s gop_ors = {
2507 .fni8 = tcg_gen_or_i64,
2508 .fniv = tcg_gen_or_vec,
2509 .fno = gen_helper_gvec_ors,
2510 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2511 .vece = MO_64
2512 };
2513
2514 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2515 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2516 {
2517 TCGv_i64 tmp = tcg_temp_new_i64();
2518 gen_dup_i64(vece, tmp, c);
2519 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2520 tcg_temp_free_i64(tmp);
2521 }
2522
2523 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2524 int64_t c, uint32_t oprsz, uint32_t maxsz)
2525 {
2526 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2527 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2528 tcg_temp_free_i64(tmp);
2529 }
2530
2531 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2532 {
2533 uint64_t mask = dup_const(MO_8, 0xff << c);
2534 tcg_gen_shli_i64(d, a, c);
2535 tcg_gen_andi_i64(d, d, mask);
2536 }
2537
2538 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2539 {
2540 uint64_t mask = dup_const(MO_16, 0xffff << c);
2541 tcg_gen_shli_i64(d, a, c);
2542 tcg_gen_andi_i64(d, d, mask);
2543 }
2544
2545 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2546 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2547 {
2548 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2549 static const GVecGen2i g[4] = {
2550 { .fni8 = tcg_gen_vec_shl8i_i64,
2551 .fniv = tcg_gen_shli_vec,
2552 .fno = gen_helper_gvec_shl8i,
2553 .opt_opc = vecop_list,
2554 .vece = MO_8 },
2555 { .fni8 = tcg_gen_vec_shl16i_i64,
2556 .fniv = tcg_gen_shli_vec,
2557 .fno = gen_helper_gvec_shl16i,
2558 .opt_opc = vecop_list,
2559 .vece = MO_16 },
2560 { .fni4 = tcg_gen_shli_i32,
2561 .fniv = tcg_gen_shli_vec,
2562 .fno = gen_helper_gvec_shl32i,
2563 .opt_opc = vecop_list,
2564 .vece = MO_32 },
2565 { .fni8 = tcg_gen_shli_i64,
2566 .fniv = tcg_gen_shli_vec,
2567 .fno = gen_helper_gvec_shl64i,
2568 .opt_opc = vecop_list,
2569 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2570 .vece = MO_64 },
2571 };
2572
2573 tcg_debug_assert(vece <= MO_64);
2574 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2575 if (shift == 0) {
2576 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2577 } else {
2578 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2579 }
2580 }
2581
2582 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2583 {
2584 uint64_t mask = dup_const(MO_8, 0xff >> c);
2585 tcg_gen_shri_i64(d, a, c);
2586 tcg_gen_andi_i64(d, d, mask);
2587 }
2588
2589 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2590 {
2591 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2592 tcg_gen_shri_i64(d, a, c);
2593 tcg_gen_andi_i64(d, d, mask);
2594 }
2595
2596 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2597 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2598 {
2599 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2600 static const GVecGen2i g[4] = {
2601 { .fni8 = tcg_gen_vec_shr8i_i64,
2602 .fniv = tcg_gen_shri_vec,
2603 .fno = gen_helper_gvec_shr8i,
2604 .opt_opc = vecop_list,
2605 .vece = MO_8 },
2606 { .fni8 = tcg_gen_vec_shr16i_i64,
2607 .fniv = tcg_gen_shri_vec,
2608 .fno = gen_helper_gvec_shr16i,
2609 .opt_opc = vecop_list,
2610 .vece = MO_16 },
2611 { .fni4 = tcg_gen_shri_i32,
2612 .fniv = tcg_gen_shri_vec,
2613 .fno = gen_helper_gvec_shr32i,
2614 .opt_opc = vecop_list,
2615 .vece = MO_32 },
2616 { .fni8 = tcg_gen_shri_i64,
2617 .fniv = tcg_gen_shri_vec,
2618 .fno = gen_helper_gvec_shr64i,
2619 .opt_opc = vecop_list,
2620 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2621 .vece = MO_64 },
2622 };
2623
2624 tcg_debug_assert(vece <= MO_64);
2625 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2626 if (shift == 0) {
2627 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2628 } else {
2629 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2630 }
2631 }
2632
2633 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2634 {
2635 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2636 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2637 TCGv_i64 s = tcg_temp_new_i64();
2638
2639 tcg_gen_shri_i64(d, a, c);
2640 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2641 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2642 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2643 tcg_gen_or_i64(d, d, s); /* include sign extension */
2644 tcg_temp_free_i64(s);
2645 }
2646
2647 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2648 {
2649 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2650 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2651 TCGv_i64 s = tcg_temp_new_i64();
2652
2653 tcg_gen_shri_i64(d, a, c);
2654 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2655 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2656 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2657 tcg_gen_or_i64(d, d, s); /* include sign extension */
2658 tcg_temp_free_i64(s);
2659 }
2660
2661 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2662 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2663 {
2664 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
2665 static const GVecGen2i g[4] = {
2666 { .fni8 = tcg_gen_vec_sar8i_i64,
2667 .fniv = tcg_gen_sari_vec,
2668 .fno = gen_helper_gvec_sar8i,
2669 .opt_opc = vecop_list,
2670 .vece = MO_8 },
2671 { .fni8 = tcg_gen_vec_sar16i_i64,
2672 .fniv = tcg_gen_sari_vec,
2673 .fno = gen_helper_gvec_sar16i,
2674 .opt_opc = vecop_list,
2675 .vece = MO_16 },
2676 { .fni4 = tcg_gen_sari_i32,
2677 .fniv = tcg_gen_sari_vec,
2678 .fno = gen_helper_gvec_sar32i,
2679 .opt_opc = vecop_list,
2680 .vece = MO_32 },
2681 { .fni8 = tcg_gen_sari_i64,
2682 .fniv = tcg_gen_sari_vec,
2683 .fno = gen_helper_gvec_sar64i,
2684 .opt_opc = vecop_list,
2685 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2686 .vece = MO_64 },
2687 };
2688
2689 tcg_debug_assert(vece <= MO_64);
2690 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2691 if (shift == 0) {
2692 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2693 } else {
2694 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2695 }
2696 }
2697
2698 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2699 {
2700 uint64_t mask = dup_const(MO_8, 0xff << c);
2701
2702 tcg_gen_shli_i64(d, a, c);
2703 tcg_gen_shri_i64(a, a, 8 - c);
2704 tcg_gen_andi_i64(d, d, mask);
2705 tcg_gen_andi_i64(a, a, ~mask);
2706 tcg_gen_or_i64(d, d, a);
2707 }
2708
2709 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2710 {
2711 uint64_t mask = dup_const(MO_16, 0xffff << c);
2712
2713 tcg_gen_shli_i64(d, a, c);
2714 tcg_gen_shri_i64(a, a, 16 - c);
2715 tcg_gen_andi_i64(d, d, mask);
2716 tcg_gen_andi_i64(a, a, ~mask);
2717 tcg_gen_or_i64(d, d, a);
2718 }
2719
2720 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
2721 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2722 {
2723 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
2724 static const GVecGen2i g[4] = {
2725 { .fni8 = tcg_gen_vec_rotl8i_i64,
2726 .fniv = tcg_gen_rotli_vec,
2727 .fno = gen_helper_gvec_rotl8i,
2728 .opt_opc = vecop_list,
2729 .vece = MO_8 },
2730 { .fni8 = tcg_gen_vec_rotl16i_i64,
2731 .fniv = tcg_gen_rotli_vec,
2732 .fno = gen_helper_gvec_rotl16i,
2733 .opt_opc = vecop_list,
2734 .vece = MO_16 },
2735 { .fni4 = tcg_gen_rotli_i32,
2736 .fniv = tcg_gen_rotli_vec,
2737 .fno = gen_helper_gvec_rotl32i,
2738 .opt_opc = vecop_list,
2739 .vece = MO_32 },
2740 { .fni8 = tcg_gen_rotli_i64,
2741 .fniv = tcg_gen_rotli_vec,
2742 .fno = gen_helper_gvec_rotl64i,
2743 .opt_opc = vecop_list,
2744 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2745 .vece = MO_64 },
2746 };
2747
2748 tcg_debug_assert(vece <= MO_64);
2749 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2750 if (shift == 0) {
2751 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2752 } else {
2753 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2754 }
2755 }
2756
2757 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
2758 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2759 {
2760 tcg_debug_assert(vece <= MO_64);
2761 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2762 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
2763 oprsz, maxsz);
2764 }
2765
2766 /*
2767 * Specialized generation vector shifts by a non-constant scalar.
2768 */
2769
2770 typedef struct {
2771 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
2772 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
2773 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
2774 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
2775 gen_helper_gvec_2 *fno[4];
2776 TCGOpcode s_list[2];
2777 TCGOpcode v_list[2];
2778 } GVecGen2sh;
2779
2780 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2781 uint32_t oprsz, uint32_t tysz, TCGType type,
2782 TCGv_i32 shift,
2783 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
2784 {
2785 TCGv_vec t0 = tcg_temp_new_vec(type);
2786 uint32_t i;
2787
2788 for (i = 0; i < oprsz; i += tysz) {
2789 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2790 fni(vece, t0, t0, shift);
2791 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2792 }
2793 tcg_temp_free_vec(t0);
2794 }
2795
2796 static void
2797 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
2798 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
2799 {
2800 TCGType type;
2801 uint32_t some;
2802
2803 check_size_align(oprsz, maxsz, dofs | aofs);
2804 check_overlap_2(dofs, aofs, maxsz);
2805
2806 /* If the backend has a scalar expansion, great. */
2807 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
2808 if (type) {
2809 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2810 switch (type) {
2811 case TCG_TYPE_V256:
2812 some = QEMU_ALIGN_DOWN(oprsz, 32);
2813 expand_2sh_vec(vece, dofs, aofs, some, 32,
2814 TCG_TYPE_V256, shift, g->fniv_s);
2815 if (some == oprsz) {
2816 break;
2817 }
2818 dofs += some;
2819 aofs += some;
2820 oprsz -= some;
2821 maxsz -= some;
2822 /* fallthru */
2823 case TCG_TYPE_V128:
2824 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
2825 TCG_TYPE_V128, shift, g->fniv_s);
2826 break;
2827 case TCG_TYPE_V64:
2828 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
2829 TCG_TYPE_V64, shift, g->fniv_s);
2830 break;
2831 default:
2832 g_assert_not_reached();
2833 }
2834 tcg_swap_vecop_list(hold_list);
2835 goto clear_tail;
2836 }
2837
2838 /* If the backend supports variable vector shifts, also cool. */
2839 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
2840 if (type) {
2841 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2842 TCGv_vec v_shift = tcg_temp_new_vec(type);
2843
2844 if (vece == MO_64) {
2845 TCGv_i64 sh64 = tcg_temp_new_i64();
2846 tcg_gen_extu_i32_i64(sh64, shift);
2847 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
2848 tcg_temp_free_i64(sh64);
2849 } else {
2850 tcg_gen_dup_i32_vec(vece, v_shift, shift);
2851 }
2852
2853 switch (type) {
2854 case TCG_TYPE_V256:
2855 some = QEMU_ALIGN_DOWN(oprsz, 32);
2856 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
2857 v_shift, false, g->fniv_v);
2858 if (some == oprsz) {
2859 break;
2860 }
2861 dofs += some;
2862 aofs += some;
2863 oprsz -= some;
2864 maxsz -= some;
2865 /* fallthru */
2866 case TCG_TYPE_V128:
2867 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
2868 v_shift, false, g->fniv_v);
2869 break;
2870 case TCG_TYPE_V64:
2871 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
2872 v_shift, false, g->fniv_v);
2873 break;
2874 default:
2875 g_assert_not_reached();
2876 }
2877 tcg_temp_free_vec(v_shift);
2878 tcg_swap_vecop_list(hold_list);
2879 goto clear_tail;
2880 }
2881
2882 /* Otherwise fall back to integral... */
2883 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
2884 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
2885 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
2886 TCGv_i64 sh64 = tcg_temp_new_i64();
2887 tcg_gen_extu_i32_i64(sh64, shift);
2888 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
2889 tcg_temp_free_i64(sh64);
2890 } else {
2891 TCGv_ptr a0 = tcg_temp_new_ptr();
2892 TCGv_ptr a1 = tcg_temp_new_ptr();
2893 TCGv_i32 desc = tcg_temp_new_i32();
2894
2895 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
2896 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
2897 tcg_gen_addi_ptr(a0, cpu_env, dofs);
2898 tcg_gen_addi_ptr(a1, cpu_env, aofs);
2899
2900 g->fno[vece](a0, a1, desc);
2901
2902 tcg_temp_free_ptr(a0);
2903 tcg_temp_free_ptr(a1);
2904 tcg_temp_free_i32(desc);
2905 return;
2906 }
2907
2908 clear_tail:
2909 if (oprsz < maxsz) {
2910 expand_clr(dofs + oprsz, maxsz - oprsz);
2911 }
2912 }
2913
2914 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
2915 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2916 {
2917 static const GVecGen2sh g = {
2918 .fni4 = tcg_gen_shl_i32,
2919 .fni8 = tcg_gen_shl_i64,
2920 .fniv_s = tcg_gen_shls_vec,
2921 .fniv_v = tcg_gen_shlv_vec,
2922 .fno = {
2923 gen_helper_gvec_shl8i,
2924 gen_helper_gvec_shl16i,
2925 gen_helper_gvec_shl32i,
2926 gen_helper_gvec_shl64i,
2927 },
2928 .s_list = { INDEX_op_shls_vec, 0 },
2929 .v_list = { INDEX_op_shlv_vec, 0 },
2930 };
2931
2932 tcg_debug_assert(vece <= MO_64);
2933 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2934 }
2935
2936 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
2937 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2938 {
2939 static const GVecGen2sh g = {
2940 .fni4 = tcg_gen_shr_i32,
2941 .fni8 = tcg_gen_shr_i64,
2942 .fniv_s = tcg_gen_shrs_vec,
2943 .fniv_v = tcg_gen_shrv_vec,
2944 .fno = {
2945 gen_helper_gvec_shr8i,
2946 gen_helper_gvec_shr16i,
2947 gen_helper_gvec_shr32i,
2948 gen_helper_gvec_shr64i,
2949 },
2950 .s_list = { INDEX_op_shrs_vec, 0 },
2951 .v_list = { INDEX_op_shrv_vec, 0 },
2952 };
2953
2954 tcg_debug_assert(vece <= MO_64);
2955 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2956 }
2957
2958 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
2959 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2960 {
2961 static const GVecGen2sh g = {
2962 .fni4 = tcg_gen_sar_i32,
2963 .fni8 = tcg_gen_sar_i64,
2964 .fniv_s = tcg_gen_sars_vec,
2965 .fniv_v = tcg_gen_sarv_vec,
2966 .fno = {
2967 gen_helper_gvec_sar8i,
2968 gen_helper_gvec_sar16i,
2969 gen_helper_gvec_sar32i,
2970 gen_helper_gvec_sar64i,
2971 },
2972 .s_list = { INDEX_op_sars_vec, 0 },
2973 .v_list = { INDEX_op_sarv_vec, 0 },
2974 };
2975
2976 tcg_debug_assert(vece <= MO_64);
2977 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2978 }
2979
2980 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
2981 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2982 {
2983 static const GVecGen2sh g = {
2984 .fni4 = tcg_gen_rotl_i32,
2985 .fni8 = tcg_gen_rotl_i64,
2986 .fniv_s = tcg_gen_rotls_vec,
2987 .fniv_v = tcg_gen_rotlv_vec,
2988 .fno = {
2989 gen_helper_gvec_rotl8i,
2990 gen_helper_gvec_rotl16i,
2991 gen_helper_gvec_rotl32i,
2992 gen_helper_gvec_rotl64i,
2993 },
2994 .s_list = { INDEX_op_rotls_vec, 0 },
2995 .v_list = { INDEX_op_rotlv_vec, 0 },
2996 };
2997
2998 tcg_debug_assert(vece <= MO_64);
2999 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3000 }
3001
3002 /*
3003 * Expand D = A << (B % element bits)
3004 *
3005 * Unlike scalar shifts, where it is easy for the target front end
3006 * to include the modulo as part of the expansion. If the target
3007 * naturally includes the modulo as part of the operation, great!
3008 * If the target has some other behaviour from out-of-range shifts,
3009 * then it could not use this function anyway, and would need to
3010 * do it's own expansion with custom functions.
3011 */
3012 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
3013 TCGv_vec a, TCGv_vec b)
3014 {
3015 TCGv_vec t = tcg_temp_new_vec_matching(d);
3016
3017 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3018 tcg_gen_and_vec(vece, t, t, b);
3019 tcg_gen_shlv_vec(vece, d, a, t);
3020 tcg_temp_free_vec(t);
3021 }
3022
3023 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3024 {
3025 TCGv_i32 t = tcg_temp_new_i32();
3026
3027 tcg_gen_andi_i32(t, b, 31);
3028 tcg_gen_shl_i32(d, a, t);
3029 tcg_temp_free_i32(t);
3030 }
3031
3032 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3033 {
3034 TCGv_i64 t = tcg_temp_new_i64();
3035
3036 tcg_gen_andi_i64(t, b, 63);
3037 tcg_gen_shl_i64(d, a, t);
3038 tcg_temp_free_i64(t);
3039 }
3040
3041 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3042 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3043 {
3044 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
3045 static const GVecGen3 g[4] = {
3046 { .fniv = tcg_gen_shlv_mod_vec,
3047 .fno = gen_helper_gvec_shl8v,
3048 .opt_opc = vecop_list,
3049 .vece = MO_8 },
3050 { .fniv = tcg_gen_shlv_mod_vec,
3051 .fno = gen_helper_gvec_shl16v,
3052 .opt_opc = vecop_list,
3053 .vece = MO_16 },
3054 { .fni4 = tcg_gen_shl_mod_i32,
3055 .fniv = tcg_gen_shlv_mod_vec,
3056 .fno = gen_helper_gvec_shl32v,
3057 .opt_opc = vecop_list,
3058 .vece = MO_32 },
3059 { .fni8 = tcg_gen_shl_mod_i64,
3060 .fniv = tcg_gen_shlv_mod_vec,
3061 .fno = gen_helper_gvec_shl64v,
3062 .opt_opc = vecop_list,
3063 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3064 .vece = MO_64 },
3065 };
3066
3067 tcg_debug_assert(vece <= MO_64);
3068 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3069 }
3070
3071 /*
3072 * Similarly for logical right shifts.
3073 */
3074
3075 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
3076 TCGv_vec a, TCGv_vec b)
3077 {
3078 TCGv_vec t = tcg_temp_new_vec_matching(d);
3079
3080 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3081 tcg_gen_and_vec(vece, t, t, b);
3082 tcg_gen_shrv_vec(vece, d, a, t);
3083 tcg_temp_free_vec(t);
3084 }
3085
3086 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3087 {
3088 TCGv_i32 t = tcg_temp_new_i32();
3089
3090 tcg_gen_andi_i32(t, b, 31);
3091 tcg_gen_shr_i32(d, a, t);
3092 tcg_temp_free_i32(t);
3093 }
3094
3095 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3096 {
3097 TCGv_i64 t = tcg_temp_new_i64();
3098
3099 tcg_gen_andi_i64(t, b, 63);
3100 tcg_gen_shr_i64(d, a, t);
3101 tcg_temp_free_i64(t);
3102 }
3103
3104 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3105 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3106 {
3107 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
3108 static const GVecGen3 g[4] = {
3109 { .fniv = tcg_gen_shrv_mod_vec,
3110 .fno = gen_helper_gvec_shr8v,
3111 .opt_opc = vecop_list,
3112 .vece = MO_8 },
3113 { .fniv = tcg_gen_shrv_mod_vec,
3114 .fno = gen_helper_gvec_shr16v,
3115 .opt_opc = vecop_list,
3116 .vece = MO_16 },
3117 { .fni4 = tcg_gen_shr_mod_i32,
3118 .fniv = tcg_gen_shrv_mod_vec,
3119 .fno = gen_helper_gvec_shr32v,
3120 .opt_opc = vecop_list,
3121 .vece = MO_32 },
3122 { .fni8 = tcg_gen_shr_mod_i64,
3123 .fniv = tcg_gen_shrv_mod_vec,
3124 .fno = gen_helper_gvec_shr64v,
3125 .opt_opc = vecop_list,
3126 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3127 .vece = MO_64 },
3128 };
3129
3130 tcg_debug_assert(vece <= MO_64);
3131 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3132 }
3133
3134 /*
3135 * Similarly for arithmetic right shifts.
3136 */
3137
3138 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3139 TCGv_vec a, TCGv_vec b)
3140 {
3141 TCGv_vec t = tcg_temp_new_vec_matching(d);
3142
3143 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3144 tcg_gen_and_vec(vece, t, t, b);
3145 tcg_gen_sarv_vec(vece, d, a, t);
3146 tcg_temp_free_vec(t);
3147 }
3148
3149 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3150 {
3151 TCGv_i32 t = tcg_temp_new_i32();
3152
3153 tcg_gen_andi_i32(t, b, 31);
3154 tcg_gen_sar_i32(d, a, t);
3155 tcg_temp_free_i32(t);
3156 }
3157
3158 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3159 {
3160 TCGv_i64 t = tcg_temp_new_i64();
3161
3162 tcg_gen_andi_i64(t, b, 63);
3163 tcg_gen_sar_i64(d, a, t);
3164 tcg_temp_free_i64(t);
3165 }
3166
3167 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3168 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3169 {
3170 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3171 static const GVecGen3 g[4] = {
3172 { .fniv = tcg_gen_sarv_mod_vec,
3173 .fno = gen_helper_gvec_sar8v,
3174 .opt_opc = vecop_list,
3175 .vece = MO_8 },
3176 { .fniv = tcg_gen_sarv_mod_vec,
3177 .fno = gen_helper_gvec_sar16v,
3178 .opt_opc = vecop_list,
3179 .vece = MO_16 },
3180 { .fni4 = tcg_gen_sar_mod_i32,
3181 .fniv = tcg_gen_sarv_mod_vec,
3182 .fno = gen_helper_gvec_sar32v,
3183 .opt_opc = vecop_list,
3184 .vece = MO_32 },
3185 { .fni8 = tcg_gen_sar_mod_i64,
3186 .fniv = tcg_gen_sarv_mod_vec,
3187 .fno = gen_helper_gvec_sar64v,
3188 .opt_opc = vecop_list,
3189 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3190 .vece = MO_64 },
3191 };
3192
3193 tcg_debug_assert(vece <= MO_64);
3194 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3195 }
3196
3197 /*
3198 * Similarly for rotates.
3199 */
3200
3201 static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d,
3202 TCGv_vec a, TCGv_vec b)
3203 {
3204 TCGv_vec t = tcg_temp_new_vec_matching(d);
3205
3206 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3207 tcg_gen_and_vec(vece, t, t, b);
3208 tcg_gen_rotlv_vec(vece, d, a, t);
3209 tcg_temp_free_vec