block: User BdrvChild callback for device name
[qemu.git] / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12 #include <sys/mman.h>
13
14 #include "hw/pci/pci.h"
15 #include "hw/i386/pc.h"
16 #include "hw/i386/apic-msidef.h"
17 #include "hw/xen/xen_common.h"
18 #include "hw/xen/xen_backend.h"
19 #include "qmp-commands.h"
20
21 #include "sysemu/char.h"
22 #include "qemu/error-report.h"
23 #include "qemu/range.h"
24 #include "sysemu/xen-mapcache.h"
25 #include "trace.h"
26 #include "exec/address-spaces.h"
27
28 #include <xen/hvm/ioreq.h>
29 #include <xen/hvm/params.h>
30 #include <xen/hvm/e820.h>
31
32 //#define DEBUG_XEN_HVM
33
34 #ifdef DEBUG_XEN_HVM
35 #define DPRINTF(fmt, ...) \
36 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
43 static MemoryRegion *framebuffer;
44 static bool xen_in_migration;
45
46 /* Compatibility with older version */
47
48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
49 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
50 * needs to be included before this block and hw/xen/xen_common.h needs to
51 * be included before xen/hvm/ioreq.h
52 */
53 #ifndef IOREQ_TYPE_VMWARE_PORT
54 #define IOREQ_TYPE_VMWARE_PORT 3
55 struct vmware_regs {
56 uint32_t esi;
57 uint32_t edi;
58 uint32_t ebx;
59 uint32_t ecx;
60 uint32_t edx;
61 };
62 typedef struct vmware_regs vmware_regs_t;
63
64 struct shared_vmport_iopage {
65 struct vmware_regs vcpu_vmport_regs[1];
66 };
67 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
68 #endif
69
70 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
71 {
72 return shared_page->vcpu_ioreq[i].vp_eport;
73 }
74 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
75 {
76 return &shared_page->vcpu_ioreq[vcpu];
77 }
78
79 #define BUFFER_IO_MAX_DELAY 100
80
81 typedef struct XenPhysmap {
82 hwaddr start_addr;
83 ram_addr_t size;
84 const char *name;
85 hwaddr phys_offset;
86
87 QLIST_ENTRY(XenPhysmap) list;
88 } XenPhysmap;
89
90 typedef struct XenIOState {
91 ioservid_t ioservid;
92 shared_iopage_t *shared_page;
93 shared_vmport_iopage_t *shared_vmport_page;
94 buffered_iopage_t *buffered_io_page;
95 QEMUTimer *buffered_io_timer;
96 CPUState **cpu_by_vcpu_id;
97 /* the evtchn port for polling the notification, */
98 evtchn_port_t *ioreq_local_port;
99 /* evtchn local port for buffered io */
100 evtchn_port_t bufioreq_local_port;
101 /* the evtchn fd for polling */
102 xenevtchn_handle *xce_handle;
103 /* which vcpu we are serving */
104 int send_vcpu;
105
106 struct xs_handle *xenstore;
107 MemoryListener memory_listener;
108 MemoryListener io_listener;
109 DeviceListener device_listener;
110 QLIST_HEAD(, XenPhysmap) physmap;
111 hwaddr free_phys_offset;
112 const XenPhysmap *log_for_dirtybit;
113
114 Notifier exit;
115 Notifier suspend;
116 Notifier wakeup;
117 } XenIOState;
118
119 /* Xen specific function for piix pci */
120
121 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
122 {
123 return irq_num + ((pci_dev->devfn >> 3) << 2);
124 }
125
126 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
127 {
128 xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2,
129 irq_num & 3, level);
130 }
131
132 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
133 {
134 int i;
135
136 /* Scan for updates to PCI link routes (0x60-0x63). */
137 for (i = 0; i < len; i++) {
138 uint8_t v = (val >> (8 * i)) & 0xff;
139 if (v & 0x80) {
140 v = 0;
141 }
142 v &= 0xf;
143 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
144 xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v);
145 }
146 }
147 }
148
149 int xen_is_pirq_msi(uint32_t msi_data)
150 {
151 /* If vector is 0, the msi is remapped into a pirq, passed as
152 * dest_id.
153 */
154 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
155 }
156
157 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
158 {
159 xc_hvm_inject_msi(xen_xc, xen_domid, addr, data);
160 }
161
162 static void xen_suspend_notifier(Notifier *notifier, void *data)
163 {
164 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
165 }
166
167 /* Xen Interrupt Controller */
168
169 static void xen_set_irq(void *opaque, int irq, int level)
170 {
171 xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level);
172 }
173
174 qemu_irq *xen_interrupt_controller_init(void)
175 {
176 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
177 }
178
179 /* Memory Ops */
180
181 static void xen_ram_init(PCMachineState *pcms,
182 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
183 {
184 MemoryRegion *sysmem = get_system_memory();
185 ram_addr_t block_len;
186 uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
187 PC_MACHINE_MAX_RAM_BELOW_4G,
188 &error_abort);
189
190 /* Handle the machine opt max-ram-below-4g. It is basically doing
191 * min(xen limit, user limit).
192 */
193 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
194 user_lowmem = HVM_BELOW_4G_RAM_END;
195 }
196
197 if (ram_size >= user_lowmem) {
198 pcms->above_4g_mem_size = ram_size - user_lowmem;
199 pcms->below_4g_mem_size = user_lowmem;
200 } else {
201 pcms->above_4g_mem_size = 0;
202 pcms->below_4g_mem_size = ram_size;
203 }
204 if (!pcms->above_4g_mem_size) {
205 block_len = ram_size;
206 } else {
207 /*
208 * Xen does not allocate the memory continuously, it keeps a
209 * hole of the size computed above or passed in.
210 */
211 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
212 }
213 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
214 &error_fatal);
215 *ram_memory_p = &ram_memory;
216 vmstate_register_ram_global(&ram_memory);
217
218 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
219 &ram_memory, 0, 0xa0000);
220 memory_region_add_subregion(sysmem, 0, &ram_640k);
221 /* Skip of the VGA IO memory space, it will be registered later by the VGA
222 * emulated device.
223 *
224 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
225 * the Options ROM, so it is registered here as RAM.
226 */
227 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
228 &ram_memory, 0xc0000,
229 pcms->below_4g_mem_size - 0xc0000);
230 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
231 if (pcms->above_4g_mem_size > 0) {
232 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
233 &ram_memory, 0x100000000ULL,
234 pcms->above_4g_mem_size);
235 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
236 }
237 }
238
239 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
240 Error **errp)
241 {
242 unsigned long nr_pfn;
243 xen_pfn_t *pfn_list;
244 int i;
245
246 if (runstate_check(RUN_STATE_INMIGRATE)) {
247 /* RAM already populated in Xen */
248 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
249 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
250 __func__, size, ram_addr);
251 return;
252 }
253
254 if (mr == &ram_memory) {
255 return;
256 }
257
258 trace_xen_ram_alloc(ram_addr, size);
259
260 nr_pfn = size >> TARGET_PAGE_BITS;
261 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
262
263 for (i = 0; i < nr_pfn; i++) {
264 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
265 }
266
267 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
268 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
269 ram_addr);
270 }
271
272 g_free(pfn_list);
273 }
274
275 static XenPhysmap *get_physmapping(XenIOState *state,
276 hwaddr start_addr, ram_addr_t size)
277 {
278 XenPhysmap *physmap = NULL;
279
280 start_addr &= TARGET_PAGE_MASK;
281
282 QLIST_FOREACH(physmap, &state->physmap, list) {
283 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
284 return physmap;
285 }
286 }
287 return NULL;
288 }
289
290 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
291 ram_addr_t size, void *opaque)
292 {
293 hwaddr addr = start_addr & TARGET_PAGE_MASK;
294 XenIOState *xen_io_state = opaque;
295 XenPhysmap *physmap = NULL;
296
297 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
298 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
299 return physmap->start_addr;
300 }
301 }
302
303 return start_addr;
304 }
305
306 static int xen_add_to_physmap(XenIOState *state,
307 hwaddr start_addr,
308 ram_addr_t size,
309 MemoryRegion *mr,
310 hwaddr offset_within_region)
311 {
312 unsigned long i = 0;
313 int rc = 0;
314 XenPhysmap *physmap = NULL;
315 hwaddr pfn, start_gpfn;
316 hwaddr phys_offset = memory_region_get_ram_addr(mr);
317 char path[80], value[17];
318 const char *mr_name;
319
320 if (get_physmapping(state, start_addr, size)) {
321 return 0;
322 }
323 if (size <= 0) {
324 return -1;
325 }
326
327 /* Xen can only handle a single dirty log region for now and we want
328 * the linear framebuffer to be that region.
329 * Avoid tracking any regions that is not videoram and avoid tracking
330 * the legacy vga region. */
331 if (mr == framebuffer && start_addr > 0xbffff) {
332 goto go_physmap;
333 }
334 return -1;
335
336 go_physmap:
337 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
338 start_addr, start_addr + size);
339
340 pfn = phys_offset >> TARGET_PAGE_BITS;
341 start_gpfn = start_addr >> TARGET_PAGE_BITS;
342 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
343 unsigned long idx = pfn + i;
344 xen_pfn_t gpfn = start_gpfn + i;
345
346 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
347 if (rc) {
348 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
349 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
350 return -rc;
351 }
352 }
353
354 mr_name = memory_region_name(mr);
355
356 physmap = g_malloc(sizeof (XenPhysmap));
357
358 physmap->start_addr = start_addr;
359 physmap->size = size;
360 physmap->name = mr_name;
361 physmap->phys_offset = phys_offset;
362
363 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
364
365 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
366 start_addr >> TARGET_PAGE_BITS,
367 (start_addr + size - 1) >> TARGET_PAGE_BITS,
368 XEN_DOMCTL_MEM_CACHEATTR_WB);
369
370 snprintf(path, sizeof(path),
371 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
372 xen_domid, (uint64_t)phys_offset);
373 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
374 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
375 return -1;
376 }
377 snprintf(path, sizeof(path),
378 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
379 xen_domid, (uint64_t)phys_offset);
380 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
381 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
382 return -1;
383 }
384 if (mr_name) {
385 snprintf(path, sizeof(path),
386 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
387 xen_domid, (uint64_t)phys_offset);
388 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
389 return -1;
390 }
391 }
392
393 return 0;
394 }
395
396 static int xen_remove_from_physmap(XenIOState *state,
397 hwaddr start_addr,
398 ram_addr_t size)
399 {
400 unsigned long i = 0;
401 int rc = 0;
402 XenPhysmap *physmap = NULL;
403 hwaddr phys_offset = 0;
404
405 physmap = get_physmapping(state, start_addr, size);
406 if (physmap == NULL) {
407 return -1;
408 }
409
410 phys_offset = physmap->phys_offset;
411 size = physmap->size;
412
413 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
414 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
415
416 size >>= TARGET_PAGE_BITS;
417 start_addr >>= TARGET_PAGE_BITS;
418 phys_offset >>= TARGET_PAGE_BITS;
419 for (i = 0; i < size; i++) {
420 xen_pfn_t idx = start_addr + i;
421 xen_pfn_t gpfn = phys_offset + i;
422
423 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
424 if (rc) {
425 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
426 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
427 return -rc;
428 }
429 }
430
431 QLIST_REMOVE(physmap, list);
432 if (state->log_for_dirtybit == physmap) {
433 state->log_for_dirtybit = NULL;
434 }
435 g_free(physmap);
436
437 return 0;
438 }
439
440 static void xen_set_memory(struct MemoryListener *listener,
441 MemoryRegionSection *section,
442 bool add)
443 {
444 XenIOState *state = container_of(listener, XenIOState, memory_listener);
445 hwaddr start_addr = section->offset_within_address_space;
446 ram_addr_t size = int128_get64(section->size);
447 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
448 hvmmem_type_t mem_type;
449
450 if (section->mr == &ram_memory) {
451 return;
452 } else {
453 if (add) {
454 xen_map_memory_section(xen_xc, xen_domid, state->ioservid,
455 section);
456 } else {
457 xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid,
458 section);
459 }
460 }
461
462 if (!memory_region_is_ram(section->mr)) {
463 return;
464 }
465
466 if (log_dirty != add) {
467 return;
468 }
469
470 trace_xen_client_set_memory(start_addr, size, log_dirty);
471
472 start_addr &= TARGET_PAGE_MASK;
473 size = TARGET_PAGE_ALIGN(size);
474
475 if (add) {
476 if (!memory_region_is_rom(section->mr)) {
477 xen_add_to_physmap(state, start_addr, size,
478 section->mr, section->offset_within_region);
479 } else {
480 mem_type = HVMMEM_ram_ro;
481 if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type,
482 start_addr >> TARGET_PAGE_BITS,
483 size >> TARGET_PAGE_BITS)) {
484 DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n",
485 start_addr);
486 }
487 }
488 } else {
489 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
490 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
491 }
492 }
493 }
494
495 static void xen_region_add(MemoryListener *listener,
496 MemoryRegionSection *section)
497 {
498 memory_region_ref(section->mr);
499 xen_set_memory(listener, section, true);
500 }
501
502 static void xen_region_del(MemoryListener *listener,
503 MemoryRegionSection *section)
504 {
505 xen_set_memory(listener, section, false);
506 memory_region_unref(section->mr);
507 }
508
509 static void xen_io_add(MemoryListener *listener,
510 MemoryRegionSection *section)
511 {
512 XenIOState *state = container_of(listener, XenIOState, io_listener);
513
514 memory_region_ref(section->mr);
515
516 xen_map_io_section(xen_xc, xen_domid, state->ioservid, section);
517 }
518
519 static void xen_io_del(MemoryListener *listener,
520 MemoryRegionSection *section)
521 {
522 XenIOState *state = container_of(listener, XenIOState, io_listener);
523
524 xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section);
525
526 memory_region_unref(section->mr);
527 }
528
529 static void xen_device_realize(DeviceListener *listener,
530 DeviceState *dev)
531 {
532 XenIOState *state = container_of(listener, XenIOState, device_listener);
533
534 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
535 PCIDevice *pci_dev = PCI_DEVICE(dev);
536
537 xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
538 }
539 }
540
541 static void xen_device_unrealize(DeviceListener *listener,
542 DeviceState *dev)
543 {
544 XenIOState *state = container_of(listener, XenIOState, device_listener);
545
546 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
547 PCIDevice *pci_dev = PCI_DEVICE(dev);
548
549 xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
550 }
551 }
552
553 static void xen_sync_dirty_bitmap(XenIOState *state,
554 hwaddr start_addr,
555 ram_addr_t size)
556 {
557 hwaddr npages = size >> TARGET_PAGE_BITS;
558 const int width = sizeof(unsigned long) * 8;
559 unsigned long bitmap[(npages + width - 1) / width];
560 int rc, i, j;
561 const XenPhysmap *physmap = NULL;
562
563 physmap = get_physmapping(state, start_addr, size);
564 if (physmap == NULL) {
565 /* not handled */
566 return;
567 }
568
569 if (state->log_for_dirtybit == NULL) {
570 state->log_for_dirtybit = physmap;
571 } else if (state->log_for_dirtybit != physmap) {
572 /* Only one range for dirty bitmap can be tracked. */
573 return;
574 }
575
576 rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid,
577 start_addr >> TARGET_PAGE_BITS, npages,
578 bitmap);
579 if (rc < 0) {
580 #ifndef ENODATA
581 #define ENODATA ENOENT
582 #endif
583 if (errno == ENODATA) {
584 memory_region_set_dirty(framebuffer, 0, size);
585 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
586 ", 0x" TARGET_FMT_plx "): %s\n",
587 start_addr, start_addr + size, strerror(errno));
588 }
589 return;
590 }
591
592 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
593 unsigned long map = bitmap[i];
594 while (map != 0) {
595 j = ctzl(map);
596 map &= ~(1ul << j);
597 memory_region_set_dirty(framebuffer,
598 (i * width + j) * TARGET_PAGE_SIZE,
599 TARGET_PAGE_SIZE);
600 };
601 }
602 }
603
604 static void xen_log_start(MemoryListener *listener,
605 MemoryRegionSection *section,
606 int old, int new)
607 {
608 XenIOState *state = container_of(listener, XenIOState, memory_listener);
609
610 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
611 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
612 int128_get64(section->size));
613 }
614 }
615
616 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
617 int old, int new)
618 {
619 XenIOState *state = container_of(listener, XenIOState, memory_listener);
620
621 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
622 state->log_for_dirtybit = NULL;
623 /* Disable dirty bit tracking */
624 xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL);
625 }
626 }
627
628 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
629 {
630 XenIOState *state = container_of(listener, XenIOState, memory_listener);
631
632 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
633 int128_get64(section->size));
634 }
635
636 static void xen_log_global_start(MemoryListener *listener)
637 {
638 if (xen_enabled()) {
639 xen_in_migration = true;
640 }
641 }
642
643 static void xen_log_global_stop(MemoryListener *listener)
644 {
645 xen_in_migration = false;
646 }
647
648 static MemoryListener xen_memory_listener = {
649 .region_add = xen_region_add,
650 .region_del = xen_region_del,
651 .log_start = xen_log_start,
652 .log_stop = xen_log_stop,
653 .log_sync = xen_log_sync,
654 .log_global_start = xen_log_global_start,
655 .log_global_stop = xen_log_global_stop,
656 .priority = 10,
657 };
658
659 static MemoryListener xen_io_listener = {
660 .region_add = xen_io_add,
661 .region_del = xen_io_del,
662 .priority = 10,
663 };
664
665 static DeviceListener xen_device_listener = {
666 .realize = xen_device_realize,
667 .unrealize = xen_device_unrealize,
668 };
669
670 /* get the ioreq packets from share mem */
671 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
672 {
673 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
674
675 if (req->state != STATE_IOREQ_READY) {
676 DPRINTF("I/O request not ready: "
677 "%x, ptr: %x, port: %"PRIx64", "
678 "data: %"PRIx64", count: %u, size: %u\n",
679 req->state, req->data_is_ptr, req->addr,
680 req->data, req->count, req->size);
681 return NULL;
682 }
683
684 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
685
686 req->state = STATE_IOREQ_INPROCESS;
687 return req;
688 }
689
690 /* use poll to get the port notification */
691 /* ioreq_vec--out,the */
692 /* retval--the number of ioreq packet */
693 static ioreq_t *cpu_get_ioreq(XenIOState *state)
694 {
695 int i;
696 evtchn_port_t port;
697
698 port = xenevtchn_pending(state->xce_handle);
699 if (port == state->bufioreq_local_port) {
700 timer_mod(state->buffered_io_timer,
701 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
702 return NULL;
703 }
704
705 if (port != -1) {
706 for (i = 0; i < max_cpus; i++) {
707 if (state->ioreq_local_port[i] == port) {
708 break;
709 }
710 }
711
712 if (i == max_cpus) {
713 hw_error("Fatal error while trying to get io event!\n");
714 }
715
716 /* unmask the wanted port again */
717 xenevtchn_unmask(state->xce_handle, port);
718
719 /* get the io packet from shared memory */
720 state->send_vcpu = i;
721 return cpu_get_ioreq_from_shared_memory(state, i);
722 }
723
724 /* read error or read nothing */
725 return NULL;
726 }
727
728 static uint32_t do_inp(pio_addr_t addr, unsigned long size)
729 {
730 switch (size) {
731 case 1:
732 return cpu_inb(addr);
733 case 2:
734 return cpu_inw(addr);
735 case 4:
736 return cpu_inl(addr);
737 default:
738 hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size);
739 }
740 }
741
742 static void do_outp(pio_addr_t addr,
743 unsigned long size, uint32_t val)
744 {
745 switch (size) {
746 case 1:
747 return cpu_outb(addr, val);
748 case 2:
749 return cpu_outw(addr, val);
750 case 4:
751 return cpu_outl(addr, val);
752 default:
753 hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size);
754 }
755 }
756
757 /*
758 * Helper functions which read/write an object from/to physical guest
759 * memory, as part of the implementation of an ioreq.
760 *
761 * Equivalent to
762 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
763 * val, req->size, 0/1)
764 * except without the integer overflow problems.
765 */
766 static void rw_phys_req_item(hwaddr addr,
767 ioreq_t *req, uint32_t i, void *val, int rw)
768 {
769 /* Do everything unsigned so overflow just results in a truncated result
770 * and accesses to undesired parts of guest memory, which is up
771 * to the guest */
772 hwaddr offset = (hwaddr)req->size * i;
773 if (req->df) {
774 addr -= offset;
775 } else {
776 addr += offset;
777 }
778 cpu_physical_memory_rw(addr, val, req->size, rw);
779 }
780
781 static inline void read_phys_req_item(hwaddr addr,
782 ioreq_t *req, uint32_t i, void *val)
783 {
784 rw_phys_req_item(addr, req, i, val, 0);
785 }
786 static inline void write_phys_req_item(hwaddr addr,
787 ioreq_t *req, uint32_t i, void *val)
788 {
789 rw_phys_req_item(addr, req, i, val, 1);
790 }
791
792
793 static void cpu_ioreq_pio(ioreq_t *req)
794 {
795 uint32_t i;
796
797 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
798 req->data, req->count, req->size);
799
800 if (req->dir == IOREQ_READ) {
801 if (!req->data_is_ptr) {
802 req->data = do_inp(req->addr, req->size);
803 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
804 req->size);
805 } else {
806 uint32_t tmp;
807
808 for (i = 0; i < req->count; i++) {
809 tmp = do_inp(req->addr, req->size);
810 write_phys_req_item(req->data, req, i, &tmp);
811 }
812 }
813 } else if (req->dir == IOREQ_WRITE) {
814 if (!req->data_is_ptr) {
815 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
816 req->size);
817 do_outp(req->addr, req->size, req->data);
818 } else {
819 for (i = 0; i < req->count; i++) {
820 uint32_t tmp = 0;
821
822 read_phys_req_item(req->data, req, i, &tmp);
823 do_outp(req->addr, req->size, tmp);
824 }
825 }
826 }
827 }
828
829 static void cpu_ioreq_move(ioreq_t *req)
830 {
831 uint32_t i;
832
833 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
834 req->data, req->count, req->size);
835
836 if (!req->data_is_ptr) {
837 if (req->dir == IOREQ_READ) {
838 for (i = 0; i < req->count; i++) {
839 read_phys_req_item(req->addr, req, i, &req->data);
840 }
841 } else if (req->dir == IOREQ_WRITE) {
842 for (i = 0; i < req->count; i++) {
843 write_phys_req_item(req->addr, req, i, &req->data);
844 }
845 }
846 } else {
847 uint64_t tmp;
848
849 if (req->dir == IOREQ_READ) {
850 for (i = 0; i < req->count; i++) {
851 read_phys_req_item(req->addr, req, i, &tmp);
852 write_phys_req_item(req->data, req, i, &tmp);
853 }
854 } else if (req->dir == IOREQ_WRITE) {
855 for (i = 0; i < req->count; i++) {
856 read_phys_req_item(req->data, req, i, &tmp);
857 write_phys_req_item(req->addr, req, i, &tmp);
858 }
859 }
860 }
861 }
862
863 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
864 {
865 X86CPU *cpu;
866 CPUX86State *env;
867
868 cpu = X86_CPU(current_cpu);
869 env = &cpu->env;
870 env->regs[R_EAX] = req->data;
871 env->regs[R_EBX] = vmport_regs->ebx;
872 env->regs[R_ECX] = vmport_regs->ecx;
873 env->regs[R_EDX] = vmport_regs->edx;
874 env->regs[R_ESI] = vmport_regs->esi;
875 env->regs[R_EDI] = vmport_regs->edi;
876 }
877
878 static void regs_from_cpu(vmware_regs_t *vmport_regs)
879 {
880 X86CPU *cpu = X86_CPU(current_cpu);
881 CPUX86State *env = &cpu->env;
882
883 vmport_regs->ebx = env->regs[R_EBX];
884 vmport_regs->ecx = env->regs[R_ECX];
885 vmport_regs->edx = env->regs[R_EDX];
886 vmport_regs->esi = env->regs[R_ESI];
887 vmport_regs->edi = env->regs[R_EDI];
888 }
889
890 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
891 {
892 vmware_regs_t *vmport_regs;
893
894 assert(state->shared_vmport_page);
895 vmport_regs =
896 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
897 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
898
899 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
900 regs_to_cpu(vmport_regs, req);
901 cpu_ioreq_pio(req);
902 regs_from_cpu(vmport_regs);
903 current_cpu = NULL;
904 }
905
906 static void handle_ioreq(XenIOState *state, ioreq_t *req)
907 {
908 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
909 req->addr, req->data, req->count, req->size);
910
911 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
912 (req->size < sizeof (target_ulong))) {
913 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
914 }
915
916 if (req->dir == IOREQ_WRITE)
917 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
918 req->addr, req->data, req->count, req->size);
919
920 switch (req->type) {
921 case IOREQ_TYPE_PIO:
922 cpu_ioreq_pio(req);
923 break;
924 case IOREQ_TYPE_COPY:
925 cpu_ioreq_move(req);
926 break;
927 case IOREQ_TYPE_VMWARE_PORT:
928 handle_vmport_ioreq(state, req);
929 break;
930 case IOREQ_TYPE_TIMEOFFSET:
931 break;
932 case IOREQ_TYPE_INVALIDATE:
933 xen_invalidate_map_cache();
934 break;
935 case IOREQ_TYPE_PCI_CONFIG: {
936 uint32_t sbdf = req->addr >> 32;
937 uint32_t val;
938
939 /* Fake a write to port 0xCF8 so that
940 * the config space access will target the
941 * correct device model.
942 */
943 val = (1u << 31) |
944 ((req->addr & 0x0f00) << 16) |
945 ((sbdf & 0xffff) << 8) |
946 (req->addr & 0xfc);
947 do_outp(0xcf8, 4, val);
948
949 /* Now issue the config space access via
950 * port 0xCFC
951 */
952 req->addr = 0xcfc | (req->addr & 0x03);
953 cpu_ioreq_pio(req);
954 break;
955 }
956 default:
957 hw_error("Invalid ioreq type 0x%x\n", req->type);
958 }
959 if (req->dir == IOREQ_READ) {
960 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
961 req->addr, req->data, req->count, req->size);
962 }
963 }
964
965 static int handle_buffered_iopage(XenIOState *state)
966 {
967 buffered_iopage_t *buf_page = state->buffered_io_page;
968 buf_ioreq_t *buf_req = NULL;
969 ioreq_t req;
970 int qw;
971
972 if (!buf_page) {
973 return 0;
974 }
975
976 memset(&req, 0x00, sizeof(req));
977
978 for (;;) {
979 uint32_t rdptr = buf_page->read_pointer, wrptr;
980
981 xen_rmb();
982 wrptr = buf_page->write_pointer;
983 xen_rmb();
984 if (rdptr != buf_page->read_pointer) {
985 continue;
986 }
987 if (rdptr == wrptr) {
988 break;
989 }
990 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
991 req.size = 1UL << buf_req->size;
992 req.count = 1;
993 req.addr = buf_req->addr;
994 req.data = buf_req->data;
995 req.state = STATE_IOREQ_READY;
996 req.dir = buf_req->dir;
997 req.df = 1;
998 req.type = buf_req->type;
999 req.data_is_ptr = 0;
1000 qw = (req.size == 8);
1001 if (qw) {
1002 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1003 IOREQ_BUFFER_SLOT_NUM];
1004 req.data |= ((uint64_t)buf_req->data) << 32;
1005 }
1006
1007 handle_ioreq(state, &req);
1008
1009 atomic_add(&buf_page->read_pointer, qw + 1);
1010 }
1011
1012 return req.count;
1013 }
1014
1015 static void handle_buffered_io(void *opaque)
1016 {
1017 XenIOState *state = opaque;
1018
1019 if (handle_buffered_iopage(state)) {
1020 timer_mod(state->buffered_io_timer,
1021 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1022 } else {
1023 timer_del(state->buffered_io_timer);
1024 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1025 }
1026 }
1027
1028 static void cpu_handle_ioreq(void *opaque)
1029 {
1030 XenIOState *state = opaque;
1031 ioreq_t *req = cpu_get_ioreq(state);
1032
1033 handle_buffered_iopage(state);
1034 if (req) {
1035 handle_ioreq(state, req);
1036
1037 if (req->state != STATE_IOREQ_INPROCESS) {
1038 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1039 "%x, ptr: %x, port: %"PRIx64", "
1040 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1041 req->state, req->data_is_ptr, req->addr,
1042 req->data, req->count, req->size, req->type);
1043 destroy_hvm_domain(false);
1044 return;
1045 }
1046
1047 xen_wmb(); /* Update ioreq contents /then/ update state. */
1048
1049 /*
1050 * We do this before we send the response so that the tools
1051 * have the opportunity to pick up on the reset before the
1052 * guest resumes and does a hlt with interrupts disabled which
1053 * causes Xen to powerdown the domain.
1054 */
1055 if (runstate_is_running()) {
1056 if (qemu_shutdown_requested_get()) {
1057 destroy_hvm_domain(false);
1058 }
1059 if (qemu_reset_requested_get()) {
1060 qemu_system_reset(VMRESET_REPORT);
1061 destroy_hvm_domain(true);
1062 }
1063 }
1064
1065 req->state = STATE_IORESP_READY;
1066 xenevtchn_notify(state->xce_handle,
1067 state->ioreq_local_port[state->send_vcpu]);
1068 }
1069 }
1070
1071 static void xen_main_loop_prepare(XenIOState *state)
1072 {
1073 int evtchn_fd = -1;
1074
1075 if (state->xce_handle != NULL) {
1076 evtchn_fd = xenevtchn_fd(state->xce_handle);
1077 }
1078
1079 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1080 state);
1081
1082 if (evtchn_fd != -1) {
1083 CPUState *cpu_state;
1084
1085 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1086 CPU_FOREACH(cpu_state) {
1087 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1088 __func__, cpu_state->cpu_index, cpu_state);
1089 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1090 }
1091 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1092 }
1093 }
1094
1095
1096 static void xen_hvm_change_state_handler(void *opaque, int running,
1097 RunState rstate)
1098 {
1099 XenIOState *state = opaque;
1100
1101 if (running) {
1102 xen_main_loop_prepare(state);
1103 }
1104
1105 xen_set_ioreq_server_state(xen_xc, xen_domid,
1106 state->ioservid,
1107 (rstate == RUN_STATE_RUNNING));
1108 }
1109
1110 static void xen_exit_notifier(Notifier *n, void *data)
1111 {
1112 XenIOState *state = container_of(n, XenIOState, exit);
1113
1114 xenevtchn_close(state->xce_handle);
1115 xs_daemon_close(state->xenstore);
1116 }
1117
1118 static void xen_read_physmap(XenIOState *state)
1119 {
1120 XenPhysmap *physmap = NULL;
1121 unsigned int len, num, i;
1122 char path[80], *value = NULL;
1123 char **entries = NULL;
1124
1125 snprintf(path, sizeof(path),
1126 "/local/domain/0/device-model/%d/physmap", xen_domid);
1127 entries = xs_directory(state->xenstore, 0, path, &num);
1128 if (entries == NULL)
1129 return;
1130
1131 for (i = 0; i < num; i++) {
1132 physmap = g_malloc(sizeof (XenPhysmap));
1133 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1134 snprintf(path, sizeof(path),
1135 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1136 xen_domid, entries[i]);
1137 value = xs_read(state->xenstore, 0, path, &len);
1138 if (value == NULL) {
1139 g_free(physmap);
1140 continue;
1141 }
1142 physmap->start_addr = strtoull(value, NULL, 16);
1143 free(value);
1144
1145 snprintf(path, sizeof(path),
1146 "/local/domain/0/device-model/%d/physmap/%s/size",
1147 xen_domid, entries[i]);
1148 value = xs_read(state->xenstore, 0, path, &len);
1149 if (value == NULL) {
1150 g_free(physmap);
1151 continue;
1152 }
1153 physmap->size = strtoull(value, NULL, 16);
1154 free(value);
1155
1156 snprintf(path, sizeof(path),
1157 "/local/domain/0/device-model/%d/physmap/%s/name",
1158 xen_domid, entries[i]);
1159 physmap->name = xs_read(state->xenstore, 0, path, &len);
1160
1161 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1162 }
1163 free(entries);
1164 }
1165
1166 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1167 {
1168 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1169 }
1170
1171 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1172 {
1173 int i, rc;
1174 xen_pfn_t ioreq_pfn;
1175 xen_pfn_t bufioreq_pfn;
1176 evtchn_port_t bufioreq_evtchn;
1177 XenIOState *state;
1178
1179 state = g_malloc0(sizeof (XenIOState));
1180
1181 state->xce_handle = xenevtchn_open(NULL, 0);
1182 if (state->xce_handle == NULL) {
1183 perror("xen: event channel open");
1184 goto err;
1185 }
1186
1187 state->xenstore = xs_daemon_open();
1188 if (state->xenstore == NULL) {
1189 perror("xen: xenstore open");
1190 goto err;
1191 }
1192
1193 rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid);
1194 if (rc < 0) {
1195 perror("xen: ioreq server create");
1196 goto err;
1197 }
1198
1199 state->exit.notify = xen_exit_notifier;
1200 qemu_add_exit_notifier(&state->exit);
1201
1202 state->suspend.notify = xen_suspend_notifier;
1203 qemu_register_suspend_notifier(&state->suspend);
1204
1205 state->wakeup.notify = xen_wakeup_notifier;
1206 qemu_register_wakeup_notifier(&state->wakeup);
1207
1208 rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid,
1209 &ioreq_pfn, &bufioreq_pfn,
1210 &bufioreq_evtchn);
1211 if (rc < 0) {
1212 error_report("failed to get ioreq server info: error %d handle=%p",
1213 errno, xen_xc);
1214 goto err;
1215 }
1216
1217 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1218 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1219 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1220
1221 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1222 PROT_READ|PROT_WRITE,
1223 1, &ioreq_pfn, NULL);
1224 if (state->shared_page == NULL) {
1225 error_report("map shared IO page returned error %d handle=%p",
1226 errno, xen_xc);
1227 goto err;
1228 }
1229
1230 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1231 if (!rc) {
1232 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1233 state->shared_vmport_page =
1234 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1235 1, &ioreq_pfn, NULL);
1236 if (state->shared_vmport_page == NULL) {
1237 error_report("map shared vmport IO page returned error %d handle=%p",
1238 errno, xen_xc);
1239 goto err;
1240 }
1241 } else if (rc != -ENOSYS) {
1242 error_report("get vmport regs pfn returned error %d, rc=%d",
1243 errno, rc);
1244 goto err;
1245 }
1246
1247 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1248 PROT_READ|PROT_WRITE,
1249 1, &bufioreq_pfn, NULL);
1250 if (state->buffered_io_page == NULL) {
1251 error_report("map buffered IO page returned error %d", errno);
1252 goto err;
1253 }
1254
1255 /* Note: cpus is empty at this point in init */
1256 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1257
1258 rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true);
1259 if (rc < 0) {
1260 error_report("failed to enable ioreq server info: error %d handle=%p",
1261 errno, xen_xc);
1262 goto err;
1263 }
1264
1265 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1266
1267 /* FIXME: how about if we overflow the page here? */
1268 for (i = 0; i < max_cpus; i++) {
1269 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1270 xen_vcpu_eport(state->shared_page, i));
1271 if (rc == -1) {
1272 error_report("shared evtchn %d bind error %d", i, errno);
1273 goto err;
1274 }
1275 state->ioreq_local_port[i] = rc;
1276 }
1277
1278 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1279 bufioreq_evtchn);
1280 if (rc == -1) {
1281 error_report("buffered evtchn bind error %d", errno);
1282 goto err;
1283 }
1284 state->bufioreq_local_port = rc;
1285
1286 /* Init RAM management */
1287 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1288 xen_ram_init(pcms, ram_size, ram_memory);
1289
1290 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1291
1292 state->memory_listener = xen_memory_listener;
1293 QLIST_INIT(&state->physmap);
1294 memory_listener_register(&state->memory_listener, &address_space_memory);
1295 state->log_for_dirtybit = NULL;
1296
1297 state->io_listener = xen_io_listener;
1298 memory_listener_register(&state->io_listener, &address_space_io);
1299
1300 state->device_listener = xen_device_listener;
1301 device_listener_register(&state->device_listener);
1302
1303 /* Initialize backend core & drivers */
1304 if (xen_be_init() != 0) {
1305 error_report("xen backend core setup failed");
1306 goto err;
1307 }
1308 xen_be_register("console", &xen_console_ops);
1309 xen_be_register("vkbd", &xen_kbdmouse_ops);
1310 xen_be_register("qdisk", &xen_blkdev_ops);
1311 xen_read_physmap(state);
1312 return;
1313
1314 err:
1315 error_report("xen hardware virtual machine initialisation failed");
1316 exit(1);
1317 }
1318
1319 void destroy_hvm_domain(bool reboot)
1320 {
1321 xc_interface *xc_handle;
1322 int sts;
1323
1324 xc_handle = xc_interface_open(0, 0, 0);
1325 if (xc_handle == NULL) {
1326 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1327 } else {
1328 sts = xc_domain_shutdown(xc_handle, xen_domid,
1329 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1330 if (sts != 0) {
1331 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1332 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1333 sts, strerror(errno));
1334 } else {
1335 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1336 reboot ? "reboot" : "poweroff");
1337 }
1338 xc_interface_close(xc_handle);
1339 }
1340 }
1341
1342 void xen_register_framebuffer(MemoryRegion *mr)
1343 {
1344 framebuffer = mr;
1345 }
1346
1347 void xen_shutdown_fatal_error(const char *fmt, ...)
1348 {
1349 va_list ap;
1350
1351 va_start(ap, fmt);
1352 vfprintf(stderr, fmt, ap);
1353 va_end(ap);
1354 fprintf(stderr, "Will destroy the domain.\n");
1355 /* destroy the domain */
1356 qemu_system_shutdown_request();
1357 }
1358
1359 void xen_modified_memory(ram_addr_t start, ram_addr_t length)
1360 {
1361 if (unlikely(xen_in_migration)) {
1362 int rc;
1363 ram_addr_t start_pfn, nb_pages;
1364
1365 if (length == 0) {
1366 length = TARGET_PAGE_SIZE;
1367 }
1368 start_pfn = start >> TARGET_PAGE_BITS;
1369 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1370 - start_pfn;
1371 rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages);
1372 if (rc) {
1373 fprintf(stderr,
1374 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1375 __func__, start, nb_pages, rc, strerror(-rc));
1376 }
1377 }
1378 }
1379
1380 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1381 {
1382 if (enable) {
1383 memory_global_dirty_log_start();
1384 } else {
1385 memory_global_dirty_log_stop();
1386 }
1387 }