hw/arm/virt: Merge VirtBoardInfo and VirtMachineState
[qemu.git] / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/i386/pc.h"
16 #include "hw/i386/apic-msidef.h"
17 #include "hw/xen/xen_common.h"
18 #include "hw/xen/xen_backend.h"
19 #include "qmp-commands.h"
20
21 #include "sysemu/char.h"
22 #include "qemu/error-report.h"
23 #include "qemu/range.h"
24 #include "sysemu/xen-mapcache.h"
25 #include "trace.h"
26 #include "exec/address-spaces.h"
27
28 #include <xen/hvm/ioreq.h>
29 #include <xen/hvm/params.h>
30 #include <xen/hvm/e820.h>
31
32 //#define DEBUG_XEN_HVM
33
34 #ifdef DEBUG_XEN_HVM
35 #define DPRINTF(fmt, ...) \
36 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
43 static MemoryRegion *framebuffer;
44 static bool xen_in_migration;
45
46 /* Compatibility with older version */
47
48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
49 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
50 * needs to be included before this block and hw/xen/xen_common.h needs to
51 * be included before xen/hvm/ioreq.h
52 */
53 #ifndef IOREQ_TYPE_VMWARE_PORT
54 #define IOREQ_TYPE_VMWARE_PORT 3
55 struct vmware_regs {
56 uint32_t esi;
57 uint32_t edi;
58 uint32_t ebx;
59 uint32_t ecx;
60 uint32_t edx;
61 };
62 typedef struct vmware_regs vmware_regs_t;
63
64 struct shared_vmport_iopage {
65 struct vmware_regs vcpu_vmport_regs[1];
66 };
67 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
68 #endif
69
70 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
71 {
72 return shared_page->vcpu_ioreq[i].vp_eport;
73 }
74 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
75 {
76 return &shared_page->vcpu_ioreq[vcpu];
77 }
78
79 #define BUFFER_IO_MAX_DELAY 100
80
81 typedef struct XenPhysmap {
82 hwaddr start_addr;
83 ram_addr_t size;
84 const char *name;
85 hwaddr phys_offset;
86
87 QLIST_ENTRY(XenPhysmap) list;
88 } XenPhysmap;
89
90 typedef struct XenIOState {
91 ioservid_t ioservid;
92 shared_iopage_t *shared_page;
93 shared_vmport_iopage_t *shared_vmport_page;
94 buffered_iopage_t *buffered_io_page;
95 QEMUTimer *buffered_io_timer;
96 CPUState **cpu_by_vcpu_id;
97 /* the evtchn port for polling the notification, */
98 evtchn_port_t *ioreq_local_port;
99 /* evtchn local port for buffered io */
100 evtchn_port_t bufioreq_local_port;
101 /* the evtchn fd for polling */
102 xenevtchn_handle *xce_handle;
103 /* which vcpu we are serving */
104 int send_vcpu;
105
106 struct xs_handle *xenstore;
107 MemoryListener memory_listener;
108 MemoryListener io_listener;
109 DeviceListener device_listener;
110 QLIST_HEAD(, XenPhysmap) physmap;
111 hwaddr free_phys_offset;
112 const XenPhysmap *log_for_dirtybit;
113
114 Notifier exit;
115 Notifier suspend;
116 Notifier wakeup;
117 } XenIOState;
118
119 /* Xen specific function for piix pci */
120
121 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
122 {
123 return irq_num + ((pci_dev->devfn >> 3) << 2);
124 }
125
126 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
127 {
128 xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2,
129 irq_num & 3, level);
130 }
131
132 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
133 {
134 int i;
135
136 /* Scan for updates to PCI link routes (0x60-0x63). */
137 for (i = 0; i < len; i++) {
138 uint8_t v = (val >> (8 * i)) & 0xff;
139 if (v & 0x80) {
140 v = 0;
141 }
142 v &= 0xf;
143 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
144 xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v);
145 }
146 }
147 }
148
149 int xen_is_pirq_msi(uint32_t msi_data)
150 {
151 /* If vector is 0, the msi is remapped into a pirq, passed as
152 * dest_id.
153 */
154 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
155 }
156
157 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
158 {
159 xc_hvm_inject_msi(xen_xc, xen_domid, addr, data);
160 }
161
162 static void xen_suspend_notifier(Notifier *notifier, void *data)
163 {
164 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
165 }
166
167 /* Xen Interrupt Controller */
168
169 static void xen_set_irq(void *opaque, int irq, int level)
170 {
171 xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level);
172 }
173
174 qemu_irq *xen_interrupt_controller_init(void)
175 {
176 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
177 }
178
179 /* Memory Ops */
180
181 static void xen_ram_init(PCMachineState *pcms,
182 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
183 {
184 MemoryRegion *sysmem = get_system_memory();
185 ram_addr_t block_len;
186 uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
187 PC_MACHINE_MAX_RAM_BELOW_4G,
188 &error_abort);
189
190 /* Handle the machine opt max-ram-below-4g. It is basically doing
191 * min(xen limit, user limit).
192 */
193 if (!user_lowmem) {
194 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
195 }
196 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
197 user_lowmem = HVM_BELOW_4G_RAM_END;
198 }
199
200 if (ram_size >= user_lowmem) {
201 pcms->above_4g_mem_size = ram_size - user_lowmem;
202 pcms->below_4g_mem_size = user_lowmem;
203 } else {
204 pcms->above_4g_mem_size = 0;
205 pcms->below_4g_mem_size = ram_size;
206 }
207 if (!pcms->above_4g_mem_size) {
208 block_len = ram_size;
209 } else {
210 /*
211 * Xen does not allocate the memory continuously, it keeps a
212 * hole of the size computed above or passed in.
213 */
214 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
215 }
216 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
217 &error_fatal);
218 *ram_memory_p = &ram_memory;
219 vmstate_register_ram_global(&ram_memory);
220
221 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
222 &ram_memory, 0, 0xa0000);
223 memory_region_add_subregion(sysmem, 0, &ram_640k);
224 /* Skip of the VGA IO memory space, it will be registered later by the VGA
225 * emulated device.
226 *
227 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
228 * the Options ROM, so it is registered here as RAM.
229 */
230 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
231 &ram_memory, 0xc0000,
232 pcms->below_4g_mem_size - 0xc0000);
233 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
234 if (pcms->above_4g_mem_size > 0) {
235 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
236 &ram_memory, 0x100000000ULL,
237 pcms->above_4g_mem_size);
238 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
239 }
240 }
241
242 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
243 Error **errp)
244 {
245 unsigned long nr_pfn;
246 xen_pfn_t *pfn_list;
247 int i;
248
249 if (runstate_check(RUN_STATE_INMIGRATE)) {
250 /* RAM already populated in Xen */
251 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
252 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
253 __func__, size, ram_addr);
254 return;
255 }
256
257 if (mr == &ram_memory) {
258 return;
259 }
260
261 trace_xen_ram_alloc(ram_addr, size);
262
263 nr_pfn = size >> TARGET_PAGE_BITS;
264 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
265
266 for (i = 0; i < nr_pfn; i++) {
267 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
268 }
269
270 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
271 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
272 ram_addr);
273 }
274
275 g_free(pfn_list);
276 }
277
278 static XenPhysmap *get_physmapping(XenIOState *state,
279 hwaddr start_addr, ram_addr_t size)
280 {
281 XenPhysmap *physmap = NULL;
282
283 start_addr &= TARGET_PAGE_MASK;
284
285 QLIST_FOREACH(physmap, &state->physmap, list) {
286 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
287 return physmap;
288 }
289 }
290 return NULL;
291 }
292
293 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
294 ram_addr_t size, void *opaque)
295 {
296 hwaddr addr = start_addr & TARGET_PAGE_MASK;
297 XenIOState *xen_io_state = opaque;
298 XenPhysmap *physmap = NULL;
299
300 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
301 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
302 return physmap->start_addr;
303 }
304 }
305
306 return start_addr;
307 }
308
309 static int xen_add_to_physmap(XenIOState *state,
310 hwaddr start_addr,
311 ram_addr_t size,
312 MemoryRegion *mr,
313 hwaddr offset_within_region)
314 {
315 unsigned long i = 0;
316 int rc = 0;
317 XenPhysmap *physmap = NULL;
318 hwaddr pfn, start_gpfn;
319 hwaddr phys_offset = memory_region_get_ram_addr(mr);
320 char path[80], value[17];
321 const char *mr_name;
322
323 if (get_physmapping(state, start_addr, size)) {
324 return 0;
325 }
326 if (size <= 0) {
327 return -1;
328 }
329
330 /* Xen can only handle a single dirty log region for now and we want
331 * the linear framebuffer to be that region.
332 * Avoid tracking any regions that is not videoram and avoid tracking
333 * the legacy vga region. */
334 if (mr == framebuffer && start_addr > 0xbffff) {
335 goto go_physmap;
336 }
337 return -1;
338
339 go_physmap:
340 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
341 start_addr, start_addr + size);
342
343 pfn = phys_offset >> TARGET_PAGE_BITS;
344 start_gpfn = start_addr >> TARGET_PAGE_BITS;
345 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
346 unsigned long idx = pfn + i;
347 xen_pfn_t gpfn = start_gpfn + i;
348
349 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
350 if (rc) {
351 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
352 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
353 return -rc;
354 }
355 }
356
357 mr_name = memory_region_name(mr);
358
359 physmap = g_malloc(sizeof (XenPhysmap));
360
361 physmap->start_addr = start_addr;
362 physmap->size = size;
363 physmap->name = mr_name;
364 physmap->phys_offset = phys_offset;
365
366 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
367
368 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
369 start_addr >> TARGET_PAGE_BITS,
370 (start_addr + size - 1) >> TARGET_PAGE_BITS,
371 XEN_DOMCTL_MEM_CACHEATTR_WB);
372
373 snprintf(path, sizeof(path),
374 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
375 xen_domid, (uint64_t)phys_offset);
376 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
377 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
378 return -1;
379 }
380 snprintf(path, sizeof(path),
381 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
382 xen_domid, (uint64_t)phys_offset);
383 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
384 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
385 return -1;
386 }
387 if (mr_name) {
388 snprintf(path, sizeof(path),
389 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
390 xen_domid, (uint64_t)phys_offset);
391 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
392 return -1;
393 }
394 }
395
396 return 0;
397 }
398
399 static int xen_remove_from_physmap(XenIOState *state,
400 hwaddr start_addr,
401 ram_addr_t size)
402 {
403 unsigned long i = 0;
404 int rc = 0;
405 XenPhysmap *physmap = NULL;
406 hwaddr phys_offset = 0;
407
408 physmap = get_physmapping(state, start_addr, size);
409 if (physmap == NULL) {
410 return -1;
411 }
412
413 phys_offset = physmap->phys_offset;
414 size = physmap->size;
415
416 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
417 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
418
419 size >>= TARGET_PAGE_BITS;
420 start_addr >>= TARGET_PAGE_BITS;
421 phys_offset >>= TARGET_PAGE_BITS;
422 for (i = 0; i < size; i++) {
423 xen_pfn_t idx = start_addr + i;
424 xen_pfn_t gpfn = phys_offset + i;
425
426 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
427 if (rc) {
428 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
429 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
430 return -rc;
431 }
432 }
433
434 QLIST_REMOVE(physmap, list);
435 if (state->log_for_dirtybit == physmap) {
436 state->log_for_dirtybit = NULL;
437 }
438 g_free(physmap);
439
440 return 0;
441 }
442
443 static void xen_set_memory(struct MemoryListener *listener,
444 MemoryRegionSection *section,
445 bool add)
446 {
447 XenIOState *state = container_of(listener, XenIOState, memory_listener);
448 hwaddr start_addr = section->offset_within_address_space;
449 ram_addr_t size = int128_get64(section->size);
450 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
451 hvmmem_type_t mem_type;
452
453 if (section->mr == &ram_memory) {
454 return;
455 } else {
456 if (add) {
457 xen_map_memory_section(xen_xc, xen_domid, state->ioservid,
458 section);
459 } else {
460 xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid,
461 section);
462 }
463 }
464
465 if (!memory_region_is_ram(section->mr)) {
466 return;
467 }
468
469 if (log_dirty != add) {
470 return;
471 }
472
473 trace_xen_client_set_memory(start_addr, size, log_dirty);
474
475 start_addr &= TARGET_PAGE_MASK;
476 size = TARGET_PAGE_ALIGN(size);
477
478 if (add) {
479 if (!memory_region_is_rom(section->mr)) {
480 xen_add_to_physmap(state, start_addr, size,
481 section->mr, section->offset_within_region);
482 } else {
483 mem_type = HVMMEM_ram_ro;
484 if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type,
485 start_addr >> TARGET_PAGE_BITS,
486 size >> TARGET_PAGE_BITS)) {
487 DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n",
488 start_addr);
489 }
490 }
491 } else {
492 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
493 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
494 }
495 }
496 }
497
498 static void xen_region_add(MemoryListener *listener,
499 MemoryRegionSection *section)
500 {
501 memory_region_ref(section->mr);
502 xen_set_memory(listener, section, true);
503 }
504
505 static void xen_region_del(MemoryListener *listener,
506 MemoryRegionSection *section)
507 {
508 xen_set_memory(listener, section, false);
509 memory_region_unref(section->mr);
510 }
511
512 static void xen_io_add(MemoryListener *listener,
513 MemoryRegionSection *section)
514 {
515 XenIOState *state = container_of(listener, XenIOState, io_listener);
516 MemoryRegion *mr = section->mr;
517
518 if (mr->ops == &unassigned_io_ops) {
519 return;
520 }
521
522 memory_region_ref(mr);
523
524 xen_map_io_section(xen_xc, xen_domid, state->ioservid, section);
525 }
526
527 static void xen_io_del(MemoryListener *listener,
528 MemoryRegionSection *section)
529 {
530 XenIOState *state = container_of(listener, XenIOState, io_listener);
531 MemoryRegion *mr = section->mr;
532
533 if (mr->ops == &unassigned_io_ops) {
534 return;
535 }
536
537 xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section);
538
539 memory_region_unref(mr);
540 }
541
542 static void xen_device_realize(DeviceListener *listener,
543 DeviceState *dev)
544 {
545 XenIOState *state = container_of(listener, XenIOState, device_listener);
546
547 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
548 PCIDevice *pci_dev = PCI_DEVICE(dev);
549
550 xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
551 }
552 }
553
554 static void xen_device_unrealize(DeviceListener *listener,
555 DeviceState *dev)
556 {
557 XenIOState *state = container_of(listener, XenIOState, device_listener);
558
559 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
560 PCIDevice *pci_dev = PCI_DEVICE(dev);
561
562 xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
563 }
564 }
565
566 static void xen_sync_dirty_bitmap(XenIOState *state,
567 hwaddr start_addr,
568 ram_addr_t size)
569 {
570 hwaddr npages = size >> TARGET_PAGE_BITS;
571 const int width = sizeof(unsigned long) * 8;
572 unsigned long bitmap[DIV_ROUND_UP(npages, width)];
573 int rc, i, j;
574 const XenPhysmap *physmap = NULL;
575
576 physmap = get_physmapping(state, start_addr, size);
577 if (physmap == NULL) {
578 /* not handled */
579 return;
580 }
581
582 if (state->log_for_dirtybit == NULL) {
583 state->log_for_dirtybit = physmap;
584 } else if (state->log_for_dirtybit != physmap) {
585 /* Only one range for dirty bitmap can be tracked. */
586 return;
587 }
588
589 rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid,
590 start_addr >> TARGET_PAGE_BITS, npages,
591 bitmap);
592 if (rc < 0) {
593 #ifndef ENODATA
594 #define ENODATA ENOENT
595 #endif
596 if (errno == ENODATA) {
597 memory_region_set_dirty(framebuffer, 0, size);
598 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
599 ", 0x" TARGET_FMT_plx "): %s\n",
600 start_addr, start_addr + size, strerror(errno));
601 }
602 return;
603 }
604
605 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
606 unsigned long map = bitmap[i];
607 while (map != 0) {
608 j = ctzl(map);
609 map &= ~(1ul << j);
610 memory_region_set_dirty(framebuffer,
611 (i * width + j) * TARGET_PAGE_SIZE,
612 TARGET_PAGE_SIZE);
613 };
614 }
615 }
616
617 static void xen_log_start(MemoryListener *listener,
618 MemoryRegionSection *section,
619 int old, int new)
620 {
621 XenIOState *state = container_of(listener, XenIOState, memory_listener);
622
623 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
624 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
625 int128_get64(section->size));
626 }
627 }
628
629 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
630 int old, int new)
631 {
632 XenIOState *state = container_of(listener, XenIOState, memory_listener);
633
634 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
635 state->log_for_dirtybit = NULL;
636 /* Disable dirty bit tracking */
637 xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL);
638 }
639 }
640
641 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
642 {
643 XenIOState *state = container_of(listener, XenIOState, memory_listener);
644
645 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
646 int128_get64(section->size));
647 }
648
649 static void xen_log_global_start(MemoryListener *listener)
650 {
651 if (xen_enabled()) {
652 xen_in_migration = true;
653 }
654 }
655
656 static void xen_log_global_stop(MemoryListener *listener)
657 {
658 xen_in_migration = false;
659 }
660
661 static MemoryListener xen_memory_listener = {
662 .region_add = xen_region_add,
663 .region_del = xen_region_del,
664 .log_start = xen_log_start,
665 .log_stop = xen_log_stop,
666 .log_sync = xen_log_sync,
667 .log_global_start = xen_log_global_start,
668 .log_global_stop = xen_log_global_stop,
669 .priority = 10,
670 };
671
672 static MemoryListener xen_io_listener = {
673 .region_add = xen_io_add,
674 .region_del = xen_io_del,
675 .priority = 10,
676 };
677
678 static DeviceListener xen_device_listener = {
679 .realize = xen_device_realize,
680 .unrealize = xen_device_unrealize,
681 };
682
683 /* get the ioreq packets from share mem */
684 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
685 {
686 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
687
688 if (req->state != STATE_IOREQ_READY) {
689 DPRINTF("I/O request not ready: "
690 "%x, ptr: %x, port: %"PRIx64", "
691 "data: %"PRIx64", count: %u, size: %u\n",
692 req->state, req->data_is_ptr, req->addr,
693 req->data, req->count, req->size);
694 return NULL;
695 }
696
697 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
698
699 req->state = STATE_IOREQ_INPROCESS;
700 return req;
701 }
702
703 /* use poll to get the port notification */
704 /* ioreq_vec--out,the */
705 /* retval--the number of ioreq packet */
706 static ioreq_t *cpu_get_ioreq(XenIOState *state)
707 {
708 int i;
709 evtchn_port_t port;
710
711 port = xenevtchn_pending(state->xce_handle);
712 if (port == state->bufioreq_local_port) {
713 timer_mod(state->buffered_io_timer,
714 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
715 return NULL;
716 }
717
718 if (port != -1) {
719 for (i = 0; i < max_cpus; i++) {
720 if (state->ioreq_local_port[i] == port) {
721 break;
722 }
723 }
724
725 if (i == max_cpus) {
726 hw_error("Fatal error while trying to get io event!\n");
727 }
728
729 /* unmask the wanted port again */
730 xenevtchn_unmask(state->xce_handle, port);
731
732 /* get the io packet from shared memory */
733 state->send_vcpu = i;
734 return cpu_get_ioreq_from_shared_memory(state, i);
735 }
736
737 /* read error or read nothing */
738 return NULL;
739 }
740
741 static uint32_t do_inp(uint32_t addr, unsigned long size)
742 {
743 switch (size) {
744 case 1:
745 return cpu_inb(addr);
746 case 2:
747 return cpu_inw(addr);
748 case 4:
749 return cpu_inl(addr);
750 default:
751 hw_error("inp: bad size: %04x %lx", addr, size);
752 }
753 }
754
755 static void do_outp(uint32_t addr,
756 unsigned long size, uint32_t val)
757 {
758 switch (size) {
759 case 1:
760 return cpu_outb(addr, val);
761 case 2:
762 return cpu_outw(addr, val);
763 case 4:
764 return cpu_outl(addr, val);
765 default:
766 hw_error("outp: bad size: %04x %lx", addr, size);
767 }
768 }
769
770 /*
771 * Helper functions which read/write an object from/to physical guest
772 * memory, as part of the implementation of an ioreq.
773 *
774 * Equivalent to
775 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
776 * val, req->size, 0/1)
777 * except without the integer overflow problems.
778 */
779 static void rw_phys_req_item(hwaddr addr,
780 ioreq_t *req, uint32_t i, void *val, int rw)
781 {
782 /* Do everything unsigned so overflow just results in a truncated result
783 * and accesses to undesired parts of guest memory, which is up
784 * to the guest */
785 hwaddr offset = (hwaddr)req->size * i;
786 if (req->df) {
787 addr -= offset;
788 } else {
789 addr += offset;
790 }
791 cpu_physical_memory_rw(addr, val, req->size, rw);
792 }
793
794 static inline void read_phys_req_item(hwaddr addr,
795 ioreq_t *req, uint32_t i, void *val)
796 {
797 rw_phys_req_item(addr, req, i, val, 0);
798 }
799 static inline void write_phys_req_item(hwaddr addr,
800 ioreq_t *req, uint32_t i, void *val)
801 {
802 rw_phys_req_item(addr, req, i, val, 1);
803 }
804
805
806 static void cpu_ioreq_pio(ioreq_t *req)
807 {
808 uint32_t i;
809
810 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
811 req->data, req->count, req->size);
812
813 if (req->size > sizeof(uint32_t)) {
814 hw_error("PIO: bad size (%u)", req->size);
815 }
816
817 if (req->dir == IOREQ_READ) {
818 if (!req->data_is_ptr) {
819 req->data = do_inp(req->addr, req->size);
820 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
821 req->size);
822 } else {
823 uint32_t tmp;
824
825 for (i = 0; i < req->count; i++) {
826 tmp = do_inp(req->addr, req->size);
827 write_phys_req_item(req->data, req, i, &tmp);
828 }
829 }
830 } else if (req->dir == IOREQ_WRITE) {
831 if (!req->data_is_ptr) {
832 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
833 req->size);
834 do_outp(req->addr, req->size, req->data);
835 } else {
836 for (i = 0; i < req->count; i++) {
837 uint32_t tmp = 0;
838
839 read_phys_req_item(req->data, req, i, &tmp);
840 do_outp(req->addr, req->size, tmp);
841 }
842 }
843 }
844 }
845
846 static void cpu_ioreq_move(ioreq_t *req)
847 {
848 uint32_t i;
849
850 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
851 req->data, req->count, req->size);
852
853 if (req->size > sizeof(req->data)) {
854 hw_error("MMIO: bad size (%u)", req->size);
855 }
856
857 if (!req->data_is_ptr) {
858 if (req->dir == IOREQ_READ) {
859 for (i = 0; i < req->count; i++) {
860 read_phys_req_item(req->addr, req, i, &req->data);
861 }
862 } else if (req->dir == IOREQ_WRITE) {
863 for (i = 0; i < req->count; i++) {
864 write_phys_req_item(req->addr, req, i, &req->data);
865 }
866 }
867 } else {
868 uint64_t tmp;
869
870 if (req->dir == IOREQ_READ) {
871 for (i = 0; i < req->count; i++) {
872 read_phys_req_item(req->addr, req, i, &tmp);
873 write_phys_req_item(req->data, req, i, &tmp);
874 }
875 } else if (req->dir == IOREQ_WRITE) {
876 for (i = 0; i < req->count; i++) {
877 read_phys_req_item(req->data, req, i, &tmp);
878 write_phys_req_item(req->addr, req, i, &tmp);
879 }
880 }
881 }
882 }
883
884 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
885 {
886 X86CPU *cpu;
887 CPUX86State *env;
888
889 cpu = X86_CPU(current_cpu);
890 env = &cpu->env;
891 env->regs[R_EAX] = req->data;
892 env->regs[R_EBX] = vmport_regs->ebx;
893 env->regs[R_ECX] = vmport_regs->ecx;
894 env->regs[R_EDX] = vmport_regs->edx;
895 env->regs[R_ESI] = vmport_regs->esi;
896 env->regs[R_EDI] = vmport_regs->edi;
897 }
898
899 static void regs_from_cpu(vmware_regs_t *vmport_regs)
900 {
901 X86CPU *cpu = X86_CPU(current_cpu);
902 CPUX86State *env = &cpu->env;
903
904 vmport_regs->ebx = env->regs[R_EBX];
905 vmport_regs->ecx = env->regs[R_ECX];
906 vmport_regs->edx = env->regs[R_EDX];
907 vmport_regs->esi = env->regs[R_ESI];
908 vmport_regs->edi = env->regs[R_EDI];
909 }
910
911 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
912 {
913 vmware_regs_t *vmport_regs;
914
915 assert(state->shared_vmport_page);
916 vmport_regs =
917 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
918 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
919
920 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
921 regs_to_cpu(vmport_regs, req);
922 cpu_ioreq_pio(req);
923 regs_from_cpu(vmport_regs);
924 current_cpu = NULL;
925 }
926
927 static void handle_ioreq(XenIOState *state, ioreq_t *req)
928 {
929 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
930 req->addr, req->data, req->count, req->size);
931
932 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
933 (req->size < sizeof (target_ulong))) {
934 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
935 }
936
937 if (req->dir == IOREQ_WRITE)
938 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
939 req->addr, req->data, req->count, req->size);
940
941 switch (req->type) {
942 case IOREQ_TYPE_PIO:
943 cpu_ioreq_pio(req);
944 break;
945 case IOREQ_TYPE_COPY:
946 cpu_ioreq_move(req);
947 break;
948 case IOREQ_TYPE_VMWARE_PORT:
949 handle_vmport_ioreq(state, req);
950 break;
951 case IOREQ_TYPE_TIMEOFFSET:
952 break;
953 case IOREQ_TYPE_INVALIDATE:
954 xen_invalidate_map_cache();
955 break;
956 case IOREQ_TYPE_PCI_CONFIG: {
957 uint32_t sbdf = req->addr >> 32;
958 uint32_t val;
959
960 /* Fake a write to port 0xCF8 so that
961 * the config space access will target the
962 * correct device model.
963 */
964 val = (1u << 31) |
965 ((req->addr & 0x0f00) << 16) |
966 ((sbdf & 0xffff) << 8) |
967 (req->addr & 0xfc);
968 do_outp(0xcf8, 4, val);
969
970 /* Now issue the config space access via
971 * port 0xCFC
972 */
973 req->addr = 0xcfc | (req->addr & 0x03);
974 cpu_ioreq_pio(req);
975 break;
976 }
977 default:
978 hw_error("Invalid ioreq type 0x%x\n", req->type);
979 }
980 if (req->dir == IOREQ_READ) {
981 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
982 req->addr, req->data, req->count, req->size);
983 }
984 }
985
986 static int handle_buffered_iopage(XenIOState *state)
987 {
988 buffered_iopage_t *buf_page = state->buffered_io_page;
989 buf_ioreq_t *buf_req = NULL;
990 ioreq_t req;
991 int qw;
992
993 if (!buf_page) {
994 return 0;
995 }
996
997 memset(&req, 0x00, sizeof(req));
998 req.state = STATE_IOREQ_READY;
999 req.count = 1;
1000 req.dir = IOREQ_WRITE;
1001
1002 for (;;) {
1003 uint32_t rdptr = buf_page->read_pointer, wrptr;
1004
1005 xen_rmb();
1006 wrptr = buf_page->write_pointer;
1007 xen_rmb();
1008 if (rdptr != buf_page->read_pointer) {
1009 continue;
1010 }
1011 if (rdptr == wrptr) {
1012 break;
1013 }
1014 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1015 req.size = 1U << buf_req->size;
1016 req.addr = buf_req->addr;
1017 req.data = buf_req->data;
1018 req.type = buf_req->type;
1019 xen_rmb();
1020 qw = (req.size == 8);
1021 if (qw) {
1022 if (rdptr + 1 == wrptr) {
1023 hw_error("Incomplete quad word buffered ioreq");
1024 }
1025 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1026 IOREQ_BUFFER_SLOT_NUM];
1027 req.data |= ((uint64_t)buf_req->data) << 32;
1028 xen_rmb();
1029 }
1030
1031 handle_ioreq(state, &req);
1032
1033 /* Only req.data may get updated by handle_ioreq(), albeit even that
1034 * should not happen as such data would never make it to the guest (we
1035 * can only usefully see writes here after all).
1036 */
1037 assert(req.state == STATE_IOREQ_READY);
1038 assert(req.count == 1);
1039 assert(req.dir == IOREQ_WRITE);
1040 assert(!req.data_is_ptr);
1041
1042 atomic_add(&buf_page->read_pointer, qw + 1);
1043 }
1044
1045 return req.count;
1046 }
1047
1048 static void handle_buffered_io(void *opaque)
1049 {
1050 XenIOState *state = opaque;
1051
1052 if (handle_buffered_iopage(state)) {
1053 timer_mod(state->buffered_io_timer,
1054 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1055 } else {
1056 timer_del(state->buffered_io_timer);
1057 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1058 }
1059 }
1060
1061 static void cpu_handle_ioreq(void *opaque)
1062 {
1063 XenIOState *state = opaque;
1064 ioreq_t *req = cpu_get_ioreq(state);
1065
1066 handle_buffered_iopage(state);
1067 if (req) {
1068 ioreq_t copy = *req;
1069
1070 xen_rmb();
1071 handle_ioreq(state, &copy);
1072 req->data = copy.data;
1073
1074 if (req->state != STATE_IOREQ_INPROCESS) {
1075 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1076 "%x, ptr: %x, port: %"PRIx64", "
1077 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1078 req->state, req->data_is_ptr, req->addr,
1079 req->data, req->count, req->size, req->type);
1080 destroy_hvm_domain(false);
1081 return;
1082 }
1083
1084 xen_wmb(); /* Update ioreq contents /then/ update state. */
1085
1086 /*
1087 * We do this before we send the response so that the tools
1088 * have the opportunity to pick up on the reset before the
1089 * guest resumes and does a hlt with interrupts disabled which
1090 * causes Xen to powerdown the domain.
1091 */
1092 if (runstate_is_running()) {
1093 if (qemu_shutdown_requested_get()) {
1094 destroy_hvm_domain(false);
1095 }
1096 if (qemu_reset_requested_get()) {
1097 qemu_system_reset(VMRESET_REPORT);
1098 destroy_hvm_domain(true);
1099 }
1100 }
1101
1102 req->state = STATE_IORESP_READY;
1103 xenevtchn_notify(state->xce_handle,
1104 state->ioreq_local_port[state->send_vcpu]);
1105 }
1106 }
1107
1108 static void xen_main_loop_prepare(XenIOState *state)
1109 {
1110 int evtchn_fd = -1;
1111
1112 if (state->xce_handle != NULL) {
1113 evtchn_fd = xenevtchn_fd(state->xce_handle);
1114 }
1115
1116 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1117 state);
1118
1119 if (evtchn_fd != -1) {
1120 CPUState *cpu_state;
1121
1122 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1123 CPU_FOREACH(cpu_state) {
1124 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1125 __func__, cpu_state->cpu_index, cpu_state);
1126 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1127 }
1128 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1129 }
1130 }
1131
1132
1133 static void xen_hvm_change_state_handler(void *opaque, int running,
1134 RunState rstate)
1135 {
1136 XenIOState *state = opaque;
1137
1138 if (running) {
1139 xen_main_loop_prepare(state);
1140 }
1141
1142 xen_set_ioreq_server_state(xen_xc, xen_domid,
1143 state->ioservid,
1144 (rstate == RUN_STATE_RUNNING));
1145 }
1146
1147 static void xen_exit_notifier(Notifier *n, void *data)
1148 {
1149 XenIOState *state = container_of(n, XenIOState, exit);
1150
1151 xenevtchn_close(state->xce_handle);
1152 xs_daemon_close(state->xenstore);
1153 }
1154
1155 static void xen_read_physmap(XenIOState *state)
1156 {
1157 XenPhysmap *physmap = NULL;
1158 unsigned int len, num, i;
1159 char path[80], *value = NULL;
1160 char **entries = NULL;
1161
1162 snprintf(path, sizeof(path),
1163 "/local/domain/0/device-model/%d/physmap", xen_domid);
1164 entries = xs_directory(state->xenstore, 0, path, &num);
1165 if (entries == NULL)
1166 return;
1167
1168 for (i = 0; i < num; i++) {
1169 physmap = g_malloc(sizeof (XenPhysmap));
1170 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1171 snprintf(path, sizeof(path),
1172 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1173 xen_domid, entries[i]);
1174 value = xs_read(state->xenstore, 0, path, &len);
1175 if (value == NULL) {
1176 g_free(physmap);
1177 continue;
1178 }
1179 physmap->start_addr = strtoull(value, NULL, 16);
1180 free(value);
1181
1182 snprintf(path, sizeof(path),
1183 "/local/domain/0/device-model/%d/physmap/%s/size",
1184 xen_domid, entries[i]);
1185 value = xs_read(state->xenstore, 0, path, &len);
1186 if (value == NULL) {
1187 g_free(physmap);
1188 continue;
1189 }
1190 physmap->size = strtoull(value, NULL, 16);
1191 free(value);
1192
1193 snprintf(path, sizeof(path),
1194 "/local/domain/0/device-model/%d/physmap/%s/name",
1195 xen_domid, entries[i]);
1196 physmap->name = xs_read(state->xenstore, 0, path, &len);
1197
1198 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1199 }
1200 free(entries);
1201 }
1202
1203 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1204 {
1205 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1206 }
1207
1208 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1209 {
1210 int i, rc;
1211 xen_pfn_t ioreq_pfn;
1212 xen_pfn_t bufioreq_pfn;
1213 evtchn_port_t bufioreq_evtchn;
1214 XenIOState *state;
1215
1216 state = g_malloc0(sizeof (XenIOState));
1217
1218 state->xce_handle = xenevtchn_open(NULL, 0);
1219 if (state->xce_handle == NULL) {
1220 perror("xen: event channel open");
1221 goto err;
1222 }
1223
1224 state->xenstore = xs_daemon_open();
1225 if (state->xenstore == NULL) {
1226 perror("xen: xenstore open");
1227 goto err;
1228 }
1229
1230 xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid);
1231
1232 state->exit.notify = xen_exit_notifier;
1233 qemu_add_exit_notifier(&state->exit);
1234
1235 state->suspend.notify = xen_suspend_notifier;
1236 qemu_register_suspend_notifier(&state->suspend);
1237
1238 state->wakeup.notify = xen_wakeup_notifier;
1239 qemu_register_wakeup_notifier(&state->wakeup);
1240
1241 rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid,
1242 &ioreq_pfn, &bufioreq_pfn,
1243 &bufioreq_evtchn);
1244 if (rc < 0) {
1245 error_report("failed to get ioreq server info: error %d handle=%p",
1246 errno, xen_xc);
1247 goto err;
1248 }
1249
1250 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1251 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1252 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1253
1254 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1255 PROT_READ|PROT_WRITE,
1256 1, &ioreq_pfn, NULL);
1257 if (state->shared_page == NULL) {
1258 error_report("map shared IO page returned error %d handle=%p",
1259 errno, xen_xc);
1260 goto err;
1261 }
1262
1263 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1264 if (!rc) {
1265 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1266 state->shared_vmport_page =
1267 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1268 1, &ioreq_pfn, NULL);
1269 if (state->shared_vmport_page == NULL) {
1270 error_report("map shared vmport IO page returned error %d handle=%p",
1271 errno, xen_xc);
1272 goto err;
1273 }
1274 } else if (rc != -ENOSYS) {
1275 error_report("get vmport regs pfn returned error %d, rc=%d",
1276 errno, rc);
1277 goto err;
1278 }
1279
1280 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1281 PROT_READ|PROT_WRITE,
1282 1, &bufioreq_pfn, NULL);
1283 if (state->buffered_io_page == NULL) {
1284 error_report("map buffered IO page returned error %d", errno);
1285 goto err;
1286 }
1287
1288 /* Note: cpus is empty at this point in init */
1289 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1290
1291 rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true);
1292 if (rc < 0) {
1293 error_report("failed to enable ioreq server info: error %d handle=%p",
1294 errno, xen_xc);
1295 goto err;
1296 }
1297
1298 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1299
1300 /* FIXME: how about if we overflow the page here? */
1301 for (i = 0; i < max_cpus; i++) {
1302 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1303 xen_vcpu_eport(state->shared_page, i));
1304 if (rc == -1) {
1305 error_report("shared evtchn %d bind error %d", i, errno);
1306 goto err;
1307 }
1308 state->ioreq_local_port[i] = rc;
1309 }
1310
1311 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1312 bufioreq_evtchn);
1313 if (rc == -1) {
1314 error_report("buffered evtchn bind error %d", errno);
1315 goto err;
1316 }
1317 state->bufioreq_local_port = rc;
1318
1319 /* Init RAM management */
1320 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1321 xen_ram_init(pcms, ram_size, ram_memory);
1322
1323 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1324
1325 state->memory_listener = xen_memory_listener;
1326 QLIST_INIT(&state->physmap);
1327 memory_listener_register(&state->memory_listener, &address_space_memory);
1328 state->log_for_dirtybit = NULL;
1329
1330 state->io_listener = xen_io_listener;
1331 memory_listener_register(&state->io_listener, &address_space_io);
1332
1333 state->device_listener = xen_device_listener;
1334 device_listener_register(&state->device_listener);
1335
1336 /* Initialize backend core & drivers */
1337 if (xen_be_init() != 0) {
1338 error_report("xen backend core setup failed");
1339 goto err;
1340 }
1341 xen_be_register_common();
1342 xen_read_physmap(state);
1343
1344 /* Disable ACPI build because Xen handles it */
1345 pcms->acpi_build_enabled = false;
1346
1347 return;
1348
1349 err:
1350 error_report("xen hardware virtual machine initialisation failed");
1351 exit(1);
1352 }
1353
1354 void destroy_hvm_domain(bool reboot)
1355 {
1356 xc_interface *xc_handle;
1357 int sts;
1358
1359 xc_handle = xc_interface_open(0, 0, 0);
1360 if (xc_handle == NULL) {
1361 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1362 } else {
1363 sts = xc_domain_shutdown(xc_handle, xen_domid,
1364 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1365 if (sts != 0) {
1366 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1367 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1368 sts, strerror(errno));
1369 } else {
1370 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1371 reboot ? "reboot" : "poweroff");
1372 }
1373 xc_interface_close(xc_handle);
1374 }
1375 }
1376
1377 void xen_register_framebuffer(MemoryRegion *mr)
1378 {
1379 framebuffer = mr;
1380 }
1381
1382 void xen_shutdown_fatal_error(const char *fmt, ...)
1383 {
1384 va_list ap;
1385
1386 va_start(ap, fmt);
1387 vfprintf(stderr, fmt, ap);
1388 va_end(ap);
1389 fprintf(stderr, "Will destroy the domain.\n");
1390 /* destroy the domain */
1391 qemu_system_shutdown_request();
1392 }
1393
1394 void xen_modified_memory(ram_addr_t start, ram_addr_t length)
1395 {
1396 if (unlikely(xen_in_migration)) {
1397 int rc;
1398 ram_addr_t start_pfn, nb_pages;
1399
1400 if (length == 0) {
1401 length = TARGET_PAGE_SIZE;
1402 }
1403 start_pfn = start >> TARGET_PAGE_BITS;
1404 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1405 - start_pfn;
1406 rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages);
1407 if (rc) {
1408 fprintf(stderr,
1409 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1410 __func__, start, nb_pages, rc, strerror(-rc));
1411 }
1412 }
1413 }
1414
1415 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1416 {
1417 if (enable) {
1418 memory_global_dirty_log_start();
1419 } else {
1420 memory_global_dirty_log_stop();
1421 }
1422 }