nbd: Don't use *_to_cpup() functions
[qemu.git] / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/i386/pc.h"
16 #include "hw/i386/apic-msidef.h"
17 #include "hw/xen/xen_common.h"
18 #include "hw/xen/xen_backend.h"
19 #include "qmp-commands.h"
20
21 #include "sysemu/char.h"
22 #include "qemu/error-report.h"
23 #include "qemu/range.h"
24 #include "sysemu/xen-mapcache.h"
25 #include "trace.h"
26 #include "exec/address-spaces.h"
27
28 #include <xen/hvm/ioreq.h>
29 #include <xen/hvm/params.h>
30 #include <xen/hvm/e820.h>
31
32 //#define DEBUG_XEN_HVM
33
34 #ifdef DEBUG_XEN_HVM
35 #define DPRINTF(fmt, ...) \
36 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
43 static MemoryRegion *framebuffer;
44 static bool xen_in_migration;
45
46 /* Compatibility with older version */
47
48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
49 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
50 * needs to be included before this block and hw/xen/xen_common.h needs to
51 * be included before xen/hvm/ioreq.h
52 */
53 #ifndef IOREQ_TYPE_VMWARE_PORT
54 #define IOREQ_TYPE_VMWARE_PORT 3
55 struct vmware_regs {
56 uint32_t esi;
57 uint32_t edi;
58 uint32_t ebx;
59 uint32_t ecx;
60 uint32_t edx;
61 };
62 typedef struct vmware_regs vmware_regs_t;
63
64 struct shared_vmport_iopage {
65 struct vmware_regs vcpu_vmport_regs[1];
66 };
67 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
68 #endif
69
70 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
71 {
72 return shared_page->vcpu_ioreq[i].vp_eport;
73 }
74 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
75 {
76 return &shared_page->vcpu_ioreq[vcpu];
77 }
78
79 #define BUFFER_IO_MAX_DELAY 100
80
81 typedef struct XenPhysmap {
82 hwaddr start_addr;
83 ram_addr_t size;
84 const char *name;
85 hwaddr phys_offset;
86
87 QLIST_ENTRY(XenPhysmap) list;
88 } XenPhysmap;
89
90 typedef struct XenIOState {
91 ioservid_t ioservid;
92 shared_iopage_t *shared_page;
93 shared_vmport_iopage_t *shared_vmport_page;
94 buffered_iopage_t *buffered_io_page;
95 QEMUTimer *buffered_io_timer;
96 CPUState **cpu_by_vcpu_id;
97 /* the evtchn port for polling the notification, */
98 evtchn_port_t *ioreq_local_port;
99 /* evtchn local port for buffered io */
100 evtchn_port_t bufioreq_local_port;
101 /* the evtchn fd for polling */
102 xenevtchn_handle *xce_handle;
103 /* which vcpu we are serving */
104 int send_vcpu;
105
106 struct xs_handle *xenstore;
107 MemoryListener memory_listener;
108 MemoryListener io_listener;
109 DeviceListener device_listener;
110 QLIST_HEAD(, XenPhysmap) physmap;
111 hwaddr free_phys_offset;
112 const XenPhysmap *log_for_dirtybit;
113
114 Notifier exit;
115 Notifier suspend;
116 Notifier wakeup;
117 } XenIOState;
118
119 /* Xen specific function for piix pci */
120
121 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
122 {
123 return irq_num + ((pci_dev->devfn >> 3) << 2);
124 }
125
126 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
127 {
128 xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2,
129 irq_num & 3, level);
130 }
131
132 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
133 {
134 int i;
135
136 /* Scan for updates to PCI link routes (0x60-0x63). */
137 for (i = 0; i < len; i++) {
138 uint8_t v = (val >> (8 * i)) & 0xff;
139 if (v & 0x80) {
140 v = 0;
141 }
142 v &= 0xf;
143 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
144 xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v);
145 }
146 }
147 }
148
149 int xen_is_pirq_msi(uint32_t msi_data)
150 {
151 /* If vector is 0, the msi is remapped into a pirq, passed as
152 * dest_id.
153 */
154 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
155 }
156
157 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
158 {
159 xc_hvm_inject_msi(xen_xc, xen_domid, addr, data);
160 }
161
162 static void xen_suspend_notifier(Notifier *notifier, void *data)
163 {
164 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
165 }
166
167 /* Xen Interrupt Controller */
168
169 static void xen_set_irq(void *opaque, int irq, int level)
170 {
171 xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level);
172 }
173
174 qemu_irq *xen_interrupt_controller_init(void)
175 {
176 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
177 }
178
179 /* Memory Ops */
180
181 static void xen_ram_init(PCMachineState *pcms,
182 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
183 {
184 MemoryRegion *sysmem = get_system_memory();
185 ram_addr_t block_len;
186 uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
187 PC_MACHINE_MAX_RAM_BELOW_4G,
188 &error_abort);
189
190 /* Handle the machine opt max-ram-below-4g. It is basically doing
191 * min(xen limit, user limit).
192 */
193 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
194 user_lowmem = HVM_BELOW_4G_RAM_END;
195 }
196
197 if (ram_size >= user_lowmem) {
198 pcms->above_4g_mem_size = ram_size - user_lowmem;
199 pcms->below_4g_mem_size = user_lowmem;
200 } else {
201 pcms->above_4g_mem_size = 0;
202 pcms->below_4g_mem_size = ram_size;
203 }
204 if (!pcms->above_4g_mem_size) {
205 block_len = ram_size;
206 } else {
207 /*
208 * Xen does not allocate the memory continuously, it keeps a
209 * hole of the size computed above or passed in.
210 */
211 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
212 }
213 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
214 &error_fatal);
215 *ram_memory_p = &ram_memory;
216 vmstate_register_ram_global(&ram_memory);
217
218 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
219 &ram_memory, 0, 0xa0000);
220 memory_region_add_subregion(sysmem, 0, &ram_640k);
221 /* Skip of the VGA IO memory space, it will be registered later by the VGA
222 * emulated device.
223 *
224 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
225 * the Options ROM, so it is registered here as RAM.
226 */
227 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
228 &ram_memory, 0xc0000,
229 pcms->below_4g_mem_size - 0xc0000);
230 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
231 if (pcms->above_4g_mem_size > 0) {
232 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
233 &ram_memory, 0x100000000ULL,
234 pcms->above_4g_mem_size);
235 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
236 }
237 }
238
239 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
240 Error **errp)
241 {
242 unsigned long nr_pfn;
243 xen_pfn_t *pfn_list;
244 int i;
245
246 if (runstate_check(RUN_STATE_INMIGRATE)) {
247 /* RAM already populated in Xen */
248 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
249 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
250 __func__, size, ram_addr);
251 return;
252 }
253
254 if (mr == &ram_memory) {
255 return;
256 }
257
258 trace_xen_ram_alloc(ram_addr, size);
259
260 nr_pfn = size >> TARGET_PAGE_BITS;
261 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
262
263 for (i = 0; i < nr_pfn; i++) {
264 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
265 }
266
267 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
268 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
269 ram_addr);
270 }
271
272 g_free(pfn_list);
273 }
274
275 static XenPhysmap *get_physmapping(XenIOState *state,
276 hwaddr start_addr, ram_addr_t size)
277 {
278 XenPhysmap *physmap = NULL;
279
280 start_addr &= TARGET_PAGE_MASK;
281
282 QLIST_FOREACH(physmap, &state->physmap, list) {
283 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
284 return physmap;
285 }
286 }
287 return NULL;
288 }
289
290 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
291 ram_addr_t size, void *opaque)
292 {
293 hwaddr addr = start_addr & TARGET_PAGE_MASK;
294 XenIOState *xen_io_state = opaque;
295 XenPhysmap *physmap = NULL;
296
297 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
298 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
299 return physmap->start_addr;
300 }
301 }
302
303 return start_addr;
304 }
305
306 static int xen_add_to_physmap(XenIOState *state,
307 hwaddr start_addr,
308 ram_addr_t size,
309 MemoryRegion *mr,
310 hwaddr offset_within_region)
311 {
312 unsigned long i = 0;
313 int rc = 0;
314 XenPhysmap *physmap = NULL;
315 hwaddr pfn, start_gpfn;
316 hwaddr phys_offset = memory_region_get_ram_addr(mr);
317 char path[80], value[17];
318 const char *mr_name;
319
320 if (get_physmapping(state, start_addr, size)) {
321 return 0;
322 }
323 if (size <= 0) {
324 return -1;
325 }
326
327 /* Xen can only handle a single dirty log region for now and we want
328 * the linear framebuffer to be that region.
329 * Avoid tracking any regions that is not videoram and avoid tracking
330 * the legacy vga region. */
331 if (mr == framebuffer && start_addr > 0xbffff) {
332 goto go_physmap;
333 }
334 return -1;
335
336 go_physmap:
337 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
338 start_addr, start_addr + size);
339
340 pfn = phys_offset >> TARGET_PAGE_BITS;
341 start_gpfn = start_addr >> TARGET_PAGE_BITS;
342 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
343 unsigned long idx = pfn + i;
344 xen_pfn_t gpfn = start_gpfn + i;
345
346 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
347 if (rc) {
348 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
349 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
350 return -rc;
351 }
352 }
353
354 mr_name = memory_region_name(mr);
355
356 physmap = g_malloc(sizeof (XenPhysmap));
357
358 physmap->start_addr = start_addr;
359 physmap->size = size;
360 physmap->name = mr_name;
361 physmap->phys_offset = phys_offset;
362
363 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
364
365 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
366 start_addr >> TARGET_PAGE_BITS,
367 (start_addr + size - 1) >> TARGET_PAGE_BITS,
368 XEN_DOMCTL_MEM_CACHEATTR_WB);
369
370 snprintf(path, sizeof(path),
371 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
372 xen_domid, (uint64_t)phys_offset);
373 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
374 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
375 return -1;
376 }
377 snprintf(path, sizeof(path),
378 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
379 xen_domid, (uint64_t)phys_offset);
380 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
381 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
382 return -1;
383 }
384 if (mr_name) {
385 snprintf(path, sizeof(path),
386 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
387 xen_domid, (uint64_t)phys_offset);
388 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
389 return -1;
390 }
391 }
392
393 return 0;
394 }
395
396 static int xen_remove_from_physmap(XenIOState *state,
397 hwaddr start_addr,
398 ram_addr_t size)
399 {
400 unsigned long i = 0;
401 int rc = 0;
402 XenPhysmap *physmap = NULL;
403 hwaddr phys_offset = 0;
404
405 physmap = get_physmapping(state, start_addr, size);
406 if (physmap == NULL) {
407 return -1;
408 }
409
410 phys_offset = physmap->phys_offset;
411 size = physmap->size;
412
413 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
414 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
415
416 size >>= TARGET_PAGE_BITS;
417 start_addr >>= TARGET_PAGE_BITS;
418 phys_offset >>= TARGET_PAGE_BITS;
419 for (i = 0; i < size; i++) {
420 xen_pfn_t idx = start_addr + i;
421 xen_pfn_t gpfn = phys_offset + i;
422
423 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
424 if (rc) {
425 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
426 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
427 return -rc;
428 }
429 }
430
431 QLIST_REMOVE(physmap, list);
432 if (state->log_for_dirtybit == physmap) {
433 state->log_for_dirtybit = NULL;
434 }
435 g_free(physmap);
436
437 return 0;
438 }
439
440 static void xen_set_memory(struct MemoryListener *listener,
441 MemoryRegionSection *section,
442 bool add)
443 {
444 XenIOState *state = container_of(listener, XenIOState, memory_listener);
445 hwaddr start_addr = section->offset_within_address_space;
446 ram_addr_t size = int128_get64(section->size);
447 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
448 hvmmem_type_t mem_type;
449
450 if (section->mr == &ram_memory) {
451 return;
452 } else {
453 if (add) {
454 xen_map_memory_section(xen_xc, xen_domid, state->ioservid,
455 section);
456 } else {
457 xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid,
458 section);
459 }
460 }
461
462 if (!memory_region_is_ram(section->mr)) {
463 return;
464 }
465
466 if (log_dirty != add) {
467 return;
468 }
469
470 trace_xen_client_set_memory(start_addr, size, log_dirty);
471
472 start_addr &= TARGET_PAGE_MASK;
473 size = TARGET_PAGE_ALIGN(size);
474
475 if (add) {
476 if (!memory_region_is_rom(section->mr)) {
477 xen_add_to_physmap(state, start_addr, size,
478 section->mr, section->offset_within_region);
479 } else {
480 mem_type = HVMMEM_ram_ro;
481 if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type,
482 start_addr >> TARGET_PAGE_BITS,
483 size >> TARGET_PAGE_BITS)) {
484 DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n",
485 start_addr);
486 }
487 }
488 } else {
489 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
490 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
491 }
492 }
493 }
494
495 static void xen_region_add(MemoryListener *listener,
496 MemoryRegionSection *section)
497 {
498 memory_region_ref(section->mr);
499 xen_set_memory(listener, section, true);
500 }
501
502 static void xen_region_del(MemoryListener *listener,
503 MemoryRegionSection *section)
504 {
505 xen_set_memory(listener, section, false);
506 memory_region_unref(section->mr);
507 }
508
509 static void xen_io_add(MemoryListener *listener,
510 MemoryRegionSection *section)
511 {
512 XenIOState *state = container_of(listener, XenIOState, io_listener);
513 MemoryRegion *mr = section->mr;
514
515 if (mr->ops == &unassigned_io_ops) {
516 return;
517 }
518
519 memory_region_ref(mr);
520
521 xen_map_io_section(xen_xc, xen_domid, state->ioservid, section);
522 }
523
524 static void xen_io_del(MemoryListener *listener,
525 MemoryRegionSection *section)
526 {
527 XenIOState *state = container_of(listener, XenIOState, io_listener);
528 MemoryRegion *mr = section->mr;
529
530 if (mr->ops == &unassigned_io_ops) {
531 return;
532 }
533
534 xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section);
535
536 memory_region_unref(mr);
537 }
538
539 static void xen_device_realize(DeviceListener *listener,
540 DeviceState *dev)
541 {
542 XenIOState *state = container_of(listener, XenIOState, device_listener);
543
544 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
545 PCIDevice *pci_dev = PCI_DEVICE(dev);
546
547 xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
548 }
549 }
550
551 static void xen_device_unrealize(DeviceListener *listener,
552 DeviceState *dev)
553 {
554 XenIOState *state = container_of(listener, XenIOState, device_listener);
555
556 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
557 PCIDevice *pci_dev = PCI_DEVICE(dev);
558
559 xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
560 }
561 }
562
563 static void xen_sync_dirty_bitmap(XenIOState *state,
564 hwaddr start_addr,
565 ram_addr_t size)
566 {
567 hwaddr npages = size >> TARGET_PAGE_BITS;
568 const int width = sizeof(unsigned long) * 8;
569 unsigned long bitmap[DIV_ROUND_UP(npages, width)];
570 int rc, i, j;
571 const XenPhysmap *physmap = NULL;
572
573 physmap = get_physmapping(state, start_addr, size);
574 if (physmap == NULL) {
575 /* not handled */
576 return;
577 }
578
579 if (state->log_for_dirtybit == NULL) {
580 state->log_for_dirtybit = physmap;
581 } else if (state->log_for_dirtybit != physmap) {
582 /* Only one range for dirty bitmap can be tracked. */
583 return;
584 }
585
586 rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid,
587 start_addr >> TARGET_PAGE_BITS, npages,
588 bitmap);
589 if (rc < 0) {
590 #ifndef ENODATA
591 #define ENODATA ENOENT
592 #endif
593 if (errno == ENODATA) {
594 memory_region_set_dirty(framebuffer, 0, size);
595 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
596 ", 0x" TARGET_FMT_plx "): %s\n",
597 start_addr, start_addr + size, strerror(errno));
598 }
599 return;
600 }
601
602 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
603 unsigned long map = bitmap[i];
604 while (map != 0) {
605 j = ctzl(map);
606 map &= ~(1ul << j);
607 memory_region_set_dirty(framebuffer,
608 (i * width + j) * TARGET_PAGE_SIZE,
609 TARGET_PAGE_SIZE);
610 };
611 }
612 }
613
614 static void xen_log_start(MemoryListener *listener,
615 MemoryRegionSection *section,
616 int old, int new)
617 {
618 XenIOState *state = container_of(listener, XenIOState, memory_listener);
619
620 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
621 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
622 int128_get64(section->size));
623 }
624 }
625
626 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
627 int old, int new)
628 {
629 XenIOState *state = container_of(listener, XenIOState, memory_listener);
630
631 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
632 state->log_for_dirtybit = NULL;
633 /* Disable dirty bit tracking */
634 xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL);
635 }
636 }
637
638 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
639 {
640 XenIOState *state = container_of(listener, XenIOState, memory_listener);
641
642 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
643 int128_get64(section->size));
644 }
645
646 static void xen_log_global_start(MemoryListener *listener)
647 {
648 if (xen_enabled()) {
649 xen_in_migration = true;
650 }
651 }
652
653 static void xen_log_global_stop(MemoryListener *listener)
654 {
655 xen_in_migration = false;
656 }
657
658 static MemoryListener xen_memory_listener = {
659 .region_add = xen_region_add,
660 .region_del = xen_region_del,
661 .log_start = xen_log_start,
662 .log_stop = xen_log_stop,
663 .log_sync = xen_log_sync,
664 .log_global_start = xen_log_global_start,
665 .log_global_stop = xen_log_global_stop,
666 .priority = 10,
667 };
668
669 static MemoryListener xen_io_listener = {
670 .region_add = xen_io_add,
671 .region_del = xen_io_del,
672 .priority = 10,
673 };
674
675 static DeviceListener xen_device_listener = {
676 .realize = xen_device_realize,
677 .unrealize = xen_device_unrealize,
678 };
679
680 /* get the ioreq packets from share mem */
681 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
682 {
683 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
684
685 if (req->state != STATE_IOREQ_READY) {
686 DPRINTF("I/O request not ready: "
687 "%x, ptr: %x, port: %"PRIx64", "
688 "data: %"PRIx64", count: %u, size: %u\n",
689 req->state, req->data_is_ptr, req->addr,
690 req->data, req->count, req->size);
691 return NULL;
692 }
693
694 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
695
696 req->state = STATE_IOREQ_INPROCESS;
697 return req;
698 }
699
700 /* use poll to get the port notification */
701 /* ioreq_vec--out,the */
702 /* retval--the number of ioreq packet */
703 static ioreq_t *cpu_get_ioreq(XenIOState *state)
704 {
705 int i;
706 evtchn_port_t port;
707
708 port = xenevtchn_pending(state->xce_handle);
709 if (port == state->bufioreq_local_port) {
710 timer_mod(state->buffered_io_timer,
711 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
712 return NULL;
713 }
714
715 if (port != -1) {
716 for (i = 0; i < max_cpus; i++) {
717 if (state->ioreq_local_port[i] == port) {
718 break;
719 }
720 }
721
722 if (i == max_cpus) {
723 hw_error("Fatal error while trying to get io event!\n");
724 }
725
726 /* unmask the wanted port again */
727 xenevtchn_unmask(state->xce_handle, port);
728
729 /* get the io packet from shared memory */
730 state->send_vcpu = i;
731 return cpu_get_ioreq_from_shared_memory(state, i);
732 }
733
734 /* read error or read nothing */
735 return NULL;
736 }
737
738 static uint32_t do_inp(uint32_t addr, unsigned long size)
739 {
740 switch (size) {
741 case 1:
742 return cpu_inb(addr);
743 case 2:
744 return cpu_inw(addr);
745 case 4:
746 return cpu_inl(addr);
747 default:
748 hw_error("inp: bad size: %04x %lx", addr, size);
749 }
750 }
751
752 static void do_outp(uint32_t addr,
753 unsigned long size, uint32_t val)
754 {
755 switch (size) {
756 case 1:
757 return cpu_outb(addr, val);
758 case 2:
759 return cpu_outw(addr, val);
760 case 4:
761 return cpu_outl(addr, val);
762 default:
763 hw_error("outp: bad size: %04x %lx", addr, size);
764 }
765 }
766
767 /*
768 * Helper functions which read/write an object from/to physical guest
769 * memory, as part of the implementation of an ioreq.
770 *
771 * Equivalent to
772 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
773 * val, req->size, 0/1)
774 * except without the integer overflow problems.
775 */
776 static void rw_phys_req_item(hwaddr addr,
777 ioreq_t *req, uint32_t i, void *val, int rw)
778 {
779 /* Do everything unsigned so overflow just results in a truncated result
780 * and accesses to undesired parts of guest memory, which is up
781 * to the guest */
782 hwaddr offset = (hwaddr)req->size * i;
783 if (req->df) {
784 addr -= offset;
785 } else {
786 addr += offset;
787 }
788 cpu_physical_memory_rw(addr, val, req->size, rw);
789 }
790
791 static inline void read_phys_req_item(hwaddr addr,
792 ioreq_t *req, uint32_t i, void *val)
793 {
794 rw_phys_req_item(addr, req, i, val, 0);
795 }
796 static inline void write_phys_req_item(hwaddr addr,
797 ioreq_t *req, uint32_t i, void *val)
798 {
799 rw_phys_req_item(addr, req, i, val, 1);
800 }
801
802
803 static void cpu_ioreq_pio(ioreq_t *req)
804 {
805 uint32_t i;
806
807 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
808 req->data, req->count, req->size);
809
810 if (req->dir == IOREQ_READ) {
811 if (!req->data_is_ptr) {
812 req->data = do_inp(req->addr, req->size);
813 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
814 req->size);
815 } else {
816 uint32_t tmp;
817
818 for (i = 0; i < req->count; i++) {
819 tmp = do_inp(req->addr, req->size);
820 write_phys_req_item(req->data, req, i, &tmp);
821 }
822 }
823 } else if (req->dir == IOREQ_WRITE) {
824 if (!req->data_is_ptr) {
825 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
826 req->size);
827 do_outp(req->addr, req->size, req->data);
828 } else {
829 for (i = 0; i < req->count; i++) {
830 uint32_t tmp = 0;
831
832 read_phys_req_item(req->data, req, i, &tmp);
833 do_outp(req->addr, req->size, tmp);
834 }
835 }
836 }
837 }
838
839 static void cpu_ioreq_move(ioreq_t *req)
840 {
841 uint32_t i;
842
843 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
844 req->data, req->count, req->size);
845
846 if (!req->data_is_ptr) {
847 if (req->dir == IOREQ_READ) {
848 for (i = 0; i < req->count; i++) {
849 read_phys_req_item(req->addr, req, i, &req->data);
850 }
851 } else if (req->dir == IOREQ_WRITE) {
852 for (i = 0; i < req->count; i++) {
853 write_phys_req_item(req->addr, req, i, &req->data);
854 }
855 }
856 } else {
857 uint64_t tmp;
858
859 if (req->dir == IOREQ_READ) {
860 for (i = 0; i < req->count; i++) {
861 read_phys_req_item(req->addr, req, i, &tmp);
862 write_phys_req_item(req->data, req, i, &tmp);
863 }
864 } else if (req->dir == IOREQ_WRITE) {
865 for (i = 0; i < req->count; i++) {
866 read_phys_req_item(req->data, req, i, &tmp);
867 write_phys_req_item(req->addr, req, i, &tmp);
868 }
869 }
870 }
871 }
872
873 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
874 {
875 X86CPU *cpu;
876 CPUX86State *env;
877
878 cpu = X86_CPU(current_cpu);
879 env = &cpu->env;
880 env->regs[R_EAX] = req->data;
881 env->regs[R_EBX] = vmport_regs->ebx;
882 env->regs[R_ECX] = vmport_regs->ecx;
883 env->regs[R_EDX] = vmport_regs->edx;
884 env->regs[R_ESI] = vmport_regs->esi;
885 env->regs[R_EDI] = vmport_regs->edi;
886 }
887
888 static void regs_from_cpu(vmware_regs_t *vmport_regs)
889 {
890 X86CPU *cpu = X86_CPU(current_cpu);
891 CPUX86State *env = &cpu->env;
892
893 vmport_regs->ebx = env->regs[R_EBX];
894 vmport_regs->ecx = env->regs[R_ECX];
895 vmport_regs->edx = env->regs[R_EDX];
896 vmport_regs->esi = env->regs[R_ESI];
897 vmport_regs->edi = env->regs[R_EDI];
898 }
899
900 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
901 {
902 vmware_regs_t *vmport_regs;
903
904 assert(state->shared_vmport_page);
905 vmport_regs =
906 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
907 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
908
909 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
910 regs_to_cpu(vmport_regs, req);
911 cpu_ioreq_pio(req);
912 regs_from_cpu(vmport_regs);
913 current_cpu = NULL;
914 }
915
916 static void handle_ioreq(XenIOState *state, ioreq_t *req)
917 {
918 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
919 req->addr, req->data, req->count, req->size);
920
921 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
922 (req->size < sizeof (target_ulong))) {
923 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
924 }
925
926 if (req->dir == IOREQ_WRITE)
927 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
928 req->addr, req->data, req->count, req->size);
929
930 switch (req->type) {
931 case IOREQ_TYPE_PIO:
932 cpu_ioreq_pio(req);
933 break;
934 case IOREQ_TYPE_COPY:
935 cpu_ioreq_move(req);
936 break;
937 case IOREQ_TYPE_VMWARE_PORT:
938 handle_vmport_ioreq(state, req);
939 break;
940 case IOREQ_TYPE_TIMEOFFSET:
941 break;
942 case IOREQ_TYPE_INVALIDATE:
943 xen_invalidate_map_cache();
944 break;
945 case IOREQ_TYPE_PCI_CONFIG: {
946 uint32_t sbdf = req->addr >> 32;
947 uint32_t val;
948
949 /* Fake a write to port 0xCF8 so that
950 * the config space access will target the
951 * correct device model.
952 */
953 val = (1u << 31) |
954 ((req->addr & 0x0f00) << 16) |
955 ((sbdf & 0xffff) << 8) |
956 (req->addr & 0xfc);
957 do_outp(0xcf8, 4, val);
958
959 /* Now issue the config space access via
960 * port 0xCFC
961 */
962 req->addr = 0xcfc | (req->addr & 0x03);
963 cpu_ioreq_pio(req);
964 break;
965 }
966 default:
967 hw_error("Invalid ioreq type 0x%x\n", req->type);
968 }
969 if (req->dir == IOREQ_READ) {
970 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
971 req->addr, req->data, req->count, req->size);
972 }
973 }
974
975 static int handle_buffered_iopage(XenIOState *state)
976 {
977 buffered_iopage_t *buf_page = state->buffered_io_page;
978 buf_ioreq_t *buf_req = NULL;
979 ioreq_t req;
980 int qw;
981
982 if (!buf_page) {
983 return 0;
984 }
985
986 memset(&req, 0x00, sizeof(req));
987
988 for (;;) {
989 uint32_t rdptr = buf_page->read_pointer, wrptr;
990
991 xen_rmb();
992 wrptr = buf_page->write_pointer;
993 xen_rmb();
994 if (rdptr != buf_page->read_pointer) {
995 continue;
996 }
997 if (rdptr == wrptr) {
998 break;
999 }
1000 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1001 req.size = 1UL << buf_req->size;
1002 req.count = 1;
1003 req.addr = buf_req->addr;
1004 req.data = buf_req->data;
1005 req.state = STATE_IOREQ_READY;
1006 req.dir = buf_req->dir;
1007 req.df = 1;
1008 req.type = buf_req->type;
1009 req.data_is_ptr = 0;
1010 qw = (req.size == 8);
1011 if (qw) {
1012 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1013 IOREQ_BUFFER_SLOT_NUM];
1014 req.data |= ((uint64_t)buf_req->data) << 32;
1015 }
1016
1017 handle_ioreq(state, &req);
1018
1019 atomic_add(&buf_page->read_pointer, qw + 1);
1020 }
1021
1022 return req.count;
1023 }
1024
1025 static void handle_buffered_io(void *opaque)
1026 {
1027 XenIOState *state = opaque;
1028
1029 if (handle_buffered_iopage(state)) {
1030 timer_mod(state->buffered_io_timer,
1031 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1032 } else {
1033 timer_del(state->buffered_io_timer);
1034 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1035 }
1036 }
1037
1038 static void cpu_handle_ioreq(void *opaque)
1039 {
1040 XenIOState *state = opaque;
1041 ioreq_t *req = cpu_get_ioreq(state);
1042
1043 handle_buffered_iopage(state);
1044 if (req) {
1045 handle_ioreq(state, req);
1046
1047 if (req->state != STATE_IOREQ_INPROCESS) {
1048 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1049 "%x, ptr: %x, port: %"PRIx64", "
1050 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1051 req->state, req->data_is_ptr, req->addr,
1052 req->data, req->count, req->size, req->type);
1053 destroy_hvm_domain(false);
1054 return;
1055 }
1056
1057 xen_wmb(); /* Update ioreq contents /then/ update state. */
1058
1059 /*
1060 * We do this before we send the response so that the tools
1061 * have the opportunity to pick up on the reset before the
1062 * guest resumes and does a hlt with interrupts disabled which
1063 * causes Xen to powerdown the domain.
1064 */
1065 if (runstate_is_running()) {
1066 if (qemu_shutdown_requested_get()) {
1067 destroy_hvm_domain(false);
1068 }
1069 if (qemu_reset_requested_get()) {
1070 qemu_system_reset(VMRESET_REPORT);
1071 destroy_hvm_domain(true);
1072 }
1073 }
1074
1075 req->state = STATE_IORESP_READY;
1076 xenevtchn_notify(state->xce_handle,
1077 state->ioreq_local_port[state->send_vcpu]);
1078 }
1079 }
1080
1081 static void xen_main_loop_prepare(XenIOState *state)
1082 {
1083 int evtchn_fd = -1;
1084
1085 if (state->xce_handle != NULL) {
1086 evtchn_fd = xenevtchn_fd(state->xce_handle);
1087 }
1088
1089 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1090 state);
1091
1092 if (evtchn_fd != -1) {
1093 CPUState *cpu_state;
1094
1095 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1096 CPU_FOREACH(cpu_state) {
1097 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1098 __func__, cpu_state->cpu_index, cpu_state);
1099 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1100 }
1101 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1102 }
1103 }
1104
1105
1106 static void xen_hvm_change_state_handler(void *opaque, int running,
1107 RunState rstate)
1108 {
1109 XenIOState *state = opaque;
1110
1111 if (running) {
1112 xen_main_loop_prepare(state);
1113 }
1114
1115 xen_set_ioreq_server_state(xen_xc, xen_domid,
1116 state->ioservid,
1117 (rstate == RUN_STATE_RUNNING));
1118 }
1119
1120 static void xen_exit_notifier(Notifier *n, void *data)
1121 {
1122 XenIOState *state = container_of(n, XenIOState, exit);
1123
1124 xenevtchn_close(state->xce_handle);
1125 xs_daemon_close(state->xenstore);
1126 }
1127
1128 static void xen_read_physmap(XenIOState *state)
1129 {
1130 XenPhysmap *physmap = NULL;
1131 unsigned int len, num, i;
1132 char path[80], *value = NULL;
1133 char **entries = NULL;
1134
1135 snprintf(path, sizeof(path),
1136 "/local/domain/0/device-model/%d/physmap", xen_domid);
1137 entries = xs_directory(state->xenstore, 0, path, &num);
1138 if (entries == NULL)
1139 return;
1140
1141 for (i = 0; i < num; i++) {
1142 physmap = g_malloc(sizeof (XenPhysmap));
1143 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1144 snprintf(path, sizeof(path),
1145 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1146 xen_domid, entries[i]);
1147 value = xs_read(state->xenstore, 0, path, &len);
1148 if (value == NULL) {
1149 g_free(physmap);
1150 continue;
1151 }
1152 physmap->start_addr = strtoull(value, NULL, 16);
1153 free(value);
1154
1155 snprintf(path, sizeof(path),
1156 "/local/domain/0/device-model/%d/physmap/%s/size",
1157 xen_domid, entries[i]);
1158 value = xs_read(state->xenstore, 0, path, &len);
1159 if (value == NULL) {
1160 g_free(physmap);
1161 continue;
1162 }
1163 physmap->size = strtoull(value, NULL, 16);
1164 free(value);
1165
1166 snprintf(path, sizeof(path),
1167 "/local/domain/0/device-model/%d/physmap/%s/name",
1168 xen_domid, entries[i]);
1169 physmap->name = xs_read(state->xenstore, 0, path, &len);
1170
1171 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1172 }
1173 free(entries);
1174 }
1175
1176 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1177 {
1178 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1179 }
1180
1181 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1182 {
1183 int i, rc;
1184 xen_pfn_t ioreq_pfn;
1185 xen_pfn_t bufioreq_pfn;
1186 evtchn_port_t bufioreq_evtchn;
1187 XenIOState *state;
1188
1189 state = g_malloc0(sizeof (XenIOState));
1190
1191 state->xce_handle = xenevtchn_open(NULL, 0);
1192 if (state->xce_handle == NULL) {
1193 perror("xen: event channel open");
1194 goto err;
1195 }
1196
1197 state->xenstore = xs_daemon_open();
1198 if (state->xenstore == NULL) {
1199 perror("xen: xenstore open");
1200 goto err;
1201 }
1202
1203 rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid);
1204 if (rc < 0) {
1205 perror("xen: ioreq server create");
1206 goto err;
1207 }
1208
1209 state->exit.notify = xen_exit_notifier;
1210 qemu_add_exit_notifier(&state->exit);
1211
1212 state->suspend.notify = xen_suspend_notifier;
1213 qemu_register_suspend_notifier(&state->suspend);
1214
1215 state->wakeup.notify = xen_wakeup_notifier;
1216 qemu_register_wakeup_notifier(&state->wakeup);
1217
1218 rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid,
1219 &ioreq_pfn, &bufioreq_pfn,
1220 &bufioreq_evtchn);
1221 if (rc < 0) {
1222 error_report("failed to get ioreq server info: error %d handle=%p",
1223 errno, xen_xc);
1224 goto err;
1225 }
1226
1227 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1228 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1229 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1230
1231 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1232 PROT_READ|PROT_WRITE,
1233 1, &ioreq_pfn, NULL);
1234 if (state->shared_page == NULL) {
1235 error_report("map shared IO page returned error %d handle=%p",
1236 errno, xen_xc);
1237 goto err;
1238 }
1239
1240 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1241 if (!rc) {
1242 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1243 state->shared_vmport_page =
1244 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1245 1, &ioreq_pfn, NULL);
1246 if (state->shared_vmport_page == NULL) {
1247 error_report("map shared vmport IO page returned error %d handle=%p",
1248 errno, xen_xc);
1249 goto err;
1250 }
1251 } else if (rc != -ENOSYS) {
1252 error_report("get vmport regs pfn returned error %d, rc=%d",
1253 errno, rc);
1254 goto err;
1255 }
1256
1257 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1258 PROT_READ|PROT_WRITE,
1259 1, &bufioreq_pfn, NULL);
1260 if (state->buffered_io_page == NULL) {
1261 error_report("map buffered IO page returned error %d", errno);
1262 goto err;
1263 }
1264
1265 /* Note: cpus is empty at this point in init */
1266 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1267
1268 rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true);
1269 if (rc < 0) {
1270 error_report("failed to enable ioreq server info: error %d handle=%p",
1271 errno, xen_xc);
1272 goto err;
1273 }
1274
1275 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1276
1277 /* FIXME: how about if we overflow the page here? */
1278 for (i = 0; i < max_cpus; i++) {
1279 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1280 xen_vcpu_eport(state->shared_page, i));
1281 if (rc == -1) {
1282 error_report("shared evtchn %d bind error %d", i, errno);
1283 goto err;
1284 }
1285 state->ioreq_local_port[i] = rc;
1286 }
1287
1288 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1289 bufioreq_evtchn);
1290 if (rc == -1) {
1291 error_report("buffered evtchn bind error %d", errno);
1292 goto err;
1293 }
1294 state->bufioreq_local_port = rc;
1295
1296 /* Init RAM management */
1297 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1298 xen_ram_init(pcms, ram_size, ram_memory);
1299
1300 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1301
1302 state->memory_listener = xen_memory_listener;
1303 QLIST_INIT(&state->physmap);
1304 memory_listener_register(&state->memory_listener, &address_space_memory);
1305 state->log_for_dirtybit = NULL;
1306
1307 state->io_listener = xen_io_listener;
1308 memory_listener_register(&state->io_listener, &address_space_io);
1309
1310 state->device_listener = xen_device_listener;
1311 device_listener_register(&state->device_listener);
1312
1313 /* Initialize backend core & drivers */
1314 if (xen_be_init() != 0) {
1315 error_report("xen backend core setup failed");
1316 goto err;
1317 }
1318 xen_be_register("console", &xen_console_ops);
1319 xen_be_register("vkbd", &xen_kbdmouse_ops);
1320 xen_be_register("qdisk", &xen_blkdev_ops);
1321 xen_read_physmap(state);
1322 return;
1323
1324 err:
1325 error_report("xen hardware virtual machine initialisation failed");
1326 exit(1);
1327 }
1328
1329 void destroy_hvm_domain(bool reboot)
1330 {
1331 xc_interface *xc_handle;
1332 int sts;
1333
1334 xc_handle = xc_interface_open(0, 0, 0);
1335 if (xc_handle == NULL) {
1336 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1337 } else {
1338 sts = xc_domain_shutdown(xc_handle, xen_domid,
1339 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1340 if (sts != 0) {
1341 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1342 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1343 sts, strerror(errno));
1344 } else {
1345 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1346 reboot ? "reboot" : "poweroff");
1347 }
1348 xc_interface_close(xc_handle);
1349 }
1350 }
1351
1352 void xen_register_framebuffer(MemoryRegion *mr)
1353 {
1354 framebuffer = mr;
1355 }
1356
1357 void xen_shutdown_fatal_error(const char *fmt, ...)
1358 {
1359 va_list ap;
1360
1361 va_start(ap, fmt);
1362 vfprintf(stderr, fmt, ap);
1363 va_end(ap);
1364 fprintf(stderr, "Will destroy the domain.\n");
1365 /* destroy the domain */
1366 qemu_system_shutdown_request();
1367 }
1368
1369 void xen_modified_memory(ram_addr_t start, ram_addr_t length)
1370 {
1371 if (unlikely(xen_in_migration)) {
1372 int rc;
1373 ram_addr_t start_pfn, nb_pages;
1374
1375 if (length == 0) {
1376 length = TARGET_PAGE_SIZE;
1377 }
1378 start_pfn = start >> TARGET_PAGE_BITS;
1379 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1380 - start_pfn;
1381 rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages);
1382 if (rc) {
1383 fprintf(stderr,
1384 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1385 __func__, start, nb_pages, rc, strerror(-rc));
1386 }
1387 }
1388 }
1389
1390 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1391 {
1392 if (enable) {
1393 memory_global_dirty_log_start();
1394 } else {
1395 memory_global_dirty_log_stop();
1396 }
1397 }