Postcopy: Add stats on page requests
[qemu.git] / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12 #include <sys/mman.h>
13
14 #include "cpu.h"
15 #include "hw/pci/pci.h"
16 #include "hw/i386/pc.h"
17 #include "hw/i386/apic-msidef.h"
18 #include "hw/xen/xen_common.h"
19 #include "hw/xen/xen_backend.h"
20 #include "qmp-commands.h"
21
22 #include "sysemu/char.h"
23 #include "qemu/error-report.h"
24 #include "qemu/range.h"
25 #include "sysemu/xen-mapcache.h"
26 #include "trace.h"
27 #include "exec/address-spaces.h"
28
29 #include <xen/hvm/ioreq.h>
30 #include <xen/hvm/params.h>
31 #include <xen/hvm/e820.h>
32
33 //#define DEBUG_XEN_HVM
34
35 #ifdef DEBUG_XEN_HVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
42
43 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
44 static MemoryRegion *framebuffer;
45 static bool xen_in_migration;
46
47 /* Compatibility with older version */
48
49 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
50 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
51 * needs to be included before this block and hw/xen/xen_common.h needs to
52 * be included before xen/hvm/ioreq.h
53 */
54 #ifndef IOREQ_TYPE_VMWARE_PORT
55 #define IOREQ_TYPE_VMWARE_PORT 3
56 struct vmware_regs {
57 uint32_t esi;
58 uint32_t edi;
59 uint32_t ebx;
60 uint32_t ecx;
61 uint32_t edx;
62 };
63 typedef struct vmware_regs vmware_regs_t;
64
65 struct shared_vmport_iopage {
66 struct vmware_regs vcpu_vmport_regs[1];
67 };
68 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
69 #endif
70
71 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
72 {
73 return shared_page->vcpu_ioreq[i].vp_eport;
74 }
75 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
76 {
77 return &shared_page->vcpu_ioreq[vcpu];
78 }
79
80 #define BUFFER_IO_MAX_DELAY 100
81
82 typedef struct XenPhysmap {
83 hwaddr start_addr;
84 ram_addr_t size;
85 const char *name;
86 hwaddr phys_offset;
87
88 QLIST_ENTRY(XenPhysmap) list;
89 } XenPhysmap;
90
91 typedef struct XenIOState {
92 ioservid_t ioservid;
93 shared_iopage_t *shared_page;
94 shared_vmport_iopage_t *shared_vmport_page;
95 buffered_iopage_t *buffered_io_page;
96 QEMUTimer *buffered_io_timer;
97 CPUState **cpu_by_vcpu_id;
98 /* the evtchn port for polling the notification, */
99 evtchn_port_t *ioreq_local_port;
100 /* evtchn local port for buffered io */
101 evtchn_port_t bufioreq_local_port;
102 /* the evtchn fd for polling */
103 xenevtchn_handle *xce_handle;
104 /* which vcpu we are serving */
105 int send_vcpu;
106
107 struct xs_handle *xenstore;
108 MemoryListener memory_listener;
109 MemoryListener io_listener;
110 DeviceListener device_listener;
111 QLIST_HEAD(, XenPhysmap) physmap;
112 hwaddr free_phys_offset;
113 const XenPhysmap *log_for_dirtybit;
114
115 Notifier exit;
116 Notifier suspend;
117 Notifier wakeup;
118 } XenIOState;
119
120 /* Xen specific function for piix pci */
121
122 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
123 {
124 return irq_num + ((pci_dev->devfn >> 3) << 2);
125 }
126
127 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
128 {
129 xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2,
130 irq_num & 3, level);
131 }
132
133 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
134 {
135 int i;
136
137 /* Scan for updates to PCI link routes (0x60-0x63). */
138 for (i = 0; i < len; i++) {
139 uint8_t v = (val >> (8 * i)) & 0xff;
140 if (v & 0x80) {
141 v = 0;
142 }
143 v &= 0xf;
144 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
145 xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v);
146 }
147 }
148 }
149
150 int xen_is_pirq_msi(uint32_t msi_data)
151 {
152 /* If vector is 0, the msi is remapped into a pirq, passed as
153 * dest_id.
154 */
155 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
156 }
157
158 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
159 {
160 xc_hvm_inject_msi(xen_xc, xen_domid, addr, data);
161 }
162
163 static void xen_suspend_notifier(Notifier *notifier, void *data)
164 {
165 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
166 }
167
168 /* Xen Interrupt Controller */
169
170 static void xen_set_irq(void *opaque, int irq, int level)
171 {
172 xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level);
173 }
174
175 qemu_irq *xen_interrupt_controller_init(void)
176 {
177 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
178 }
179
180 /* Memory Ops */
181
182 static void xen_ram_init(PCMachineState *pcms,
183 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
184 {
185 MemoryRegion *sysmem = get_system_memory();
186 ram_addr_t block_len;
187 uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
188 PC_MACHINE_MAX_RAM_BELOW_4G,
189 &error_abort);
190
191 /* Handle the machine opt max-ram-below-4g. It is basically doing
192 * min(xen limit, user limit).
193 */
194 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
195 user_lowmem = HVM_BELOW_4G_RAM_END;
196 }
197
198 if (ram_size >= user_lowmem) {
199 pcms->above_4g_mem_size = ram_size - user_lowmem;
200 pcms->below_4g_mem_size = user_lowmem;
201 } else {
202 pcms->above_4g_mem_size = 0;
203 pcms->below_4g_mem_size = ram_size;
204 }
205 if (!pcms->above_4g_mem_size) {
206 block_len = ram_size;
207 } else {
208 /*
209 * Xen does not allocate the memory continuously, it keeps a
210 * hole of the size computed above or passed in.
211 */
212 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
213 }
214 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
215 &error_fatal);
216 *ram_memory_p = &ram_memory;
217 vmstate_register_ram_global(&ram_memory);
218
219 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
220 &ram_memory, 0, 0xa0000);
221 memory_region_add_subregion(sysmem, 0, &ram_640k);
222 /* Skip of the VGA IO memory space, it will be registered later by the VGA
223 * emulated device.
224 *
225 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
226 * the Options ROM, so it is registered here as RAM.
227 */
228 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
229 &ram_memory, 0xc0000,
230 pcms->below_4g_mem_size - 0xc0000);
231 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
232 if (pcms->above_4g_mem_size > 0) {
233 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
234 &ram_memory, 0x100000000ULL,
235 pcms->above_4g_mem_size);
236 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
237 }
238 }
239
240 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
241 Error **errp)
242 {
243 unsigned long nr_pfn;
244 xen_pfn_t *pfn_list;
245 int i;
246
247 if (runstate_check(RUN_STATE_INMIGRATE)) {
248 /* RAM already populated in Xen */
249 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
250 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
251 __func__, size, ram_addr);
252 return;
253 }
254
255 if (mr == &ram_memory) {
256 return;
257 }
258
259 trace_xen_ram_alloc(ram_addr, size);
260
261 nr_pfn = size >> TARGET_PAGE_BITS;
262 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
263
264 for (i = 0; i < nr_pfn; i++) {
265 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
266 }
267
268 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
269 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
270 ram_addr);
271 }
272
273 g_free(pfn_list);
274 }
275
276 static XenPhysmap *get_physmapping(XenIOState *state,
277 hwaddr start_addr, ram_addr_t size)
278 {
279 XenPhysmap *physmap = NULL;
280
281 start_addr &= TARGET_PAGE_MASK;
282
283 QLIST_FOREACH(physmap, &state->physmap, list) {
284 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
285 return physmap;
286 }
287 }
288 return NULL;
289 }
290
291 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
292 ram_addr_t size, void *opaque)
293 {
294 hwaddr addr = start_addr & TARGET_PAGE_MASK;
295 XenIOState *xen_io_state = opaque;
296 XenPhysmap *physmap = NULL;
297
298 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
299 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
300 return physmap->start_addr;
301 }
302 }
303
304 return start_addr;
305 }
306
307 static int xen_add_to_physmap(XenIOState *state,
308 hwaddr start_addr,
309 ram_addr_t size,
310 MemoryRegion *mr,
311 hwaddr offset_within_region)
312 {
313 unsigned long i = 0;
314 int rc = 0;
315 XenPhysmap *physmap = NULL;
316 hwaddr pfn, start_gpfn;
317 hwaddr phys_offset = memory_region_get_ram_addr(mr);
318 char path[80], value[17];
319 const char *mr_name;
320
321 if (get_physmapping(state, start_addr, size)) {
322 return 0;
323 }
324 if (size <= 0) {
325 return -1;
326 }
327
328 /* Xen can only handle a single dirty log region for now and we want
329 * the linear framebuffer to be that region.
330 * Avoid tracking any regions that is not videoram and avoid tracking
331 * the legacy vga region. */
332 if (mr == framebuffer && start_addr > 0xbffff) {
333 goto go_physmap;
334 }
335 return -1;
336
337 go_physmap:
338 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
339 start_addr, start_addr + size);
340
341 pfn = phys_offset >> TARGET_PAGE_BITS;
342 start_gpfn = start_addr >> TARGET_PAGE_BITS;
343 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
344 unsigned long idx = pfn + i;
345 xen_pfn_t gpfn = start_gpfn + i;
346
347 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
348 if (rc) {
349 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
350 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
351 return -rc;
352 }
353 }
354
355 mr_name = memory_region_name(mr);
356
357 physmap = g_malloc(sizeof (XenPhysmap));
358
359 physmap->start_addr = start_addr;
360 physmap->size = size;
361 physmap->name = mr_name;
362 physmap->phys_offset = phys_offset;
363
364 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
365
366 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
367 start_addr >> TARGET_PAGE_BITS,
368 (start_addr + size - 1) >> TARGET_PAGE_BITS,
369 XEN_DOMCTL_MEM_CACHEATTR_WB);
370
371 snprintf(path, sizeof(path),
372 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
373 xen_domid, (uint64_t)phys_offset);
374 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
375 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
376 return -1;
377 }
378 snprintf(path, sizeof(path),
379 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
380 xen_domid, (uint64_t)phys_offset);
381 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
382 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
383 return -1;
384 }
385 if (mr_name) {
386 snprintf(path, sizeof(path),
387 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
388 xen_domid, (uint64_t)phys_offset);
389 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
390 return -1;
391 }
392 }
393
394 return 0;
395 }
396
397 static int xen_remove_from_physmap(XenIOState *state,
398 hwaddr start_addr,
399 ram_addr_t size)
400 {
401 unsigned long i = 0;
402 int rc = 0;
403 XenPhysmap *physmap = NULL;
404 hwaddr phys_offset = 0;
405
406 physmap = get_physmapping(state, start_addr, size);
407 if (physmap == NULL) {
408 return -1;
409 }
410
411 phys_offset = physmap->phys_offset;
412 size = physmap->size;
413
414 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
415 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
416
417 size >>= TARGET_PAGE_BITS;
418 start_addr >>= TARGET_PAGE_BITS;
419 phys_offset >>= TARGET_PAGE_BITS;
420 for (i = 0; i < size; i++) {
421 xen_pfn_t idx = start_addr + i;
422 xen_pfn_t gpfn = phys_offset + i;
423
424 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
425 if (rc) {
426 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
427 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
428 return -rc;
429 }
430 }
431
432 QLIST_REMOVE(physmap, list);
433 if (state->log_for_dirtybit == physmap) {
434 state->log_for_dirtybit = NULL;
435 }
436 g_free(physmap);
437
438 return 0;
439 }
440
441 static void xen_set_memory(struct MemoryListener *listener,
442 MemoryRegionSection *section,
443 bool add)
444 {
445 XenIOState *state = container_of(listener, XenIOState, memory_listener);
446 hwaddr start_addr = section->offset_within_address_space;
447 ram_addr_t size = int128_get64(section->size);
448 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
449 hvmmem_type_t mem_type;
450
451 if (section->mr == &ram_memory) {
452 return;
453 } else {
454 if (add) {
455 xen_map_memory_section(xen_xc, xen_domid, state->ioservid,
456 section);
457 } else {
458 xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid,
459 section);
460 }
461 }
462
463 if (!memory_region_is_ram(section->mr)) {
464 return;
465 }
466
467 if (log_dirty != add) {
468 return;
469 }
470
471 trace_xen_client_set_memory(start_addr, size, log_dirty);
472
473 start_addr &= TARGET_PAGE_MASK;
474 size = TARGET_PAGE_ALIGN(size);
475
476 if (add) {
477 if (!memory_region_is_rom(section->mr)) {
478 xen_add_to_physmap(state, start_addr, size,
479 section->mr, section->offset_within_region);
480 } else {
481 mem_type = HVMMEM_ram_ro;
482 if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type,
483 start_addr >> TARGET_PAGE_BITS,
484 size >> TARGET_PAGE_BITS)) {
485 DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n",
486 start_addr);
487 }
488 }
489 } else {
490 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
491 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
492 }
493 }
494 }
495
496 static void xen_region_add(MemoryListener *listener,
497 MemoryRegionSection *section)
498 {
499 memory_region_ref(section->mr);
500 xen_set_memory(listener, section, true);
501 }
502
503 static void xen_region_del(MemoryListener *listener,
504 MemoryRegionSection *section)
505 {
506 xen_set_memory(listener, section, false);
507 memory_region_unref(section->mr);
508 }
509
510 static void xen_io_add(MemoryListener *listener,
511 MemoryRegionSection *section)
512 {
513 XenIOState *state = container_of(listener, XenIOState, io_listener);
514 MemoryRegion *mr = section->mr;
515
516 if (mr->ops == &unassigned_io_ops) {
517 return;
518 }
519
520 memory_region_ref(mr);
521
522 xen_map_io_section(xen_xc, xen_domid, state->ioservid, section);
523 }
524
525 static void xen_io_del(MemoryListener *listener,
526 MemoryRegionSection *section)
527 {
528 XenIOState *state = container_of(listener, XenIOState, io_listener);
529 MemoryRegion *mr = section->mr;
530
531 if (mr->ops == &unassigned_io_ops) {
532 return;
533 }
534
535 xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section);
536
537 memory_region_unref(mr);
538 }
539
540 static void xen_device_realize(DeviceListener *listener,
541 DeviceState *dev)
542 {
543 XenIOState *state = container_of(listener, XenIOState, device_listener);
544
545 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
546 PCIDevice *pci_dev = PCI_DEVICE(dev);
547
548 xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
549 }
550 }
551
552 static void xen_device_unrealize(DeviceListener *listener,
553 DeviceState *dev)
554 {
555 XenIOState *state = container_of(listener, XenIOState, device_listener);
556
557 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
558 PCIDevice *pci_dev = PCI_DEVICE(dev);
559
560 xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
561 }
562 }
563
564 static void xen_sync_dirty_bitmap(XenIOState *state,
565 hwaddr start_addr,
566 ram_addr_t size)
567 {
568 hwaddr npages = size >> TARGET_PAGE_BITS;
569 const int width = sizeof(unsigned long) * 8;
570 unsigned long bitmap[DIV_ROUND_UP(npages, width)];
571 int rc, i, j;
572 const XenPhysmap *physmap = NULL;
573
574 physmap = get_physmapping(state, start_addr, size);
575 if (physmap == NULL) {
576 /* not handled */
577 return;
578 }
579
580 if (state->log_for_dirtybit == NULL) {
581 state->log_for_dirtybit = physmap;
582 } else if (state->log_for_dirtybit != physmap) {
583 /* Only one range for dirty bitmap can be tracked. */
584 return;
585 }
586
587 rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid,
588 start_addr >> TARGET_PAGE_BITS, npages,
589 bitmap);
590 if (rc < 0) {
591 #ifndef ENODATA
592 #define ENODATA ENOENT
593 #endif
594 if (errno == ENODATA) {
595 memory_region_set_dirty(framebuffer, 0, size);
596 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
597 ", 0x" TARGET_FMT_plx "): %s\n",
598 start_addr, start_addr + size, strerror(errno));
599 }
600 return;
601 }
602
603 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
604 unsigned long map = bitmap[i];
605 while (map != 0) {
606 j = ctzl(map);
607 map &= ~(1ul << j);
608 memory_region_set_dirty(framebuffer,
609 (i * width + j) * TARGET_PAGE_SIZE,
610 TARGET_PAGE_SIZE);
611 };
612 }
613 }
614
615 static void xen_log_start(MemoryListener *listener,
616 MemoryRegionSection *section,
617 int old, int new)
618 {
619 XenIOState *state = container_of(listener, XenIOState, memory_listener);
620
621 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
622 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
623 int128_get64(section->size));
624 }
625 }
626
627 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
628 int old, int new)
629 {
630 XenIOState *state = container_of(listener, XenIOState, memory_listener);
631
632 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
633 state->log_for_dirtybit = NULL;
634 /* Disable dirty bit tracking */
635 xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL);
636 }
637 }
638
639 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
640 {
641 XenIOState *state = container_of(listener, XenIOState, memory_listener);
642
643 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
644 int128_get64(section->size));
645 }
646
647 static void xen_log_global_start(MemoryListener *listener)
648 {
649 if (xen_enabled()) {
650 xen_in_migration = true;
651 }
652 }
653
654 static void xen_log_global_stop(MemoryListener *listener)
655 {
656 xen_in_migration = false;
657 }
658
659 static MemoryListener xen_memory_listener = {
660 .region_add = xen_region_add,
661 .region_del = xen_region_del,
662 .log_start = xen_log_start,
663 .log_stop = xen_log_stop,
664 .log_sync = xen_log_sync,
665 .log_global_start = xen_log_global_start,
666 .log_global_stop = xen_log_global_stop,
667 .priority = 10,
668 };
669
670 static MemoryListener xen_io_listener = {
671 .region_add = xen_io_add,
672 .region_del = xen_io_del,
673 .priority = 10,
674 };
675
676 static DeviceListener xen_device_listener = {
677 .realize = xen_device_realize,
678 .unrealize = xen_device_unrealize,
679 };
680
681 /* get the ioreq packets from share mem */
682 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
683 {
684 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
685
686 if (req->state != STATE_IOREQ_READY) {
687 DPRINTF("I/O request not ready: "
688 "%x, ptr: %x, port: %"PRIx64", "
689 "data: %"PRIx64", count: %u, size: %u\n",
690 req->state, req->data_is_ptr, req->addr,
691 req->data, req->count, req->size);
692 return NULL;
693 }
694
695 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
696
697 req->state = STATE_IOREQ_INPROCESS;
698 return req;
699 }
700
701 /* use poll to get the port notification */
702 /* ioreq_vec--out,the */
703 /* retval--the number of ioreq packet */
704 static ioreq_t *cpu_get_ioreq(XenIOState *state)
705 {
706 int i;
707 evtchn_port_t port;
708
709 port = xenevtchn_pending(state->xce_handle);
710 if (port == state->bufioreq_local_port) {
711 timer_mod(state->buffered_io_timer,
712 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
713 return NULL;
714 }
715
716 if (port != -1) {
717 for (i = 0; i < max_cpus; i++) {
718 if (state->ioreq_local_port[i] == port) {
719 break;
720 }
721 }
722
723 if (i == max_cpus) {
724 hw_error("Fatal error while trying to get io event!\n");
725 }
726
727 /* unmask the wanted port again */
728 xenevtchn_unmask(state->xce_handle, port);
729
730 /* get the io packet from shared memory */
731 state->send_vcpu = i;
732 return cpu_get_ioreq_from_shared_memory(state, i);
733 }
734
735 /* read error or read nothing */
736 return NULL;
737 }
738
739 static uint32_t do_inp(uint32_t addr, unsigned long size)
740 {
741 switch (size) {
742 case 1:
743 return cpu_inb(addr);
744 case 2:
745 return cpu_inw(addr);
746 case 4:
747 return cpu_inl(addr);
748 default:
749 hw_error("inp: bad size: %04x %lx", addr, size);
750 }
751 }
752
753 static void do_outp(uint32_t addr,
754 unsigned long size, uint32_t val)
755 {
756 switch (size) {
757 case 1:
758 return cpu_outb(addr, val);
759 case 2:
760 return cpu_outw(addr, val);
761 case 4:
762 return cpu_outl(addr, val);
763 default:
764 hw_error("outp: bad size: %04x %lx", addr, size);
765 }
766 }
767
768 /*
769 * Helper functions which read/write an object from/to physical guest
770 * memory, as part of the implementation of an ioreq.
771 *
772 * Equivalent to
773 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
774 * val, req->size, 0/1)
775 * except without the integer overflow problems.
776 */
777 static void rw_phys_req_item(hwaddr addr,
778 ioreq_t *req, uint32_t i, void *val, int rw)
779 {
780 /* Do everything unsigned so overflow just results in a truncated result
781 * and accesses to undesired parts of guest memory, which is up
782 * to the guest */
783 hwaddr offset = (hwaddr)req->size * i;
784 if (req->df) {
785 addr -= offset;
786 } else {
787 addr += offset;
788 }
789 cpu_physical_memory_rw(addr, val, req->size, rw);
790 }
791
792 static inline void read_phys_req_item(hwaddr addr,
793 ioreq_t *req, uint32_t i, void *val)
794 {
795 rw_phys_req_item(addr, req, i, val, 0);
796 }
797 static inline void write_phys_req_item(hwaddr addr,
798 ioreq_t *req, uint32_t i, void *val)
799 {
800 rw_phys_req_item(addr, req, i, val, 1);
801 }
802
803
804 static void cpu_ioreq_pio(ioreq_t *req)
805 {
806 uint32_t i;
807
808 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
809 req->data, req->count, req->size);
810
811 if (req->dir == IOREQ_READ) {
812 if (!req->data_is_ptr) {
813 req->data = do_inp(req->addr, req->size);
814 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
815 req->size);
816 } else {
817 uint32_t tmp;
818
819 for (i = 0; i < req->count; i++) {
820 tmp = do_inp(req->addr, req->size);
821 write_phys_req_item(req->data, req, i, &tmp);
822 }
823 }
824 } else if (req->dir == IOREQ_WRITE) {
825 if (!req->data_is_ptr) {
826 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
827 req->size);
828 do_outp(req->addr, req->size, req->data);
829 } else {
830 for (i = 0; i < req->count; i++) {
831 uint32_t tmp = 0;
832
833 read_phys_req_item(req->data, req, i, &tmp);
834 do_outp(req->addr, req->size, tmp);
835 }
836 }
837 }
838 }
839
840 static void cpu_ioreq_move(ioreq_t *req)
841 {
842 uint32_t i;
843
844 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
845 req->data, req->count, req->size);
846
847 if (!req->data_is_ptr) {
848 if (req->dir == IOREQ_READ) {
849 for (i = 0; i < req->count; i++) {
850 read_phys_req_item(req->addr, req, i, &req->data);
851 }
852 } else if (req->dir == IOREQ_WRITE) {
853 for (i = 0; i < req->count; i++) {
854 write_phys_req_item(req->addr, req, i, &req->data);
855 }
856 }
857 } else {
858 uint64_t tmp;
859
860 if (req->dir == IOREQ_READ) {
861 for (i = 0; i < req->count; i++) {
862 read_phys_req_item(req->addr, req, i, &tmp);
863 write_phys_req_item(req->data, req, i, &tmp);
864 }
865 } else if (req->dir == IOREQ_WRITE) {
866 for (i = 0; i < req->count; i++) {
867 read_phys_req_item(req->data, req, i, &tmp);
868 write_phys_req_item(req->addr, req, i, &tmp);
869 }
870 }
871 }
872 }
873
874 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
875 {
876 X86CPU *cpu;
877 CPUX86State *env;
878
879 cpu = X86_CPU(current_cpu);
880 env = &cpu->env;
881 env->regs[R_EAX] = req->data;
882 env->regs[R_EBX] = vmport_regs->ebx;
883 env->regs[R_ECX] = vmport_regs->ecx;
884 env->regs[R_EDX] = vmport_regs->edx;
885 env->regs[R_ESI] = vmport_regs->esi;
886 env->regs[R_EDI] = vmport_regs->edi;
887 }
888
889 static void regs_from_cpu(vmware_regs_t *vmport_regs)
890 {
891 X86CPU *cpu = X86_CPU(current_cpu);
892 CPUX86State *env = &cpu->env;
893
894 vmport_regs->ebx = env->regs[R_EBX];
895 vmport_regs->ecx = env->regs[R_ECX];
896 vmport_regs->edx = env->regs[R_EDX];
897 vmport_regs->esi = env->regs[R_ESI];
898 vmport_regs->edi = env->regs[R_EDI];
899 }
900
901 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
902 {
903 vmware_regs_t *vmport_regs;
904
905 assert(state->shared_vmport_page);
906 vmport_regs =
907 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
908 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
909
910 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
911 regs_to_cpu(vmport_regs, req);
912 cpu_ioreq_pio(req);
913 regs_from_cpu(vmport_regs);
914 current_cpu = NULL;
915 }
916
917 static void handle_ioreq(XenIOState *state, ioreq_t *req)
918 {
919 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
920 req->addr, req->data, req->count, req->size);
921
922 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
923 (req->size < sizeof (target_ulong))) {
924 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
925 }
926
927 if (req->dir == IOREQ_WRITE)
928 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
929 req->addr, req->data, req->count, req->size);
930
931 switch (req->type) {
932 case IOREQ_TYPE_PIO:
933 cpu_ioreq_pio(req);
934 break;
935 case IOREQ_TYPE_COPY:
936 cpu_ioreq_move(req);
937 break;
938 case IOREQ_TYPE_VMWARE_PORT:
939 handle_vmport_ioreq(state, req);
940 break;
941 case IOREQ_TYPE_TIMEOFFSET:
942 break;
943 case IOREQ_TYPE_INVALIDATE:
944 xen_invalidate_map_cache();
945 break;
946 case IOREQ_TYPE_PCI_CONFIG: {
947 uint32_t sbdf = req->addr >> 32;
948 uint32_t val;
949
950 /* Fake a write to port 0xCF8 so that
951 * the config space access will target the
952 * correct device model.
953 */
954 val = (1u << 31) |
955 ((req->addr & 0x0f00) << 16) |
956 ((sbdf & 0xffff) << 8) |
957 (req->addr & 0xfc);
958 do_outp(0xcf8, 4, val);
959
960 /* Now issue the config space access via
961 * port 0xCFC
962 */
963 req->addr = 0xcfc | (req->addr & 0x03);
964 cpu_ioreq_pio(req);
965 break;
966 }
967 default:
968 hw_error("Invalid ioreq type 0x%x\n", req->type);
969 }
970 if (req->dir == IOREQ_READ) {
971 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
972 req->addr, req->data, req->count, req->size);
973 }
974 }
975
976 static int handle_buffered_iopage(XenIOState *state)
977 {
978 buffered_iopage_t *buf_page = state->buffered_io_page;
979 buf_ioreq_t *buf_req = NULL;
980 ioreq_t req;
981 int qw;
982
983 if (!buf_page) {
984 return 0;
985 }
986
987 memset(&req, 0x00, sizeof(req));
988
989 for (;;) {
990 uint32_t rdptr = buf_page->read_pointer, wrptr;
991
992 xen_rmb();
993 wrptr = buf_page->write_pointer;
994 xen_rmb();
995 if (rdptr != buf_page->read_pointer) {
996 continue;
997 }
998 if (rdptr == wrptr) {
999 break;
1000 }
1001 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1002 req.size = 1UL << buf_req->size;
1003 req.count = 1;
1004 req.addr = buf_req->addr;
1005 req.data = buf_req->data;
1006 req.state = STATE_IOREQ_READY;
1007 req.dir = buf_req->dir;
1008 req.df = 1;
1009 req.type = buf_req->type;
1010 req.data_is_ptr = 0;
1011 qw = (req.size == 8);
1012 if (qw) {
1013 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1014 IOREQ_BUFFER_SLOT_NUM];
1015 req.data |= ((uint64_t)buf_req->data) << 32;
1016 }
1017
1018 handle_ioreq(state, &req);
1019
1020 atomic_add(&buf_page->read_pointer, qw + 1);
1021 }
1022
1023 return req.count;
1024 }
1025
1026 static void handle_buffered_io(void *opaque)
1027 {
1028 XenIOState *state = opaque;
1029
1030 if (handle_buffered_iopage(state)) {
1031 timer_mod(state->buffered_io_timer,
1032 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1033 } else {
1034 timer_del(state->buffered_io_timer);
1035 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1036 }
1037 }
1038
1039 static void cpu_handle_ioreq(void *opaque)
1040 {
1041 XenIOState *state = opaque;
1042 ioreq_t *req = cpu_get_ioreq(state);
1043
1044 handle_buffered_iopage(state);
1045 if (req) {
1046 handle_ioreq(state, req);
1047
1048 if (req->state != STATE_IOREQ_INPROCESS) {
1049 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1050 "%x, ptr: %x, port: %"PRIx64", "
1051 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1052 req->state, req->data_is_ptr, req->addr,
1053 req->data, req->count, req->size, req->type);
1054 destroy_hvm_domain(false);
1055 return;
1056 }
1057
1058 xen_wmb(); /* Update ioreq contents /then/ update state. */
1059
1060 /*
1061 * We do this before we send the response so that the tools
1062 * have the opportunity to pick up on the reset before the
1063 * guest resumes and does a hlt with interrupts disabled which
1064 * causes Xen to powerdown the domain.
1065 */
1066 if (runstate_is_running()) {
1067 if (qemu_shutdown_requested_get()) {
1068 destroy_hvm_domain(false);
1069 }
1070 if (qemu_reset_requested_get()) {
1071 qemu_system_reset(VMRESET_REPORT);
1072 destroy_hvm_domain(true);
1073 }
1074 }
1075
1076 req->state = STATE_IORESP_READY;
1077 xenevtchn_notify(state->xce_handle,
1078 state->ioreq_local_port[state->send_vcpu]);
1079 }
1080 }
1081
1082 static void xen_main_loop_prepare(XenIOState *state)
1083 {
1084 int evtchn_fd = -1;
1085
1086 if (state->xce_handle != NULL) {
1087 evtchn_fd = xenevtchn_fd(state->xce_handle);
1088 }
1089
1090 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1091 state);
1092
1093 if (evtchn_fd != -1) {
1094 CPUState *cpu_state;
1095
1096 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1097 CPU_FOREACH(cpu_state) {
1098 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1099 __func__, cpu_state->cpu_index, cpu_state);
1100 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1101 }
1102 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1103 }
1104 }
1105
1106
1107 static void xen_hvm_change_state_handler(void *opaque, int running,
1108 RunState rstate)
1109 {
1110 XenIOState *state = opaque;
1111
1112 if (running) {
1113 xen_main_loop_prepare(state);
1114 }
1115
1116 xen_set_ioreq_server_state(xen_xc, xen_domid,
1117 state->ioservid,
1118 (rstate == RUN_STATE_RUNNING));
1119 }
1120
1121 static void xen_exit_notifier(Notifier *n, void *data)
1122 {
1123 XenIOState *state = container_of(n, XenIOState, exit);
1124
1125 xenevtchn_close(state->xce_handle);
1126 xs_daemon_close(state->xenstore);
1127 }
1128
1129 static void xen_read_physmap(XenIOState *state)
1130 {
1131 XenPhysmap *physmap = NULL;
1132 unsigned int len, num, i;
1133 char path[80], *value = NULL;
1134 char **entries = NULL;
1135
1136 snprintf(path, sizeof(path),
1137 "/local/domain/0/device-model/%d/physmap", xen_domid);
1138 entries = xs_directory(state->xenstore, 0, path, &num);
1139 if (entries == NULL)
1140 return;
1141
1142 for (i = 0; i < num; i++) {
1143 physmap = g_malloc(sizeof (XenPhysmap));
1144 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1145 snprintf(path, sizeof(path),
1146 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1147 xen_domid, entries[i]);
1148 value = xs_read(state->xenstore, 0, path, &len);
1149 if (value == NULL) {
1150 g_free(physmap);
1151 continue;
1152 }
1153 physmap->start_addr = strtoull(value, NULL, 16);
1154 free(value);
1155
1156 snprintf(path, sizeof(path),
1157 "/local/domain/0/device-model/%d/physmap/%s/size",
1158 xen_domid, entries[i]);
1159 value = xs_read(state->xenstore, 0, path, &len);
1160 if (value == NULL) {
1161 g_free(physmap);
1162 continue;
1163 }
1164 physmap->size = strtoull(value, NULL, 16);
1165 free(value);
1166
1167 snprintf(path, sizeof(path),
1168 "/local/domain/0/device-model/%d/physmap/%s/name",
1169 xen_domid, entries[i]);
1170 physmap->name = xs_read(state->xenstore, 0, path, &len);
1171
1172 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1173 }
1174 free(entries);
1175 }
1176
1177 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1178 {
1179 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1180 }
1181
1182 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1183 {
1184 int i, rc;
1185 xen_pfn_t ioreq_pfn;
1186 xen_pfn_t bufioreq_pfn;
1187 evtchn_port_t bufioreq_evtchn;
1188 XenIOState *state;
1189
1190 state = g_malloc0(sizeof (XenIOState));
1191
1192 state->xce_handle = xenevtchn_open(NULL, 0);
1193 if (state->xce_handle == NULL) {
1194 perror("xen: event channel open");
1195 goto err;
1196 }
1197
1198 state->xenstore = xs_daemon_open();
1199 if (state->xenstore == NULL) {
1200 perror("xen: xenstore open");
1201 goto err;
1202 }
1203
1204 rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid);
1205 if (rc < 0) {
1206 perror("xen: ioreq server create");
1207 goto err;
1208 }
1209
1210 state->exit.notify = xen_exit_notifier;
1211 qemu_add_exit_notifier(&state->exit);
1212
1213 state->suspend.notify = xen_suspend_notifier;
1214 qemu_register_suspend_notifier(&state->suspend);
1215
1216 state->wakeup.notify = xen_wakeup_notifier;
1217 qemu_register_wakeup_notifier(&state->wakeup);
1218
1219 rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid,
1220 &ioreq_pfn, &bufioreq_pfn,
1221 &bufioreq_evtchn);
1222 if (rc < 0) {
1223 error_report("failed to get ioreq server info: error %d handle=%p",
1224 errno, xen_xc);
1225 goto err;
1226 }
1227
1228 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1229 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1230 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1231
1232 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1233 PROT_READ|PROT_WRITE,
1234 1, &ioreq_pfn, NULL);
1235 if (state->shared_page == NULL) {
1236 error_report("map shared IO page returned error %d handle=%p",
1237 errno, xen_xc);
1238 goto err;
1239 }
1240
1241 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1242 if (!rc) {
1243 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1244 state->shared_vmport_page =
1245 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1246 1, &ioreq_pfn, NULL);
1247 if (state->shared_vmport_page == NULL) {
1248 error_report("map shared vmport IO page returned error %d handle=%p",
1249 errno, xen_xc);
1250 goto err;
1251 }
1252 } else if (rc != -ENOSYS) {
1253 error_report("get vmport regs pfn returned error %d, rc=%d",
1254 errno, rc);
1255 goto err;
1256 }
1257
1258 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1259 PROT_READ|PROT_WRITE,
1260 1, &bufioreq_pfn, NULL);
1261 if (state->buffered_io_page == NULL) {
1262 error_report("map buffered IO page returned error %d", errno);
1263 goto err;
1264 }
1265
1266 /* Note: cpus is empty at this point in init */
1267 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1268
1269 rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true);
1270 if (rc < 0) {
1271 error_report("failed to enable ioreq server info: error %d handle=%p",
1272 errno, xen_xc);
1273 goto err;
1274 }
1275
1276 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1277
1278 /* FIXME: how about if we overflow the page here? */
1279 for (i = 0; i < max_cpus; i++) {
1280 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1281 xen_vcpu_eport(state->shared_page, i));
1282 if (rc == -1) {
1283 error_report("shared evtchn %d bind error %d", i, errno);
1284 goto err;
1285 }
1286 state->ioreq_local_port[i] = rc;
1287 }
1288
1289 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1290 bufioreq_evtchn);
1291 if (rc == -1) {
1292 error_report("buffered evtchn bind error %d", errno);
1293 goto err;
1294 }
1295 state->bufioreq_local_port = rc;
1296
1297 /* Init RAM management */
1298 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1299 xen_ram_init(pcms, ram_size, ram_memory);
1300
1301 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1302
1303 state->memory_listener = xen_memory_listener;
1304 QLIST_INIT(&state->physmap);
1305 memory_listener_register(&state->memory_listener, &address_space_memory);
1306 state->log_for_dirtybit = NULL;
1307
1308 state->io_listener = xen_io_listener;
1309 memory_listener_register(&state->io_listener, &address_space_io);
1310
1311 state->device_listener = xen_device_listener;
1312 device_listener_register(&state->device_listener);
1313
1314 /* Initialize backend core & drivers */
1315 if (xen_be_init() != 0) {
1316 error_report("xen backend core setup failed");
1317 goto err;
1318 }
1319 xen_be_register("console", &xen_console_ops);
1320 xen_be_register("vkbd", &xen_kbdmouse_ops);
1321 xen_be_register("qdisk", &xen_blkdev_ops);
1322 xen_read_physmap(state);
1323 return;
1324
1325 err:
1326 error_report("xen hardware virtual machine initialisation failed");
1327 exit(1);
1328 }
1329
1330 void destroy_hvm_domain(bool reboot)
1331 {
1332 xc_interface *xc_handle;
1333 int sts;
1334
1335 xc_handle = xc_interface_open(0, 0, 0);
1336 if (xc_handle == NULL) {
1337 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1338 } else {
1339 sts = xc_domain_shutdown(xc_handle, xen_domid,
1340 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1341 if (sts != 0) {
1342 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1343 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1344 sts, strerror(errno));
1345 } else {
1346 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1347 reboot ? "reboot" : "poweroff");
1348 }
1349 xc_interface_close(xc_handle);
1350 }
1351 }
1352
1353 void xen_register_framebuffer(MemoryRegion *mr)
1354 {
1355 framebuffer = mr;
1356 }
1357
1358 void xen_shutdown_fatal_error(const char *fmt, ...)
1359 {
1360 va_list ap;
1361
1362 va_start(ap, fmt);
1363 vfprintf(stderr, fmt, ap);
1364 va_end(ap);
1365 fprintf(stderr, "Will destroy the domain.\n");
1366 /* destroy the domain */
1367 qemu_system_shutdown_request();
1368 }
1369
1370 void xen_modified_memory(ram_addr_t start, ram_addr_t length)
1371 {
1372 if (unlikely(xen_in_migration)) {
1373 int rc;
1374 ram_addr_t start_pfn, nb_pages;
1375
1376 if (length == 0) {
1377 length = TARGET_PAGE_SIZE;
1378 }
1379 start_pfn = start >> TARGET_PAGE_BITS;
1380 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1381 - start_pfn;
1382 rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages);
1383 if (rc) {
1384 fprintf(stderr,
1385 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1386 __func__, start, nb_pages, rc, strerror(-rc));
1387 }
1388 }
1389 }
1390
1391 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1392 {
1393 if (enable) {
1394 memory_global_dirty_log_start();
1395 } else {
1396 memory_global_dirty_log_stop();
1397 }
1398 }